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ABSTRACT: Precipitation events cause disruption around the world and will be altered by climate change. However,

different climate modeling approaches can result in different future precipitation projections. The corresponding ‘‘method

uncertainty’’ is rarely explicitly calculated in climate impact studies and major reports but can substantially change esti-

mated precipitation changes. A comparison across five commonly used modeling activities shows that, for changes in mean

precipitation, less than half of the regions analyzed had significant changes between the present climate and 1.58C global

warming for the majority of modeling activities. This increases to just over half of the regions for changes between present

climate and 28C global warming. There is much higher confidence in changes in maximum 1-day precipitation than in mean

precipitation, indicating the robust influence of thermodynamics in the climate change effect on extremes. We also find that

none of themodeling activities captures the full range of estimates from the othermethods in all regions. Our results serve as

an uncertainty map to help interpret which regions require a multimethod approach. Our analysis highlights the risk of

overreliance on any single modeling activity and the need for confidence statements in major synthesis reports to reflect this

method uncertainty. Considering multiple sources of climate projections should reduce the risks of policymakers being

unprepared for impacts of warmer climates relative to using single-method projections to make decisions.
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1. Introduction

Understanding future precipitation changes in a warming

world is critical to empower communities to make informed

decisions around adaptation or climate-related policy. Precipitation

provides drinking water, is relied on for agriculture, and is used in

many sectors of industry, so changes inwater availability need to be

understood to make the most of this limited resource. Droughts

cause severe strain on people and ecosystems. Storms and

extreme rainfall events also cause flooding and destruction.

Worldwide, flooding affects more people than any other

natural disaster (Wallemacq and House 2018).

Unfortunately, given the importance of precipitation for daily

life, future changes in precipitation are much less certain than

temperature changes (Collins et al. 2013; Tebaldi et al. 2011). In

this study we look at low levels of global warming, in particular

1.58 and 28C, which are relevant to the Paris Agreement and

associated policy decisions.A challenge relating to these levels of

warming is that the signal of precipitation changes can be difficult

to distinguish from the noise because the changes are often small

relative to internal variability (Hawkins and Sutton 2011) and

require larger ensemble sizes to detect than temperature trends

(Deser et al. 2012). There are nonlinear effects in the climate

system and differences between transient and equilibrium cli-

mate response, so changes based on higher levels of warming

cannot simply beused to estimate impacts for 1.58 and28C (Good

et al. 2016; Mitchell et al. 2016). Furthermore, precipitation

events are tightly connected to atmospheric and ocean dynamics

and changes are seasonally dependent so interpreting changes in

precipitation and their impacts requires careful analysis.

The most common approach when investigating future

changes of precipitation is to use general circulation models

(GCMs) that dynamically simulate the physics of the atmo-

sphere and ocean. Different GCMs use varying representa-

tions of the physics, so model intercomparison projects (MIPs)

are frequently used to provide a range of different possible

futures. The MIPs used in this study (also referred to as mod-

eling activities) are phases 5 and 6 of the Coupled Modeling

Intercomparison Project [CMIP5 (Taylor et al. 2012) and

CMIP6 (Eyring et al. 2016; O’Neill et al. 2016)], the Half a

DegreeAdditionalWarming, Prognosis and Projected Impacts

project (HAPPI) (Mitchell et al. 2017), the 2018 U.K. ClimateSupplemental information related to this paper is available

at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-

0289.s1.
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Projections (UKCP18) (Murphy et al. 2019), and theHigh-End

Climate Impacts and Extremes project (HELIX) (Wyser et al.

2017). MIPs provide a common experimental protocol under

which multiple modeling groups run simulations to produce

multimodel ensembles of climate projections. The use of MIPs

has been a successful approach, and Fig. 1 shows that around

half of the impact studies in the Intergovernmental Panel on

Climate Change (IPCC) Special Report onGlobalWarming of

1.58C (IPCC 2018) result directly from one of these MIPs.

In producing their assessment reports, the IPCC strives to

compile information across all of the available literature.

However, it relies heavily on using the latest modeling inter-

comparison project to determine the likelihood of changes in

climate. For example, in the IPCC Fifth Assessment Report

(AR5), the CMIP5 results were compared with the previous

activity (CMIP3) to see how they differ. However, the keynote

plots in the IPCC ‘‘Atlas of Global and Regional Climate

Projections’’ were solely from the CMIP5 ensemble. In the

coming years, there will be a strong focus on analyzing the latest

results from CMIP6, which will contribute to the IPCC Sixth

Assessment Report (AR6). CMIP6 has a broad sample of cur-

rent model diversity with a generally higher model complexity

than CMIP5, so there are many benefits to using this new re-

source.However, singleMIPs such asCMIP5 can underestimate

the possible range of future climate change (Deser et al. 2020).

On the other hand,GCMshave a range of climate sensitivities to

greenhouse gas forcing (Sherwood et al. 2014) and CMIP6 is

known to have a large proportion of high-climate-sensitivity

models (Zelinka et al. 2020), which may overestimate the upper

bound of warming (Tokarska et al. 2020). So especially in re-

gions with low confidence in precipitation change, it could be

counterproductive to disregard the huge resource of previous

climate model results and focus on CMIP6 alone.

Within each MIP, a common experimental design is used.

However different experimental designs can lead to differing

impacts of 1.58C warming, related to factors such as the rate of

global warming and the aerosol forcing relative to greenhouse

gas forcing (Seneviratne et al. 2018; King et al. 2018). The large

CMIP5 and CMIP6 activities use a number of different emis-

sions scenarios, so do include a measure of scenario uncer-

tainty. However, there are other uncertainties relating to

experimental design, such as the use of high-resolution cloud or

convection resolving models compared to models that pa-

rameterize these processes, or the inclusion of carbon-cycle

feedbacks compared to prescribed greenhouse gas forcing. The

differences in climate response between transient and equi-

librium climate are also difficult to diagnose using traditional

scenario-based MIPs, which produces another source of ex-

perimental design uncertainty that is relevant to policy deci-

sions. Our study aims to take the comprehensive approach of

analyzing results from MIPs that use different modeling ap-

proaches. Here we examine uncertainty that is due not just due

to different emission pathways in a single MIP, but also to

differing experimental setups in different MIPs.

There is a risk that relying on a single MIP may result in

overconfidence in climate projections by missing some uncer-

tainty due to experimental design. In addition, considering

different emissions pathways at lower levels of warming can

give different precipitation changes (Mitchell et al. 2016). On

the other hand, comparisons between CMIP3 and CMIP5 high

emissions pathways show consistent changes in seasonal pre-

cipitation (Knutti and Sedlá�cek 2013), which increases the

confidence in those results. Hence determining agreement in

precipitation projections can enhance (where they agree) or

reduce (where they disagree) our confidence in the individual

projections.

In Fig. 1, only a very small proportion of studies considered a

combination of approaches to obtain multiple lines of evidence

about future changes. Combining large multimodel ensembles

of simulations with differing experimental design and skill at

representing the current climate is not straightforward. We

note that it is not always clear that improvedmodel skill for the

present day will result in improved future projections (Knutti

et al. 2010). However, there is ongoing work with regard to

weighting simulations depending on their representation of

relevant climate phenomena or relation to other simulations

(e.g., Sanderson et al. 2017a; Merrifield et al. 2020; Brunner

et al. 2020). This has the potential to constrain the likely range

of future projections, for example by down-weighting high

climate sensitivity models that give poor performance over the

historical period.

This study focuses on the agreement across multiple mod-

eling activities of estimates of precipitation change at specific

levels of global warming (e.g., 1.58 and 28C). We compare

changes in yearly mean precipitation and the yearly maximum

of daily precipitation (‘‘extreme precipitation’’). We use av-

erages over land of updated reference regions created for the

IPCC AR6 (Iturbide et al. 2020; see Fig. S1 in the online sup-

plemental material) to investigate different regional signals.

Time slices of transient simulations are used to examine spe-

cific levels of global warming. We consider each of the MIPs

used in this study as providing plausible representations of

future climate and do not weight any one higher than the

FIG. 1. Categorization of methods used by papers in the IPCC

SR1.5 impacts chapter (chapter 3), considering projections from

163 studies. ‘‘MIP’’ includes simulations from the CMIP5, CMIP3,

CORDEX, HAPPI, and HELIX modeling protocols. ‘‘Other’’

refers to methods that do not directly use GCMs. Note that some

studies, e.g., using climate emulators, may be based around GCM

results indirectly.
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others. This is reasonable given their individual use in different

analyses of projected precipitation change.

We first show the agreement in sign of significant changes to

1.58 and 28C warming across the five climate modeling activi-

ties. This approach identifies regions where modeling activities

agree in a significant change, and regions in which the change is

more uncertain. The significance is determined from the 5%–

95% confidence intervals of the ‘‘central estimates’’ calculated

for each MIP. The central estimate is calculated by combining

the model estimates within each MIP, taking into account the

model spread and sampling uncertainty for each model. A

combined central estimate for results across the MIPs is also

calculated.

In addition to showing the combined changes and whether

the changes are significant, we also consider uncertainty in

each of the modeling activities’ results and the combined

central estimate. The magnitude of uncertainty bounds and the

extent of overlap between uncertainty estimates is explored.

Furthermore, to dig deeper into uncertainty due to experi-

mental design, we undertake comparisons between changes

calculated for different experimental designs or scenarios. This

is done using two individual models that each have large en-

sembles of simulations, as well as by comparing different sce-

narios within the CMIP5 and CMIP6 activities.

This analysis illustrates the potential of combining the

agreement across different modeling activities with a more

detailed examination of experimental design using single-

model large ensembles. This approach provides a fuller pic-

ture of the so-called method uncertainty in these climate

modeling activities. This is something that is difficult to quan-

tify but is essential to address, especially in regions where the

changes are not as clear as a single modeling activity would

indicate.

2. Materials and methods

Methods for analyzing results from GCM simulations are

presented below. Information about the specific climate model

datasets is given in the appendix.

a. Climate indices and regions

For this analysis, we focus on two precipitation indices. We

use the annual mean precipitation (referred to as ‘‘mean pre-

cipitation’’) and the yearly maximum of daily precipitation

(referred to as ‘‘extreme precipitation’’). The mean precipita-

tion is used to indicate whether there is a change in the total

amount of precipitation over a region. The extreme precipi-

tation index is used to indicate whether there will be a change

in the magnitude of precipitation in heavy rainfall events or

storms. When looking at impacts in specific sectors and local

scales, indices that capture seasonality are also very useful, but

we chose these two indices as they are widely applicable on a

global scale.

When calculating the changes in precipitation between dif-

ferent specific warming levels, we focus on the percentage

changes, to show the changes relative to themodel climatology.

This gives a normalizedmetric of changes to reflect that amean

change, for example 0.2mmday21, in a low-rainfall area is

likely to make a larger impact than the same change in a region

with very high rainfall. The use of relative changes does mean

that in the presence of model biases the same absolute change

in precipitation will appear as different percentage changes. In

addition, in areas of very low precipitation, showing percent-

age changes of relative changes may overemphasize small

changes in precipitation. To support these analyses, we addi-

tionally show results of absolute changes (mmday21) as online

supplemental material.

For analysis of changes, region definitions were used as per

Iturbide et al. (2020). These regions were developed as an

update to regions used in the IPCC AR5 and the IPCC SREX

report, using smaller regions in some parts of the world to

achieve better climatic consistency within each region. A map

of these regions is shown in Fig. S1 in the online supplemental

material, labeled with the acronyms used for each region. The

precipitation indices were first averaged over these regions

before calculation of changes. Note that in the regions ana-

lyzed here, averages were calculated over land points only.

b. Extracting 1.58 and 28C time slices

Transient GCM experiments are designed around simula-

tions of the historical period then continuing into the future

using scenarios representing different emissions pathways.

From these simulations, we can then determine the climate

state when these scenarios reach different levels of global

warming. In this study, we use a commonly used approach of

selecting time slices (King et al. 2017; James et al. 2017). This

approach does have the limitation that climate from a transient

climate simulation can differ from simulations stabilized at the

same level of warming due to effects that lag behind the

warming of the atmosphere (e.g., ocean circulation and sea

level rise) (Manabe et al. 1991; Held et al. 2010). The alter-

native is to compute targeted simulations that stabilize at each

specific level of warming, but this has only been done in a few

cases (e.g., Sanderson et al. 2017b), so using time slices of

transient simulations is still a widely used method.

First, a baseline is chosen as the start of the historical period

(e.g., 1861–1900) to calculate the preindustrial reference tem-

perature. Then 21-yr time slices are chosen for the first period

that has the global mean temperature averaged over the time

slice reaching the specific warming levels of 1.58 and 28C rela-

tive to the baseline. For current climate, time slices for the

warming level of 0.98C are used to match observed warming to

2010. This is done, rather than taking a fixed time period, to

keep the warming between the current and 1.58C time slice

consistent, and thereby accounting for the variation in climate

sensitivities between models. We note that this will inevitably

result in there being different aerosol forcings between models

in each of the current, 1.58, and 28C warmer worlds. As the

historical simulations are not necessarily long enough to cap-

ture our current climate period (in CMIP5 they finish in 2005),

they are extended by future scenario simulations where nec-

essary. When more than one future scenario was available, the

highest emission scenario was used to extend the historical

simulation for the current climate period. This prevents low

climate sensitivity models (which reach 0.98C later) from

having current climate time slices as far into the future

1 FEBRUARY 2021 UHE ET AL . 1229



scenarios as would be the case using low emissions scenarios.

Note that the current climate time slices are referred to as

‘‘Hist’’ in some figures.

For CMIP5 and CMIP6, simulations from all future sce-

narios available are included in the analysis to maximize the

number of samples. The exception to this is the results for

section 3c, where the changes calculated using low- and high-

warming scenarios were compared.

In this study we aim to keep the methodology of extracting

specific levels of warming as consistent as possible. However,

different experimental designs do mean that the time slices

need to be calculated in different ways in some cases. These

differences are described in the appendix for each dataset

where relevant.

c. Statistical analysis

To estimate the change in a particular variable between two

time slices, all of the years in each time slice for each model are

pooled together. Then the ensemble mean response is deter-

mined based on all years of data for that particular model. The

uncertainty range in the mean response is determined by ran-

domly resampling each distribution with replacement 1000

times and calculating the mean response from each sample.

The 5th–95th percentile range of the samples then gives the

sampling uncertainty in the mean change.

When determining the significance of multimodel changes,

for example in the IPCC report, it is common practice to use

significance tests to determine whether changes are distin-

guishable from natural variability alongside thresholds for the

proportion of models agreeing on the sign of the change (e.g.,

Tebaldi et al. 2011). However, these types of approaches do not

provide a confidence interval around the multimodel change,

making it difficult to combine uncertainty estimates of differ-

ent multimodel datasets together.

Here, to combine each of the model estimates into to a

multimodel summary or so-called central estimate, we use

the random-effects meta-analysis method (Cochran 1937;

DerSimonian and Laird 1986). This methodology is commonly

used in clinical studies to combine central estimates and un-

certainty ranges of different studies together and was applied

to climate models in Uhe et al. (2019). Such a statistical ap-

proach takes into account both the sampling uncertainty from

random resampling si and themodel spread s, which is taken as

the standard deviation of the central estimates. From these

quantities, a combined central estimate of change and an es-

timate in the uncertainty in that value are derived.

The multimodel central estimate m and its standard error

d are given by the following equations:
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where wi are the weights given to each of the model estimates in

the calculation of the central estimate. The 5%–95% confidence

interval is calculated as m 6 1.6d, assuming normally

distributed values.

This calculation of central estimates is applied to combine

different model estimates for each of the MIPs, and also finally

to combine the central estimates of each MIP into an overall

combined central estimate. The changes are referred to as

statistically significant if the 5%–95% confidence interval does

not include zero.

3. Results

a. Regional changes and agreement

To evaluate the confidence in large-scale patterns of pre-

cipitation changes, we use agreement between climate mod-

eling activities. Figure 2 shows the agreement of changes

between current climate and 1.58C or 28C, across our fiveMIPs,

for mean and extreme precipitation. Agreement here is rep-

resented by the number of modeling activities that show a

significant change (i.e., the 5%–95% confidence interval not

including zero).

In Fig. 2, regions are marked with hatching where there are

conflicting but significant changes from two different MIPs.

Encouragingly, this shows that there are only a few regions

for mean precipitation (northern Central America, the Sahara,

southern East Africa, and southern South America) where two

different modeling activities have significant changes with

opposite signs, between current climate and 1.58C. For the

changes to 28C, this is reduced to just southern South America.

CMIP6 is the latest MIP, using current state-of-the-art cli-

mate models, and will underpin most of the conclusions de-

scribed in the IPCC AR6. For this reason, we highlight regions

where CMIP6 does not agree in the significance of the changes

with the majority of other modeling activities. In Fig. 2, thick

outlines indicate where CMIP6 gives a different sign or sig-

nificance in the changes to three of the other four modeling

activities. This identifies vulnerable regions such as some parts

of South America or Africa, where using information from

CMIP6 alone may misrepresent our confidence in the precipita-

tion changes to 1.58C of global warming. We note that these are

not indicating that the using CMIP6 results in a different sign to

significant changes given by other MIPs; rather, it may give a

significant change where most other MIPs show only insignificant

changes, or vice versa. However, this is still an important point

because it is relevant to the confidence statements produced by

the IPCC (or other major reports) that may be considered by

decision makers with regard to climate change planning.

Figure 3 shows the percentage changes in mean and extreme

precipitation, from the combined central estimate of the five

modeling activities. To highlight the confident changes, regions

where the combined central estimate gives a significant change

are marked with a bold border in Fig. 3. We additionally in-

clude the same changes, but calculated in millimeters per day,

in Fig. S2 in the online supplemental material. For breakdown

by modeling activity, Figs. S3 and S4 in the online supple-

mental material show the changes and the significance of the

central estimates for each MIP, in percentage change and

mmday21 respectively.
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From Figs. 2 and 3, we see that the precipitation changes in

North America and Eurasia show the strongest agreement,

especially at the lower warming level of 1.58C. For changes in
the SouthernHemisphere and some equatorial regions, there is

often less agreement. Hence, in these regions, the use of a

single modeling activity (as most studies have done) risks

creating false confidence in the changes.

Changes in extreme precipitation show a large amount of

agreement. At 28C warming, the majority of modeling activi-

ties show confident changes in almost all regions (except the

Sahara and Caribbean regions). This higher confidence in ex-

treme precipitation has been reported previously (Allen and

Ingram 2002; Fischer et al. 2014; Pendergrass et al. 2015). This

is due to thermodynamics dominating extreme precipitation

changes, while mean precipitation will be more strongly influ-

enced by dynamical (i.e., atmospheric) circulation changes,

which have less certainty and more disagreement. We also note

that there are increases in extreme precipitation in regions that

show drying changes in the mean precipitation. This increase in

extreme precipitation could be part of the source of uncertainty

in mean precipitation drying, due to the extreme precipitation

contributing different fractions of the total precipitation in

different models.

The level of agreement between the different modeling ac-

tivities in the precipitation changes is also strongly connected

to the strength of the changes. Figure S5 in the online sup-

plemental material shows the signal-to-noise ratio for each of

the modeling activities, where the noise represents the mag-

nitude of the 5%–95% confidence intervals. Here we see that

the areas that have the highest agreement also have the

strongest signal-to-noise ratio. A useful metric to measure of

magnitude of changes is the internal variability of the system,

and Fig. S6 in the online supplemental material shows nor-

malized changes, representing the amount of the change rela-

tive to the variability simulated by each model. This highlights

that at these small levels of global warming, many of the

changes are smaller than the year-to-year variability; however,

they can be detected confidently by using the large number of

samples in these MIPs.

In addition to the agreement in the sign of the precipitation

changes, it is relevant to understand whether the uncertainty

ranges in changes using each modeling activity overlap. For

this, we consider the changes in mean precipitation between

current climate and 1.58C warming. Figure 4 shows the amount

of overlap between the confidence interval for each MIP and

the confidence intervals calculated for the combined central

estimate of the other MIPs. In nearly all regions there is some

overlap between the modeling activities, so it is rare for the

central estimates of each modeling activity to completely dis-

agree.We note that in Fig. 4, a value of 100%does not necessarily

FIG. 2. Agreement between projection modeling activities (CMIP5, CMIP6, HAPPI, UKCP18, andHELIX) in a

significant change for mean and extreme precipitation. Changes are calculated between time slices at specific

warming levels: (top) 1.58C vs Hist and (bottom) 28C vs Hist (Hist refers to current climate; see section 2c). If two

methods show opposing changes, this is assigned as no agreement and the region is hatched. Changes are calculated

for regional means over AR6 reference regions, for (left) yearly mean precipitation and (right) yearly maximum of

daily precipitation (extreme precipitation). Regions with thick outlines are where CMIP6 agrees with at most one

other method about the sign and significance of the change.
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indicate perfect agreement. Instead, it can reflect a larger uncer-

tainty range in the changes for a givenMIP that encompasses the

combined central estimate for the otherMIPs. Part of this may be

due to the nature of the combined central estimate, which can

have a smaller uncertainty range if the models are in agreement,

reflecting the greater number of samples included. Figures S7–S9

in the online supplemental material show similar results for ex-

treme precipitation and 28C warming.

We highlight that the HAPPI activity shows more regions

where the central estimate disagrees with the other modeling

activities. This may be partly due to the large initial condition

ensembles within HAPPI resulting in smaller uncertainty

bounds, but at the same time not including uncertainty in the

ocean and sea ice responses, hence giving overconfident esti-

mates. HAPPI and HELIX also exhibit a tendency to give

different results in some northern regions, which may indicate

an influence from the prescribed sea ice that is used in their

atmosphere-only simulations. Looking at Fig. 4 and Figs. S7–

S9, there is no activity that agrees with the combined result

from the other activities in all cases. This finding provides

substantial support to the benefit of considering a range of

modeling activities.

b. Partitioning of uncertainty

When considering the confidence of a particular model re-

sult, understanding the source of uncertainties can be highly

illustrative. We consider three types of uncertainty: sampling

uncertainty, intermodel uncertainty, and experimental design

uncertainty (the last of which is considered in detail in

section 3c).

We consider first sampling uncertainty within a single model

projection, calculated as per section 2c. This uncertainty is

related to the internal variability in the climate system and the

number of years of simulation included in the sample. To re-

duce the uncertainty in a single model response, modeling

centers generate ensembles of simulations, usually produced

by initial condition or physics parameter perturbations. We

also consider the uncertainty in the central estimates for each

MIP. We note that the central estimate uncertainty is not an

independent quantity but is calculated on the basis of the

confidence intervals of each model, as well as the spread of

model changes. We finally consider the combined central es-

timate uncertainty.

Figure 5 shows these different quantities of uncertainty in

the combined projections to 1.58 and 28C. Four regions are

shown as illustrative examples. With regard to sampling un-

certainty (i.e., single model uncertainty), HAPPI, which uses

large ensembles, has a much smaller sampling uncertainty than

CMIP5 and CMIP6, which mostly have fewer than three his-

torical simulations per model (see Tables S1–S3 in the online

supplemental material for ensemble sizes). HAPPI simulations

also use atmosphere-only models, forced by a single set of

FIG. 3. Multimethod projections for mean and extreme precipitation, using a combined central estimate of

changes across five modeling activities (CMIP5, CMIP6, HAPPI, UKCP18, and HELIX). Changes are calculated

between time slices at specific warming levels: (top) 1.58C vs Hist and (bottom) 28C vs Hist. Thick region outlines

indicate significance in the change, i.e, where the combined central estimate 5%–95% confidence interval does not

include zero. Hatching is used to indicate where two methods show opposing significant changes. Changes are

calculated for regional means over AR6 reference regions, for (left) yearly mean precipitation and (right) yearly

maximum of daily precipitation (extreme precipitation).

1232 JOURNAL OF CL IMATE VOLUME 34



prescribed sea surface temperatures, so HAPPI may represent a

smaller range of possible futures compared to the full spread of

coupled ocean–atmosphere models.

In Fig. 5, the combined central estimate uncertainty is at the

lower end of the singleMIP central estimate uncertainties. This

finding is a result of the construction of the central estimate

‘‘narrowing in’’ on the most plausible response as more sam-

ples are available. We note though that this is a purely statis-

tical approach to determining the uncertainty range. In terms

of ability to model the climate system, outlier models may be

just as plausible, despite lying outside our central estimate

uncertainty. Other things that could be considered are model

interdependencies (e.g., different models sharing code or

components) (Knutti et al. 2013).

We also note that in a commonly pictured view of model

uncertainty (Hawkins and Sutton 2009), the model uncertainty

in a given variable increases over simulated future times. This

increasing spread is partly because different models have dif-

ferent climate sensitivities and therefore warm at different

rates. However, because we are examining model projections

at specific levels of warming, any first-order differences that are

due to climate sensitivity will not be included in our uncer-

tainty estimates. Lehner et al. (2020) showed that model un-

certainty for global mean precipitation also increases with

global warming, with small differences between CMIP5 and

CMIP6, but here we look at uncertainty for a few specific re-

gions. In Fig. 5, we show that while the central estimate un-

certainty does generally increase, there are cases where it stays

constant or decreases as global warming increases, such as the

HAPPI projection of mean precipitation over the Mediterranean

or theUKCP18 projections of extreme precipitation over western

central Europe. Where the single model (sampling) uncertainty

does not show substantial changes, we expect the changes in

central estimate uncertainty to relate to model uncertainty. In

FIG. 4. Amount of uncertainty from the combined estimates captured by the uncertainty of specific MIPs. For

mean precipitation, 1.58C 2 current climate, and each MIP, this shows the percentage coverage by its confidence

interval of the combined central estimate interval from the other four MIPs. Here 0% (hashed regions) indicates

that theMIP is in complete disagreement with the combined estimate from the otherMIPs. 100% (stippled regions)

indicates that the confidence interval of the MIP completely encompasses the combined confidence range from the

other MIPs. The confidence intervals are the 5%–95% range for the change in mean precipitation between current

climate and 1.58C warming.
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other regions shown here, the uncertainty is similar or increases as

warming rises from 1.58 to 28C, but this highlights that the use of

specific levels of warming can constrain the uncertainty.

c. Differences in experimental design and scenarios

In addition to the uncertainty at the model or MIP level,

there is uncertainty due to the experimental design of each

modeling activity. The previous section considered the uncer-

tainty across the MIPs; however, this is not the same as the

experimental design uncertainty. Because each of the MIPs

uses different models (and different generations of models), it

is not possible to formally connect the multi-MIP spread di-

rectly to the experimental design. However, the experimental

design uncertainty can be related to the choice of scenario and

forcing datasets used to run the future projections. The ex-

perimental design uncertainties may also involve more struc-

tural differences—for example, the use of atmosphere-only

compared to coupled ocean–atmosphere models, or the choice

of using a dynamic carbon cycle with emissions prescribed

rather than GHG concentrations.

To isolate the influence of experimental design on the future

projections, one approach is to use single-model large ensem-

bles. Where these large ensembles have produced simulations

using multiple modeling protocols, we can compare their re-

sponses at specific levels of warming. For this analysis we have

used the CanESM2 large ensemble (Kirchmeier-Young et al.

2017) using the RCP8.5 scenario from CMIP5 and compared

it with the CanAM4 (the atmospheric component of the

CanESM2 model) simulations produced using the HAPPI

scenarios. Second, we have compared the CESM large en-

semble (Kay et al. 2015) using the RCP8.5 scenario from

CMIP5 with the CESM low-warming simulations (LowWarm)

using emissions pathways designed to stabilize at 1.58 or 28C
(Sanderson et al. 2017b).

Figure 6 shows the comparison between the experimental

designs over different regions. Differences for CanESM2 are

shown in the upper panel and differences for CESM are shown

in the lower panel. The differences shown are for percentage

changes in mean precipitation between current climate and

1.58C, comparing the two experimental designs. Regions that

are thickly outlined are where the significance or sign of the

change is different between experimental designs. For both

models, there is a clear difference over the Americas where the

stabilized scenario (HAPPI or LowWarm) becomes wetter

relative to the transient RCP8.5 simulations. Similar differ-

ences are seen over Asia, although with less consistency. An

opposite difference is seen over the North and East African

regions, and parts of Australia.

Two factors causing a difference between the stabilized and

transient simulations are the differences in non-greenhouse

gases such as anthropogenic aerosols, and the differences in the

in land–sea contrast driven by the land warming faster than the

ocean. Anthropogenic aerosols are projected to be significantly

reduced by the end of the twenty-first century, which is re-

flected in the stabilized scenarios. The transient simulations,

however, may pass the 1.58C temperature threshold before the

mid-twenty-first century, and so will have significantly higher

modeled aerosol loads. This may be reflected in the relatively

strong differences in East Asia in Fig. 6, particularly for CESM.

We note that models with different representations of aerosols

will give differing changes, which may be a source of model

uncertainty in the multimodel analysis, for areas of high

aerosol forcing.

We investigate spatial patterns of changes over the oceans in

Fig. S10 in the online supplemental material, which is as per

Fig. 6 but instead showing model grid cells rather than regional

averages. There are strong positive precipitation anomalies

on the Pacific equator indicating differences in the Pacific

FIG. 5. Partitioning of uncertainty for mean and extreme precipitation: plots showing estimates of uncertainty in changes of precipi-

tation between current climate and 1.58 or 28C climates, for four regions. Orange markers give the median ‘‘single model uncertainty’’

(given as the 5%–95% confidence interval in the changes from bootstrap resampling) for a particularMIP. Blue markers give estimates of

the 5%–95%confidence interval of the ‘‘central estimate’’ change for eachMIP. The red dots show the 5%–95%confidence interval range

of the ‘‘combined central estimate’’ changes. Regions are SouthAsia (SAS), Mediterranean (MED), western central Europe (WCE), and

northern South America (NSA).
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intertropical convergence zone between stabilized and tran-

sient simulations. This could be related to differences in the

north–south warming contrast between the experiments. Also,

in Fig. S10 there is a pattern of wetting over theAtlantic Ocean

and drying in the north of Africa in the stabilized experiments

relative to RCP8.5. This may be due to the land–sea contrast

from the Sahara region warming much faster than the Atlantic

Ocean in the transient simulations. In the stabilized experi-

ments, the Atlantic Ocean warming may catch up, causing this

difference.

We additionally look into the differences between low- and

high-warming scenarios for the CMIP5 and CMIP6 ensembles

in Fig. 7. These do show some regions where the significance of

the change is different between scenarios. Differences here are

important when considering the implications of following a low

emissions pathway, and in these thick-outlined regions (cov-

ering large parts of America and Africa), careful evaluation of

the different scenarios should be performed separately. The

differences here are smaller than the single-model differences

in Fig. 6, probably due to differing responses in models within

CMIP5 and CMIP6. There are also only a few regions that

show notable changes that are consistent between CMIP5 and

CMIP6 (e.g., parts of in central America, central Africa, and

New Zealand). Other regions have small differences or are not

consistent between CMIP5 and CMIP6.

The smaller difference in these scenarios for CMIP5 and

CMIP6 in many regions may be attributable to the low

warming amount of 1.58C. The CMIP models are not in equi-

librium by the time they reach 1.58C of global warming, even

for the low-warming scenarios, so the comparison in Fig. 7 does

FIG. 6. Experimental design difference for mean precipitation

changes between current climate and 1.58C, showing differences

between changes from the samemodel with different experimental

designs. The differences are calculated for percentage changes in

mean precipitation, comparing 1.58C with the current climate.

(top) Results using the CanESM2 model: HAPPI simulations

(using atmospheric component CanAM4) vs RCP8.5 simulations

(CanESM2 large ensemble). (bottom) Results using the CESM-CAM5

model: CESM-CAM5: low-warming simulations (LowWarm)

vs RCP8.5 simulations. Regions with thick outlines are where the sig-

nificance of the change is different between the experimental designs.

Hatched regions are where the different experimental designs result in

opposite significant changes.

FIG. 7. Emission scenario difference for mean precipitation

changes between current climate and 1.58C, giving differences

between changes from the same modeling activity, comparing high

and low emissions scenarios. These show (top) SSP126 vs SSP585

for CMIP6 and (bottom) RCP26 vs RCP85 for CMIP5. The dif-

ferences are calculated for percentage changes in mean precipita-

tion, comparing 1.58C with the current climate. Regions with thick

outlines are where the significance or sign of the change is different

between the scenarios.
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not clearly represent an equilibrium versus transient climate in

the same way as in Fig. 6. In addition, the differing model re-

sponses and the small number of ensemble members make it

difficult to identify any signal due to scenario differences for

this analysis. Again, this shows the value of the single-model

large ensembles used above.

4. Discussion and conclusions

Uncertainty arising from differences between climate

modeling activities is often ignored in climate change studies

and reports. As these studies form the basis for climate change

policy, ‘‘method uncertainty’’ is essential for reliable confi-

dence statements of precipitation change.

This article presents a statistical method to combine pro-

jected estimates of change from multiple modeling intercom-

parison projects. This involves producing a 5%–95%

confidence interval, which is used to determine a statistically

significant change. This approach has the advantage that the

uncertainty range is determined from the sampling uncertainty

of each model and the spread across different model changes,

and it does not rely on arbitrary thresholds such as percentage

of models that agree. We argue that using such a method and

evaluating the agreement between modeling intercomparison

projects and the combined central estimate from a range of dif-

ferent projects gives a quantification of the method uncertainty.

This study shows the agreement in precipitation changes

between five different modeling activities. For mean precipi-

tation, just over half of the regions have a significant change in

the majority of modeling activities for changes to 28C. In

contrast, for increases in extreme precipitation there are sig-

nificant changes for the majority of the MIPs almost every-

where by 28C warming. With regard to the magnitude of

possible changes, we also show that there is no single modeling

activity that captures the full range of changes estimated by the

other MIPs in all cases.

We note that drying is less confidently predicted than the

wetting. Drying in mean precipitation can occur while the ex-

treme precipitation is increasing, which may obscure some of

the signal. Another consideration is that the region definitions

themselves may not enable identification of drying on smaller

spatial scales. The nature of precipitation as a positive quantity

also sets an upper bound on the possible amount of drying,

particularly in already dry regions, which may cause the wet-

ting changes to overcome drying over larger regional averages.

It is also possible that the location of the drying regions is

slightly different between models and that calculating a mul-

timodel mean results in a loss of signal (e.g., Knutti et al. 2010).

Nonetheless, model spread and disagreement across modeling

activities need to be taken into account when evaluating risks

associated with these changes. More detailed seasonal level

analysis of these regions also will supplement these findings.

Furthermore, it is necessary to understand the sources of

uncertainty in each of the modeling activities, and the method

they use to determine future changes in climate. The CMIP5

and CMIP6 projects provide a large structural sample by in-

cluding many coupled ocean–atmosphere models but have

limited numbers of simulations per model. The HAPPI project

contains a range of models and has large ensembles to reduce

the sampling uncertainty, but only one representation of pos-

sible sea surface temperature change. UKCP18 is dominated

by a single model, but one that is from the latest generation

of models and is higher resolution than most models in the

other MIPs, potentially capturing phenomena not resolved by

coarser GCMs. Last, HELIX contains two high-resolution at-

mospheric models, and spans a range of possible sea surface

temperature trends estimated from different CMIP5 models.

These factors contribute to different effective degrees of

freedom and reliability of each ensemble (e.g., Yokohata et al.

2013), resulting in different estimates of uncertainty and ranges

of possible future changes.

To help identify the most likely future changes, increasing

the number of models gives a better idea of all of the possible

climate responses. In this method, including more samples in

the central estimate reduces the uncertainty by narrowing in on

the forced change (where models agree). However, this does

not necessarily remove the possibility of the true changes being

outside our confidence intervals, where there are outlier

models. Unless there are physical reasons to exclude a partic-

ular outlying model, they should still be considered plausible

scenarios. We note that the multimodel ‘‘central estimate’’

changes represent the mean change in the metrics considered

and do not span the full model spread including outliers. For

purposes of risk assessments, worst-case projections that are

based on the full probability distribution of projections (e.g.,

Sutton 2019; Quinn et al. 2013) should be used in addition to

the central estimate. This can take into account changes in

variability and likelihood of particular extreme events occur-

ring, which is important for decision making. We note that

combining projections of extremes from atmosphere-only and

coupled ocean–atmosphere model activities could be more

problematic, as the SST-forced simulations exhibit a smaller

range of variability due to sampling a smaller range of possible

climate states (Fischer et al. 2018). Therefore, a multi-MIP analysis

of extreme weather events may benefit from including amethod of

correcting variability (e.g., Bellprat et al. 2019) or by restricting to

similar model configurations (e.g., coupled model only).

In this study, we chose a method to produce the multimodel

central estimates that does not account for model skill. Models

have different biases and skill in representing historical climate

change. SST forced atmospheric models for example generally

have lower biases than coupled models (He and Soden 2016),

and model developers are constantly working to improve their

model’s performance, which may result in differences between

generations of models. Because of this, it may be desirable to

weight models, for example on their representation of different

aspects of current climate (Sanderson et al. 2017a; Shiogama

et al. 2011; Knutti 2010). Including model skill in the analysis

could give greater (or lower) weighting to outlying results from

models that are better (or worse) at representing a specific

phenomenon. The approach of considering all models to be

equal is a limitation of our method, and exploring this further

will add to the conclusions of this study.

In our analyses, we consider the projections of each MIP

equally plausible when combining their estimates. In reality,

the projections of specific MIPs are not equal and will have
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strengths and weaknesses. However, because it is common

practice in the scientific literature to base conclusions on a

single MIP, we combine these separate estimates without giv-

ing one higher consideration than the others. Separate from the

issue of how realistic the projections are, there are various

interdependencies between the MIPs. These can be due to

including models with commonalities (e.g., different genera-

tions of the same model or different models with shared

components) (Knutti et al. 2013). In addition, the HAPPI and

HELIX projects use SST projections based on output from

CMIP5 and UKCP18 also includes some results from CMIP5.

When combining results from different MIPs, adding addi-

tional independent data sources should increase the confidence

of our projections. However, the presence of common informa-

tion could narrow the uncertainty range in an unrealistic way by

treating data with similar origins as independent sources. As such,

the use of the combined central estimate should be used to

complement an evaluation of differentMIPs rather than replacing

such an analysis. A future refinement of the methodology used

here could take into account factors such as the interdependence

of the MIPs, skill of models within the MIPs and abilities of the

MIPs to sample a wide range of plausible future states.We expect

that such weighting of MIPs would modify the overall confidence

ranges produced by this analysis; however, the details of this

weighting are beyond the scope of this work.

Another limitation of combining results from different

modeling activities is that the results may be harder to interpret.

The combined results do not have the same specificity about the

experimental design as do results that, for example, reflect the

trajectory of a single future scenario. The combined central esti-

mates presentedhere reflect possible changes to 1.58 and 28C, but if
there are differences important for policy reasons such as between

transient and stabilized climates (e.g., Zappa et al. 2020; King et al.

2020), this may necessitate considering a smaller number of sim-

ulations that are relevant to the specific question at hand.

Use of single-model large ensembles also has the potential to

disentangle the uncertainty due to differences in model responses

and experimental design. In Fig. 6, we use two large ensembles to

show differences in precipitation response between transient and

stabilized climate scenarios. As more of these ensembles become

available (e.g., Deser et al. 2020) they will be a valuable tool for

comparing results across MIPs with consistent model structures.

This study emphasizes that analyzing precipitation changes

using a single MIP does not fully take advantage of previous

modeling work. The IPCC AR6 is likely to focus on results

fromCMIP6 at the expense of previous activities; however, this

may overestimate the confidence in precipitation changes.

Furthermore, in some cases, using CMIP6 on its own gives

different changes compared to other methods used here.

Combining information from different modeling activities will

improve our understanding of confidence in the changes and

where the uncertainty lies, and such an approach should be

adopted when formulating climate policy.
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APPENDIX

Climate Model Datasets

a. CMIP5

Phase 5 of the Coupled Modeling Intercomparison Project

(CMIP5) (Taylor et al. 2012) is the modeling effort used as the

basis for the IPCC AR5. It involved a large number (.30) of

different climate models, and in this study we use the historical

simulations and future scenarios following the representative

concentration pathways (RCPs) specified in the CMIP5 pro-

tocol. The models included in this study and the number of

ensemble members used for each level of global warming are

given in Table S1 in the online supplemental material.

b. CMIP6

Phase 6 of the Coupled Modeling Intercomparison Project

(CMIP6) (Eyring et al. 2016) is designed to inform the IPCC

Sixth Assessment Report. At the time of writing, new simula-

tions from CMIP6 are still being added to the CMIP6 archive.

Therefore, estimates of change using this dataset may change

as additional models are included. In this study we use the

historical simulations and future scenarios following Shared

Socioeconomic Pathways (SSPs) from the ScenarioMIP activity

(O’Neill et al. 2016). The models included in this study and the

number of ensemble members used for each level of global

warming are given in Table S2 in the online supplemental material.
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c. HAPPI

Simulations run for the Half a Degree Additional Warming,

Prognosis and Projected Impacts project (HAPPI; Mitchell

et al. 2017) are 10-yr atmosphere-only climate simulations,

forced by sea surface temperatures (SSTs), sea ice concentra-

tion (SIC), and greenhouse gas concentrations. The present-

day period used in HAPPI is 2006–15, and it uses observed

SSTs from the OSTIA observational dataset (Donlon et al.

2012). SSTs fromCMIP5model output are used to estimate the

future scenarios corresponding to 1.58 and 28C global warming.

These simulations are targeted to simulate 1.58 and 28C
warming and so do not require calculation of time slices.

Large ensembles were produced by running simulations with

different initial condition perturbations. The models included

in this study and the number of ensemble members used for

each level of global warming are given in Table S3 in the online

supplemental material.

d. UKCP18

The 2018 U.K. Climate Projections (UKCP18) global 60-km

product (Murphy et al. 2019) was used. This consists of a per-

turbed physics ensemble of 15 HadGEM3-GC3.05 simulations

supplemented by 13 CMIP5 projections, each from different

models. These simulations follow the RCP8.5 protocol and

time slices for specific levels of warming have been extracted

using the same method as per CMIP5 and CMIP6. This dataset

was developed to make use of the higher resolution and more

complex physics of HadGEM3-GC3.05 than is available in

current MIPs.

e. HELIX

High-End Climate Impacts and Extremes (HELIX) was a

major research program funded by the European Commission to

assess the impacts of climate change at different levels of global

warming. It included the production of climate projections using

high-resolution global atmospheric models. Two models were

used: EC-EARTH3-HR, with resolution nominally correspond-

ing to 40km, and theHadGEM3-AGlobalAtmosphere (GA) 3.0

model (Betts et al. 2018) at a resolution of 60 km. These models

were each forced by SSTs and sea ice from six different CMIP5

models, plus an additional earlier model (HadCM3LC) for EC-

EARTH-HR only. This allows the atmospheric models to

sample a range of different ocean responses.

The simulations were run from the historical period to 2100

using theRCP8.5 scenario. SeeWyser et al. (2017) for details of

these simulations. Time slices were chosen for the 1.58 and 28C
specific warming levels as specified in the HELIX methodol-

ogy. We chose to use the current climate time slice as 2000–20.

This is because specific warming levels of less than 1.58C were

not defined in the HELIX methodology.

f. CESM large-ensemble and low-warming simulations

TheCommunityEarth SystemModel (CESM) has computed a

large ensemble (CESM-LE) of historical and RCP8.5 simulations

following the CMIP5 protocol (Kay et al. 2015). In addition, tar-

geted low-warming simulations with the samemodel (LowWarm)

(Sanderson et al. 2017b), were run for 2006–2100. These

simulations use tailored emissions pathways to achieve stabilized

climate at 1.58 or 28C by 2100. The LowWarm simulations branch

from a subset (11) of the CESM-LE historical simulations and so

can be considered as continuous simulations from 1920 to 2100.

For calculating the warming since preindustrial, we note that

one of the historical simulations starts at 1850 but the rest start

at 1920, so a base period of 1920–40 was used to calculate the

warming since preindustrial for each simulation. To keep

consistency with other datasets, the warming between 1861–

1900 and 1920–40 from the longer simulation was added to the

warming amount relative to the 1920–40 base period.

Comparing the CESM-LE and LowWarm simulations allows a

quantification of the difference caused by the experimental design

for a given model structure.

g. CanESM2 large ensembles

The CanESM2 model (Arora et al. 2011) also has a large

ensemble of coupledmodel simulations. These were created by

branching from the CMIP5 historical simulations at 1950, with

different simulations produced by using different randomnumber

seed values in the cloud parameterization (Kirchmeier-Young

et al. 2017). Historical simulations were run from1950 to 2005 and

then continued using RCP8.5 forcing from 2006 to 2100. To de-

termine the global mean warming since preindustrial conditions

for the CanESM2 large ensemble simulations, these simulations

were extended back to 1861 by the corresponding CMIP5

simulations.

The atmospheric component of the CanESM2 model was also

used in theHAPPI project. This allows an estimate of influence of

the experimental design between HAPPI and CMIP5, although

this also includes the difference between a coupled atmosphere–

ocean model and an atmosphere-only model.
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