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Extreme weather events have become a dominant feature of the narrative surrounding 34 

changes in global climate with large impacts on ecosystem stability, functioning and 35 

resilience, however, understanding of their risk of co-occurrence at the regional scale is 36 

lacking. Based on the UK Met Office’s long-term temperature and rainfall records, we 37 

present the first evidence demonstrating significant increases in the magnitude, direction 38 

of change and spatial co-localization of extreme weather events since 1961. Combining 39 

this new understanding with land use datasets allowed us to assess the likely consequences 40 

on future agricultural production and conservation priority areas. All land uses are 41 

impacted by the increasing risk of at least one extreme event and conservation areas were 42 

identified as hotspots of risk for the co-occurrence of multiple event types. Our findings 43 

provide a basis to regionally guide land use optimisation, land management practices and 44 

regulatory actions preserving ecosystem services against multiple climate threats.  45 

 46 

Recent large flood and drought events have received global media attention. For example, 47 

unprecedented winter rainfall across the UK in 2013/14 resulted in extreme flooding and storm 48 

surges with large areas of agricultural land under water for more than 80 days[1], while over 49 

60% of the state of California’s land area was under varying severity of drought from 2011 to 50 

2017[2]. Flooding and drought can have large economic impacts; the World Economic Forum 51 

has rated extreme weather events as the most significant risk facing humanity[3]. Losses to the  52 

UK agricultural sector of £180 million were reported as a result of the 1995 drought and 53 

associated heatwave[4], while the 2013/14 flood led to losses of over £20 million[1]. Similarly, 54 

the total economic impact of the European heatwave in 2013 was estimated at 11 billion 55 

Euros[4], while extreme snow was estimated to cost the US economy up to $3 billion in 2016[5]. 56 

Natural ecosystems are also vulnerable, for example, record heat and dry conditions in 57 

2010/2011 led to a sudden collapse of large areas of Australian eucalypt forest previously 58 
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considered to be resilient to drought[6]. Furthermore, the hot and dry conditions of 2018-19 in 59 

the UK resulted in unprecedented wildfires in the globally rare moorland habitat with 135 60 

individual fires burning 29,334 ha of land[7]. In 2019, hot and dry conditions in Australia 61 

resulted in the generation of mega-fires of unprecedented size and number covering at least 3.8 62 

million ha of temperate forest[8] 63 

While there is a wealth of evidence that temperatures are increasing, the pattern for 64 

rainfall is uncertain[9] but predicted to become temporally uneven with the majority of annual 65 

precipitation totals occurring in a small number of intense events[10]. For many regions of the 66 

UK, climate models and historical observations indicate that the frequency, intensity[11-13] and 67 

duration[14] of winter rainfall has increased, along with the incidence and intensity of short burst 68 

summer downpours[12] and the kinetic energy of autumn rainfall[15]. Models also predict an 69 

increase in the frequency of short-term droughts of three to six months in duration[16]. These 70 

all have implications for agriculture, conservation and human health. 71 

To date, the majority of studies investigating the risk of extreme weather events have 72 

focused on the global or continental scales, and often only on a single event type[17]. There is 73 

greater uncertainty in changes at the regional scale where the immediate impacts will be felt 74 

[18]. Spatial variation in weather patterns can be large and analysis at the national scale masks 75 

regional differences in the risk of occurrence and the expected event type[19]. Furthermore, 76 

extreme events might not occur in isolation and there are an increasing number of examples of 77 

direct transitions from one extreme weather regime to another (e.g. flood to drought or vice 78 

versa)[20-22]. In the UK, heavy spring rainfall in 2012 led to 78 days of flooding, while 98 days 79 

of official drought were declared the following summer which the media dubbed ‘the wettest 80 

drought on record’[23]. In 2019 there were 5,600 flood warnings across England while 81 

groundwater reserves were depleted in 25 areas[24]. Such events have highlighted the need for 82 

stakeholders, including farmers, water companies, forestry and environmental protection and 83 
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conservation bodies to prepare for the possibility of both flooding and drought within the same 84 

year. The combination of more than one extreme events has been termed as ‘compound events’ 85 

in the literature and these compound events have been identified by the World Climate 86 

Research Program as a research priority[25]. Importantly, they are likely to have 87 

disproportionately severe impacts on ecosystems, potentially tipping ecosystem functions into 88 

new trajectories[26]. 89 

To safeguard vulnerable ecosystems and the services they provide, adaption in 90 

management may be required. However, the specific strategy employed will vary depending 91 

on the event type. For example, the re-introduction of grazing livestock to moorland could 92 

reduce fire risk during dry, hot summers but could also increase the risk of compaction during 93 

wet periods increasing subsequent flood risk. Similarly, planting trees to sequester carbon may 94 

increase fire risk under dry conditions leading to a potential reduction in air quality, water 95 

quality and human health if planted in the wrong place[27].  96 

To advise stakeholders and guide policy we need to understand the regional risk posed 97 

by different (single and multiple) extreme events and identify where they might impact delivery 98 

of ecosystem services (e.g. food security, biodiversity, carbon storage) by different land-use 99 

types. In this study, we utilised the historical UK weather record held by the UK Met Office 100 

National Climate Information Centre to examine, for the first time, the change in frequency 101 

and distribution of, and interaction between, indicators of four weather extremes; extreme heat, 102 

extreme cold, high rainfall and low rainfall, based on thresholds indicative of heatwaves, cold 103 

snaps, floods and droughts, between two time periods 1961-1988 and 1989-2016. We 104 

integrated the results from this analysis with national land cover data to identify extreme 105 

weather hotspots in relation to ecosystem type and their ability to deliver different ecosystem 106 

services.  107 
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These datasets were statistically interrogated to answer four key questions: (1) Has the 108 

frequency of extreme events in the UK increased between the two time periods? (2) Are there 109 

hotspots where the annual risk of occurrence for two or more event types has increased? (3) 110 

Are there areas of the UK where the probability of occurrence of two or more types of event 111 

within the same year has increased? and (4) Are some vulnerable ecosystems more exposed to 112 

changes in risk of increased numbers of events than others?   113 

Through this analysis, we provide evidence for the perceived increase in the frequency 114 

of extreme events across the UK. To date, most studies of this nature have focused on the 115 

incidence, or impact, at the national scale. Our results show strong regional variation in the 116 

direction and magnitude of change enabling the production of national risk maps which can be 117 

used by stakeholders to guide land management and policy that promotes adaptation to protect 118 

the delivery of ecosystem services. 119 

Our analysis shows that between the two 28-year periods of high resolution 120 

meteorological records there has been a notable change in the frequency of threshold 121 

exceedance across the UK with strong regional response patterns (Fig. 1). Temperature metrics 122 

showed the largest and most widespread response but the direction of change varied. For 123 

extreme heat events, there was a significant increase in the mean number of events during the 124 

last 28 years, with the south-east of England experiencing the largest change, corresponding to 125 

on average 1.87 additional events each year. Significant increases (0.68–1.36) in the mean 126 

number of extreme events also occurred across most of England, except the north-west and 127 

across the east of Northern Ireland, and the far north of Scotland. Concurrently, the frequency 128 

of extreme cold events decreased across all regions except for much of Wales and small regions 129 

of south-west England and northern Scotland. The magnitude of change was greater than that 130 

for heat extremes, ranging from 1–2.3 fewer events each year. Response patterns in rainfall 131 

extremes were weaker than for temperature; this is consistent with the large body of research 132 
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showing mixed results for predicted changes in rainfall patterns across the globe[15]. The 133 

interaction and feedback cycles between the land and atmosphere lead to complex changes in 134 

rainfall pattern[17]. Soil moisture-temperature interactions drive rainfall patterns leading to both 135 

prolonged increases and decreases in rainfall depending on the  climate and environmental 136 

conditions[28].  Despite this, the results show a significant increase in wet extremes ranging 137 

from  1.0 - 1.6 additional events each year in western Scotland to 0.8 - 1.0 additional events in 138 

the Welsh border region, along parts of the south coast of England and East Anglia, and in 139 

western Northern Ireland. The change in extreme dry events was small with no significant 140 

increase overall and a decrease of 0.9 events in the far north for Scotland. However, a strong 141 

spatial pattern in did emerge, reflecting the changes in heat events with an increase of up to 0.5 142 

events in south-east England. 143 

These changes in threshold exceedances for temperature and rainfall provide statistical 144 

evidence underpinning the perceived increase in UK heatwaves, floods and droughts over the 145 

past decade and provide insight into which regions are most at risk. While the changes in 146 

temperature drivers relate directly to heat waves or cold snaps, the use of precipitation as a 147 

proxy for flood or drought events is less robust. However, an increase in extremely wet periods 148 

in Scotland, parts of southern England and Wales and Northern Ireland will heighten flood risk. 149 

Furthermore, runoff extremes have been shown to increase more quickly than precipitation 150 

extremes in a warming climate, and increases in rainfall are likely to underestimate the risk of 151 

flash flood events[29]. These results corroborate the recent analysis of observed river discharge 152 

trends between 1960 and 2010 which found the largest increase in flood discharge in these 153 

areas[26]. Similarly, drought risk is a function of both rainfall and temperature with prolonged 154 

high temperatures exacerbating soil dryness and providing feedback loops further reducing 155 

rainfall, increasing surface temperatures and promoting fire risk[30]. Seasonal analysis of 156 

changes in extreme dry events revealed that the greatest change occurs during spring (Fig. S1) 157 
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when new season growth begins, a vital period for sufficient soil moisture supply for 158 

agricultural crops. Spring drought has been shown to be more detrimental to plant production 159 

compared to summer drought conditions across a range of ecosystems[31]. Increases in dry 160 

spring events may be exacerbated by a spatially coupled increase in the number of periods of 161 

suitable winter growing conditions utilising water reserves built up during preceding wetter 162 

seasons (Fig. 2). Whilst not statistically significant (at p < 0.05), the indicative combination of 163 

i) increased dry events with ii) an increase in heat events, and iii) increased winter growing 164 

periods, points towards a heightened drought risk in the future, especially in the south-east of 165 

England where these metrics showed the greatest increase. Furthermore, the probability that a 166 

heat event and a dry event will occur within the same year was high and ranged from 0.80 to 167 

0.98 in this area (Fig. S2). Although the evidence for increased extreme dry events, from this 168 

analysis is weak, it corroborates recent modelling indicating high drought vulnerability in the 169 

East of England based on reported historical agricultural impacts[32]  170 

The environmental impact of this increased frequency in extreme events depends on 171 

the land use and the biodiversity and ecosystem services it is expected to deliver. The response 172 

may vary, in magnitude and direction, based on the type of ecosystem and the dominant 173 

services it provides (Table 1, Table S1). We grouped the UK land cover categories[33] into four 174 

broad classes each providing specific ecosystem services and levels of biodiversity: (1) 175 

Agriculture, incorporating arable/horticultural and improved grasslands (provisioning), (2) 176 

Woodlands, incorporating broadleaf and coniferous woodlands (provisioning, regulating and 177 

biodiversity), (3) Conservation, incorporating National Parks and Sites of Special Scientific 178 

Interest (SSSIs) (supporting regulating and biodiversity), (4) Carbon stores, incorporating 179 

heathland, heath grasslands and bogs (regulating). It is important to acknowledge that exposure 180 

to extreme events is occurring under an environment characterised by chronic changes in the 181 

long-term climate. Well documented increases in mean annual temperatures and CO2 levels 182 
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influence the resilience of the system to sudden stress events. This interaction may lead either 183 

a reduction or enhancement of the impact on ecosystem service provision outlined in Table 1 184 

and resource managers need to be prepared for unexpected response patterns[34]. 185 

The reduction in frequency of cold events (i.e. less frosts and snow) shows an impact 186 

across all ecosystem types, ranging from 64% of all the land in SSSIs to >80% of the total area 187 

under arable land use, respectively. Simplistically, if current trends continue, it might be 188 

assumed that a reduction in winter cold events would be beneficial. However, many plants rely 189 

on low winter temperatures for vernalisation and warmer winters can cause increased pest and 190 

disease risk, loss of cold acclimation, asynchronicity of biological lifecycles and increased 191 

runoff (Table 1). 192 

Agricultural systems and broadleaf forests represented the largest proportion of the total 193 

land area at increased risk of extreme heat events and the arable sector in particular appears to 194 

be the most affected with 83% of the total area at risk (Fig. 3a). This reflects the large 195 

dominance of arable land use in the East of England. Furthermore, recent research suggests 196 

that heat extremes have a larger impact on grain yields than extremes in precipitation, 197 

highlighting the risk to arable systems[35] and, hot dry spells can influence agricultural water 198 

use, especially under cropping. In the period between 2000 and 2017, the highest 2 years for 199 

abstraction for the purpose of spray irrigation correspond with the lowest 2 years of annual 200 

levels of rainfall[36]. Temperature extremes also dominated in improved grasslands, with 56% 201 

of the total area exposed to increase risk of extreme heat which directly impacts on livestock 202 

production. However, the proportion of grassland exposed to increases in extreme rainfall, and 203 

therefore flooding, was greater than in arable systems. Soil carbon (C) stores and coniferous 204 

forests currently appear to be most at risk of extreme rain and flooding, with increased 205 

frequency of events occurring across 35–55% of the total area. Forests are commonly proposed 206 

as mitigation strategies to reduce flood risk through interception of rainfall and increased soil 207 
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infiltration[37]. However, extreme rainfall events often override this increased infiltration 208 

capacity and the potential to reduce the severity of major floods is limited[38]. When flooding 209 

does occur, the impact can be severe in commercial forestry operations with largescale erosion 210 

and damage downstream from woody debris. For soil C stores, reduced extreme cold and 211 

extreme rainfall present the largest risk. Continuation of this trend will have large implications 212 

for the C cycle and is likely to increase the release of soil C and decrease sequestration through 213 

increased wet-drying cycles, microbial respiration and erosion losses[39-43] (Table 1). Our 214 

analysis also indicates that large expanses of upland bog or lowland fen peat are located in 215 

regions experiencing higher temperatures, droughts and therefore potential fire risk. These 216 

events threaten to exacerbate greenhouse gas emissions and destabilization of terrestrial C 217 

stores.   218 

Specific regions of the UK show a significant increase in frequency of more than one 219 

extreme event type (Fig. 4). Risk hotspots, with significant increased frequency of three 220 

threshold exceedances are identified along the south coast of England, areas in the Welsh 221 

borders and the north-east of England, highlighting areas most at risk of unexpected ecosystem 222 

response and largescale impacts on function (Table 1). Land of high nature value appears to be 223 

at most risk of multiple extreme event types with all three stress indicators increasing in 224 

frequency in 24 and 21% of the total area covered by National Parks and SSSIs (Fig. 3b). Due 225 

to the importance of these sites as niche habitats for rare or endangered species these trends 226 

could lead to severe impacts on biodiversity. This was seen following the 1995 UK drought 227 

which led to a shift in butterfly communities from vulnerable specialised species to widespread 228 

generalist species[44].   229 

Exposure to an extreme event can make ecosystems more susceptible to a subsequent 230 

stress, magnifying impacts[45-47] with the potential to decrease the threshold by which climatic 231 

metrics, such as precipitation amount, generate an extreme event[48]. Our results show that the 232 
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overall UK mean increase in the probability of all four event types occurring with the same 233 

year low at 0.275. However, the impact on ecosystem function would likely be extreme. The 234 

increase in frequency of extreme heat events was the dominant driver of the response pattern, 235 

with the highest probabilities in the south-east of the UK and the lowest probabilities in 236 

Scotland, Wales, Northern Ireland and north-west England (Table S2; Fig. S2).  237 

To illustrate the impact on agriculture, we have taken the UK arable sector as a case 238 

study since the combination of adverse weather conditions can magnify the impacts on 239 

production. In particular, the combination of extreme wet spells and extreme dry spells within 240 

the same year has been shown to be particularly detrimental for crops. In 2017, there was an 241 

8.3%, 17% and 19% reduction in income in England from three key crops, wheat, sugar beet 242 

and potatoes, respectively. This was attributed, in part, due to reduced yields caused by wet 243 

spring conditions, hot dry summer and heavy autumn rains during harvest[49]. Reductions in 244 

yields reduced the export value of wheat by 73% and 84% in 2017 and 2018 respectively, and 245 

increased the import expenditure by 38% and 79%[50]. The majority of the UK’s arable and 246 

horticultural land area is in the East of England, with 28% of total wheat production and 62% 247 

of sugar beet production located in the South East, and East Anglia accounting for one third of 248 

England’s potato crop[49]. The probability that extreme hot, dry and wet events will occur 249 

within the same year is highest for this region of the country and ranges from 0.69–0.99 (Fig. 250 

S2) highlighting the vulnerability of this sector to future climatic risk.  251 

Globally, societies are facing unprecedented and complex threats to food and water 252 

security, infrastructure and well-being due to climate change. Continuation of the increased 253 

frequency of multiple extreme events across different land uses identified by our analysis is 254 

having detrimental impacts on the ecosystem service provision. While some benefits to service 255 

provision have been identified, these are likely to be out-weighed by the negative impacts 256 

(Table 1). Furthermore, there is a large degree of uncertainty around whole system response 257 
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and the interplay between the delivery of different ecosystem services, especially in the context 258 

of multiple extreme event exposure and gradual climate change. Natural systems are 259 

consistently surprising researchers with unexpected responses to perturbation with increasing 260 

documented examples of systems exhibiting regime shifts dramatically changing ecosystem 261 

function[51-54]. 262 

  In May 2019, the UK government declared a state of climate emergency that was 263 

swiftly followed by Ireland, France and Canada. Furthermore, large-scale land use change has 264 

been identified as a strategy for the UK to meet its emission reductions in the Paris 265 

Agreement[55], and its recent target of net zero emissions by 2050. The evidence herein provides 266 

vital information on the vulnerability of different areas and economic sectors to climate 267 

extremes and should be used by UK policy makers, farm advisers and environmental agencies 268 

to develop adaption strategies and land use change policy tailored to the specific extreme event 269 

threat, based on location and ecosystem type. This research highlights the importance of 270 

considering the change in exposure of land to (combinations of) extreme weather at the regional 271 

scale and adoption of a similar approach in other countries could inform the safeguarding of 272 

the vital ecosystem services on which society depends, or adapt to a new normal.   273 

  274 
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Methods 275 

Dataset used in this study 276 

We used the 5 km scale historical UK weather record held by the UK Met Office’s National 277 

Climate Information Centre[56]. This gridded dataset covers the whole of the UK and includes 278 

daily maximum and minimum temperature and rainfall data from observation stations from 279 

1960 to 2016.  280 

We developed indices relating to the risk of occurrence of four extreme weather 281 

events;(i) heat waves, (ii) cold snaps, (iii) extreme rainfall (flood), and (iv) low rainfall 282 

(drought). We employed a threshold approach and for each grid point extracted the frequency 283 

each year that the five day rolling mean temperature or rainfall exceeded this threshold for a 284 

set number of days. We split the resulting dataset into two 27 year time periods, 1961–1988 285 

and 1989–2016, reflecting the Met Office’s definition of long-term averages for weather data 286 

of 30 years[57], while keeping two discrete time periods of equal length.  287 

 288 

Setting extreme weather thresholds 289 

With the exception of the index relating to drought, thresholds were set based on deviation 290 

from the mean value of the whole dataset for each grid point. Maximum daily temperature or 291 

rainfall above the 95th percentile and minimum daily temperatures below the 5th percentile were 292 

considered extreme[58]. Temperature and rainfall conditions are spatially variable across the 293 

UK and utilising percentiles as the threshold instead of a fixed value allows for regional 294 

variation in normal conditions. What is considered an extreme temperature or rainfall amount 295 

in one location may be relatively normal for another and it is likely that the largest impact on 296 

ecosystem function occurs when conditions are outside the norm rather than at a fixed value[59].  297 

Using this approach, the following thresholds were proposed as an event metric for 298 

extreme heat, cold and rainfall based on recommendations provided in the draft guidelines on 299 
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the definition and monitoring of extreme weather and climate events produced by the World 300 

Meteorological Organization (WMO)[58].  301 

Heat: The number of times each year where the 5-day rolling mean of the maximum 302 

temperature exceeds the 95th percentile of the whole dataset for 3 or more days. 303 

Cold: The number of times each year where the 5-day rolling mean of the minimum 304 

temperature is below the 5th percentile of the whole dataset for 3 or more days. 305 

Extreme rainfall: The number of times each year where the 5-day rolling mean of the daily 306 

rainfall total is above the 95th percentile for 3 or more days.  307 

Low rainfall: The number of times each year where the 5-day rolling mean of total daily 308 

precipitation was below 1 mm for 14 days or more, based on a historical definition of 309 

agricultural drought used in Britain of rainfall below 1 mm for more than 15 days[60].  310 

For this study, extreme rainfall was used as a proxy for flood risk. While it is recognised 311 

that flood generation encompasses many complex variables, including the hydrology and 312 

topography of the landscape, we focus on rainfall totals as an indicator of the change in risk 313 

potential. Daily rainfall totals in the preceding 0 to 3 days was shown to be the best predictor 314 

of river flood events across the Swiss Alps[61]. In the UK the total rainfall over 3 days was 315 

linked to 40 year maximum peak river discharge and recorded flood events in 3 out of 4 studied 316 

river catchments[62]. In China, persistent extreme precipitation events, considered to indicate 317 

high damage potential were defined as daily precipitation total above 50 mm for 3 or more 318 

days[63]. Similarly to the flood index, we used rainfall as a proxy indicator for drought risk. Soil 319 

moisture deficit is the main parameter controlling the ecosystem response to drought. 320 

Unfortunately, this has not routinely recorded at the same temporal or spatial scale as 321 

temperature and rainfall. However, prolonged dry spells, rather than a deviation from the 322 

minimum rainfall long-term average are likely to be more significant in reducing soil moisture 323 

content and increasing risk of drought. Future research looking at predicting future extreme 324 
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events may be able to take advantage of new remote sensing methods and planned satellite 325 

programs to measure soil moisture more accurately.     326 

 327 

Data analysis 328 

To investigate how the risk of each event type occurring within a year has changed between 329 

the two time periods, we plotted the change in the number of events between 1961–1988 and 330 

1989–2016 on a gridded map of the UK, using output from the following model: 331 

 Single extreme weather event models: Generalized Additive Models or GAMs[64] were 332 

adopted as the modelling framework to characterise the trends in extreme event frequency. This 333 

well-established class of models allows for flexible characterisation of the spatio-temporal 334 

variability of a modelled environmental variable and has been used extensively to characterise 335 

natural hazards[65] and in modelling environmental variables more generally[64]. The data 336 

extracted relates to counts of events 𝑦𝑦𝑠𝑠,𝑡𝑡 in grid cell 𝑠𝑠 and year 𝑡𝑡. To capture the variability of 337 

these counts in space and time, we assume a Poisson distribution with mean 𝜇𝜇𝑠𝑠,𝑡𝑡: the mean 338 

count in cell 𝑠𝑠 and year 𝑡𝑡. This mean is then characterised as a function of 𝑠𝑠 and 𝑡𝑡 in the 339 

following way:  340 

log(μs,t) = µ0 + fT (t) + fS (s) + fS,T (s,t) 341 

The three unknown functions f (.) were all assumed smooth in the sense of capturing spatial 342 

and temporal variation that does not change too extremely in neighbouring locations or points 343 

in time. Much more extreme variation was captured by the random element of the model (i.e. 344 

the Poisson variability). The one dimensional function fT (t) of time (in years) was used to 345 

capture the overall temporal trend in the counts across space, whereas fS (s), a two-dimensional 346 

function of longitude and latitude was used to capture overall spatial variability (across time). 347 

Lastly, the three dimensional fS,T (s,t) captured spatio-temporal variability, in the sense of 348 

allowing for different spatial patterns for each time point (year). This captured inter-annual 349 
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variability in the spatial patterns exhibited by ys,t. Such models were estimated using the 350 

statistical language R[66] and the package mgcv[66].  351 

Note that the Poisson distribution is a well-established choice for characterising count data[67]. 352 

Moreover, it is loosely motivated by extreme value theory, as the distribution that describes the 353 

rate of occurrence of exceedances above a high threshold[68]. 354 

 355 

The model was used to estimate event counts ys,t using the simulation from the 356 

predictive distribution p(ys,t). This distribution captures both the Poisson variability in the 357 

counts as well as the uncertainty in estimating the three unknown functions. From this, we 358 

computed the distribution of the difference in mean counts between the two time periods, i.e. 359 

mean count in 1989-2016 less the mean count in 1961-1988. This difference was plotted as a 360 

Z score in figure 1 and figure 2 and figure S1. Probabilities where this difference is not zero at 361 

the 5% significance level are termed significant (analogous to a p value < 0.05). 362 

The impact of rainfall on soil moisture is controlled to some extent by seasonality of 363 

resource use. Additionally, the impact of soil moisture deficit on plant response is related to 364 

growth stage. Therefore, we also investigated the change in dry spells at the seasonal time 365 

scale. To do this, we split each year into four, three-month time periods; Spring (March, April, 366 

May), Summer (June, July, August), Autumn (September, October, November) and Winter 367 

(December, January, February), and carried out the above data analysis on the defined 368 

threshold for low rainfall in each season.   369 

 370 

Multiple event interactions 371 

To investigate how the potential for the interaction of different extreme events types has 372 

changed, we employed two methods to answer two slightly different questions.  373 
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1. Are there areas of the UK where the annual risk of occurrence at an individual grid 374 

point has increased between the two time periods (1961–1988 and 1989–2016) for two 375 

or more of the classes of extreme event? 376 

To investigate this question we overlaid the grid points from the single event analysis to 377 

determine those points where there was a significant increase in two or more event metrics. 378 

2. Are there areas of the UK where the risk of two or more different types of extreme 379 

event occurring at an individual grid point within a single year has increased between 380 

the two time periods? 381 

To investigate this question we extended the methodology used for the single events to allow 382 

for dependence between them, and investigated how the probability of events of two or more 383 

types occurring within a single year has changed over the two time periods. 384 

 385 

Multiple extreme weather event models 386 

To quantify the correlation between the counts of the various stress events we used the single 387 

event models to detrend the data for each event metric and create a transformed data set which 388 

does not exhibit spatio-temporal variability. Using the transformed data, the dependency across 389 

the various event metrics was quantified using correlation. The single event Poisson models 390 

were used to transform the original data ys,t (for each stress) to the scale of a Gaussian random 391 

variable with mean zero and variance one. At that scale, all spatial and temporal variability has 392 

been factored out and the sample correlations between the transformed counts for each event 393 

are estimates of the dependency between each event. The Appendix provides a more detailed 394 

description of this approach. 395 

A modified simulation technique was employed to sample from the predictive 396 

distribution of the counts for each event, allowing for the correlation between them. Firstly, we 397 

generated random samples of the data at the detrended scale, respecting the correlation between 398 
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the event metrics at this scale. Then, we transformed these samples back to original scale of 399 

the data to obtain a set of simulated counts in each grid cell and year, thus maintaining both the 400 

spatio-temporal variability in each event but also the correlation between event metrics.  401 

The thresholds were set as the sample mean of each event metric across all grid cells 402 

and years. The joint probability that the annual mean count of two or more event categories 403 

exceeds a particular threshold was then determined. Comparison of differences in these 404 

probabilities between 1961–1988 and 1989–2016 lie in the region between -1 and 1, and 405 

conveys information about whether the risk of two or more stress events occurring within one 406 

year has increased. Significant changes are ones that are above 0.05 or below -0.05. 407 

 408 

Spatial mapping of the extreme weather event datasets 409 

Data were exported from R as ascii text files with grid cell centroid locations provided as 410 

absolute integer coordinates in British National Grid projection to facilitate import into ArcGIS 411 

10.5 for visualisation and further analyses. Null values (NA) representing offshore locations 412 

were recoded to (-9999), ensuring compliance with numeric format prior to import. The point 413 

locations were plotted and then spatially joined to a pre-calculated vector 5 km grid, whereupon 414 

joined null values and their corresponding grid squares were identified and removed. The 415 

resulting datasets were then used to create thematic maps.  416 

Geoprocessing (clipping) was used to extract underlying published land cover data[33]. 417 

The resulting land cover data required planimetric areas to be re-calculated, and these were 418 

subsequently summarized by ecosystem type and aggregate area.  419 

Where the analyses had revealed significant change, a field attribute selection was used 420 

to identify the corresponding grid squares, extracted, and then exported as separate geospatial 421 

datasets. To facilitate further quantification of land cover types affected, the boundaries 422 

between resulting significant grid squares were dissolved, so that only the perimeters of 423 



19 
 

aggregated squares remained. These two datasets were combined to produce a map for each of 424 

the four land cover categories overlain with areas of significant increase in frequency of each 425 

extreme event metric. 426 
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Figures and tables: 585 

Main Text: 586 

Figure 1: Change in the annual frequency of threshold exceedance between the period 1961 - 1988 587 
and 1989 - 2016. Positive numbers denote an increase and negative numbers denote a decrease. A 588 
value of 1.0 corresponds to one additional event per year and a value of - 1.0 corresponds to one 589 
fewer event per year. Areas of significant change (p<0.05) are denoted by hatching. 590 

  591 

Figure 2: Change in the frequency of spells of (a) winter growing conditions and (b) spring dry spells 592 
between the period 1961 - 1988 and 1989 - 2016. Significant areas of change (p<0.05) denoted by 593 
hatching. 594 

  595 

Figure 3: Total area (ha) of vulnerable ecosystem category exposed to a significant increase in the 596 
frequency of a) single stress event types and b) multiple stress event types. 597 

  598 

Figure 4: Co-occurrence of a significant increase in the frequency of threshold exceedance of each 599 
event type at the p < 0.05 significant level (a) and the interaction with vulnerable land use category: 600 
agriculture (b), woodlands (c), Conservation areas (d) and carbon stores (e).  601 

  602 
Table 1│ Impact of the most prevalent extreme weather events on the main ecosystem services delivered 603 
within each land use type. The main ecosystem service is given in brackets where P is provisioning, R 604 
is regulation, S is supporting and C is cultural.  605 
 606 
 607 
Supplementary document 608 
 609 

Figure S1: Change in the frequency of extreme dry events between the period of 1961 – 1988 and 610 
1989—2016 during each meteorological season. Significant areas of change ( p < 0.05) denoted by 611 
hatching.    612 
  613 
Figure S2: Change in the joint probability that the annual mean count of two or more event 614 
categories exceed their respective thresholds between the period 1961—1988 and 1989—2016. These 615 
values lie in the region of – 1.0 to 1.0 and convey information on the change in the risk of (a) two, (b) 616 
three or (c) four extreme events occurring within the same year. Significant change was inferred for 617 
probabilities above 0.05 or below –0.05.  618 
  619 
 Table S1│ Summary of the risk and benefits of different extreme event stress on ecosystem service 620 
delivery based on and expert-led comprehensive review of the literature. 621 
 622 
Table S2│ Summary statistics of the change in probability that all four extreme event thresholds will 623 
be exceeded within the same year for the UK as a whole and for the individual regions defined by the 624 
Met Office in the accompanying figure.  625 
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Appendix: Mathematical description of transforming the data to a Gaussian scale using 626 
the fitted Poisson models. 627 
 628 
The idea behind this approach was to first model the marginal spatio-temporal behaviour of 629 
our count random variables, say 𝑦𝑦𝑠𝑠,𝑡𝑡 and 𝑧𝑧𝑠𝑠,𝑡𝑡 (using only two for brevity without loss of 630 
generality). We then transformed the data so that this spatio-temporal behaviour was no longer 631 
present, and quantified any dependence between 𝑦𝑦𝑠𝑠,𝑡𝑡 and 𝑥𝑥𝑠𝑠,𝑡𝑡 that is not due to spatial proximity 632 
or temporal similarity (such as effects from climate indices such as the NAO). 633 
 634 
Here, the marginal models are all Poisson GAMs with probability mass function 𝑝𝑝(𝑦𝑦𝑠𝑠,𝑡𝑡;𝜇𝜇𝑠𝑠,𝑡𝑡) =635 
𝑒𝑒−𝜇𝜇𝑠𝑠,𝑡𝑡𝜇𝜇𝑠𝑠,𝑡𝑡

𝑦𝑦𝑠𝑠,𝑡𝑡/(𝑦𝑦𝑠𝑠,𝑡𝑡!). The cumulative distribution function (cdf) is given by 𝐹𝐹�𝑦𝑦𝑠𝑠,𝑡𝑡; 𝜇𝜇𝑠𝑠,𝑡𝑡� =636 
Pr (𝑌𝑌𝑠𝑠,𝑡𝑡 ≤ 𝑦𝑦𝑠𝑠,𝑡𝑡; 𝜇𝜇𝑠𝑠,𝑡𝑡), which is the left tail area probability. After fitting the models, we generated 637 
estimates of 𝜇𝜇𝑠𝑠,𝑡𝑡 for any 𝑠𝑠 and 𝑡𝑡 and transformed the observed data to a probability scale [0,1] 638 
using 𝑢𝑢𝑠𝑠,𝑡𝑡 = 𝐹𝐹�𝑦𝑦𝑠𝑠,𝑡𝑡;𝜇𝜇𝑠𝑠,𝑡𝑡�. This technique is known as the probability integral transform or 639 
PIT[69. If the model is a good description of the data, then 𝑢𝑢𝑠𝑠,𝑡𝑡 will have a Uniform distribution 640 
in [0,1], meaning that all the spatial and temporal structure that was captured by 𝜇𝜇𝑠𝑠,𝑡𝑡 is no 641 
longer present. 642 
 643 
Using the same rational, we converted 𝑢𝑢𝑠𝑠,𝑡𝑡 to the scale of a random variable following any 644 
known distribution. In particular, we transformed them to a N(0,1) distribution (Normal 645 
distribution with mean 0 and variance 1) via 𝑧𝑧𝑠𝑠,𝑡𝑡 = Φ−1(𝑢𝑢𝑠𝑠,𝑡𝑡) where Φ() is the cdf of the N(0,1) 646 
distribution.  647 
 648 
Given the original variables 𝑦𝑦𝑠𝑠,𝑡𝑡 and 𝑥𝑥𝑠𝑠,𝑡𝑡 we obtained corresponding 𝑧𝑧𝑠𝑠,𝑡𝑡

(1) and 𝑧𝑧𝑠𝑠,𝑡𝑡
(2). Since they 649 

are both on the scale of a N(0,1), the sample correlation, 𝑐𝑐𝑐𝑐𝑐𝑐�𝑧𝑧𝑠𝑠,𝑡𝑡
(1), 𝑧𝑧𝑠𝑠,𝑡𝑡

(2)�, is an estimate of their 650 

dependence as would be explained by a bivariate Normal distribution. With more than 2 651 
variables, we replaced correlation with the correlation matrix, which describes the dependence 652 
across all the variables as would be explained by a multivariate Normal distribution (mean 653 
vector zero, variance vector 1). 654 
 655 
To obtain correlated realisations of the original variables, we proceed backwards. First 656 
simulating values from the multivariate Normal distribution using the estimated correlation 657 
matrix. Then converting the samples to the probability scale of [0,1] using the cdf Φ(). We 658 
then converted those to the original scale (counts) using the inverse cdf 𝐹𝐹−1(). This is the 659 
procedure followed in the paper to obtain correlated simulations with the right spatio-temporal 660 
(marginal structure). 661 
 662 
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Table 1│ Impact of the most prevalent extreme weather events on the main ecosystem services delivered within each land use type. The main 666 
ecosystem service is given in brackets where P is provisioning, R is regulation, S is supporting and C is cultural. See Table S1 for detailed assessment and 667 
relevant references.  668 

Land use 
category 

Most 
prevalent 
stress 

Negative impacts of climate stress Positive impacts of climate stress Uncertainties 

Agriculture All sectors 
Arable & 
horticultural 

• Extreme 
heat  

•  Reduced 
winter 
cold 
spells 

Production loss due to: 
1. Water stress (S) 
2. Asynchrony of plant and insect lifecycles affecting pollination (S) 
3. Loss of cold acclimation, effects on fruit, bud setting, frost hardiness 
(P) 
4. Increased pests, disease and weeds (S) 

Production gains due to: 
1. Increased growth rates (P) 
2. Improved growing season length – multiple crops (P) 
3. Increased climate suitability for high value crops e.g., 
viticulture (P) 

Change in soil microbial and 
mesofaunal communities 
having unexpected impacts 
on biogeochemical cycles 
influencing: 
1. Soil fertility (R) 
2. Environmental quality (R) 
3. Climate regulation (R) 
4. Carbon storage capacity 
(R)  
 
Unexpected arrival of 
invasive plant/zoonotic 
pest and diseases having 
unexpected impacts on 
management regime. (S) 
 
Arrival of non-native  plant 
and animal species (S) 
 
Development of novel 
stress tolerant plants that 
help mitigate effects of 
extreme stress (S) 
 
Changes in levels of 
atmospheric CO2 (R) 
 
Changes in agri-
environment policy and 

Grassland • Extreme 
heat 

•  Reduced 
winter 
cold 
spells 

Production loss due to: 
1. Reduced pasture growth (P) 
2. Animal heat stress (P) 
3. Asynchrony of plant and insect lifecycles affecting pollination (S) 
5. Asynchrony between pasture growth and feed requirements (P) 
4. Increased pests, disease and weeds (S) 

Production gains due to: 
1. Increased pasture growth rate (P) 
2. Improved growing season length (P) 
3. Reduced feed import and winter housing needs (P) 
 
 

Forests 
Broadleaf 
woodland 

• Extreme 
heat 

• Reduced 
winter 
cold 
spells 

Reduced growth and tree mortality due to: 
1. Heat/water stress – broadleaf forests more susceptible than 
coniferous(S) 
2. Increased pest and disease prevalence and host susceptibility due 
to stress(R) 
3. Asynchrony of plant and insect lifecycles affecting pollination (S) 
Increase risk of wildfire due to 
1. Larger fuel load of dead wood (R) 
2. Increased favourable climatic conditions (R) 
3. Increased possible ignition source from increased recreation use (R)  
Loss of biodiversity due to 
1. Suitable habitat loss (S) 
2. Out-competition of species (S) 
3. Increased pests, disease and invasive species (R) 

Increased growth and CO2 uptake due to longer growing 
season (R) 
Increased recreation use due to favourable climatic 
conditions (C) 
Emergence of new or previously outcompeted species 
(S) 
Increased flood attenuation due to winter growth (R) 

Coniferous 
forest 

• Extreme 
rainfall 

• Reduced 
winter 

Reduction in growth and tree mortality due to: 
1. Increased pest and disease prevalence and host susceptibility due 
to stress(R) 
2. Asynchrony of plant and insect lifecycles affecting pollination (S) 

Increased growth and CO2 uptake due to longer growing 
season(R) 
Emergence of new or previously outcompeted species 
(S) 
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cold 
spells 

3. Loss of mycorrhizal associations (S) 
Increased environmental concerns including reduction in water 
quality and increased greenhouse gas emission due to:  
1. Increased run-off (R) 
2. Increased freeze-thaw and wet-dry pulses (R) 
3. Increased bare ground cover (R) 
Increased natural hazard risk (landslips, flooding) due to: 
1. Increased bare ground cover (R) 
2. Increased debris (R) 
3. Deterioration of soil structure (R) 
3. Climate feedback (R) 
Decrease in public use (C) 

Groundwater recharge (R)  
Increased flood attenuation due to winter growth (R) 

public dietary preference 
(C) 
  

Conservation 
National 
Parks 

• Extreme 
heat 

• Extreme 
rainfall 

• Reduced 
winter 
cold 
spells 

Loss of biodiversity due to: 
1. Loss of suitable habitat (S) 
2. Out-competition by invasive species (S) 
Loss of recreation provision due to: 
1. Access limitation (C) 
2. Loss/reduction of winter activities (C) 

Emergence of new or previously outcompeted species 
(S) 
Increased recreation use and change in activity type 
due to favourable climatic conditions (C) 
 

Sites of 
Special 
Scientific 
Interest 
(SSSIs) 

• Extreme 
heat 

• Extreme 
rainfall 

• Reduced 
winter 
cold 
spells 

Loss of biodiversity and loss of rare scientifically important species 
due to: 
1. Loss of suitable habitat (S) 
2. Out-competition by invasive species (S) 

Emergence of new or previously outcompeted species 
(S) 
 
 

Carbon stores 
Heathlands 
and bogs 

• Extreme 
rainfall 

• Reduced 
winter 
cold 
spells 

Transition from C sink to C source due to: 
1. Increased winter soil and plant respiration (R) 
2. Increase freeze-thaw and wet-dry cycles (R) 
3. Sediment and dissolved C loss through erosion and runoff (R) 
Increased environmental concerns including reduction in water 
quality and increased greenhouse gas emission due to:  
1. Increased freeze-thaw and wet-dry cycles (R) 
2. Increased run-off (R) 
3. Transport of dissolved and sediment bound pollutants (R)  
Increased natural hazard risk (landslips, flooding, drought) due to: 

Resetting of degraded or artificially drained systems 
creating natural marsh/moorland habitats (R) 
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1. Deterioration of soil structure (R) 
2. Reduced water storage capacity (R) 
3. Change in water supply to downstream catchments (R) 
4. Climate feedback (R) 

 669 

  670 
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 671 

Figure 1: Change in the annual frequency of threshold exceedance between the period 1961 - 1988 and 1989 - 2016. 672 
Positive numbers denote an increase and negative numbers denote a decrease. A value of 1.0 corresponds to one additional 673 
event per year and a value of - 1.0 corresponds to one fewer event per year. Areas of significant change (p<0.05) are 674 
denoted by hatching. 675 
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 676 

Figure 2: Change in the frequency of spells of (a) winter growing conditions and (b) spring dry spells between the period 677 
1961 - 1988 and 1989 - 2016. Significant areas of change (p<0.05) denoted by hatching.678 
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 679 

Figure 3: Total area (ha) of vulnerable ecosystem category exposed to a significant increase in the frequency of a) single 680 
stress event types and b) multiple stress event type. 681 

 682 
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 683 

Figure 4: Co-occurrence of a significant increase in the frequency of threshold exceedance of each event type at the p < 0.05 684 
significant level (a) and the interaction with vulnerable land use category: agriculture (b), woodlands (c), Conservation 685 
areas (d) and carbon stores (e)686 
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