

Article (refereed) - postprint

Green Etxabe, Amaia; Pini, Jennifer M.; Short, Stephen; Cunha, Luis; Kille, Peter; Watson, Gordon J. 2021. Identifying conserved polychaete molecular markers of metal exposure: comparative analyses using the Alitta virens (Annelida, Lophotrochozoa) transcriptome.

© 2020 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

This version is available at http://nora.nerc.ac.uk/id/eprint/529242

Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at <u>https://nora.nerc.ac.uk/policies.html#access</u>.

This is an unedited manuscript accepted for publication, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version was published in *Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology*, 240, 108913. <u>https://doi.org/10.1016/j.cbpc.2020.108913</u>

The definitive version is available at https://www.elsevier.com/

Contact UKCEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and UKCEH trademarks and logos ('the Trademarks') are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

Identifying conserved polychaete molecular markers of metal exposure: comparative analyses using the *Alitta virens* (Annelida, Lophotrochozoa) transcriptome.

Supplementary material

Table S1. Exposure conditions and animal numbers associated with RNA isolated for RNASeq and qPCR samples. The two RNAseq libraries were created using equimolar amounts of RNA to produce a control and exposed sample.

RNASeq		qPCR		
Experimental condition	Animals per sample	Experimental condition	Animals per sample	
3 months control	n=16	3 months control	n=16	
6 months control	n=16	6 months control	n=16	
Total control RNASeq sample	n=32			
3 months low Cu	n=3	3 months low Cu	n=11	
3 months high Cu	n=3	3 months high Cu	n=15	
3 months low Zn	n=3	3 months low Zn	n=15	
3 months high Zn	n=3	3 months high Zn	n=12	
3 months high Cu-Zn	n=3	3 months high Cu-Zn	n=12	
3 months low Cu-Zn	n=3	3 months low Cu-Zn	n=14	
6 months low Cu	n=3	6 months low Cu	n=17	
6 months low Cu	n=3	6 months low Cu	n=15	
6 months low Zn	n=3	6 months low Zn	n=11	
6 months low Zn	n=3	6 months low Zn	n=14	
6 months low Cu-Zn	n=3	6 months low Cu-Zn	n=12	
6 months low Cu-Zn	n=3	6 months low Cu-Zn	n=11	
Total exposed RNASeq sample	n=36			

Table S2. Candidate genes and primer sets used for qPCR.

Gene	Primer	Sequence (5'-3')			
Elong-like	AvElong-F	TATTCTCAAGCCCGGTATGG			
	AvElong-R	GATCTCTCCAGGGTGGTTGA			
GAPDH-like	AvGapdh-F	TCCTGACCTCAACGGAAAAC			
	AvGapdh-R	AGGTGTGAGTGCAATGCAAG			
Beta actin-like	AvBeta_actin-F	GCTCCATCCACCATGAAGAT			
	AvBeta_actin-R	GTGAAAGATGGCAGAGCACA			
Alpha tubulin-like	AvAlpha_tubulin-F	CAACTTGGTGCCCTACCCTA			
,	AvAlpha_tubulin-R	GAACGCTTGGTCTTGATGGT			
Ubiquitin 60S-like	AvUbiquitin_60S-F	CCCGATCAACAGCGTCTTAT			
,	AvUbiquitin-60S-R	GTGTGTCCGCACTTCCTTTT			
Ubiquitin-like	AvUnk1-F	ACGAAGTTGCAGCTGATGGA			
	AvUnk1-R	CCAGAAGTGCAAAGTGCCAC			
Unk1-like	AvVit-F	AAGTGAGAGCCAAGGCCATC			
	AvVit-R	CGATCTGCTTGGCAATCACG			
Actin-like	AvActin-F	CCGGTGCTCATGAGTGATGT			
	AvActin-R	CTGCAATGCCAGTTGGTGTC			
Calbind-like	AvCalbind-F	TGGCCTCCTCAGCTTCAATG			
	AvCalbind-R	GTTCTTCCCTGTGGCGATCA			
GST-Omega-like	AvGSTOmega-F	TGCCCCTATGCTCAGAGAGT			
	AvGSTOmega-R	GGCTTGGGAAGACGTCATCA			
Unk2-like	AvUnk2-F	TCGTCATGTCTGCCCTAAGC			
	AvUnk2-R	CGCGTGATGATGAGAGACGA			
GST-Mu-like	AvGSTMu-F	AACGCCATCTATCGCCACAT			
	AvGSTMu-R	GAGAGTGACCTTGTCGCCAA			

Table S3. Read, assembly, annotation and BUSCO metrics for the A. virens transcriptome.

Reads/assembly/annotation metrics						
Total number of reads	388.1 million					
Total number of contigs	233333					
Smallest contig (bp)	201					
Largest contig (bp)	26608					
Average contig (bp)	829					
N50 for contigs >200 bp	1668					
N50 for contigs >500 bp	2375					
Total bases (bp)	193552380					
GC content (%)	40.2					
Swiss Prot BLASTX hits,	29.9					
E-value of ≤1 × 10 ⁻⁵ (%)						
BUSCO completene	ess test					
(954 genes in v3 odb10 Metazoa set)						
Complete BUSCOs (%)	98.6					
Fragmented BUSCOs (%)	0.6					
Missing BUSCOs (%)	0.8					

Figure S1. Panther (v. 13.1) characterisation of biological and molecular functions associated with both the *Alitta virens* transcriptome and the *Drosophila melanogaster* genome. Overall, the *A. virens* transcriptome presents equivalent levels of molecular and biological functional representation as the *D. melanogaster* genome.

Table S4. Annotation/RNASeq expression of five candidate reference genes selected for Δ Cq qPCR analysis. Annotation produced using top hit following BLASTX search against UniProtKB/Swiss-Prot database.

Contig name	Putative name	Annotation E-value		Uniprot accession	RNASeq control TMM	RNASeq exposed TMM
c74009_g1_i1	GAPDH-like	GAPDH	0	A3FKF7	984	771
c81218_g2_i3	beta-Actin-like	Actin-1	0	PODM41	2.91	1.27
c76985_g1_i2	Elong-like	Elongation factor 1-alpha	0	P10126	0.5	0.54
c64848_g1_i1	Ubiquitin 60S-like	Ubiquitin-60S ribosomal protein	5.10E-87	P18101	692	752
c84430_g1_i1	alpha-Tubulin-like	Tubulin alpha-3 chain	0	P05214	2196	1929

Figure S2. Reference gene selection by Δ Cq approach (Silver et al., 2006). The Δ Cq variability observed in the 20 gene comparisons across five candidate reference genes. A mean Δ Cq value and standard deviation (std. dv.) was calculated for each gene in twelve independent cDNA samples (representing a range of control and exposed animals). A mean std. dv. was calculated to reflect the expression stability of all genes relative to the other four candidates. Comparisons presented as mean (red dots), median (lines), 25th percentile to 75th percentile (boxes) and ranges (whiskers). Black dots represent outliers. Each gene comparison is based on expression across twelve samples (representing a range of control and exposed animals). Smaller boxes and whisker range reveal smaller expression variability, therefore, greater stability for the given candidate reference gene across the comparison range.

Table S5. Reference gene selection by Δ Cq approach (Silver et al., 2006). The Δ Cq variability observed in the 20 gene comparisons across five candidate reference genes. Lower mean standard deviations for any given gene represents greater expression stability relative to all other genes. Each gene comparison is based on expression across twelve samples (representing a range of control and exposed animals). Genes with lower mean standard deviation values have greater expression stability.

Reference gene	Comparison gene	Mean ∆Cq	Standard deviation	Mean standard deviation	
	beta-actin	-1.9469	0.5893		
alpha-tubulin-like	Elongation	-1.0661	0.5111	0.6442	
	Ubiquitin	-0.1601	0.8854		
	GAPDH	0.2533	0.5912		
beta-actin-like	alpha-tubulin	1.9470	0.5893		
	Elongation	0.8808	0.4557	0.5448	
	Ubiquitin	2.2002	0.3171		
	GAPDH	1.7868	0.8170		
	alpha-tubulin	1.0661	0.5110		
Elong-like	beta-actin	-0.8808	0.4557	0.5117	
	Ubiquitin	1.3194	0.3353		
	GAPDH	0.9060	0.7447		
GAPDH-like	alpha-tubulin	-0.2533	0.5912	0.4755	

	beta-actin	-2.2002	0.3171	
	Elongation	-1.3194	0.3353	
	Ubiquitin	-0.4134	0.6585	
	alpha-tubulin	0.1601	0.8854	
Ubiquitin-like	beta-actin	-1.7868	0.8170	0.7764
	Elongation	-0.9060	0.7447	
	GAPDH	0.4134	0.6585	

Table S6. Annotation/RNASeq expression of seven genes with apparent differential expression selected for qPCR analysis. Annotation produced using top hit following BLASTX search against UniProtKB/Swiss-Prot database. *As no reads were present in the control sample, this represents a minimum putative fold-change (estimated using pseudo-counts). Genes shaded green and blue represent successful and failed validations respectively, following qPCR analysis.

Contig name	Putative name	Annotation	E-value	Uniprot accession	RNASeq control TMM	RNASeq exposed TMM	Fold change	Log ₁₀ fold change	Associated P-value
c121332_g1_i1	Unk1	None	n/a	n/a	117.824	0.02	5891	-3.77	3.52e-25
c65732_g3_i1	Vit-like	Vitellogenin	2.54e-28	Q90243	18.764	0.399	47	-1.67	1.48e-11
c68928_g1_i1	Actin-like	Actin	1.54e-81	Q2U7A3	0.01	106.438	10643	4.03	7.79e-30
c84530_g1_i1	Calbind1-like	CALCOCO1	2.29e-07	018737	0	89.895	8990*	4.35	2.72e-32
c59077_g1_i1	GST-Omega-like	Glutathione S- transferase Omega-2	2.32e-41	Q6AXV9	0	10.264	1026*	2.71	5.36e-16
c77290_g4_i2	Unk2	None	n/a	n/a	0.029	148.999	5138	3.71	8.16e-32
c82836_g1_i1	GST-Mu-like	Glutathione S- transferase Mu 5	2.15e-61	P48774	0.068	1.977	29	1.46	3.67e-09

Figure S3. Comparative $\Delta\Delta$ Cq qPCR expression analysis of the two selected *A. virens* reference genes (*GAPDH-like* and *Elong-like*). Each column represents the average expression (3 technical repeats) of each sample relative to controls, normalised to the other reference gene (*GAPDH-like* or *Elong-like*). Samples were performed in triplicate and error bars represent the standard deviation. Expression was determined at two concentrations (low and high) of Cu, Zn and Cu-Zn for three and six months (see Table S4 for details on gene annotations and RNASeq expression). Table S7. The 'traditional' metal-responsive genes either present inconsistent expression across polychaetes or are not induced by metal exposure (1- McQuillan et al., 2014, 2- Rhee et al., 2012, 3- Rhee et al., 2011, 4- Breton et al., 2019, 5- Neave et al., 2012, 6- Rhee et al., 2007b 7- Rhee et al., 2007a, 8- Won et al., 2011). *P. nuntia - Perinereis nuntia*, *H. diversicolor - Hediste diversicolor*, *A. virens - Alitta virens*.

Classical 'metal-responsive' genes	Function	Notes about gene expression in metal-exposed A. virens and other polychaetes
Superoxide dismutase (SOD)	Destroys radicals which are toxic to biological systems.	No expression of 'SOD1' or 'SOD2' in metal-exposed H. diversicolor ¹ . A 'CuZnSOD' and 'MnSOD' are upregulated in metal exposed P. nuntia ² and Cu exposed N. succinea ³ . Multiple SOD genes present in A. virens, An A. virens, orthologue to the P. nuntia CuZnSOD gene (represented by contig c46622_g1_i1) is upregulated (~12x) in Cu-Zn exposed animals but falls outside qPCR validated range.
Metallothioneins (Mts)	Important for Cu and Zn homeostasis	Upregulation in response to Cu/Zn in polychaetes is inconsistent ^{1,4} and no upregulation seen in A. virens.
Atox1	Binds excess intracellular Cu and transports to secretory pathway	Inconsistent across polychaetes ^{1,5} and not upregulated in <i>A. virens</i> . See main text and Table 2 for details.
Phytochelatin Synthase (PCS)	Synthases Phytochelatin, important for heavy metal detoxification	PCS genes are present in Avicens but not upregulated.
Copper-transporting ATPase 1 (ATP7A)	Cu-transporting P-type ATPase.	Upregulation in response to Cu/Zn in polychaetes is inconsistent ^{1,4} and no upregulation seen in <i>A. virens</i> .
High affinity copper uptake protein 1 (CTR1) Required for high affinity copper transport into the cell.		Upregulation in response to Cu/Zn in polychaetes is inconsistent ^{1,4} . Non-significant upregulation (~2x) observed in <i>A. virens</i> .
Copper chaperone for superoxide dismutase (CCS)	A Cu chaperone protein	No significant change in metal-exposed H. diversicolor ¹ and no change seen in A. virens
Glutathione S-transferase-Mu (GSTM)	Catalyze conjugation of reduced form of glutathione to xenobiotic substrates	Inconsistent upregulation in polychaetes ^{1,2,4} and no upregulation in A. virens.
Glutathione S-transferase-Theta (GSTT)	Catalyze conjugation of reduced form of glutathione to xenobiotic substrates	Upregulation in response to Cu/Zn in polychaetes is inconsistent ^{1,4,6} and no upregulation seen in <i>A. virens</i>
Glutathione S-transferase-Omega (GSTO)	Catalyze conjugation of reduced form of glutathione to xenobiotic substrates	GST-Omega-like genes upregulated in metal-exposed polychaetes ^{1,2,7,8} , but somewhat inconsistent ^{1,2,4} and specific orthologue induced seems to vary between species. See main text and Table 2 for details.
Catalase (CAT)	Catalyzes decomposition of hydrogen peroxide to water and oxygen	No significant change in metal-exposed H. diversicolor ¹ and no change seen in A. virens
Glutathione peroxidase (GPX)	Catalyzes reduction of hydrogen peroxide to water and oxygen reduction of peroxide radicals to alcohols and oxygen.	A gene termed 'GPX1'is upregulated in metal exposed P. nuntia ² but it is not upregulated in metal-exposed H. diversicolor ¹ . Although the closest A. virens orthologues to the P. nuntig GPX1 gene is not upregulated, an A. virens GPX-like gene (represented by the c67989_g1 contigs) is upregulated. As for the GST-Omega genes, different species appear to upregulate different GPX genes in response to metal exposure.
Glutamate cysteine ligase (GCL)	1 st enzyme of the cellular glutathione biosynthesis pathway	No significant change in metal-exposed H. diversicolor ¹ and no change seen in A. virens
Glutathione synthetase (GSS)	2nd enzyme in the glutathione biosynthesis pathway	No significant change in metal-exposed H. diversicolor ¹ and no change seen in A. virens

Figure S4. Enriched (A) 'Molecular Function', (B) 'Cell Component' and (C) 'Biological Process' GO terms associated with putatively upregulated genes determined using DAVID (v. 6.7).

Figure S6. Summarised ReviGO analysis of 'Molecular Function', 'Biological Process' and 'Cell Component' Gene Ontology (GO) terms associated with putatively up (top panel) and downregulated genes (lower panel). GO terms associated with relevant genes were scored by summing fold-change levels linked to contributing contigs. The scored GO term list was then subsequently analysed using ReviGO.

Figure S7. GOnet analysis of 'Molecular Function' Gene Ontology (GO) terms associated with putatively upregulated genes and their various relationships. Coloured UniProt accession numbers represent scored fold-change levels linked to contributing contigs. Scale represents log₂ fold change.

Figure S8. GOnet analysis of 'Biological Process' Gene Ontology (GO) terms associated with putatively upregulated genes and their various relationships. Coloured UniProt accession numbers represent scored fold-change levels linked to contributing contigs. Scale represents log₂ fold change.

Figure S9. Alignment of haemoglobin subunits from the polychaetes *Alitta virens*- black, *Ophelina* (Neave et al., 2012)- blue and *Lumbricus terrestris* (*Lt*)- orange, with graphical identity scores for each residue. Red dots represent paralogues upregulated following metal exposure.

Table S8. Annotation and RNASeq expression of *A. virens* haemoglobins subunits and linker chains. Annotation produced using top hit following BLASTX search against UniProtKB/Swiss-Prot database. * As no reads were present in the control sample, this represents a minimum putative fold-change (estimated using pseudo-counts). Green shaded colour represents genes presenting upregulation in metal exposed animals, all fall within p-value range validated by the qPCR screen.

Contig name	Putative name	Annotation	E-value	Uniprot accession	RNASeq control TMM	RNASeq exposed TMM	Fold change	Log10 fold change	Associated P-value
c58545_g2_i1	Extracellular globin- 2A_like_1	Extracellular globin-2A	1.10E-80	P09966	8.67	13.27	2	0.18	0.3
c104830_g1_i1	Extracellular globin- 2A_like_2	Extracellular globin-2A	9.75E-82	P09966	0.02	59.41	2971	3.47	1.53E-23
c104416_g1_i1	Extracellular globin-1_like_1	Extracellular globin-1	8.92E-22	P02219	0.332	0.922	3	0.44	0.7
c68421_g1_i2	Extracellular globin-1_like_2	Extracellular globin-1	2.00E-30	P02219	0	9.065	907*	2.96	6.98E-15
c68421_g1_i3	Extracellular globin-1_like_3	Extracellular globin-1	3.25E-51	P02219	6.97	12.55	2	0.26	0.2
c55755_g1_i1	Extracellular globin-1_like_4	Extracellular globin-1	3.53E-43	P02219	0.03	62.22	2074	3.32	2.44E-21
c68421_g1_i1	Extracellular globin-1_like_5	Extracellular globin-1	5.95E-48	P02219	4.55	4.92	1	0.03	0.8
c52952_g1_i1	Extracellular globin- 2C_like_1	Extracellular globin-2C	4.55E-68	P02220	10.24	15.21	1	0.17	0.3
c154766_g1_i1	Extracellular globin- 2C_like_2	Extracellular globin-2C	4.97E-72	P02220	0	52.93	5293*	3.72	4.80E-24
c56032_g1_i1	Extracellular globin- 2B_like_1	Extracellular globin-2B	2.80E-86	P13578	10.87	17.13	2	0.20	0.25
c56032_g2_i1	Extracellular globin- 2B_like_2	Extracellular globin-2B	3.37E-83	P13578	0.02	57.57	2879	3.46	1.65E-22
c120169_g1_i1	Giant extracellular hemoglobin linker 1 chain_like_b	Giant extracellular hemoglobin linker 1 chain	3.42E-93	P18207	0	33.35	3335*	3.52	1.65E-23
c63201_g2_i1	Giant extracellular hemoglobin linker 1 chain_like_a	Giant extracellular hemoglobin linker 1 chain	3.05E-97	P18207	5.99	10.56	2	0.25	0.2
c36018_g1_i1	Giant extracellular hemoglobin linker 2 chain_like_a	Giant extracellular hemoglobin linker 2 chain	1.14E- 129	P18208	0	44.63	4463*	3.65	9.36E-25
c62841_g1_i1	Giant extracellular hemoglobin linker 2 chain_like_b	Giant extracellular hemoglobin linker 2 chain	7.28E-69	P18208	11.08	15.78	1	0.15	0.4