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Oil palm plantations have rapidly expanded over the last

30 years, and now occupy 10% of the world’s permanent

cropland. The growth of one of the world’s most efficient and

versatile crop has alleviated poverty and increased food and

energy security, but not without side effects. Losses of forest

biodiversity hits the news. Although equally important, climate

change issues have not reached this limelight. Data on

greenhouse gas emissions associated with oil palm production

is limited, especially for the potent greenhouse gas nitrous

oxide (N2O). This paper provides an overview of the data

availability, and identifies knowledge gaps to steer future

research to provide the data required for climate change

models and more accurate international and national nitrous

oxide emission accounting.
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Introduction
The oil palm (Elaeis guineensis) is the most efficient vegetable

oil producer globally, and is about five times more productive
$ OECD Disclaimer: The opinions expressed and arguments employed 

necessarily reflect those of the OECD or of the governments of its Memb

www.sciencedirect.com 
per area than the second largest oil crop, oil seed rape (Brassica
napus) [1,2]. Palm oil is the cheapest vegetable oil and used

profusely in the food, cosmetic and bioenergy industries [3,4].

With rising global populations and demand for non-fossil fuel

energy, oil palm production has risen exponentially,  from a

total land area of 3.6 million ha in 1961 to 19 million ha in

2018 [5] and has led to the deforestation of 2 million ha

between the year 2000 and 2010 [6,7].

Malaysia and Indonesia produce >84% of the global

crude palm oil [5]. Production is expanding to African

[6] and Latin American countries [8–10]. The cultivation

of oil palm has alleviated poverty, both for farming and

non-farming households [8,11��,12]. The dark side of this

wonder crop is that approximately 50% of oil palm plan-

tations have replaced pristine and secondary forests and

peatlands in SE Asia [13]. Recent regulations to minimise

deforestation are in place, but difficult to enforce [7].

Environmental and social consequences of palm oil pro-

duction are critical, often forming trade-offs with eco-

nomic benefits and are currently not sufficiently

addressed by policy makers [10,11��,12,14�].

The focus of this review is the contribution of palm oil

production to the long-lived greenhouse gas nitrous oxide

(N2O). The warm climate of the tropics together with high

decomposition rates provide ideal conditions for microbial

mediated N2O production [15,16]. It is therefore not sur-

prising that tropical forests are the largest global natural

source of soil N2O emissions [17]. The largest manmade

source of N2O is the agricultural sector, predominately

managed soils, which include fertilised plantations. The

agricultural sector is responsible for 35–85% of the global

anthropogenic N2O emissions, depending on the regions

[18]. Fertilisation with mineral nitrogen compounds and

organic rich materials are their main source of N2O [19].

In temperate climate zones extensive research, spanning

40 plus years, has provided detailed knowledge on the

environmental and agronomic impacts on N2O production

and their emission rates from most crops. Contrary, very few

studies have investigated the impact of oil palm production

on N2O emissions beyond 6 months periods (Table 1). This

paper summarises current knowledge of N2O emission rates
in this publication are the sole responsibility of the authors and do not

er countries.
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Table 1

Peer-reviewed papers studying soil N2O fluxes using the chamber method over a period > six months.a All studies were conducted in

Southeast Asia (Indonesia, Malaysia). In oil palm plantations, the fertilised zone represents 10–30% of the plantation area; therefore,

sampling should be spatially stratified to cover both, the fertilised and unfertilised areas. Results from studies not using a design spatially

stratified according to treatment may overestimate plantation-scale rates, in case of treatment-induced response.

Reference Soil type Treatments Sampling

frequency/study

length

Post-fertilisation

intensive sampling

Spatial stratification in sampling

Aini et al. [35] Mineral 1 smallholder 8-year old

plantation fertilised at

33 kg N ha�1 y�1

Monthly/13

months

Yes Yes (2 positions: fertilised area -

0.5 from palm trunk, mid-distance

between palms- 4.5 from palm stem)

Sakata et al.

[61]

Mineral 2 industrial plantations with each

4 treatments (no fert. & no tillage,

no fert & tillage, conventional

fert., coated fert.)

Bimonthly/15–16

months

No No. Sampling restricted to fertilised

area. Fluxes not representative of

plantation-scale emission rates

Hassler et al.

[67]

Mineral 8 smallholder plantations (on

4 loam and 4 clay Acrisols) and

1 industrial plantation fertilised at

48, 88 and 196 kg N ha�1 y�1

(Bi)Monthly/12-13

months

Yes Yes (3 positions: 0.8, 2.5, 5 m from palm

stem)

Rahman et al.

[58]

Mineral One industrial 13-year old

plantation with several water,

inorganic & organic fert.

treatments

Varying according

to experiment/<7

months

Varying according

to experiment

No. Sampling restricted to treated area.

Fluxes not representative of plantation-

scale emission rates

Melling et al.

[39]

Peat 1 industrial 4-year old plantation

fertilised at 103 kg N ha�1 y�1
Monthly/12

months

No No. Sampling restricted to fertilised

area. Fluxes not representative of

plantation-scale emission rates

Sakata et al.

[61]

Peat 1 industrial plantation with

4 treatments (no fert. & no tillage,

no fert. & tillage, conventional

fert., coated fert.)

Bimonthly/15

months

No No. Sampling restricted to fertilised

area. Fluxes not representative of

plantation-scale emission rates

Oktarita et al.

[38]

Peat 1 industrial 3-year old plantation

with 3 urea treatments (0, 153,

306 kg N ha�1 y�1)

Monthly/13

months

Yes Yes (2 positions: fertilised area -

0.5 from palm stem, mid-distance

between palms- 4.5 from palm stem)

Chaddy et al.

[41]

Peat 1 industrial plantation with

4 ammonium sulphate

treatments (0, 31, 62,

124 kg N ha�1 y�1)

Monthly/48

months

No No. Sampling restricted to fertilised

area. Fluxes not representative of

plantation-scale emission rates.

Meijide et al.

[34]

Peat 1 industrial plantation fertilised at

196 kg N ha�1 y�1
Bimonthly/15

months

No Yes (3 positions: 0.8, 2.5, 5 m from palm

stem)

a Peer-reviewed short-term observations studies (single observation in Ref. [79]; 65-days observation period in Ref. [76] are not presented.
from land clearing, oil palm management and the oil extrac-

tion process.

Microbial processes are responsible for N2O
production
Microbial processes in soils and sediments are responsible

for around 90% of total global N2O emissions, with fossil

fuel combustion and industrial processes contribution

towards the remaining 10% [15]. Nitrous oxide produc-

tion is a microbial mediated enzyme driven process via

nitrification, the aerobic oxidation of ammonia to nitrate;

and denitrification, the reduction of nitrate to N2O and

ultimately to inert N2 (atmospheric nitrogen) under

anaerobic conditions [16,20]. In tropical peatlands, other

pathways are also important sources of N2O. DNRA

(dissimilatory nitrate reduction) is a preferred process

under nitrate limiting conditions, and ANAMOX (anaer-

obic ammonium oxidation) may contribute to 35% of

gross nitrification rates in peats [21]. Similarly in a tropical

mineral soil, supporting forests and oil palm plantations,
Current Opinion in Environmental Sustainability 2020, 47:81–88 
denitrifying bacteria and ammonium oxidising archaea

were the main sources of N2O production [22].

Many groups of bacteria, archaea, also some fungi, have the

ability to produce N2O. Various pathways operate simulta-

neously in soils and sediments, with many different organ-

isms completing only a few steps of the nitrification, deni-

trification pathways [16]. The physical and chemical

composition of the soil and climate (i.e. precipitation,

temperature) largely determines which of the various path-

ways dominate N2O production. For example, Espenberg

et al. [21] reported a shift in microbial community structure,

with higher abundance of archaea compared to bacteria in

drained peatlands, whereas the opposite, higher bacterial

abundance, was the case for natural (undrained) peatlands.

Key drivers of N2O emissions [16,20] are:

(i) a source of carbon (i.e. decomposing leaf litter,

decaying soil fauna and manure application, high

soil carbon concentration (especially peat), organic

fertilisers),
www.sciencedirect.com



Nitrous oxide and oil palm Skiba et al. 83
(ii) nitrogen (i.e. nitrogen fertilisers, such as ammonium

nitrate, urea and manure, biological nitrogen fixation

in legumes or decomposition of soil organic matter),

(iii) low oxygen concentrations (i.e. wet soil, high water

table, rainfall, irrigation, fine soil texture (i.e. clay),

high microbial respiration rates),

(iv) temperature (enzymatic reactions increase as tem-

perature rises).

Conversion of forests/shrubland to oil palm
plantation can change greenhouse gas
emission rates
In Indonesia and Malaysia, large areas of forests [23,24] have

been cleared to grow oil palm, by burning and mechanical

means (‘slash and burn’). Burning was banned in the 1990’s

by both governments, but is still commonplace. Remote

sensing has shown that land-use change is associated with

burning in many tropical countries, that is, [25] and refer-

ences within. Clear felling peatlands by burning followed by

drainage for crop production is a particular problem, as peat

soils store a lot of carbon, in particular the ombrotrophic peats

of Indonesia and Malaysia, where most of the oil palms are

grown. They have an average carbon content of >30%

compared to mineral soils of <10% [26]. Burning does not

only remove the vegetation, but can also burn the peat,

which exacerbates release of carbon dioxide (CO2) methane

(CH4), N2O, and other pollutants (i.e. NOx), to the atmo-

sphere. The most recent severe, peat fires in Indonesia, in

the 2015 El Niño year, emitted more CO2 to the atmosphere

(�11 Tg day�1) than from fossil fuel combustion from the

whole of Europe (�8 Tg day�1) [27]. However, peat fires

also increase in La Niña years [28]. Nitrous oxide is also

emitted from fires, but several orders of magnitude smaller

(0.001 Tg) than for CO2. This source of N2O is not very well

quantified [28].

Fire and mechanical felling not only has severe effects on

the terrestrial and aquatic biodiversity [14�,29], but also

on soil biogeochemical processes. Both processes (slash

and burn) temporarily increase the mineralisation of

organic matter to ammonium and nitrate. These com-

pounds are converted to N2O via microbial processes (i.e.

nitrification and denitrification [16]) A comparison of

logged and unlogged forests on a mineral soil in Malaysia

showed that in the first year after logging N2O emissions

increased fivefold [30]. Similar results were observed

when converting forest to pasture in Costa Rica [31];

and in Indonesia N2O emissions from a mineral soil

increased threefold after burning [32].

Studies investigating the immediate effect (the period

within days of felling to one year) of clear-felling through

fireormechanically are rare.Thisknowledge gapstill needs

to be addressed using modern sensors, tracing greenhouse

gas concentrations at high temporal frequency; and ideally

for several years, to take into consideration interannual

meteorological variability [33,34��]. Most studies compare

established plantations with natural and degraded forest
www.sciencedirect.com 
types [35–37]. For example, N2O emissions from an N

fertilised peatland in Indonesia were 5–10 times larger than

from a natural peatland forest [38] and 2–3 times larger than

from a Malaysian forest [39] (Table 1).

Once a peatland forest is cleared, the water table needs to

be lowered to grow oil palm or other crops. Lowering the

water table accelerates peat decomposition and releases

large amounts of CO2 but also N2O, to the atmosphere

over years and decades. Peat decomposition rates depend

on the vegetation type. For example, CO2 emissions from

degraded forests were �50% smaller than from croplands

and 30% smaller than from oil palm plantations, whereas

N2O emissions from degraded forests were 50% smaller

than from croplands, but 50% larger than from oil palm

plantations [37]. A recent review on the impact of landuse

change on GHG emissions from tropical peatlands con-

cluded, that N2O emissions increase exponentially with

peat decomposition rates [40]. Nitrous oxide emissions

from peat decomposition can be much larger than N2O

emissions triggered by N fertilisation [38] (Table1). Fur-

thermore, the water table level has a stronger influence on

N2O emission rates than N fertiliser input rates, with

largest N2O emissions at high water table [41] (Table 1).

Clear-felling mineral soils also leads to soil organic carbon

losses, but loss rates are �10 times smaller (1 Mg C

ha�1 y�1) than from peat soils. After converting a second-

ary forest to plantations on a mineral soil, N2O emissions

were also smaller than from peat soils (<95 g N2O ha�1

y�1)[36,42]. These data are highly uncertain and only

based on two observations. A much more rigorous study

was recently conducted in Indonesia, were CO2, N2O and

CH4 fluxes were compared from 1 and 12 year old oil palm

plantations grown on mineral soils. The researchers

observed that the 1 year old plantation was a significant

carbon source (1012 g C m�2 y�1), whereas the 12 year old

plantation was a carbon sink (�745 C m�2 y�1; the

negative prefix ‘- ‘means carbon uptake to the ecosystem)

[34��]. For N2O, emissions were two times smaller from

the 1 year old (0.11 g N2O-N m�2 y�1) compared to the

12 year old plantation (0.33 g N2O-N m�2 y�1), presum-

ably because of the lower N fertilisation rate applied to

the young plantation. The same study included a 12 year

old oil palm on peat, which, contrary to the 12 year old

plantation on mineral soil, still emitted CO2 (330 g C m�2

y�1) in year 12, and N2O emissions (0.95 g N2O-N m�2

y�1) were three times larger on peat compared to the

12 year old plantation on the mineral soil. This study

demonstrates the large environmental costs incurred by

converting peatlands to agricultural production [34��,43�].
The conversion of peatland forests to oil palm plantations

produces greenhouse gas emissions so large that the

biofuel sustainability label is not valid [34��]. Sustainabil-

ity either can only be achieved if oil palm plantations

replace existing plantations on peatland, or are grown on

agricultural and degraded land.
Current Opinion in Environmental Sustainability 2020, 47:81–88
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Deforestation and oil palm plantations can
cause soil erosion and increase N2O
emissions
Without the protective tree canopy and ground vegeta-

tion of a forest, soil erosion increases in oil palm planta-

tions [44]. Erosion rates are particularly high from cleared

land (�950 t ha�1 y�1) and still at rates of �90 t ha�1 y�1

in established oil palm plantations [45]. Sediment loads to

rivers flowing through oil palm plantations are 2–8 times

larger compared to upstream parts of the river flowing

through the forest, carrying with it nitrogen fertilisers,

pesticides and herbicides [46]. The consequences are

reduced biodiversity [47] and increased dissolved con-

centrations of N2O in the rivers [48,49��].

To ameliorate river pollution, riparian buffer strips are

mandatory in some countries [14�,50]. Forested buffers

can be particularly rich in biodiversity and provide wild-

life corridors within in a fragmented landscape [48]. They

retain phosphates, nitrates and organic matter in their soil

and prevent transfer of these compounds to the river.

However, additional nitrogen compounds draining from

N fertilised land (oil palm plantations, other fertilised

crops and grasslands) into buffer strips can be a potential

source for N2O production [51,52]. These indirect N2O

emissions still needs to be quantified for oil palm

plantations.

Oil palm growing requirements, management
and yield
The oil palm originates from tropical West Africa,

requires a relatively narrow temperature range of 21–

32�C, an average rainfall of 150 mm month�1, and only

withstands dry periods for a few months. Ongoing breed-

ing programmes aim to improve resilience to drought [53].

However, the rather narrow temperature tolerance may

lead to an uncertain future for oil palm production in some

areas. Climate models have calculated that the increasing

climate change predictions for 2050 will reduce the most

suitable land for oil palm production by 22% [54]. Con-

verting forests to oil palm and other plantations may

accelerate the increase in land surface temperature. Oil

palm plantations are much hotter and drier than dense

tropical forests [55]. In areas with extensive oil palm

production, this ‘local’ effect can have an impact on

the larger region. A land surface temperature increase

of 1�C was calculated for the Jambi region, Indonesia [56].

Oil palm is grown at industrial scale (1000–20 000 ha) and

by medium and small holders (2–1000 ha) [57]. Seedlings

are planted in a triangular design at an approximate

density of 120–170 trees/ha. Typically circles of 1.5 m

radius around each palm are kept weed free and are

fertilised with nitrogen (N), phosphorus (P), potassium

(K) and micronutrients (magnesium, boron, copper, zinc)

[1,46]. The commonly used N fertilisers urea, ammonium

sulphate and ammonium nitrate are applied at rates
Current Opinion in Environmental Sustainability 2020, 47:81–88 
varying from 48 to 260 kg N ha�1 y�1, sometimes at split

rates every six months or one annual dose. Nitrogen

application rates change with the age of the plantation.

Application of N fertilisers trigger the typical elevated

response in N2O emissions commonly observed in agri-

culturally managed soils in all climate zones [58,59]. For

example, a one-year study in Indonesia investigated the

impact of urea, and combinations with/without mulch or

empty fruit bunches and palm fronds on N2O emissions,

and concluded that organic amendments could reduce

N2O emissions by �76% [58] (Table 1). However, it is not

only the fertiliser type, but also placement of the fertiliser

(below or on the soil surface), the soil wetness at the time

of fertilisation, soil organic carbon content and soil tex-

ture, which can have a large influence on the N2O

emission rate [60,61], (Table 1).

Maximum recorded yield of crude palm oil is 12 t ha�1,

but the average yield across Indonesia and Malaysia is

only 4 t ha�1 [2]. This yield gap could potentially halve by

improving management and plant breeding. The average

economic lifetime of oil palms span 25–30 years, when the

trees are approximately 10 m high. Above this height

harvesting heavy fruit bunches is too difficult. The mostly

manual harvest is labour intensive, with one person

harvesting an area of 8–12 ha [1,62]. Ongoing plant breed-

ing programmes focus on high yielding dwarf oil palm

varieties [63].

Fruits are produced from the second and third year

onwards, with average yields of fresh fruit bunches in

Malaysia of 20–25 tons ha�1, and equivalent to 4 tons ha�1

of crude palm oil. They are processed in mills using wet

extraction. The resulting palm oil mill effluent (POME)

is an organic rich material, traditionally stored in open

lagoons, and can be used as a liquid fertiliser [64,65].

These lagoons are large hotspots of CH4, CO2 and ammo-

nia emissions to the atmosphere. POME contains reason-

ably large concentrations of nitrogen and carbon com-

pounds, which suggests, that POME could potentially be

a source of N2O production by microbial denitrification.

To date there are no published data. Oil palm producing

countries are trying to install biogas capture facilities, to

reduce greenhouse gas (GHG) emissions and convert the

organic effluent (POME) into valuable electricity, but

uptake is currently slow [65,66].

Impact of oil palm management on N2O
emissions and mitigation options
As discussed in the above sections, many environmental

and management parameters influence soil N2O emission

rates. For example: (1) Mineral N application (i.e. urea,

ammonium sulphate, POME) increase N2O emissions

over short periods, typically for 1–6 weeks [58,67]. How-

ever, if the soil is too dry for denitrification to take place

there may be delays in the appearance of the N2O peak

[58,68]. (2) The rate of increase in N2O emissions after
www.sciencedirect.com
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fertilisation depends on N application rates and fertiliser

type, as demonstrated by Hassler et al. [67] comparing

N2O emissions from smallholder and industrial oil palm

plantations on mineral soils in Indonesia. Nitrous oxide

emissions from smallholder plantations were four times

smaller than from industrial plantations, because they

applied four times less N fertiliser than the industrial

estates [67] (Table 1). The lower fertiliser application

rates on smallholder farms are often due to lack of money

and distance to fertiliser suppliers [1]. (3) Comparing urea

with and without organic fertilisers (a mulch from empty

fruit bunches or POME) showed that the combination

urea + organic fertiliser reduced N2O emissions compared

to urea alone. This could be a good mitigation strategy for

N2O reductions [58,59]. Other ways to mitigate N2O

emissions from oil palm plantations are:

� Avoid planting on organic soils, as lowering the water

table to grow oil palms, will accelerate peat decompo-

sition and releases much more N2O than from mineral

N fertilisers [40,41].

� Adhere to fertiliser recommendations for all macro and

micronutrients, as application of too much N creates a

surplus of N not required by the crop and instead

becomes available for microbial N2O production;

whereas too little N prevents optimised yield and

thereby increases the N2O emission per unit of crop

yield [69].

� Match N requirements (and other nutrients) based on

leaf analysis prior fertilisation [46] and adopt other

available precision farming methods as they become

available [69].

� Use slow release N fertilisers, urease and nitrification

inhibitors, as these can reduce N2O emissions [70].

� Develop plant breeding for increased yield, short stem,

resilience to drought and high temperatures can

improve N uptake efficiency, and thereby reduce soil

N2O emissions.

� Grow cover crops, ideally N fixing plants (legumes,

which enables reduced application of mineral N ferti-

lisers). Cover crops also increase the soil organic matter

content, reduce erosion, increase biodiversity and pol-

lination [13,71].

� Return empty fruit bunches and palm fronds to the

plantation, as they provide a valuable source of C and

N, increases the biodiversity of the soil micro-fauna and

macro-fauna, and improves soil health [72].

Reporting N2O emission rates to the IPCC
Research on the impact of oil palm plantation manage-

ment on N2O emissions has only started in earnest about

15 years ago [32]. Most studies are either short-term

measurements (2–3 weeks) to investigate emissions aris-

ing from a fertilisation event; or monthly measurements

over 1 year and longer periods [37]. These data have

demonstrated the importance of including N2O emissions
www.sciencedirect.com 
in the overall GHG reduction debate. Signatories of the

Kyoto protocol are required to prepare emission invento-

ries from all sectors (i.e. energy, industry, agriculture,

forestry and other land use, and waste) [19]. Annex I

countries are legally bound to prepare emission invento-

ries annually, whereas Non-Annex I countries (develop-

ing countries) submit their inventories every four years.

The Intergovernmental Panel on Climate Change

(IPCC) has provided guidelines to calculate emissions

using a three tier system: default values (Tier 1), country

specific values (Tier 2), models (Tier 3) [19]. For exam-

ple, the Tier 1 emission factor (EF) for direct N2O

emissions is 1% of the N fertiliser applied to mineral

soils. In wet climates, the default value is 0.6% of organic

N inputs and 1.6% of synthetic N inputs. Several studies

have demonstrated that the IPCC Tier 1 default EF may

not be appropriate for fertilised oil palm plantations, as

much larger EFs (i.e. 2.6%) were reported from oil palm

plantations on mineral soils in Indonesia [58]. There is

urgent need for targeted long-term studies to understand

the impact of deforestation and different oil palm man-

agement practices on N2O emissions, in order to develop

strategies to reduce N2O emissions from industrial,

medium and smallholder plantations.

Future measurement designs
Based on our research experience we suggest the follow-

ing strategy to reduce the knowledge gap of N2O fluxes

from oil palm production. It is essential to invest in high

temporal frequency of soil N2O flux measurements (i.e.

daily in the first 10–20 days after N fertiliser application)

and use large numbers of chambers and plot replications

(at least 4) for at least one year [73,74]. To calculate

emission factors, it is required to include a control plot

without nitrogen application. Such studies also need to

include measurements of CH4 fluxes and soil CO2 respi-

ration rates and ‘activity data’ (daily for agricultural man-

agement i.e. fertiliser application rate and date, yield, soil

physical and chemical properties, daily rainfall and tem-

perature) in order to interpret the N2O data and inform on

mitigation options. Emissions of N2O from tree stems and

the canopy, although smaller than from the soil, should be

included [75]. Long-term monitoring of atmospheric

N2O, CH4, CO2 concentrations or fluxes from plantations

and forests, [34��,76–78] (Table 1), can provide the large

scale (>100 m2) and high frequency (30 min) data to

understand inter-annual variability, and changes in man-

agement and mitigation [34��] (Table 1). A combination

of long-term (ideally high frequency) monitoring with

short-term treatment studies, investigating external dri-

vers, are necessary to fully understand greenhouse gas

emissions from oil palm plantations.
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