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Abstract: Savannah grazing lawns are a key food resource for large herbivores such as blue
wildebeest (Connochaetes taurinus), hippopotamus (Hippopotamus amphibius) and white rhino
(Ceratotherium simum), and impact herbivore densities, movement and recruitment rates. They also
exert a strong influence on fire behaviour including frequency, intensity and spread. Thus, variation
in grazing lawn cover can have a profound impact on broader savannah ecosystem dynamics.
However, knowledge of their present cover and distribution is limited. Importantly, we lack a
robust, broad-scale approach for detecting and monitoring grazing lawns, which is critical to
enhancing understanding of the ecology of these vital grassland systems. We selected two sites in
the Lower Sabie and Satara regions of Kruger National Park, South Africa with mesic and semiarid
conditions, respectively. Using spectral and texture features derived from WorldView-3 imagery,
we (i) parameterised and assessed the quality of Random Forest (RF), Support Vector Machines (SVM),
Classification and Regression Trees (CART) and Multilayer Perceptron (MLP) models for general
discrimination of plant functional types (PFTs) within a sub-area of the Lower Sabie landscape, and (ii)
compared model performance for probabilistic mapping of grazing lawns in the broader Lower Sabie
and Satara landscapes. Further, we used spatial metrics to analyse spatial patterns in grazing lawn
distribution in both landscapes along a gradient of distance from waterbodies. All machine learning
models achieved high F-scores (F1) and overall accuracy (OA) scores in general savannah PFTs
classification, with RF (F1 = 95.73 ± 0.004%, OA = 94.16 ± 0.004%), SVM (F1 = 95.64 ± 0.002%,
OA = 94.02± 0.002% ) and MLP (F1 = 95.71± 0.003%, OA = 94.27± 0.003% ) forming a cluster
of the better performing models and marginally outperforming CART (F1 = 92.74 ± 0.006%,
OA = 90.93± 0.003%). Grazing lawn detection accuracy followed a similar trend within the Lower
Sabie landscape, with RF, SVM, MLP and CART achieving F-scores of 0.89, 0.93, 0.94 and 0.81,
respectively. Transferring models to the Satara landscape however resulted in relatively lower
but high grazing lawn detection accuracies across models (RF = 0.87, SVM = 0.88, MLP = 0.85
and CART = 0.75). Results from spatial pattern analysis revealed a relatively higher proportion of
grazing lawn cover under semiarid savannah conditions (Satara) compared to the mesic savannah
landscape (Lower Sabie). Additionally, the results show strong negative correlation between grazing
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lawn spatial structure (fractional cover, patch size and connectivity) and distance from waterbodies,
with larger and contiguous grazing lawn patches occurring in close proximity to waterbodies in both
landscapes. The proposed machine learning approach provides a novel and robust workflow for
accurate and consistent landscape-scale monitoring of grazing lawns, while our findings and research
outputs provide timely information critical for understanding habitat heterogeneity in southern
African savannahs.

Keywords: African savannah; grazing lawns; machine learning; WorldView-3; Support Vector
Machines; Random Forest; Multilayer Perceptron; decision trees; spatial analysis

1. Introduction

Savannah ecosystems inherently exhibit a considerable degree of variability in structural and
physical attributes across their range of occurrence [1]. In Southern Africa, they feature the coexistence
of grasses and an overstorey layer of trees with varying gradients of dominance and spatial
formations [2]. Within the grassy layer, plant forms are typified structurally by tall bunch grasses and
short grass grazing lawns [3], which form a significant component of the heterogeneity in Southern
African savannah grasslands [4].

The relative proportions and distribution of grazing lawns and tall bunch grass resources have
been directly linked to important ecosystem changes such as fluctuations in herbivore density [5,6] and
changing fire regimes [7,8]. For example, the amount of high-quality lawn grasses has been suggested
to be the primary natural limiting factor to population size of mega-herbivores such as the white
rhinoceros (Ceratotherium simum) and the hippopotamus (Hippopotamus amphibius) [6,7,9]. Additionally,
the persistence of grazing lawns creates natural barriers to the spread of fire due to limited above
ground fuel biomass that may serve as fuel for the spread of fire [7,10,11]. By contrast, tall bunch
grasses keep their moribund growth forms and increase savannah grassland fuel load [7,12]. As such,
changes in grazing lawn coverage and distribution could potentially alter the size, frequency and
intensity of fire within the landscape [7], with cascading effects for nutrient cycling, plant community
composition, habitat structure and biodiversity. Monitoring the occurrence and spatial patterns of
grazing lawns is therefore fundamental to understanding the ecology of these vital grassland systems.

Grazing lawns are dynamic and maintained by constant grazing, resulting in a feedback of dense
nutrient-rich plant growth that in turn attracts more grazing [10]. Different parts of a landscape
may also be predisposed to grazing lawn formation due to localised availability of resources and
nutrient hotspots that concentrate grazers. These include areas around water bodies and areas of
mineral accumulation (e.g., sodium) [10]. The initiation of a cycle of regular grazing thus appears to
be a critical factor for their development and persistence [10–12]. Nonetheless, the rates and specific
pathways of their development likely depend on factors such as rainfall, fire and soil types [13].
Rainfall has a strong influence on the rate of grass biomass accumulation and the height of tall grass
stands [14]. The relative proportion of grazing lawns to high biomass tall grasses is also influenced
by dynamics in soil nutrients through their strong influence on grass productivity. Under high
rainfall and soil nutrient conditions, increased grazing frequency is required to prevent the invasion
of tall-grass competitors [10]. Too infrequent grazing increases the vulnerability of a switch to tall
bunch grasses [11]. Fire also consumes grass biomass and has the potential to shift grass community
composition and structure within different environmental constraints [15]. Tall bunch grasses with
low forage quality dominate fire-driven grassy systems [10–12]. Additionally, post-fire regrowth can
also attract grazers away from previously established grazing lawns causing them to be invaded by
tall bunch grasses [11,12]. The varying spatial and temporal nature of the key interacting factors that
drive grazing lawn dynamics urges for a robust landscape-scale approach to better understand their
variation over space and time.
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Ground-based monitoring of grazing lawn responses to the complex top-down and bottom-up
ecological processes is challenging due to the large areas involved. Although ground-based methods
can provide more detailed and valuable local insights [16], they are not efficient in capturing
regional-scale dynamics—due to the high cost involved—nor do they provide any retrospective
information beyond the start of monitoring activities [17]. Remote sensing technology is able to
overcome the spatial and temporal limitations, which in combination with ground-based observations,
offers valuable tools for accurate, efficient and cost-effective ways for vegetation monitoring [18,19].

Medium resolution satellite imagery such as the Landsat Operational Land Imager (OLI) [20]
and Sentinel-2 missions [21] are freely available, with extensive temporal coverage which offers
enormous benefits for monitoring vegetation dynamics. Further, recent advances in very high
spatial resolution (VHR) satellite imagery such as WorldView-3 presents opportunities to partially
overcome limitations in spatial resolution associated with medium resolution imagery, particularly in
heterogeneous savannah landscapes [17]. At nadir spatial resolution of 1.24 m [22], the WorldView-3
sensor is able to identify and discriminate between different sized vegetation components such as
trees, shrubs and grass patches [17,23]. Additionally, the yellow, red-edge and two near-infrared bands
in WorldView-3 imagery provide the capability of reliably detecting photosynthetically active or dying
plants and foliar chlorophyll content [24]. As such, various phenological stages of vegetation can be
monitored, which is instrumental in dealing with spectral similarity of different savannah vegetation
composition [23,25].

In parallel with advances in remote sensing imaging technology, free open source software
packages and increased computational power have been developed to facilitate image analysis.
The combination of these factors has advanced the use of machine learning algorithms in land cover
classification [26]. Among the most popular machine learning classification algorithms are Random
Forest (RF) [27], Support Vector Machines (SVM) [28], Decision Trees (DT) [29] and Artificial Neural
Network (ANN) [30]. RF, SVM, DT and ANN are nonparametric classifiers and are very efficient in
dealing with nonlinear classification problems [26,31], having been proven to be effective in different
savannah ecosystems. Camargo et al. [31] demonstrated the utility of RF, SVM, DT and ANN in
classifying land cover in the Brazilian Tropical Savannah biome. RF is well known for its flexibility
of application on both continuous and categorical datasets, either as a regression or classification
algorithm, respectively [26,27]. Symeonakis et al. [32] used RF to classify different land cover types in
southern African savannahs and reported a maximum accuracy of 91.1 %. The SVM classifier is popular
for its strong ability to generalise in complex nonlinear feature space [28]. SVM was used in seasonal
separation of vegetation components in southern African savannahs and gave the highest accuracy
score under dry leaf-off conditions compared to k-Nearest Neighbour (k-NN), Maximum Likelihood
Classifier (MLC), RF and DT classifiers [23]. The application of DT in an eastern African savannah
resulted in an increased mapping accuracy over MLC and SVM, with over 93% overall accuracy [33].
ANN classifiers have been widely used in satellite image classification, due to the capability to adapt
and generalise different input data structures [26]. The successful application of ANN has been
well demonstrated in different remote sensing contexts, including classification of endangered tree
species [34] and dynamic modelling of land cover changes in semi-arid landscapes [35].

Much of the literature on monitoring grazing lawn dynamics in southern African savannahs
focuses on localised and controlled experimental studies of responses to the mechanisms that induce
their establishment and persistence [4,10–12]. There is limited evidence on whether the proposed
pathways translate into broad-scale spatial patterns in grazing lawn occurrence. Among the few
empirical studies is the work of Archibald et al. [12] who mapped grass structural distribution and
found that the extent of grazing lawns was directly related to fire return interval. Though there is
substantial information on how different biotic and abiotic factors shape grazing lawns, knowledge of
their present cover and distribution, which is critical to understanding habitat heterogeneity, is lacking.
More importantly, there is no robust, broad-scale approach for detecting and monitoring grazing lawns
to enable comprehensive investigation into their dynamics over space and time, and the implications
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for broader ecosystem dynamics. Against this backdrop, we seek to develop a robust machine learning
framework for mapping grazing lawns in southern African savannahs by (i) parameterising and
assessing the quality of Random Forest (RF), Support VectorMachines (SVM), Multilayer Perceptron
(MLP) and Classification and Regression Trees (CART) models for savannah land cover classification
in a localised context, and (ii) comparing model performance for probabilistic mapping of grazing
lawns on a wider scale. Additionally, we analyse spatial patterns in grazing lawn distribution along
a gradient of proximity to water bodies, which has been hypothesised to influence grassland spatial
structure [10,36].

2. Materials and Methods

2.1. Study Area

Kruger National Park (KNP) lies between 30◦53′18”E, 22◦19′40”S and 32◦01′59”E, 25◦31′44”S
in South Africa. The park spans approximately 20,000 km2, extending about 360 km from north
to south. The significant diversity in the landscape is expressed in its climate, soil, flora and
fauna, making it a globally important site for ecological studies. The climate is subtropical with
maximum mean annual rainfall between 500 mm and 700 mm in the northern and southern parts
of the park, respectively [37]. Geologically, KNP is divided into granitic soils to the west and
basaltic soils to the east, which are separated by a narrow band of shale from the south to the
mid portion of the park and rhyolite on the eastern extreme [38]. This, coupled with spatial and
temporal rainfall gradients, as well as disturbance events, exert enormous influence on vegetation
type distribution across the landscape [6]. More open, productive grasslands occur on the basalt, while
denser bushland savannah occupy the granite. Mopane (Colophospermum mopane), red bushwillow
(Combretum apiculatum) and silver clusterleaf (Terminalia sericea) constitute some of the dominant
vegetation types in the northern half of the park [37]. The open grasslands of the eastern plain
are dominated by species like blue buffalo grass (Cenchrus ciliaris), red grass (Themeda triandra),
stinking grass (Bothriochloa radicans) and finger grass (Digitaria eriantha), dotted with knob-thorn acacia
(Acacia nigrescens) and marula trees (Sclerocarya birrea) [39]. Mixed broadleaf woodlands of bushwillow
(Combretum sp) with corridors of grassland cover the central-western part of KNP, while thorn thickets
(e.g., Acacia robusta), silver clusterleaf (Terminalia sericea) and sour grasses (Hyparrhenia filipendula)
form a dominant part of the higher rainfall southern landscape [39]. Alongside variations in abiotic
factors which influences vegetation type distribution within the KNP landscape, the presence of a great
diversity of herbivores exert significant impact on vegetation structure. For example, high population
density of the African elephant (Loxodonta africana) has been suggested to be the major driver of woody
vegetation change in KNP [17,40]. The dominant grass consumers (with >50% of grass in diet) includes
impala (Aepyceros melampus), blue wildebeest (Connochaetes taurinus), zebra (Equus quagga), buffalo
(Syncerus caffer) and white rhino (Ceratotherium simum) [41].

Management of KNP is generally focused on maintaining habitat heterogeneity through adaptive
fire management regimes [38] alongside natural fire events. Natural burns vary in frequency
and intensity depending on rainfall patterns and the prevalence of high grass biomass [37,42].
The consequence of varying fire regimes is the different spatial configurations of grass productivity
and biomass accumulation [42]. For example, the distribution of short grass grazing lawns whose
persistence depends on positive feedback loops associated with frequent grazing has been observed to
be highly influenced by variation in burn size and frequency [11,12].

Two study sites located within the Satara and the Lower Sabie regions of the park (Figure 1), each
covering 5.7 × 5.7 km, and extending over a range of habitat conditions including rainfall, geology
and vegetation type were used. The Satara site is a well-studied grazing system close to the latitudinal
center of KNP, and covers both granitic and basaltic soil types interspersed with a strip of ecca shales.
The landscape is semiarid with mean annual rainfall of 400–500 mm. The granite areas to the west
are generally more wooded and undulating than the flat and more open and grassy basaltic plains.
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In contrast, the Lower Sabie site falls under mesic landscape conditions with mean annual rainfall
of 600–700 mm. The area has an underlying granite geology and encompasses portions of the Sabie
River catchment. A number of sodic sites are also present within the Lower Sabie study site. Sodic
sites typically occur at footslopes of catenas and are known to have high soil and vegetation sodium
content which concentrates grazers and aids the formation and maintenance of continuous grazing
lawn patches [10].

Figure 1. Map of study area showing locations of the Satara and Lower Sabie field sites in Kruger
National Park (KNP), with enlarged views of the WorldView-3 satellite scenes (False colour: NIR1, R,
G) overlaid with hydrology. Inset map shows the location of KNP within South Africa. Geological
information was obtained from South African National Parks data repository

2.2. Land Cover and Classification Scheme

The study sites were selected to exclude as much anthropogenic influence as possible due to
the natural ecological focus of our study. Thus, natural and semi-natural land cover features such
as vegetation patches, bare soil surfaces and waterbodies dominate the selected study sites, with the
only artificial surfaces being roads and isolated structures which serve as rest stops and picnic sites for
tourists. Four plant functional types (PFTs) were identified in order to distinguish grazing lawns from
other vegetation types (Figure 2). These included evergreen woody components, deciduous woody
components, bunch grasses and short grass grazing lawns.
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Figure 2. Examples of Plant Functional Types (PFTs): (a) woody evergreen, (b) woody deciduous,
(c) bunch grass and (d) grazing lawns.

The PFT categories were finalised following the vegetation nomenclature provided in [17] and
were modified based on knowledge from dry season field survey and the spectral reflectance properties
of the different vegetation components contained within satellite imagery. Within the landscape,
woody components are mainly trees and shrubs, which in many cases were challenging to objectively
differentiate. This is a well-known dilemma in savannah landscapes due to structural complexities such
as multiple stems, varying disturbance adaptations and height limitations [43]. The common practice
has been to use arbitrary morphological traits like diameter and height thresholds depending on
research objectives and ecological relevance. For example, [17] used a main trunk diameter threshold
of 7 cm to distinguish between trees and shrubs, where woody components with >7 cm diameter were
classified as trees and those with <7 cm diameter as shrubs. Moreover, optical satellite imagery only
records planar-view spectral reflectance information from surface cover with little structural detail.
This presents a further challenge for successful differentiation of vegetation structure. The woody
components were thus differentiated based on dry season phenological differences (leaf on/off), which
allowed for objective delineation both in situ and on satellite imagery. Bunch grasses were identified as
tall grass patches with height >20 cm. In contrast, grazing lawns were identified as short grass areas
with stoloniferous growth forms and height <20 cm. Unlike bunch grasses which generally occurred
as dense patches, grazing lawns within the study sites often had a sparse distribution and exhibit a
relatively smooth texture in appearance, which aided visual interpretation of VHR satellite imagery.
In addition to the PFTs, waterbodies, bare soil surfaces, built-up features and shadows on satellite
imagery were identified, which constituted the classes used in this study (Figure 3). Table 1 provides a
summary of the land cover classification nomenclature used.

2.3. Data

2.3.1. Satellite Imagery

Multispectral VHR imagery from the WorldView-3 satellite sensor was used in this study.
Ortho-ready standard 8-band multispectral scenes (in UTM/WGS 84 projection) were acquired which
had been processed to level 2A by the vendor (Table 2). The images were acquired in the dry season,
on July 1, 2019 (at 28.97◦ Sun Azimuth and 19.49◦ off Nadir) and July 7, 2019 (at 30.98◦ Sun Azimuth
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and 1.85◦ off Nadir) for the Lower Sabie and Satara sites, respectively, under cloud-free conditions.
Dry season imagery has previously been used to successfully discriminate vegetation types in similar
contexts [17,44]. Apart from the reduced persistence of cloudy conditions in the dry season, which is an
advantage to optical satellite remote sensing particularly in the tropics [32], spectral differentiation is
maximized due to phenological differences among different vegetation types [17,45]. Image acquisition
was timed to coincide with our field survey season (June 26–July 21, 2019), which allowed for the
collection of consistent reference information for land cover classification and validation.

Figure 3. Sample display of land cover types from WorldView-3 satellite image scene (False colour:
NIR1, R, G). (a) Woody evergreen; (b) Woody deciduous; (c) Bunch grass; (d) Grazing lawn; (e) Water
body; (f) Bare; (g) Built-up; (h) Shadow.

2.3.2. Reference Data

Reference data on the different land cover types were generated from georeferenced field survey
locations, and were extended via further interpretation of VHR images augmented by field photos
and Google Earth satellite scenes. Overall, data from (i) 111 predefined field locations, systematically
distributed within 200 m buffer beyond 100 m distance from access roads, and (ii) 5122 randomly
distributed points from augmented visual interpretation, formed the reference data points (i.e., total of
5233 points) for training (3807—i.e., 73%—reference points) and validation (1426—i.e., 27%—reference
points). Polygons of spectrally homogeneous areas were manually digitised and labelled according to
land cover class IDs (see Table 1) using the locations of training points. The polygon extents (Table 1)
were then used to extract image pixels for model training. Of the many potential approaches that
could be used to extract training pixels, polygon objects have been shown to provide the most accurate
classification outcomes [46,47]. Spectral plots of the different land cover classes were examined and
reviewed alongside Jefferies–Matusita distance measures to ascertain adequate spectral separability
prior to model training [48]. Models were parametrised and trained for prediction based on data
from a sub-area within the Lower Sabie field site (see training region in Figure 1). This was necessary
to ensure high model quality as a greater proportion of the georeferenced field sample locations
was concentrated within the training region, while reducing computational cost. In contrast, map
validation was conducted using site-specific reference data.



Remote Sens. 2020, 12, 3357 8 of 37

Table 1. Description of land cover classification nomenclature and reference data. Numbers represent number of reference points, while figures in parenthesis
represent area of training polygons in hectares. Lower Sabie and Satara validation points are separated by “/” (i.e., Lower Sabie/Satara).

Land Cover Reference Samples

ID Name Description Model Training Map Validation

1 Woody evergreen
Woody vegetation components that are adapted to retain their leaves all year round. Classified based on dry
season field observations. 863 (3.94) 100 / 80

2 Woody deciduous
Woody vegetation components that are adapted to retain their leaves in the wet season and shed them in the
dry season. Classified based on dry season field observations. 1047 (3.26) 100 / 65

3 Bunch grass Tall grass patches with height >20 cm, and often occur as dense patches with upright growth form. 680 (10.12) 100 / 114
4 Grazing lawn Short grass patches with height <20 cm, and often occur in sparse distribution with stoloniferous growth form. 465 (7.99) 100 / 103
5 Water body Water bodies occurring within the landscapes including rivers, streams and reservoirs. 58 (3.18) 100 / 38
6 Bare Bare surfaces occurring as patches of exposed soil and includes dusty trails and rocky outcrops. 464 (4.29) 100 / 74
7 Built-up Built artificial structures within the landscape as well as asphalt and concrete coated surfaces such as roads and bridges. 37 (0.75) 100 / 64
8 Shadow Shadows of trees and other tall structures falling on adjacent surfaces which results in very dark or low brightness values. 193 (0.63) 100 / 88

Table 2. Description of datasets used.

Dataset Description Temporal Coverage Source

WorldView-3 imagery

Multi-spectral 8-band satellite imagery with 1.24 m spatial resolution. Bands
include: Coastal (C: 400–450 nm), Blue (B: 450–510 nm), Green (G: 510–580 nm),
Yellow (Y: 585–625 nm), Red (R: 630–690 nm), Red Edge (RE: 705–745 nm),
Near Infrared 1 (NIR1: 770–895 nm), Near Infrared 2 (NIR2: 860–1040 nm).

July 2019 European Space Imaging

Reference data
Input image pixels labeled according to land cover classification nomenclature.
Pixels were extracted from reference polygon and point features. June 2019–July 2019

Georeferenced field survey locations;
Field photos; and
Google Earth and VHR scenes

Auxiliary data
OpenStreetMaps watercourses data sourced as line vector layer for streams and rivers,
and polygon vector layer for reservoirs. November 2019 www.openstreetmap.org
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2.3.3. Auxiliary Data

Multiple buffer distances (100 m divisions) from water source were used to analyse spatial pattern
in grazing lawn distribution. Water points represent significant resources and important predictors of
grazer movement [49] and spatial heterogeneity in general within semi-arid savannah landscapes [50].
The data (Table 2) was downloaded from OpenStreetMaps surface water archive (streams, rivers and
reservoirs) [51] and was validated against a drainage network and stream order data obtained from
the Scientific services of South African National Parks. The OSM surface water layer contributed in
November 2019 had the closest temporal coverage to the acquisition dates of satellite imagery and
field data, and was selected for spatial analysis.

2.4. Preparation of Image Features

Following acquisition, a cubic convolution resampling approach was used to upsample images to
2 m spatial resolution, which is reflective of the average minimum patch size of short grass grazing
lawns in southern African savannahs [6,7]. We calculated a series of spectral indices highlighting
greenness, moisture and soil properties in order to increase utility of the spectral information contained
in the original image bands (Table 3). Greenness, moisture and soil indices are derived from arithmetic
combination of spectral information recorded in visible and near-infrared image bands and exhibit
high correlation with vegetation characteristics such as phenology [52–54], biomass [55–57] and
moisture content [58,59]. To complement the spectral information, spatial heterogeneity measures
were calculated as a selection of simple and advanced Haralick texture features based on Gray Level
Co-occurrence Matrix (GLCM) [60]. The GLCM variables (Table 3) were calculated on the near-infrared
band (NIR1) (see Table 2 for details on image bands), which contains valuable spectral information for
differentiating vegetation characteristics. We used a probabilistic quantizer, with 32 quantization levels
in a 3× 3 moving window, at an offset distance of 1 pixel in all directions (0◦, 35◦, 90◦ and 135◦) [32,61].
In total, 27 spectral indices and 18 texture features were processed using the Orfeo-Toolbox remote
sensing image processing software [62] (Table 3). The spectral indices as well as texture features in
combination with the original image bands served as input data in the machine learning models and
analysis workflow (summarised in Figure 4). Incorporating spectral and textural image features is
well known to enhance discrimination space for more accurate land cover mapping particularly in
heterogeneous savannah landscapes [32,63,64].

Figure 4. Conceptual workflow showing steps in machine learning model development and evaluation
towards grazing lawn detection.
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Table 3. Initial image features serving as potential predictors.

Data (abbreviation) Description

Spectral features from individual bands (B):
B_C, B_B, B_G, B_Y, B_R, B_RE, B_NIR1, B_NIR2 Coastal, Blue, Green, Yellow, Red, Red Edge, Near Infrared-1, Near Infrared-2

Spectral features from vegetation (V), moisture (M) and soil (S) indices:
V_NDVI, V_TNDVI, V_RVI, V_SAVI, V_TSAVI, V_MSAVI, V_MSAVI2, V_GEMI, V_IPVI, V_LAI,
M_NDWI, M_NDWI2, M_MNDWI, S_BI2, S_BI, S_CI, S_RI, S_NDSI, S_SI1, S_SI2, S_SI3, S_SI4, S_SI5, S_SI6,
S_SI7, S_SI8, S_SI9

Normalized Difference Vegetation Index, Transformed Normalized Vegetation
Index, Ratio Vegetation Index, Soil Adjusted Vegetation Index, Transformed
Soil Adjusted Vegetation Index, Modified Soil Adjusted Vegetation Index,
Modified Soil Adjusted Vegetation Index-2, Global Environment Monitoring
Index, Infrared Percentage Vegetation Index, Leaf Area Index, Normalized
Difference Water Index, Normalized Difference Water Index-2, Modified
Normalized Difference Water Index, Brightness Index-2, Brightness Index,
Color Index, Redness Index [62], Normalized Difference Salinity Index, Salinity
Index-1, Salinity Index-2, Salinity Index-3, Salinity Index-4, Salinity Index-5,
Salinity Index-6, Salinity Index-7, Salinity Index-8, Salinity Index-9 [65]

Haralick texture features (T):
T_Ener, T_Ent, T_Corr, T_IDM, T_Iner, T_CS, T_CP, T_HCorr, T_Mean, T_Var, T_Diss, T_SAvrg, T_SVar,
T_SEnt, T_Dent, T_DVar, T_IC1, T_IC2

Energy, Entropy, Correlation, Inverse Distance Moment,Inertia, Cluster shade,
Cluster prominence, Haralick correlation, Mean, Variance, Dissimilarity,
Sum average, Sum variance, Sum entropy, Difference of Entropies,
Difference of variances, Information correlation-1, Information correlation-2 [62]
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2.5. Feature Selection

Remote sensing image features such as spectral indices (vegetation, moisture and soil indices) as
well as texture variables tend to exhibit high levels of collinearity. Highly correlated features increases
data redundancy and risk of overfitting, which could have adverse consequences for algorithm
performance especially for high-dimensional datasets [66], a problem that results from the Hughes
phenomenon [67]. Although nonparametric machine learning algorithms are thought to be less
susceptible to Hughes phenomenon, recent findings shows they benefit from dimensionality reduction
nonetheless [68]. In our case, we aimed to target the most robust predictor set while reducing
prohibitive computational efforts.

Image variables were selected by combining two procedures. First, we checked for collinearity
with the Variance Inflation Factor (VIF) using the “usdm” package [69] within R-programming
environment [70]. This was done separately for the spectral indices (i.e., vegetation, moisture and soil)
and the Haralick texture features derived from the WorldView-3 imagery (see Table 3). VIF measures
the degree to which predictor variables are correlated. For example, given k independent predictor
variables, each variable is regressed with the remaining k− 1 variables and coefficient of determination
(R2) is estimated. The VIF of the dependent variable is thus computed as

VIF =
1

1− R2 (1)

Large values of VIF implies a corresponding high degree of collinearity and vice versa. Following
VIF analysis, correlated variables were subsequently removed by considering a stepwise elimination
threshold of VIF ≥ 10 [71]. The VIF assessment resulted in six spectral indices and 15 Haralick texture
features being retained.

Second, we combined the less correlated spectral indices and texture variables with the original
image bands to select final image feature subset using Random Forest-Recursive Feature Elimination
(RF-RFE) [72,73]. Recursive Feature Elimination (RFE) is an iterative process that uses some measure
of feature importance to rank and select features by backward elimination [72]. The technique basically
builds a model with the entire feature set, computes an importance score for each feature, removes
the least important features and repeats the process until a user-defined number of features subset
is reached. We used feature importance scores derived from random forest out-of-bag (OOB) error
estimates for ranking features in the RF-RFE process. We then determined the final subset of features
by analysing the relationship between number of features and accuracy scores derived from a stratified
10-fold cross-validation assessment. Overall, 26 WV-3 image features achieved optimal accuracy
(See Supplementary Data in Appendix A). All steps in the RF-RFE process were implemented using
Scikit-learn python library [74].

2.6. Machine Learning Algorithms

There is a proliferation of machine learning algorithms, which, coupled with the conflicting
reports of their performance in remote sensing classification literature [75], makes it challenging
to select the optimal method for any specific application. The optimal classification algorithm is
generally context-specific and in most cases depends on the landscape and classes mapped [76],
parameter settings [75,77,78], nature of training data [79–82] and data dimensionality [75,83].
Lawrence and Moran [76] recommend prior experimentation with multiple classifiers to determine
optimal performance.

For this study, we tested four state-of-the-art nonparametric machine learning algorithms:
Random Forest (RF) [27], Support Vector Machines (SVM) [28], Classification and Regression Trees
(CART) [29] and Multilayer Perceptron (MLP) [30]. All have been shown to achieve high performance
in many remote sensing applications, and in particular, land cover mapping [75]. Their superiority
in handling complexity and high-dimensional data makes them ideal for application in highly
heterogeneous savannah landscape conditions [23]. The selected algorithms were configured and
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implemented in the python programming environment using Scikit-learn python library [74]. Optimal
parameter values (see in Table A10 in supplementary data, Appendix A) from hyperparameter tuning
were used in each model. Summary descriptions of how the algorithms work are presented below.

2.6.1. RF

The RF classifier is an ensemble of decision tree algorithms with demonstrated robustness in
remote sensing image classification compared to single classifiers [27,79]. The algorithm relies on unit
vote contributions from each classifier within the ensemble to assign input vectors to different classes,
where the most frequently voted class is retained [27]. The individual decision trees are parameterised
using several independent random subsets of training data sampled through bootstrap aggregation
or bagging. This reduces multicollinearity and generalization error [26,27]. The input vectors that
do not form part of the bootstrap sample (i.e., “out-of-bag” (OOB) sample) are used for evaluation
and variable importance estimation [27,84]. By design, decision tree classifiers require some measure
for selecting suitable features per class, which maximizes dissimilarities between classes [79]. The RF
algorithm uses Gini Index for feature selection at each node [85]. When assigning an input pixel to a
class (Ci), for a given training set (T), the Gini Index measures feature impurity with respect to the
different classes and is expressed as

∑ ∑
i 6=j

( f (Ci, T)/|T|)( f (Cj, T)/|T|) (2)

where ( f (Ci, T)/|T|) is the probability that the selected pixel belongs to class Ci [79,86].
Each decision tree therefore grows to a maximum depth using a combination of features.

The number of features used to grow a tree at each node and the number of decision trees are
the required user-defined parameters to instantiate a RF prediction model [86].

2.6.2. SVM

SVM was developed based on statistical learning theory [87]. The algorithm creates an optimal
separating hyperplane based on the location of a small subset of training samples at class boundaries,
the so-called “support vectors” [28]. Given a simple binary linear classification problem, the SVM
uses quadratic optimization techniques to select the optimum margin of separation between the two
classes such that the distance to the hyperplane from the closest support vectors of both classes is
maximal [28,82].

For a nonlinear classification problem, the algorithm selects the optimal margin by (i) allowing
some misclassification errors and (ii) transforming the original input space into a higher dimensional
feature space using nonlinear functions φ [87], making linear separation possible in the new feature
space. To reduce computational cost, kernel functions, K(xi, xj) = φ(xi) · φ(xj), such as polynomials,
radial basis and sigmoid functions, are used for the transformation [88]. The decision function is
given by

f (x) = sign

(
l

∑
i=1

αiyi(φ(xi) · φ(xj)) + b

)
(3)

where αi is a slack variable (Lagrange multiplier).
To classify new datasets, the algorithm uses learned parameters from the decision function based

on training data. The trade-off between margin of class separation and misclassification errors is
controlled by defining a regularisation parameter C, where C ∈ Z and 0 < C < ∞ [28].

2.6.3. CART

CART is a decision tree algorithm that builds classification or regression trees based on categorical
or numerical attributes, respectively [85]. The structure of the tree is typified by a root node and a series
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of internal nodes (splits) and terminal nodes (leaves). Within this framework, the algorithm builds a
model by recursively partitioning the training dataset into increasingly homogeneous subsets using
tests applied at each node to training features [89]. Given a continuous data set, the test performed at
each node is of the form

xi > c (4)

for decision functions based on a single feature (i.e., univariate decision trees), where xi is a
measurement in n feature space (n = 1 in this case) and c is a decision threshold estimated from the
range of xi measurements [90]. The threshold (c) value is determined using an impurity measure such
as entropy [91] and the Gini index [85]. If the decision boundaries are defined by a combination of
features (i.e., multivariate decision trees), the test takes the form

∑ i = ln aixi ≤ c (5)

where ai is a vector of coefficients of a linear discriminant function estimated from the training data [90].
The series of testing outputs form the branches of the tree which proceeds sequentially through internal
nodes until a terminal node is reached. At each terminal node, class labels are assigned based on
maximum probabilities [92].

2.6.4. MLP

The MLP is a feedforward artificial neural network (ANN) classifier which is trained using
back-propagation [93]. Learning in ANN is inspired by the functioning of neurons within the brain,
which is based on parallel and distributed processing of information [94]. Similarly, the MLP
architecture is composed of multiple layers of fully connected processing units called neurons,
which are arranged sequentially as a network of input, hidden and output layers. During training,
each unit in a hidden layer receives data from the input/previous layer, processes it and feeds it
forward to units in the next layer [95]. This allows more abstract representations of the data to be
learned until the output layer is reached [26]. The connections between units carry weights, which are
modified iteratively to minimise a cost function. Apart from the input layer, the net input to each unit
is therefore the weighted sum of outputs from the previous layer [94,95]. The net input is wrapped
in an activation function to produce the output for that unit. The output for each processing unit is
expressed as

oi = f

(
∑

j
wij ∗ oj + bi

)
(6)

where oi is the output of a neuron in layer i, wij is the connecting weight between layers i and j, oi is
output from layer j and bi is bias and f is the activation function [94,95].

2.7. Algorithm Calibration and Evaluation

The machine learning algorithms, namely, RF, SVM, CART and MLP, were first calibrated and
evaluated for general land cover classification using data from a sub-area within the Lower Sabie
landscape (see Figure 1) via a nested cross-validation approach. For each algorithm, the combination
of parameters that returned the best expected classification accuracies were then used in the prediction
of grazing lawn occurrence probabilities in the broader Lower Sabie and Satara Landscapes. The steps
employed are broadly summarised into (i) data preparation, (ii) parameterisation training and
classification and (iii) accuracy assessment. All processing was done using Intel(R) Core(TM) i5-6200U
CPU with 8GB RAM on 64 bit Windows 10 operating system, and was supplemented by leveraging
the power of Google’s free GPU hardware, using the Google Collaborator platform.
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2.7.1. Data Preparation

We used the post-RF-RFE spectral and texture variables as input predictors for modelling.
The input dataset was then transformed by subtracting the mean and scaling to a unit variance
to generate normalised scores per feature using Equation (7):

zij =
xij − µj

σj
(7)

where xi, µj and σj are pixel value, mean and standard deviation of pixels in the jth feature, respectively,
and zij is the transformed value of xij [96].

Normalising input features is a crucial preprocessing technique which approximately equalises
dynamic data ranges in features for unbiased and improved learning [97]. Further, it is a common
requirement prior to the training of machine learning estimators such as Support Vector Machines and
Artificial Neural Networks [96].

2.7.2. Parameterisation, Training and Classification

Each of the selected algorithms comes with a set of hyperparameters which has to be tuned
to maximise performance during training. Algorithm training thus involved hyperparameter
optimisation whereby optimal hyperparameter sets were selected for RF, SVM, CART and MLP
algorithms from a predefined grid (see Analysis Script in Appendix B). The optimisation process
and selection of best model parameters were performed using randomised grid search in a 2 × 5
nested cross-validation approach with 10 iterations. Nested cross-validation incorporates optimal
hyperparameter selection and unbiased estimation of model performance in inner and outer
cross-validation loops respectively [98]. The approach is mostly recommended against traditional
“flat cross-validation” which results in biased accuracy estimates due to information leakage and the
split sample method plagued by insufficient availability of training and test datasets [99]. The chosen
thresholds for tune-length and train–test splits were deemed appropriate to provide a reasonable
trade-off between ensuring a robust model and computational time. Hyperparameters that returned
the best expected classification accuracies were selected and used as input parameters in the machine
learning algorithms. The algorithms were retrained with the full training data for landscape-wide
prediction of land cover occurrence probabilities in both the Lower Sabie and Satara landscapes.

Individual image variable weights were computed using permutation feature importance
estimates [74] in order to assess their relative contributions in each machine learning model.
Permutation feature importance (PFI) generates variable weights based on an observed decrease
in model score when a single variable is randomly shuffled [27]. The drop in model score thus
represents the degree to which the model depends on the variable of interest. The PFI technique is
model agnostic, which makes it suitable for comparison of feature importance estimates from RF, SVM,
CART and MLP models used in this study.

The predicted occurrence probability surface for grazing lawns was selected and used as input
in an optimised probability thresholding procedure. Optimised probability thresholding involved
the selection of a single occurrence probability value (threshold) which maximises some measure
of classification accuracy [100] for the target class. We tested a series of probability values at 0.05
intervals to determine the threshold that maximises F-score of grazing lawn detection. Grazing lawn
(G) and non-grazing lawn (O) classes were assigned using simple relational expressions represented
by Equation (8) and Equation (9), respectively,

G = p ≥ t (8)

O = p < t (9)
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where p is occurrence probability and t is the optimal probability threshold, t ∈ p.

2.7.3. Accuracy Assessment and Comparison

Model performance in discriminating different savannah land cover types during hyperparameter
tuning was assessed using point and interval estimates of Overall Accuracy (OA) and F-score,
based on a 2 × 5 nested cross-validation approach (see Section 2.7.2). Further, accuracy of grazing
lawn/non-grazing lawn binary maps was assessed by confusion matrix [101], from which precision,
recall, F-score and OA metrics were calculated using Equations (10)–(13). Accuracy-adjusted estimates
of grazing lawn area coverage were obtained following Olofsson et al. [102].

Precision =
tp

tp + f p
(10)

Recall =
tp

tp + f n
(11)

F− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(12)

OA =
tp + tn

tp + f p + tn + f n
(13)

where tp, fp, tn and fn represent the number of true positive, false positive, true negative and false
negative cases, respectively.

Marginal homogeneity between predictions from model pairs was tested at 5% level of significance
using the McNemar chi-squared (χ2) test [103]. The McNemar test compares the error matrices of
two classification methods to test the null hypothesis that the two methods have the same error
rate. The method is based on χ2-test and provides a robust statistical comparison of class-wise
predictions between two algorithms [104]. Additionally, the estimated proportion of grazing lawn
cover (PGLC) was compared for model pairs using the two-proportion Z-test at 5% level of significance.
The two-proportion Z-test follows a χ2 distribution with one degree of freedom [26], and was used to
test the null hypothesis of no difference between PGLC for model pairs.

2.8. Spatial Analysis of Grazing Lawn Distribution

Using spatial metrics, we determined characteristics of grazing lawn distribution at
landscape-scale and analysed spatial patterns along a gradient of distance from water source in
both Lower Sabie and Satara landscapes. Spatial metrics provide vital information on landscape
configuration and composition [105]. Spatial-contextual information such as density, shape, size and
aggregation of land cover patches can be extracted from spatial metrics to better understand ecological
processes at the landscape-scale [105,106]. The classification output with the least error properties
was selected as input in the calculation of (i) Number of Patches (NP), (ii) proportion of landscape
covered by grazing lawns (PL), (iii) maximum patch area (MPA) and (iv) cohesion index (CI) [106],
from which patterns in grazing lawn structure were determined. Further, Pearson’s correlation and
coefficients of determination were estimated in order to identify the nature and significance of the
relationship between grazing lawn structural attributes and proximity to water source. Calculation of
the selected spatial metrics was carried out using the “SpatialEco” package [107] in the R programming
environment [70].

3. Results

3.1. Model Quality for Land Cover Classification

Cross-validation accuracy results for individual models using F-score and Overall Accuracy (OA)
measures are presented in Table 4. Generally, all models achieved high accuracies in differentiating the
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different land cover classes, with median F-score and OA measures ranging between 92.75± 0.005%
and 95.73± 0.003% and 90.92± 0.002% and 94.27± 0.003%, respectively. RF, SVM and MLP models had
similar accuracy scores and marginally outperformed CART for both F1 and OA measures (Table 4).

Table 4. Accuracy scores (F1 and Overall Accuracy) from 2 × 5 nested cross-validation showing
a comparison of model performance. RF = Random Forest, SVM = Support Vector Machines,
CART = Classification and Regression Trees, MLP = Multilayer Perceptron.

Model
Accuracy Metric

F-Score Overall Accuracy

RF 95.73± 0.004 94.16± 0.004
SVM 95.64± 0.002 94.02± 0.002

CART 92.75± 0.006 90.93± 0.006
MLP 95.71± 0.003 94.27± 0.003

Figure 5 shows land cover maps for the training region at 2 m spatial resolution. The maps
show similar representation of savannah land cover types across all models, all of which were closely
consistent with the reference satellite image scene (Figure 5c).

a b c

d e

Figure 5. Land cover classification of the training region from (a) RF, (b) SVM, (d) CART and (e) MLP
models. The WorldView-3 image scene (False colour: NIR1, R, G) of the training region is showed in
panel (c). RF = Random Forest, SVM = Support Vector Machines, CART = Classification and Regression
Trees and MLP = Multilayer Perceptron.
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Figure 6 shows permutation feature importance estimates across all models. A mix of image
features from original spectral bands, spectral indices and texture variables showed high importance
in each model. There was generally more agreement among SVM, CART and MLP models in assigning
relatively more importance to original spectral bands in terms of both magnitude of feature weight
and number of features. However, image features that exhibited high importance in the RF model
were largely dominated by texture variables (Figure 6). Image features that were of highest importance
in RF, SVM, CART and MLP models were S_SI5, B_G, B_R and B_Y, respectively.

Figure 6. Image feature weights derived from permutation feature importance estimates for Random
Forest (RF), Support Vector Machines (SVM), Classification and Regression Trees (CART) and Multilayer
Perceptron (MLP) models. Feature weights are sorted in an descending order across models to identify
features on high predictive importance. For the detailed names and description of image feature
acronyms, refer to Table 3.

A summary of the most important predictors for each feature group (i.e., spectral bands, spectral
indices and texture variables) is presented in Table 5. We concur with the authors of [108] that
identification of the most important image features considers both the magnitude of feature weights
and consistency of being assigned high importance across all models. In terms of magnitude, image
features that were considered highly important in each model were limited to the first three features,
in each feature group (Figure 6). Conversely, features were deemed consistent if they were assigned
high importance in at least three models (Table 5). Among the most important image features were B_C
and B_Y for spectral bands, V_GEMI and V_MSAVI2 for spectral indices and T_Mean and T_SAvrg for
texture variables (see Table 5 for features in bold).
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Table 5. Summary of the first three most important image features from spectral bands, spectral indices
and texture variables across all models. Image features that appear in at least three models are in bold.
For the detailed names and description of image feature acronyms, refer to Table 3.

Dataset Image Feature
Model

RF SVM CART MLP

Spectral band

B_C � � �
B_B �
B_G � �
B_Y � � � �
B_R � �

B_RE
B_NIR1
B_NIR2

Spectral index

V_GEMI � � � �
V_MSAVI2 � � � �
M_NDWI

S_SI5 � �
S_SI9 � �
S_BI2

Texture

T_Ener � �
T_Corr
T_IDM �
T_Iner
T_CS
T_CP

T_HCorr
T_Mean � � �

T_Var � �
T_SAvrg � � � �
T_Dent
T_IC1

3.2. Grazing Lawn Occurrence Probability Prediction and Classification

The outputs of grazing lawn occurrence probability surfaces for RF, SVM, CART and MLP models
are shown in Figures 7A and 8A for Lower Sabie and Satara landscapes respectively. The general
pattern of grazing lawn occurrence probability surfaces at both study sites is comparable among the
four models. Within the Lower Sabie site, high grazing lawn occurrence probabilities were mostly
confined to the eastern and north-eastern part of the landscape, and were similar across all models
(Figure 7A). The obvious qualitative difference among models is the relative lack of many very low
values in the CART probability surface compared to RF, SVM and MLP models.

Within the Satara landscape, high grazing lawn occurrence probabilities mostly aligned along
a diagonal stretch from northwest to southeast (Figure 8A), which is the interface of the granite and
basalt geologies. Despite similarities in spatial distribution of high occurrence probability values,
there were noticeable qualitative differences in range among the four models. The RF probability
surface exhibited a relatively high prevalence of a continuous range of very low to medium probability
values across the landscape, and very few distinctively high occurrence probabilities. In contrast,
the CART model predicted relatively more medium to high probability values across the landscape,
while MLP and SVM predictions were similar in the distribution of very low and very high occurrence
probability values (Figure 8A).
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Figure 7. Grazing lawn occurrence probability surfaces (A); optimal probability threshold plot (B);
and binary map of grazing lawn and other cover (C) derived from RF, SVM, CART and MLP models
for the Lower Sabie landscape.

Plots of model F-score, Precision, Recall and OA values generated over a series of predicted
probabilities for the Lower Sabie and Satara landscapes are presented in Figure 7B and Figure 8B,
respectively. Analysis of the relationship between F-score and predicted probabilities revealed the
optimal threshold for classifying grazing lawns. The optimal threshold is the probability value which
maximises model F-score of grazing lawn detection, and was found to coincide with or lie close
to the equilibrium point between model Precision and Recall. The resulting values varied across
models, with the F-score of RF, SVM, CART and MLP models peaking at 0.5, 0.4, 0.6 and 0.35,
respectively, for Lower Sabie as seen in Figure 7B. Similar analysis on predicted probability surfaces for
the Satara landscape resulted in relatively lower thresholds for RF, SVM and CART (0.35, 0.25 and 0.35,
respectively) and a higher threshold for MLP (0.6) where model F-scores were maximum Figure 8B.
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Figure 8. Grazing lawn occurrence probability surfaces (A); optimal probability threshold plot (B);
and binary map of grazing lawn and other cover (C) derived from RF, SVM, CART and MLP models
for the Satara landscape.

The grazing lawn/non-grazing lawn binary maps resulting from applying corresponding
thresholds to each of the four predicted probability surfaces are shown in Figures 7C and 8C for
both Lower Sabie and Satara landscapes, respectively. Analogous to the probability surfaces, patterns
of grazing lawn distribution were similar for all classifications within both landscapes. However,
local variations persisted and were consistent with the distribution of predicted probability values for
each model in both landscapes. Overall, the Satara maps showed a considerable level of speckling
(Figure 8C).

A summary of accuracy measures for grazing lawn detection is presented in Table 6. F-scores
for Lower Sabie ranged between 0.81 for CART to 0.94 for MLP, while SVM and RF classifications
achieved F-score of 0.93 and 0.89 respectively (Table 6). Grazing lawn detection accuracy results were
high, but relatively lower for the Satara area compared to Lower Sabie. F-score ranged between 0.75
for CART to 0.88 for SVM, while RF and MLP achieved F-scores of 0.87 and 0.85, respectively (Table 6).
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Table 6. Model Precision, Recall and F-score metrics of grazing lawn detection in both Lower Sabie
and Satara landscapes. RF = Random Forest, SVM = Support Vector Machines, CART = Classification
and Regression Trees, MLP = Multilayer Perceptron.

Landscape Accuracy Metric
Model Score

RF SVM CART MLP

Lower Sabie
Precision 0.95 0.93 0.87 0.92

Recall 0.84 0.93 0.77 0.97
F-score 0.89 0.93 0.81 0.94

Satara
Precision 0.88 0.87 0.76 0.85

Recall 0.87 0.90 0.76 0.85
F-score 0.87 0.89 0.76 0.85

Accuracy-adjusted estimates of area covered by grazing lawns within both landscapes are
presented in Table 7. As expected, all model classifications gave comparable estimates of grazing
lawn cover within the Lower Sabie site, ranging between 2.46 km2 (for RF) and 2.98 km2 (for CART)
(Table 7). In contrast, estimates of grazing lawn cover were significantly different (p ≤ 0.05) for all
models within the Satara landscape (see test results in Table A1 of supplementary data).

Table 7. Accuracy adjusted area estimates of grazing lawn cover in Lower Sabie and Satara
landscapes. Area estimates with different letters differ significantly and vice versa in each landscape.
RF = Random Forest, SVM = Support Vector Machines, CART = Classification and Regression Trees,
MLP = Multilayer Perceptron.

Landscape
Area Estimate (km2)

RF SVM CART MLP

Lower Sabie 2.46 ±0.18 a 2.64± 0.13 a 2.99± 0.22 a 2.96± 0.11 a

Satara 3.82± 0.22 a 3.61± 0.21 b 5.54± 0.35 c 3.13± 0.24 d

McNemar test results presented in Table 8 showed statistically significant differences (p ≤ 0.05) in
grazing lawn detection error rate when comparing CART to RF, SVM and MLP models in both Lower
Sabie and Satara landscapes. In contrast, no significant differences were observed for all the other
model pairs (Table 8).

Table 8. McNemar’s chi-squared test (χ2) of marginal homogeneity between model pairs. Values in
parenthesis represent p-value. Model pairs that show statistically significant difference (p ≤ 0.05)
in error rate are in bold. CART = Classification and Regression Trees, MLP = Multilayer Perceptron,
RF = Random Forest, SVM = Support Vector Machines.

Lower Sabie Satara

Model Pair χ2-test Model Pair χ2-test

CART v MLP 14.667(0.000) CART v MLP 5.891(0.015)
CART v RF 10.316(0.001) CART v RF 13.395(0.000)

CART v SVM 16.000(0.000) CART v SVM 11.574(0.000)
MLP v RF 2.450(0.117) MLP v RF 1.250(0.264)

MLP v SVM 0.100(0.752) MLP v SVM 1.565(0.211)
RF v SVM 2.083(0.149) RF v SVM 0.000(1.000)

3.3. Spatial Patterns in Grazing Lawn Cover

Landscape-scale summary of number of grazing lawn patches, total coverage, connectedness and
patch size distribution are presented in Figure 9.



Remote Sens. 2020, 12, 3357 22 of 37

0

25000

50000

75000

L. Sabie Satara

N
um

be
r 

of
 P

at
ch

es

A

0.00

0.03

0.06

0.09

L. Sabie Satara

P
ro

po
rt

io
n 

of
 to

ta
l a

re
a 

(%
)

B

0.0

2.5

5.0

7.5

10.0

L. Sabie Satara

Landscape

C
oh

es
io

n 
In

de
x

C

1e+01

1e+03

1e+05

L. Sabie Satara

Landscape

Lo
g 

of
 p

at
ch

 s
iz

e 
(m

2 )
D

Figure 9. Landscape-scale summary of grazing lawn spatial characteristics. (A) Number of grazing
lawn patches; (B) Proportion of total landscape covered by grazing lawns; (C) Physical connectedness
of grazing lawn patches; (D) Distribution of grazing lawn patch size. Dashed horizontal line represents
mean patch size.

Number of grazing lawn patches was relatively higher in Lower Sabie compared to the Satara
landscape (Figure 9A). However, analysis of patch size distribution revealed the Satara landscape
as having relatively larger grazing lawn patches (Figure 9D), and higher area coverage compared to
the Lower Sabie landscape (Figure 9B). Spatial connectedness of grazing lawn patches was however
comparable in both landscapes (Figure 9C).

Further analysis of patterns in the proportion of landscape covered by grazing lawns (PL),
maximum patch area (MPA) and cohesion (CI) revealed significant relationships with distance from
water sources in both landscapes. Grazing lawn PL, MPA and CI showed an inverse relationship
with distance from water source in both landscapes (see correlation coefficients in Table 9). However,
the trends were relatively less distinct in the Lower Sabie landscape (Figure 10), as also suggested by
the differences in magnitude of correlation coefficients between both landscapes (Table 9). Overall,
grazing lawn fractional cover, patch size and spatial connectedness were highest within 0.7 km from
water sources in both Lower Sabie and Satara landscapes (Figure 10).
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Figure 10. Plots of spatial metrics showing patterns in grazing lawn spatial structure and distribution
with distance from water-points. CI = Cohesion Index, MPA = Maximum Patch Area, PL = Proportion
of Landscape.

Table 9. Pearson Correlations (r) and Coefficients of Determination (r2) from the relationship between
grazing lawn spatial metrics and distance from water source. PL = Proportion of Landscape,
MPA = Maximum Patch Area and CI = Cohesion Index. Relationships are significant at p < 0.0001 ‘***’,
p < 0.001 ‘**’ and p < 0.01 ‘*’.

Landscape Metric
Lower Sabie Satara

r r2 r r2

PL −0.55 0.30 * −0.84 0.70 ***
MPA −0.62 0.39 ** −0.68 0.46 **

CI −0.65 0.42 ** −0.87 0.75 ***

4. Discussion

4.1. Model Quality for Savannah Land Cover Classification

In this study, efforts were focused on developing robust machine learning framework for grazing
lawn detection by first assessing model performance for general classification of savannah land cover
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types. The convergence of remote sensing and data science techniques through machine learning
offers unparalleled capacity for more accurate processing of satellite imagery, especially for the
purposes of land cover monitoring. While this presents many advantages for remote sensing-based
ecosystem monitoring, the choice of fit-for-purpose machine learning algorithms often requires some
experimentation. This is partly due to the vast availability of options to select from, but most
importantly also due to contextual differences in application such as varying landscape conditions,
data and research objectives [76,82]. Robust evaluation of algorithm performance is therefore vital
for the selection of optimal models for application. The nested cross-validation approach used here
allowed the simultaneous tuning of hyperparameters and unbiased estimation of individual model
performance. In so doing, the optimum combination of algorithm hyperparameters which enhanced
model quality could be selected. Model quality evaluation via nested cross-validation has been proven
effective in avoiding biased accuracy estimates common in “flat cross-validation” due to information
leakage, while preventing poor model generalisation capabilities due to data paucity—a regular
challenge of the split sample approach to model evaluation [99].

All machine learning models (RF, SVM, CART and MLP) demonstrated high performance in
classifying the different savannah land cover categories. Even so, RF, SVM and MLP marginally
outperformed the CART model. The relatively lower performance of CART observed in this study
is consistent with widely reported inferiority of single decision tree (DT)-based classifiers relative
to other machine learning algorithms for land cover classification [23,31,109]. For example, similar
findings were reported by Kaszta et al. [23] in a comparative assessment of classification algorithms
for seasonal separation of southern African savannah components. The authors recorded CART as
having the lowest accuracy score in both pixel-based and object-based approaches relative to SVM and
RF algorithms. Camargo et al. [31] compared the performance of RF, SVM, MLP and DT for classifying
the Brazilian tropical savannah biome, and found that DT produced a relatively lower performance
than RF, SVM and MLP classifiers. Similar to our findings, the authors recorded closely comparable
performance for the latter three algorithms. In a related Mediterranean land cover monitoring study,
Rodriguez-Galiano and Chica-Rivas [109] reported significantly lower mapping accuracy for DT than
SVM, ANN and RF algorithms.

Although CART is relatively more flexible and intuitive to implement, it is very sensitive to small
variability in data, which, in this case, may have contributed to the relatively lower performance in a
heterogeneous savannah landscape. Compared to single decision trees such as CART, the RF algorithm
draws its higher generalisability from the contribution of multiple decision trees parameterised using
random subsets and bootstrap aggregation [27]. RF is therefore highly adaptable to different data
ranges and robust against multicollinearity. Similarly, the MLP architecture allows more abstract
representations of data to be learned [95]. However, the performance of MLP is strongly influenced by
input data structure, and performs better when data ranges of all input features are equal [96]. Thus,
the inclusion of data normalisation during preprocessing likely aided gains in classification accuracy.
In the case of SVM, the use of nonlinear vector mapping functions facilitates creation of decision
boundaries for effectively dealing with nonlinearly separable classes [88]. The superiority of RF, MLP
and SVM algorithms in dealing with the typical spectral homogeneity of the heterogeneous savannah
landscape could thus be attributed to their relatively higher adaptive capacity in complex nonlinear
classification problems. It should be noted that RF was used in an RF-RFE procedure for selecting
final input image features for classification (see Section 2.5). This may have aided the performance
of RF, although the RF-RFE algorithm was configured with different (default) hyperparameters
during implementation.

As expected, a combination of original image bands, spectral indices and texture variables
enhanced discrimination capacities of the machine learning models in savannah land cover
classification. Across all models, the most important predictors—B_C, B_Y (original bands), V_GEMI,
V_MSAVI2 (spectral indices), T_Mean and T_SAvrg (texture features)—highlight variations in
photosynthetic status and structure of savannah vegetation. The high importance of the coastal
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blue (B_C) and yellow (B_Y) WorldView-3 image bands could be attributed to their strong sensitivity
to differences in foliar chrolophyll content [24], given that images were acquired in the dry season,
which is when phenological differences are most pronounced [32,45]. Several studies have reported
the contribution of these bands and the red edge band in mapping vegetation components [23,110,111].
Unlike the reported studies, the red edge band was not very important in our classification of savannah
land cover. The coastal blue wavelength is absorbed by chlorophyll in healthy plants while the
yellow band detects dryness/“yellowness” of vegetation, both of which are instrumental in vegetative
analysis. The high importance of the spectral indices could be explained by their strong correlation
with vegetation biomass [56,57] and moisture content [58,59], which helps to capture the varying
characteristics of heterogeneous savannah vegetation that would otherwise be attenuated when using
the original image bands alone. Additionally, the high importance of the texture features highlighted
the chromatic variations in dry season savannah vegetation components. Both T_Mean and T_SAvrg
measures inter-pixel average in brightness values which were sufficiently captured at 2 m resolution of
the WorldView-3 in a heterogeneous savannah landscape.

4.2. Grazing Lawn Detection and Model Comparison

After ascertaining the optimal parameters for training, models were refitted with the entire
training set for wide-scale prediction of land cover occurrence probabilities in both Lower Sabie and
Satara landscapes. For each landscape, the general pattern of grazing lawn occurrence probabilities
was comparable for all models, particularly the distribution of high occurrence probability values.
Individual model outputs however exhibited local predictive variations in the distribution of low to
medium occurrence probabilities, which could be reflective of differences in model complexity and
uncertainties [112,113]. Binary maps were derived from predicted grazing lawn occurrence probability
surfaces using thresholds which maximised F-score. Hird et al. [100] adopted a similar approach
for large area classification of wetlands and drylands using True Skill Statistics (TSS), and achieved
85% OA score. As expected, derived maps showed more coherent representation of grazing lawn
areas within the Lower Sabie landscape, while maps for the Satara landscape were characterised by
relatively higher degree of noise, particularly for the CART-derived map. This was also reflected in
F-score measures, where relatively higher grazing lawn detection accuracies were recorded across
all models for the Lower Sabie savannah landscape. It should be emphasised that models were
trained using data from the Lower Sabie landscape—for reasons related to training data quality
and computational cost—which allowed testing their spatial transferability. Possible differences in
dry season reflectances due to the different rainfall regimes and underlying geologies as well as
difference in image acquisition geometries, may have increased prediction bias of model spatial
transfer and contributed to the observed differences both across the different landscapes and models.
Further analysis is required to comprehensively ascertain the impacts of differences in environmental
conditions and image acquisition characteristics on spatial transferability of the classification models.
McMenar and two-proportion Z-test results showed significant differences (p ≤ 0.05) in error rates for
pairs of of CART versus other models, further highlighting the relative preponderance of RF, SVM and
MLP. Overall, differences in accuracy of grazing lawn detection were attenuated when models were
applied in a different spatial context. This suggests the need to calibrate predictive models with local
contextual information prior to application. Additionally, our findings re-emphasise recommendations
from [114–116] to conduct statistically rigorous comparison of accuracy statements before drawing
definitive conclusions on map quality assessment.

4.3. Spatial Patterns in Grazing Lawn Distribution

The formation and persistence of grazing lawns in southern African savannah landscapes has
been identified to be dependent on a number of interacting top-down and bottom-up ecological
processes. Among the most widely reported are continued grazing [4,117], which can be linked to fire,
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rainfall and nutrient hotspots concentrating grazers on specific areas [11–13]. Spatial variations in such
factors are thus expected to shape spatial patterns and distribution of grazing lawns [10].

Both fire and grazers consume grass biomass, and have the potential to shift grass communities
into tall grass or short grass grazing lawn states [11]. However, the rate at which these alternate
grassland states are established is strongly influenced by landscape productivity [12]. Tall grasses are
strong light competitors and are well adapted to fire-prone conditions due to their extensive rooting
system, which makes them the dominant grass community under high productivity conditions [10].
On the other hand, short grass grazing lawns can withstand high grazing pressure due to their
stoloniferous growth form which protect reproductive parts from being destroyed. Subject to similar
grazing conditions, the proportion of grazing lawn cover within the savannah landscape is expected to
be lower under high rainfall regimes. This is consistent with the relatively high grazing lawn coverage
in the semiarid Satara landscape compared to the mesic Lower Sabie landscape.

Different parts of the savannah landscape may be predisposed to grazing lawn formation due
to the presence of resource hot-spots that attract grazers [10]. This study explored the relationship
between water sources as resource hot-spots and patterns in grazing lawn distribution. Grazing lawn
structural attributes expressed as fractional cover (PL), maximum patch area (MPA) and connectivity
(CI) were examined relative to distance from water sources. Generally, patterns in grazing lawn
structure significantly correlated with distance from water sources, and was similar in both mesic
and semiarid landscapes. The largest contiguous grazing lawn patches were found within 0.7 km
from water sources, which is suggestive of the prevalence of grazing lawns in close proximity to
waterbodies. This could be attributed to increased grazer activity around water sources [49,118] and is
consistent with observations that landscape-scale distribution of grazers is generally biased towards
areas around reliable rivers and permanent waterholes [49,119]. For example, Smit [118] found that
different grazers of varying body mass and digestive requirements had significantly strong association
with both rivers and artificial waterholes in Kruger National Park. This phenomenon is especially
evident during dry seasons when moisture content of graze is low [120] and surface water is spatially
restricted [119]. Additionally, sodic sites which are highly utilised by grazers and hence have extensive
grazing lawn cover, occur close to waterbodies and drainage lines, and may have contributed to the
observed patterns.

It is important to note that other landscape phenomena may be influencing spatial patterns in
grazing lawn distribution. For example, the prevalence of open grasslands, which is typical of the
Satara landscape, may lead to the formation of more grazing lawn patches. Burkepile et al. [121]
found that more open savannah grasslands with sparse woody cover make attractive habitats
or grazing grounds for selection by herbivores such as zebra (Equus quagga) and blue wildebeest
(Connochaetes taurinus), in part to mitigate the risk of predation.

5. Conclusions

Dynamics in grazing lawn communities in southern African savannahs have been directly
linked with fluctuations in mega-herbivore densities and changing fire regimes, with cascading
effects on ecological processes such as nutrient cycling, plant community composition and habitat
structure. Knowledge of their coverage and distribution is therefore critical to understanding habitat
heterogeneity and the overall ecology of these vital grassland systems. This study presents the first
attempt to develop a broad-scale approach for grazing lawn detection using very high-resolution
satellite images. We demonstrated the successful application of machine learning techniques for
mapping grazing lawn occurrence from WorldView-3 satellite imagery, and further analysed their
spatial structure and distribution in southern African savannahs. The RF, SVM and MLP models
produced comparable accuracies in the classification of different plant functional types (PFTs) and other
land cover, all of which outperformed the CART model. Differences in grazing lawn detection accuracy
followed a similar trend particularly within the same landscape (Lower Sabie). Performance for all
models however reduced when they were transferred to a different landscape (Satara) even though
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high accuracies were achieved. Analysis of grazing lawn spatial structure and distribution showed
that the Satara savannah landscape supports a relatively higher proportion of grazing lawn cover than
Lower Sabie. Additionally, larger and contiguous patches persist in close proximity to water sources,
which concentrate grazers within the savannah landscape, irrespective of differences in underlying
environmental conditions. The proposed approach provides a novel and robust workflow for accurate
and consistent landscape-scale monitoring of grazing lawns. Additionally, our findings ascertain
experimental and local-scale reports on grazing lawn dynamics at a wider landscape scale, and provide
timely information critical for understanding habitat heterogeneity in southern African savannahs.
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Appendix A. Supplementary Data

Appendix A.1. Multicollinearity and Feature Selection

Multicollinearity analysis among derived image features showed that spectral indices exhibited
higher correlation than texture features based on a stepwise elimination threshold of VIF ≥ 10.
Twenty-one out of the 27 spectral indices (i.e., vegetation, moisture and soil combined) had collinearity
problems. After eliminating the collinear variables, VIF values of retained spectral indices ranged
from 1.19 to 3.94 (Figure A2A) with linear correlation coefficients between −0.002 (S_SI9∼M_NDWI)
and −0.666 (S_SI9∼S_SI5). In contrast, only three out of the 18 texture features exhibited collinearity.
The retained texture variables had VIF values ranging from 1.00 to 9.22 (Figure A2B) and linear
correlation coefficients ranging between −6.14× 10−5 (T_Dent∼T_Diss) and 0.79 (T_IDM∼T_Ener).
Overall, six spectral indices (three soil indices, two vegetation indices and one moisture index) and 15
texture features (seven simple and eight advanced Haralick features) were retained (Figure A2A,B)
and combined with the eight original image bands for final feature selection.
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Figure A1. Plot of accuracy versus number of features.
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Figure A2. Feature selection results from VIF and RF-RFE analysis. (A) VIF of selected spectral indices.
(B) VIF of selected texture features. (C) Importance scores of final selected image features following
RF-RFE. Original bands and selected spectral indices and texture features from VIF served as input to
RF-RFE. Final selection was based on number of features that retained optimal accuracy
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Selection of final input image features was conducted using Random Forest Feature Elimination
(RF-RFE). The RF-RFE procedure resulted in 26 image features (Figure A1) comprising of eight image
bands, six spectral indices and twelve texture features. Figure A2C shows the relative importance scores
of selected final input features in differentiating the different land cover categories (Table 1). The first
13 (50%) most important features were dominated by nearly equal proportions of spectral bands and
spectral indices (six and five, respectively), with two texture features, while the remaining features
were largely composed of texture variables (Figure A2C). Amongst the original bands, variables that
exhibited high importance were B_C, B_R and B_Y. V_MSAVI2, S_SI5 and V_GEMI were the spectral
indices of high importance, and the most influential texture variables included T_Ener and T_Mean.

Appendix A.2. Comparison of Grazing Lawn Area Estimates across Models in Each Landscape

Table A1. Two-proportions Z-test comparing the proportions of estimated grazing lawn cover.
Values in parenthesis represent p-value. Model pairs that show statistically significant difference
(p ≤ 0.05) in proportion of grazing lawn cover are in bold. CART = Classification and Regression
Trees, MLP = Multilayer Perceptron, RF = Random Forest, SVM = Support Vector Machines.

Lower Sabie Satara

Model Pair χ2-test Model Pair χ2-test

CART v MLP 0.000(1.00) CART v MLP 5.017(0.025)
CART v RF 0.000(1.00) CART v RF 8.328(0.003)

CART v SVM 0.000(1.00) CART v SVM 7.225(0.007)
MLP v RF 0.000(1.00) MLP v RF 13.146(0.000)

MLP v SVM 0.000(1.00) MLP v SVM 11.657(0.000)
RF v SVM 0.000(1.00) RF v SVM 10.083(0.001)

Appendix A.3. Confusion Matrices for the Lower Sabie Landscape

Table A2. Confusion matrix summarising results from Random Forest (RF) model classification of
grazing lawn and other cover.

RF

Reference Class
Commission Error (%)

Grazing lawn Other

Predicted Class Grazing lawn 84 16 16.00
Other 4 693 0.57

Omission Error (%) 4.55 2.26

Table A3. Confusion matrix summarising results from Support Vector Machines (SVM) model
classification of grazing lawn and other cover.

SVM

Reference Class
Commission Error (%)

Grazing lawn Other

Predicted Class Grazing lawn 93 7 7.00
Other 7 690 1.00

Omission Error (%) 7.00 1.00
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Table A4. Confusion matrix summarising results from Classification and Regression Trees (CART)
model classification of grazing lawn and other cover.

CART

Reference Class
Commission Error (%)

Grazing lawn Other

Predicted Class Grazing lawn 77 23 23.00
Other 12 685 1.72

Omission Error (%) 13.48 3.25

Table A5. Confusion matrix summarising results from Multilayer Perceptron (MLP) model
classification of grazing lawn and other cover.

MLP

Reference Class
Commission Error (%)

Grazing lawn Other

Predicted Class Grazing lawn 97 3 3.00
Other 9 688 1.29

Omission Error (%) 8.49 0.43

Appendix A.4. Confusion Matrices for the Satara Landscape

Table A6. Confusion matrix summarising results from Random Forest (RF) model classification of
grazing lawn and other cover.

RF

Reference Class
Commission Error (%)

Grazing lawn Other

Predicted Class Grazing lawn 90 13 12.62
Other 12 511 2.29

Omission Error (%) 11.76 2.48

Table A7. Confusion matrix summarising results from Support Vector Machines (SVM) model
classification of grazing lawn and other cover.

SVM

Reference Class
Commission Error (%)

Grazing lawn Other

Predicted Class Grazing lawn 93 10 9.71
Other 14 509 2.68

Omission Error (%) 13.08 1.93
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Table A8. Confusion matrix summarising results from Classification and Regression Trees (CART)
model classification of grazing lawn and other cover.

CART

Reference Class
Commission Error (%)

Grazing lawn Other

Predicted Class Grazing lawn 78 25 24.27
Other 25 498 4.78

Omission Error (%) 24.27 4.78

Table A9. Confusion matrix summarising results from Multilayer Peceptron (MLP) model classification
of grazing lawn and other cover.

MLP

Reference Class
Commission Error (%)

Grazing lawn Other

Predicted Class Grazing lawn 88 15 14.56
Other 16 507 3.06

Omission Error (%) 15.38 2.87

Appendix A.5. Final Model Hyperparameters

Table A10. Results of optimal hyperparameter values used in each model, from 2 × 5 nested
cross-validation using Scikit Learn python package. Refer to the work in [74] for more details on
model hyperparameters.

Model Optimal Hyper-Parameter Value Description

RF

n_estimators = 2000,
max_features = ‘auto’,
max_depth = 20,
min_samples_split = 2,
min_samples_leaf = 1

n_estimators = number of trees in the forest.
max_features = number of features to consider for the split, ‘auto’ takes

√
No. f eatures.

max_depth = maximum depth of the tree.
min_samples_split = minimum number of samples required to split an internal node.
min_samples_leaf = minimum number of samples required to be at a leaf node.

MLP

hidden_layer_sizes = (150,100,50),
activation = ‘logistic’,
solver = ‘adam’,
max_iter = 100,
alpha = 0.0000001

hidden_layer_sizes = number of neurons in each hidden layer (three layers in this case).
activation = activation function of the hidden layer.
solver = solver for weight optimization, ‘adam’ is based on the stochastic gradient optimizer.
max_iter = maximum number of iterations.
alpha = regularization parameter.

CART

criterion = ‘gini’,
max_depth = 80,
min_samples_split = 20,
min_samples_leaf = 5

criterion = function to measure quality of split.
max_depth = maximum depth of tree.
min_samples_split = minimum number of samples required to split an internal node.
min_samples_leaf = minimum number of samples required to be at a leaf node.

SVM
C = 1000,
gamma = 0.001,
kernel = ‘rbf’

C = regularization parameter.
gamma = kernel coefficient.
kernel = kernel type used, ‘rbf’ represents radial basis function.

Appendix B. Analysis Script

https://github.com/tkawuah/satellite_image_processing.
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