

Article (refereed) - postprint

Kean, E.F.; Shore, R.F.; Scholey, G.; Strachan, R.; Chadwick, E.A. 2021. **Persistent pollutants exceed toxic thresholds in a freshwater top predator decades after legislative control.**

© 2020 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

This version is available at http://nora.nerc.ac.uk/id/eprint/529388

Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at <u>https://nora.nerc.ac.uk/policies.html#access</u>.

This is an unedited manuscript accepted for publication, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version was published in *Environmental Pollution*, 272, 116415. <u>https://doi.org/10.1016/j.envpol.2020.116415</u>

The definitive version is available at https://www.elsevier.com/

Contact UKCEH NORA team at noraceh@ceh.ac.uk

The NERC and UKCEH trademarks and logos ('the Trademarks') are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

Supplementary information

Table SI 1. Frequency of detection of 38 pollutants in otter livers 1992-2009. For each pollutant we report the number (n) for which an analytical result was returned, the n for which that result was > detection limit (dl) of 1 μ g kg-1 wet weight, and calculate from this the frequency of detection as % of samples in which the pollutant was detected. Pollutants used in statistical models described in the paper are shown in **bold.** For some models, pollutants were aggregated prior to their use as dependent variables (for details of methods see manuscript); these are indicated as: \diamond grouped in DDT model; * grouped in Σ PCB-TEQ model; + grouped in Σ PCB model

	Result	Result >	
Pollutant	returned, n	dl, n	Result > dl, %
a-HCH	655	11	1.7
b-HCH	542	123	22.7
g-HCH	627	16	2.6
d-HCH	623	13	2.1
Dieldrin	744	741	99.6
Aldrin	627	12	1.9
Isodrin	616	116	18.8
Endrin	571	32	5.6
DDE-OP 🛇	629	46	7.3
DDE-PP 🛇	744	742	99.7
DDT-OP 🛇	616	105	17.0
DDT-PP 🛇	613	127	20.7
TDE-OP \Diamond	611	116	19.0
TDE-PP 🛇	714	603	84.5
НСВ	672	661	98.4
PCB 8	632	15	2.4
PCB 18	633	18	2.8
PCB 20	633	31	4.9
PCB 28	588	27	4.6
PCB 31	633	31	4.9
PCB 35	624	34	5.4
PCB 44	622	45	7.2
PCB 52	640	135	21.1
PCB 66	615	75	12.2
PCB 77*	631	80	12.7
PCB 101	645	245	38.0
PCB 105*+	676	624	92.3
PCB 118*+	718	718	100.0
PCB 126*	601	237	39.4
PCB 128+	632	584	92.4
PCB 138+	729	724	99.3
PCB 149	633	138	21.8
PCB 153+	712	711	99.9
PCB 156*+	710	663	93.4
PCB 169*	541	159	29.4
PCB 170+	617	615	99.7
PCB 180+	743	732	98.5
PCB 187+	627	627	100.0