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Aluto volcano, in theMain Ethiopian Rift, is a peralkaline caldera system, which comprises

conglomerations of rhyolite (obsidian) lavas and enigmatic pumice cones. Recent work

at Aluto has found that pumice cone eruptions are highly unsteady, and form convective

eruption plumes that frequently collapse to generate pyroclastic density currents (PDCs).

We develop a methodology and present results for the first probabilistic volcanic hazard

assessment (PVHA) for PDCs at a pumice cone volcano. By doing so, we estimate the

conditional probability of inundation by PDCs around Aluto volcano, incorporating the

aleatory uncertainty in PDC hazard. We employ a Monte Carlo energy cone modeling

approach, which benefits from parameterization informed by field investigations and

volcanic plume modeling. We find that despite the relatively modest eruptions that are

likely to occur, the wide distribution of past vent locations (and thus the high uncertainty

of where future vents might open), results in a broad area being potentially at risk of

inundation by PDCs. However, the aleatory uncertainty in vent opening means that the

conditional probabilities are lower (≤ 0.12), and more homogeneous, over the hazard

domain compared to central-vent volcanoes (where conditional probabilities are often ≤
1 close to the vent). Despite this, numerous settlements, amenities, and economically

valuable geothermal infrastructure, lie within the most hazardous (P(PDC|eruption) ≥
0.05) regions of Aluto caldera. TheMonte Carlo energy conemodeling approach provides

a quantitative, accountable and defendable background and long-term PVHA for PDCs

from Aluto. These results could be combined in the future with hazard assessments

relating to tephra fall and/or lava to develop a comprehensive volcanic hazard map for the

caldera. Following appropriate parameterization, the approach developed here can also

be used to compute a PDC PVHA at other volcanoes where vent location is uncertain.
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1. INTRODUCTION

Pumice cone eruptions are some of the least studied forms of
volcanic activity on Earth, yet represent the typical eruptive
style at caldera volcanoes along the Main Ethiopian rift valley
(Fontijn et al., 2018). They have also been documented on
Mayor Island, New Zealand (Houghton and Wilson, 1989), and
are characteristic of the more recent volcanism on Pantelleria,
Italy (Orsi et al., 1989). Contrary to previous interpretations,
the eruption of pumice cones has been found to be relatively
intense, generating convective eruption plumes (Fontijn et al.,
2018; McNamara et al., 2018; Clarke et al., 2019) that are
liable to collapse and produce pyroclastic density currents
(PDCs) (Hutchison et al., 2016c; Fontijn et al., 2018; Clarke,
2020). These eruptions are tentatively estimated to range from
violent-strombolian or vulcanian, to sub-Plinian in intensity
(McNamara et al., 2018; Clarke et al., 2019), but column heights,
eruption volumes and eruption durations are still very poorly
constrained for pumice cone eruptions (e.g., Fontijn et al., 2018).
In Ethiopia, a rapidly expanding population (UNDP, 2018),
in excess of 1 million people, live within 10 km of volcanoes
(Aspinall et al., 2011). Many of these volcanoes have been
associated with pumice cone eruptions, so in this setting, these
are key eruption types to understand. Additionally, valuable
economic and geothermal infrastructure is being developed
near these sites (World Bank, 2016). The increasingly high
exposure to volcanic hazards in Ethiopia (Vye-Brown et al.,
2016), and the recent recognition of the potential hazards at
these volcanoes (Fontijn et al., 2018; Clarke et al., 2019; Clarke,
2020), evokes an urgent need for quantitative, accountable, and
defendable volcanic hazard assessment (e.g., Connor et al., 2001;
Newhall and Hoblitt, 2002; Marzocchi et al., 2010; Calder et al.,
2015).

Aluto is a peralkaline rhyolite caldera volcano in the Main
Ethiopian Rift. Aluto lies 7 km SE of the town of Ziway, 5
km NE of Bulbulla town, and hosts a diffuse but significant
population living on and around its edifice (Figure 1). Within
the caldera itself, there is a school, and a developing geothermal
power station (Teklemariam and Kebede, 2010; World Bank,
2016). To the west of the caldera, sits one of the world’s largest
rose farms (AfriFlora and Sher Ethiopia, 2017); which provides
much of the employment in the area. There is an estimated
415,000 people living within 30 km of Aluto, but there is currently
no mandated group responsible for the monitoring of volcanic
activity in Ethiopia (Vye-Brown et al., 2016). Although the
volcano has been the focus of some recent research activity
(Biggs et al., 2011; Hutchison, 2015; Hutchison et al., 2015,
2016a,b,c; Samrock et al., 2015; Braddock et al., 2017; Gleeson
et al., 2017; Iddon et al., 2017; Wilks et al., 2017; Fontijn et al.,
2018; Hübert et al., 2018; McNamara et al., 2018; Clarke et al.,
2019; Clarke, 2020; Iddon and Edmonds, 2020), and has recently
shown signs of volcanic unrest (Biggs et al., 2011), there is
currently no existing hazard assessment or hazard map for Aluto
which could be used to mitigate risk during future episodes of
unrest and/or eruptions. The most recent volcanism at Aluto,
since at least 60 ka, is dominated by pumice cone eruptions,
with the most recent known eruption at 400 ± 50 years ago

(Hutchison et al., 2016c). In this work, we identify 96 vents which
are visible at the surface on and around the Aluto edifice and,
therefore, there is a wide area from which hazardous volcanic
processes, such as PDCs or tephra fallout, could be sourced
during future eruptions. These eruptions could impact proximal
to medial (< ∼10 km) sectors around the volcano, endangering
many of the aforementioned sites. PDCs are the dominant
cause of fatalities during volcanic eruptions, particularly from
5 to 15 km from the vent (Brown et al., 2017). This, and the
near ubiquitous presence of [qualitatively small-volume (≪0.01
km3)] ignimbrites within pumice cone eruption deposits (Clarke,
2020), emphasizes the need for a PDC hazard assessment for
Aluto volcano.

By their nature, PDCs are complex and dynamic processes,
and the final footprint that they inundate (one potential
measure of their hazard) is the product of a large number
of interacting variables; both internal (collapse height, volume,
granulometry, temperature etc.), and external (topography,
nature of the substrate etc.) (e.g., Branney and Kokelaar,
2002; Sulpizio et al., 2014). This complexity makes hazard
assessment of PDCs very challenging, and is compounded by
aleatory and epistemic uncertainty (e.g., Spiller et al., 2014;
Neri et al., 2015; Tierz et al., 2016b, 2018; Sandri et al.,
2018). Aleatory uncertainty (the uncertainty associated with the
natural variation of processes from one event to the next. For
example, tossing a coin), is inherent to all volcanic systems
and processes. The distributed nature of vents at Aluto, and
therefore uncertainty in the location of the next eruption,
contributes to this aleatory uncertainty. Epistemic uncertainty
(the uncertainty associated with a lack of knowledge of how
a system operates. E.g., is the coin fair?) is, to a lesser or
greater extent, present in our understanding of any volcanic
system. This is particularly important for pumice cone eruptions,
which we know relatively little about. Pumice cone eruptions
at Aluto have only recently been studied in detail (e.g., Fontijn
et al., 2018; McNamara et al., 2018; Clarke et al., 2019; Clarke,
2020), and their eruption has never been observed. Consequently,
there are only semi-quantitative estimates of eruption magnitude
(vulcanian to sub-Plinian; Fontijn et al., 2018; McNamara et al.,
2018), in addition to qualitative assessments of eruption styles
and processes (unsteady eruptions that frequently generate
convective eruption columns and PDCs; Fontijn et al., 2018;
Clarke et al., 2019). In order to account for and quantify
such uncertainties, probabilistic volcanic hazard assessment
(PVHA) (e.g., Newhall and Hoblitt, 2002; Aspinall et al., 2003;
Marzocchi et al., 2004, 2010; Bayarri et al., 2009; Wolpert
et al., 2018) is widely used, as it provides a more complete
and accurate quantification of volcanic hazard compared to
single-scenario, deterministic approaches. The aim of this work
is to develop a PVHA of PDCs at Aluto, by using newly
collected information on the nature of its PDCs (Clarke et al.,
2019; Clarke, 2020) to constrain and develop upon some
established quantitative methods previously applied to other
volcanic systems (e.g., Tierz et al., 2016a,b; Sandri et al., 2018).
More broadly, we aim to develop a methodology, which with
appropriate parameterization, may be used at similar volcanoes
world wide.
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FIGURE 1 | Topographic and regional maps of Aluto volcano showing the location of the 96 pumice cone vents visible at the surface in context. The vents are most

concentrated around the inferred caldera ring fault, and cross-cutting regional faults (not shown) around Aluto (Hutchison et al., 2015). The vents were identified from

the LiDAR model of Hutchison et al. (2014) and field investigations detailed in Clarke (2020). Named settlements according to regional mapping data are provided, but

are by no means exhaustive. “A-L GPP” = Aluto-Langano Geothermal Power Plant. Geodetic system/projection: WGS84/UTM Zone 37N (ESPG:32637).
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FIGURE 2 | A generalized sequence of a pumice cone eruption at Aluto constructed from the record of nine distinct, but similar, eruptions. Some eruptions begin with

the generation of a convective plume producing relatively widespread tephra fall deposits that transition into PDC deposits as the column collapses. Most pumice

cone forming eruptions at Aluto begin at stage 2, where a convective eruption plume is generated, and an increasingly steep-sided pumice cone is deposited around

the vent from tephra falling from the column-edge, and ballistic deposition (Clarke et al., 2019; Clarke, 2020). As the eruption wanes, the column becomes unsteady,

often generating multiple intercalated tephra fall and PDC deposits. The end of the eruption is marked by the emplacement of a silicic lava flow, which may or may not

be accompanied by explosive tephra production. Column collapse PDCs are likely to be generated at stages 1 and 3. After Clarke (2020).
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2. METHODOLOGICAL RATIONALE AND
OVERVIEW

At Aluto, pumice cone eruptions have been found to undergo
self-similar eruption sequences (Figure 2). Pumice cone
eruptions at Aluto begin with an intense eruption plume-
forming phase, during which the bulk of the pumice cone is
deposited as tephra fall from the edge of the convective column,
and from the accumulation of ballistic material around the vent
(Clarke et al., 2019; Clarke, 2020). This is followed by a waning
eruption intensity, and repeated column collapse, producing
PDCs (Figure 3). This is shown by the frequent interbedding of
PDC and fall deposits above themassive angular, clast-supported,
cone-forming fall deposits. All the PDC deposits found so far at
Aluto are consistent with generation by column-collapse (Clarke,
2020): PDC deposits are typically associated with underlying
tephra fall deposits (Figure 3), comprise lithologically diverse
lithic populations (indicating fragmentation at depth), and do
not contain large dense blocks of fragmented lava-dome or plug
(e.g., Fisher and Schmincke, 1984). PDC deposits at Aluto are
almost exclusively massive lapilli tuffs (Clarke, 2020), indicating
they were deposited from granular fluid based PDCs, where high
particle density at the base suppresses turbulence and reduces
the tendency to develop sedimentary structures (Branney and
Kokelaar, 2002). PDC deposits are found proximally, in gullies
cut into the sides of pumice cones, as well as further from the
pumice cones themselves (found up to 5 km from the nearest
possible source-cone). Here, PDC deposits are often present as
gorge-filling deposits, and occasionally as sheet-like deposits
with an areal coverage on the scale of a few km2 (Clarke, 2020).
The deposits are only sporadically exposed, and outcrops often
intersect the reworked shores of palaeolake Langano, meaning
that maximum PDC run-out and areal coverage are often
minimum values. In summary, we can conclude that the PDCs
typical of this phase of pumice cone eruptions are relatively
low volume, granular fluid based pyroclastic density currents
generated by eruption column-collapse, that are often valley-
confined but occasionally spread laterally, and that often reach
at least 5 km from the vent. The deposits of PDCs are found
on or around most pumice cones that have been investigated at
Aluto (Hutchison et al., 2016c; Fontijn et al., 2018; Clarke, 2020),
and so as a conservative approach, we assume that all pumice
cone eruptions at Aluto generate at least one column-collapse
derived PDC, in other words: P(PDC|eruption) = 1. The final
phase of pumice cone eruptions at Aluto [and at many pumice
cones world wide; (e.g., Houghton et al., 1992; Dellino and
Volpe, 1995; Gioncada and Landi, 2010)] is typified by the
emplacement of a silicic (obsidian) lava flow from the central
pumice cone vent. The source of the lava flow can be ascertained
by the convergence of surface folds (ogives) to a bulls eye like
distribution around the vent, usually accompanied by a dip
or bump on the scale of ≤ 20 vertical meters, and ≤ 100 m
in diameter. This is likely to be a surface expression of the
underlying vent geometry, caused by the final effusion of an up-
heaved dome or spine (bump), or a drain-back or foam-collapse
into the conduit (dip) (e.g., Fink, 1983; Griffiths and Fink, 1993).
The duration of pumice cone eruptions is poorly understood

(Fontijn et al., 2018). Pyroclastic deposits from a single eruption
at Aluto often grade continuously into one another (with the
notable exception of the transition from pyroclastics to silicic
lava flows), and where sharper transitions do occur, there is
little evidence for the development of a significant erosional
surface. This implies relatively continuous (though unsteady)
eruptions; if the eruption is continuous at a violent-strombolian
to sub-Plinian intensity, it is likely to last for a matter of hours
or days, rather than months or years (Pyle, 2015). Duration
of these eruptive episodes is clearly important from a hazard
perspective, but this level of detail has rarely been incorporated
into PVHA (e.g., Wolpert et al., 2018; Bebbington and Jenkins,
2019).

Though eruptions of pumice cones at Aluto appear to follow
a similar sequence, they clearly span a range of magnitudes,
producing pumice cones from 10 to 100s of meters tall
(Hutchison et al., 2016c; Clarke, 2020), and depositing tephra fall
to greater and lesser distances (Fontijn et al., 2018; McNamara
et al., 2018). Additionally, distributed pumice cone eruption
vents have been identified on and around Aluto (Figure 1)
using the LiDAR digital terrain model (DTM) from Hutchison
et al. (2014). Field evidence indicates that all of the 9 pumice
cones investigated here are the product of single eruptions
(Clarke, 2020). This means that recent silicic pumice cone
eruptions at Aluto behave in a somewhat similar manner to a
monogenetic field, where vent locations are expected to change
from one eruption to the next and, therefore, the location of the
next eruption is highly uncertain. These uncertainties (poorly
constrained eruption magnitudes and intensities, and uncertain
vent location) need to be robustly accounted for in the PVHA.
Taking such first-order observations into account to produce a
PVHA in a robust and quantitative manner is challenging, but
nonetheless necessary, even for poorly studied volcanic systems.
Often, hazard assessments and maps for such [and many other]
volcanoes are based upon the geological foot print of prior
hazardous phenomena, or the product of a modest number of
deterministic numerical simulations based on a limited number
of scenarios (Calder et al., 2015). Though these methods may
represent a key starting point to estimate volcanic hazard, they
fail to fully evaluate the aleatory and epistemic uncertainty, which
are pervasive in volcanic systems (e.g., Marzocchi et al., 2010;
Spiller et al., 2014; Tierz et al., 2016a,b). To generate a full PVHA
of PDCs, theremust be a sufficient number of PDC simulations to
approximate the diversity and distribution of scenarios in nature.
This presents a technical challenge, as often-used PDC simulation
tools such as Titan2D (Patra et al., 2005), and VolcFlow (Kelfoun
and Druitt, 2005; Kelfoun et al., 2017) are computationally
expensive, allowing only a relatively limited number of runs to
be performed in a reasonable time frame. Therefore, performing
PVHA with such models requires the use of complex uncertainty
quantification techniques such as Polynomial Chaos Quadrature
(Dalbey et al., 2008; Tierz et al., 2018) or Gaussian Process
emulators (Bayarri et al., 2009, 2015; Spiller et al., 2014; Wolpert
et al., 2018; Rutarindwa et al., 2019). An alternative approach
is to use a simple, less computationally expensive model that
requires fewer assumptions to be made about the nature of the
eruption. Such a model can then be applied in a Monte Carlo
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FIGURE 3 | Pyroclastic logs and interpretations from two of the 9 Aluto pumice cones investigated in Clarke (2020). (A) The deposits of the Diima eruption, part of the

Kertefa Pumice Cone Complex. (B) Deposits of the Awariftu pumice cone on the northern flank of the caldera. The PDC deposits, and their close association with

tephra fall deposits, are consistent with those often produced during eruption column collapse events. Interpretations from these, and the other 7 eruption

reconstructions were used to develop the generalized pumice cone eruption scenario depicted in Figure 2.

fashion, covering the parameter space at every potential vent
location in a computationally realistic time frame. Afterwards,
importance sampling can be applied, where the knowledge and
assumptions we make about the systems are used to “weight” the
PDC model outputs according to how their respective likelihood
is considered. This has the advantage of allowing the PVHA to
be updated as knowledge improves, without necessarily having
to re-run the PDC models. This is an approach which is also
central to the work using statistical emulators, first proposed in
Bayarri et al. (2009). A useful final product can be a map of the
conditional probability of PDC inundation given an eruption. If
the chosen PDC model produces some continuous measure of
intensity, such as flow thickness or dynamic pressure, a hazard
curve could be generated for each cell in a cartesian grid (e.g.,
Tonini et al., 2015; Tierz et al., 2018). However, for PDCs,

hazard intensity is often considered to be binary (inundation vs.
no inundation); owing to their almost ubiquitously destructive
and deadly nature. Such a probability map, with a binary
“intensity,” is useful; as it displays the most important hazard
metric for human survival from PDCs (inundation vs. no
inundation). Whatever the intensity measure, such a map can be
combined with exposure data, such as population distribution,
or locations of interest or importance. Additionally, if the
conditional probability of PDC inundation is combined with
a temporal probability of eruption, and the probability of a
PDC being produced given an eruption: the non-conditional
probability of PDC inundation within a given time window
can be calculated (e.g., Sandri et al., 2014, 2018; Bevilacqua
et al., 2017; Rutarindwa et al., 2019). This, combined with the
exposure data, allows the calculation of the non-conditional risk
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(probability of asset X being lost due to PDC inundation over
time period Y).

3. VARIABILITY IN VENT LOCATION

The wide distribution of vents around Aluto is evidence that
eruptions are not restricted to a single central vent, and that the
location of the next eruption is highly uncertain. This uncertainty
must be reflected in the PVHA. If we can estimate the probability
of the next eruption occurring at each cell of a grid of potential
vent locations, this can be used to incorporate such uncertainty
into theMonte Carlo outputs of a PDCmodel, which describe the
uncertainty in PDC generation and propagation (e.g., Tierz et al.,
2016a,b; Sandri et al., 2018). The distribution of existing vents
at Aluto is not homogeneous, and collectively the vents indicate
the presence of a caldera ring fault and cross-cutting region faults
(Hutchison et al., 2015, 2016c).

We take a two-dimensional kernel density estimation
approach, often applied to basaltic monogenetic fields, and based
on the locations of existing vents (Connor and Hill, 1995; Weller
et al., 2006; Marti and Felpeto, 2010; Cappello et al., 2012;
Bevilacqua et al., 2015). The method assumes that the likelihood
of an eruption occurring at any location should be proportional
to its proximity to vents from previous eruptions. From any
past vent, the probability of a new vent opening near it can be
characterized by an isotropic two-dimensional kernel function,
centered on the past vent, and which needs to integrate to 1
(i.e., it is a bivariate, Easting-Northing, PDF) (e.g., Connor and
Hill, 1995; Weller et al., 2006). The kernel describes how the
probability “decays” at progressively greater distances from each
vent, in this case equally in all directions. For any point within the
hazard domain (i.e., the grid of possible vent-location points) the
probability of vent-opening associated with the kernel function
of each existing vent is summed and normalized by the number
of vents (N). This is in order to ensure that the probability of vent
opening over the entire hazard domain is a PDF itself and, thus,
integrates to 1. In other words, it is assumed that the conditional
probability (given eruption) of a vent opening from one of the
vents within the hazard domain is equal to 1 (e.g., Weller et al.,
2006; Selva et al., 2012). The probability of an eruption occurring
in a particular location is known as the relative “spatial intensity”
of volcanism at that point (λ̂s); calculated using Equation (1):

λ̂s(x, y) =
1

2πNh2

N
∑

i= 1

exp

(

−1

2

[

di

h

]2
)

(1)

where N is the total number of existing vents, h is the bandwidth
of the kernel, and di is the distance between existing vent i and
point (x, y). The key variable that characterizes any volcanic field
is therefore the bandwidth of the kernel. The model assumes
that there is a characteristic spacing of vents at Aluto, which can
be fitted by a Gaussian kernel (Connor and Hill, 1995; Weller
et al., 2006).Within reason, the choice of kernel shape is relatively
inconsequential (Wand and Jones, 1994; Weller et al., 2006), but
the bandwidth of the kernel is very important. Following the
procedure of Weller et al. (2006), we fit a Gaussian cumulative

FIGURE 4 | The conditional probability of vent opening at each of the 1,221

simulated vent locations, where color is mapped to P(vent|eruption), using the

kernel density estimation method of Connor and Hill (1995). The small black

boxes mark the approximate locations of the school (left) and geothermal

power station (right). Coordinates are in meters, web mercator projection

(ESPG: 3857).

distribution function (CDF) to an empirical CDF of the nearest
neighbor distances of existing vents at Aluto. Qualitatively, the
Gaussian fit is good, and provides a bandwidth of 0.716 km,
which means that approximately 68% of vents are within 0.716
km of their closest vent. However, it is likely that the closer
a vent is to another, the greater the probability of its burial
and obscuration, meaning it is less likely to be identified. This
introduces an “exposure bias,” and implies that the CDF of
nearest neighbor distances presented here may under-represent
the real proportion of vents at lesser distances. This is a source of
epistemic uncertainty in this form of analysis.

We evaluate Equation (1) over the (x, y) locations of vents
distributed in a regular 500 m cartesian grid across Aluto (1,221
vents), to calculate the probability of the next volcanic eruption
occurring at each. The conditional probability of a vent opening
at each point in this grid, given the next eruption at Aluto
[P(venti|eruption)] is presented in Figure 4. The code used to
do this is available as a fully reproducible Jupyter notebook
(Zenodo/GitHub: https://doi.org/10.5281/zenodo.3778328). The
sum of these probabilities is 0.995, meaning there is a 0.5%
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probability that the next vent will open somewhere beyond these
points. This map indicates that the southern and northern rims
of the caldera, as well as a diffuse region to the NW of the caldera,
are the most probable regions to host the next vent at Aluto.
These probabilities are only for the next eruption at Aluto, as
for subsequent eruptions, analyses will also have to consider the
location of the new vents. These values of probability are used
directly as weighting factors in the importance sampling of the
Monte Carlo PDC model outputs later. Due to Aluto’s proximity
to Lake Ziway, some of these vents are located within the lake.
The average water depth of Lake Ziway is about 2.5 m (Hengsdijk
and Jansen, 2006). This is clearly below proposed thresholds of
water depth (i.e. pressure) related to the suppression of subaerial
pyroclastic products (e.g., Koyaguchi and Woods, 1996; Lindsay
et al., 2010; Sandri et al., 2012, 2018). Therefore, we consider
that all vent locations on the lake can generate column collapse
derived PDCs. Moreover, even though we acknowledge that
eruption dynamics of eruptive vents opening on the lake will
likely be different than those on land (Mastin and Witter, 2000;
Houghton et al., 2015) for the sake of simplicity in this first
approach to PVHA of PDCs at Aluto, we model the PDCs from
vents on the lake using the same PDC model parameter space as
for the other subaerial vents.

4. VARIABILITY IN PDC INUNDATION

4.1. The Energy Cone Model
We choose the energy cone model (Malin and Sheridan, 1982)
to evaluate binary PDC inundation footprints for the range of
pumice cone eruptions at Aluto. This approach is suitable as
it requires few input parameters (suitable for volcanoes where
there is high epistemic uncertainty), and is computationally light,
meaning that the full parameter space can be thoroughly explored
to account for aleatory uncertainty, at a reduced computational
cost. Monte Carlo energy cone analysis has been applied to
other volcanic systems to produce PVHAs of PDCs, such as
Campi Flegrei and Vesuvius (Tierz et al., 2016a,b; Sandri et al.,
2018). The energy cone model (Figure 5) assumes a source (vent)
location, a height fromwhich the PDC collapses (Hc), and a single
mobility parameter (φ) which in effect describes how rapidly
the potential energy from column collapse is consumed during
horizontal PDC propagation. In reality, the mobility of a PDC
changes in space and time and is dependent on a large number
of interacting phenomena; including, for example, the density
current granulometry (e.g., Roche et al., 2006), degree of flow
fluidization (e.g., Wilson, 1980; Breard et al., 2018; Smith et al.,
2018), the development of co-ignimbrite plumes (e.g., Calder
et al., 1997; Andrews and Manga, 2011), and the development
of stratified and [in-part] decoupled mechanical/flow regimes
within the current (e.g., Fisher, 1995; Branney and Kokelaar,
2002; Breard and Lube, 2017). In the energy cone model, all
of these phenomena are integrated into a single (empirically
defined) angle (φ). This angle can be conceptualized as the dip
of a line connecting the PDC collapse source and the most
distal reach of the PDC, where a more mobile PDC will have a
shallower angle. One can then imagine projecting this line from
the PDC source at every degree of azimuth, forming a surface

FIGURE 5 | The energy cone model of Malin and Sheridan (1982). Each PDC

possesses a particular mobility (φ), derived empirically from dH and l of

previous PDCs, and a estimated collapse height Hc, derived from the height of

the vent (Hv ) and the height of the gas thrust region (H0). The point at which an

energy line dipping at mobility angle φ intersects the ground marks the

expected distal reach of the PDC at that degree of azimuth. This process is

repeated at every degree of azimuth around the vent to form an energy cone

and a radial PDC inundation footprint. The footprint is perfectly circular on a

flat surface, but is irregular where it meets irregular topography.

or “energy cone.” Where this line first intersects the surrounding
topography marks the outer reach of potential PDC inundation,
and the space within this polygon is the maximum potential PDC
foot print. It essentially represents an aggregated foot print for
flows in any direction, rather than a foot print for an individual
flow. PDCs with a taller collapse height, and a greater mobility,
have the potential to travel further. An important caveat of the
energy cone model, given that is does not attempt to represent
an individual flow footprint, is that it does not consider flow
channelization of PDCs, which is known to be an important
factor controlling the footprint of smaller volume, drainage-
confined, concentrated PDCs (e.g., Calder et al., 1999; Douillet
et al., 2013; Di Roberto et al., 2014; Saucedo et al., 2019). Density
current channelization processes are considered inmore complex
models such as Titan 2D and VolcFlow, but for reasons already
outlined, such models are not preferred in this situation.

The energy cone model must be suitably parameterized to
capture the aleatory uncertainty of PDC collapse height and
mobility at the volcano in question. This implies choosing
and parameterizing probability density functions (PDFs); which
describe the expected distribution of each parameter in nature
(Rougier et al., 2013; Tierz et al., 2016b). A lack of real
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observational data from eruptions at Aluto means that these
must be informed by other means. Ultimately, the suitable
“target” PDFs will be used later for importance sampling, but
uninformative uniform PDFs spanning the range of these PDFs
will be used to sample 10,000 pairs of collapse height andmobility
for energy cone simulations at each vent (NB. we assume that the
aleatory uncertainty in PDC generation does not vary spatially).

4.2. Parameterizing PDC Collapse Height
The collapse height of the PDC in the case of dome forming
eruptions is simple, as the PDC is sourced from the surface
elevation at the source vent, which can be derived from the
DTM. For column collapse events, such as those at Aluto
(Clarke et al., 2019; Clarke, 2020), the collapse height (Hc) is
considered to be the sum of the altitude of the vent (Hv),
and the height above the vent from which collapse initiates
(H0). Hv can be derived from the DTM for each vent during
energy cone simulation. The maximum H0 has been commonly
assumed to correspond with the top of the gas thrust region of
the column (Tierz et al., 2016a,b; Sandri et al., 2018). Within
the gas thrust region, a dense mixture of gas and pyroclasts is
transported upwards mainly by momentum linked to explosive
fragmentation. Given that the density of this mixture is higher
than the surrounding atmosphere, it may collapse gravitationally
upon loss of momentum, generating PDCs (e.g., Sparks, 1997;
Doronzo et al., 2011; Dellino et al., 2014). If the eruption
column entrains enough surrounding air as to become buoyant,
a convective region of the column is developed above the top
of the gas-thrust region (Sparks, 1997; Dellino et al., 2014). The
top of the gas thrust region is therefore a good approximation of
H0. The height of the gas thrust region for the range of volcanic
plumes at Aluto was estimated using the PlumeRise model of
Woodhouse et al. (2013), by a methodology detailed in Clarke
(2020).

A summary of the method to determine the height of collapse
from the gas thrust regions is provided here. The method is
based on the premise that column collapse occurs at the point
when eruption conditions are no longer capable of sustaining
a convective eruption plume (Sparks, 1997). The boundary
between a convective and collapsing column can be mapped out
using PlumeRise, where the critical parameters controlling the
fate of the column are gas mass fraction (volatile content of
the magma), mass eruption rate (ṁ), and vent radius (Table 1).
Clarke (2020) found that by taking the initial parameters for, and
assessing the height of the top of the gas thrust region (defined
by local minima in plume velocity; e.g., Trolese et al., 2019) for
columns at the convective-column/collapsing-column transition:
H0 at the onset of collapse can be estimated; given a vent radius
and water content of the magma (Equation 2).

H0 = a ·H2O
b · rc (2)

where H0 is the height of the gas thrust region in meters, H2O
is the water content of the magma in wt% and r is the vent
radius in meters. a, b and c are regression coefficients related
to the location of the convecting/collapsing eruption column
boundary within the parameter space. For eruption columns

TABLE 1 | Parameters used in the PlumeRise model to locate the

stable/collapsing column boundary in mass eruption rate/vent radius/gas mass

fraction parameter space.

Parameter Value (range) Units Rationale (reference)

Vent elevation (Hv ) 2,025 m (asl) Mean altitude for vents at

Alutoa

Vent radius (r) (10–1,000) m Exceeds measured range at

Alutoa

Gas mass fraction

(H2O)

(0.01–0.1) fraction Covers range of H2O

concentrations in published

pantellerite melt inclusion

datab−h

Source

temperature

1023.15 K Estimated magmatic

storage temperature at

Alutoi

Pyroclast density 1,200 kg/m3 Recommended mean

density of pyroclast mixturej

Entrainment

coefficient

0.09 Recommended valuej

Wind direction n/a degrees Assuming no-wind

atmosphere

Wind velocity 0 m/s Assuming no-wind

atmosphere

Source mass flux

(ṁ)

(103–1010) kg/s Range required to locate

stable/collapse boundary for

the range of other

PlumeRise parameters

Atmospheric

model

standard

atmosphere

Standard atmosphere

modeled by PlumeRise for

relevant Hv

The regression coefficient values derived from the model outputs (section 4.2) are

therefore appropriate for the range of eruption condition parameters within this table. The

location of the boundary between collapsing and stable eruption columns was determined

to a precision of 0.1 log units of mass eruption rate. aClarke (2020); bLowenstern and

Mahood (1991); cWilding et al. (1993); dWebster et al. (1993); eHorn and Schmincke

(2000); fNeave et al. (2012); gField et al. (2012); h Iddon and Edmonds (2020); iGleeson

et al. (2017); jWoodhouse et al. (2013).

produced during pumice cone eruptions at Aluto, maximum-
likelihood estimation yields: a = 12.78, b = −0.61 and c =
1.1. These values are appropriate within the parameter space
explored using PlumeRise (Table 1). Evaluation of the PlumeRise
model parameter space also allows the mass eruption rate at the
point of collapse (ṁc, kg/s) to be estimated given r and H2O, by
Equation (3):

ṁc = (d ·H2O
e + f ) · r(g·H2O+h) (3)

where d, e, f , g, h are regression coefficients estimated through
maximum likelihood of the PlumeRise simulation outputs. For
Aluto: d = 809, e = −1.01, f = −50.6, g = −0.014, and
h = 2.54.

Since we know, from field evidence, that column collapse
occurs at Aluto, we know that eruption conditions pass through
those at the boundary between stable and collapsing columns.
If we can estimate a fixed gas mass fraction (magmatic water
content) and a vent radius at the point of collapse, there is a
unique value of H0 and ṁc determined by Equations (2) and (3).
Equations (2) and (3) were evaluated iteratively (2 × 106 times)
for the expected distribution of vent radii and magmatic water
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FIGURE 6 | Normalized histogram (gray) showing the expected “target”

distribution of collapse heights (Ho) above the vent, based on iterative

evaluation of Equation (2) assuming the estimated distribution of vent radii and

magmatic water contents at Aluto. A uniform PDF (blue) is fitted to this data

and was used for sampling the H0 parameter during energy cone simulation.

In importance sampling, the histogram is used as a target PDF to weight the

simulation outputs.

contents at Aluto. Vent radii were measured from the DTM and
fitted with a simple triangular distribution (between 10 and 100
m), that extends beyond the dataset to include the possibility of
larger events in the future. Water contents were estimated from
a review of melt inclusion data in peralkaline rhyolites globally,
though because the data set is limited, and the likely distribution
of these water contents is uncertain, we assume an uninformative
uniform distribution between 4 and 8 wt% H2O. These values
are appropriate for the typical high water contents of pantellerite
melts (e.g., Lowenstern and Mahood, 1991; Webster et al., 1993;
Wilding et al., 1993; Horn and Schmincke, 2000; Field et al.,
2012; Neave et al., 2012), and are consistent with melt inclusion
data from Aluto (Iddon and Edmonds, 2020). The product is
a histogram of expected H0 for Aluto (Figure 6), which can be
combined with Hv during the energy cone simulations at each
vent to give Hc, where Hc = H0 +Hv.

Though not required for the energy cone model, the ṁc

calculated in Equation (3) is a useful incidental parameter. We
note that for the PlumeRise parameterization (Table 1), and
expected distributions of r andH2O at Aluto, ṁc ranges from 104

kg/s to 5×106 kg/s. This is consistent with violent-strombolian to
sub-Plinian intensity eruptions (Pyle, 2015) tentatively estimated
from tephra fall deposits (Fontijn et al., 2018; McNamara et al.,
2018) and some proximal deposit constraints (Clarke et al.,
2019). This provides confidence that our estimates of eruption
conditions are within the correct orders of magnitude for Aluto.

An alternative approach to estimate H0 is to treat the
plume at the point of column collapse as a simple turbulent
fountain (e.g., Kaye and Hunt, 2006; Carazzo et al., 2010),
where the height of the fountain (H0) can be estimated by the
vent radius, entrainment coefficient and, in volcanic plumes,
the dimensionless Richardson number (Ri). The transition
between a stable plume and collapsing column occurs at a
critical Ri (∼ 0.3) (Kaminski et al., 2005; Degruyter and
Bonadonna, 2013; Aubry and Jellinek, 2018), and so H0 can be
approximated as ∼ 6.4r. Though this method is less adapted
to the specific volcano, it is more generalizable, and does not
require estimation of the gas mass fraction of the magma. Within
the range of vent radii expected at Aluto (10–100 m), this
parameterization ofH0 is broadly consistent with the PlumeRise-
based methodology that we employ in this work, and so is a
viable alternative (see Supplementary Material). If the turbulent
fountain-based methodology is used, a Monte Carlo approach
can be used to produce a PDF of H0, based on the expected
distribution of vent radii only. For importance sampling, this
H0 PDF can be used identically to that derived from the
PlumeRise-based methodology.

4.3. Parameterizing PDC Mobility
In the energy cone model, PDC mobility is empirically defined
from the dH/l ratio, where dH is the measured vertical height
drop of the PDC (Hc minus the measured altitude of the PDC
deposit toe), and l is the PDC horizontal run out (measured
horizontally from the vent to the most distal reach of the deposit)
(Malin and Sheridan, 1982). The mobility of the PDC, or angle of
the energy line (φ) is then (Equation 4):

φ = tan−1 dH

l
(4)

In our Monte Carlo energy cone model, φ is iteratively sampled
from a uniform distribution, and combined with a sampled H0.
Later, importance sampling can be used to adapt this sample
to the expected distribution of φ and H0 in nature. The model
is therefore contingent on a realistic distribution of φ. Ideally,
this would be measured at the volcano in question, but at
many volcanoes, including Aluto, such data are very hard to
obtain, and/or has not been collected yet. We utilize the FlowDat
database (Ogburn, 2012) of PDC data, which includes published
dH and l values for a large number of PDCs world wide. As
the values in the FlowDat dataset are sourced from numerous
workers, the ways in which dH and l are measured in the
field vary; from observed eruption column collapse and deposit
measurement, to approximating dH as the difference betweenHv

and the altitude of the PDC deposit toe (thus ignoring H0, and
overestimating φ). Because of this, values within the FlowDat
dataset are each known to greater or lesser degrees of confidence
and precision. This is an additional source of uncertainty, which
remains unaccounted for in our assessment. Nonetheless, it has
been previously observed (Pablo Tierz, unpublished data) that
the impact of H0 uncertainty on the estimates of φ values
in the FlowDat database is small. We filter the FlowDat data
set, excluding PDCs not representative of Aluto, so that those
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FIGURE 7 | The truncated Gaussian “target” PDF (gray) showing the expected

distribution of PDC mobilities (φ) at Aluto in nature. The uniform PDF (blue) was

used to sample the φ parameter during energy cone simulation. In importance

sampling, the target PDF was used to weight the simulation outputs.

remaining only include those from column collapse events, and
also excluding those produced during caldera forming eruptions
or by lateral blasts. Details of the analog data used can be found
in the Supplementary Materials. This provides 59 values of φ

to which we fit a truncated Gaussian distribution (µ = 15.18,
σ = 6.3, lower limit = 2, upper limit = 30) (Figure 7), in
accordance with the observed Gaussian distribution of PDC
mobilities (Sheridan and Macías, 1995; Tierz et al., 2016a,b).
The Gaussian PDF is truncated to avoid extreme and physically
inconsistent mobilities (including zero and negative values) that
would otherwise be sampled in the upper and lower tails of
a standard Gaussian distribution (Tierz et al., 2016a,b). The
locations of the truncation points are the closest integers to
the highest and lowest values of φ in the filtered FlowDat
dataset. This truncated Gaussian PDF is used for the importance
sampling later, but a uniform PDF between 2 and 30 degrees is
used for initially sampling the parameter pairs for simulation.

5. COMPUTING PROBABILITIES OF PDC
INUNDATION

5.1. Energy Cone Modeling
The energy cone model was iterated across the regular grid
of 1,221 potential vents, with 10,000 PDC simulations at each
vent; each time sampling the same list of input parameter
pairs (H0 and φ). H0 and φ pairs were randomly sampled
from uniform distributions entirely independent from one
another, and so we implicitly assume that these parameters are
independent. We justify this as there is no clear relationship
between collapse height and mobility in the FlowDat dataset
(Tierz et al., 2016a). Ten thousand simulations is generally

considered to be statistically representative (e.g., Tierz et al.,
2016a,b; Sandri et al., 2018), and provides a precision of 0.01,
or 1% (precision = 1√

n
, where n is the number of iterations).

The energy cone analysis was conducted using a modified version
of the Matlab script developed for Somma-Vesuvius and Campi
Flegrei (Tierz et al., 2016a,b), and a 30 m resolution DTM re-
sampled from Hutchison et al. (2014). Each simulation produces
a footprint over a grid of 30 m cells, where each inundated cell
is given a value of “1,” and cells which were not inundated are
given a value of “0.” Though individually each simulation is
computationally light, the computational expense of the 12×106

necessary energy cone simulations is still high. However, as
each simulation is independent, the task can be readily divided
across a computing cluster, minimizing the total run time. The
analysis was conducted on the EDDIE cluster at the University of
Edinburgh Compute and Data Facility, producing 10,000 PDC
inundation footprints from each potential vent. Collectively,
the results represent uniformly distributed input parameters of
vent location, collapse height, and mobility across the range of
expected values for each.

5.2. Importance Sampling
In the next phase of the assessment, each grid of results from
an energy cone simulation is multiplied by a “weight factor,”
in a process known as “importance sampling”; placing greater
importance on the results of simulations we consider more likely,
and less importance on those we consider less likely. Once this
is done, the weighted results of all simulations are summed. Grid
cells with the highest values are those which are themost prone to
inundation by the type and source location of PDCs we expect to
see at Aluto. This value is the conditional inundation probability
[P(PDC|eruption)]; our PVHA.

Firstly, the importance, or “weight factor” (W), associated
with theH0 and φ used for each simulation (k) must be calculated
(Equation 5). This is done by taking the product of the probability
of H0 and φ from their expected, or “target,” PDFs calculated
earlier [f (Hk) and f (φk)]. This is then divided by the product of
the sampled probabilities of Ho and φ, taken from the uniform
PDFs [g(Hk) and g(φk)]. A graphical representation of this
process, with a worked example, is provided in Figure 8. The
weight associated with each simulation parameter pair is shown
in Figure 9.

Wk =
f (Hk)× f (φk)

g(Hk)× g(φk)
(5)

The probability of PDC inundation in grid cell j, given an
eruption of vent i [P(PDCj|venti)], can then be calculated as
Equation (6):

P(PDCj|venti) =
1

S
×

N
∑

k= 1

(Wk × sk) (6)

where S is the total number of simulations from vent i (in this
case, 10,000), k is the identity of each simulation, and s is a binary
1 or 0 within each grid cell noting inundation vs. no inundation.
Effectively, this counts the proportion of weighted simulations in
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FIGURE 8 | Graphical explanation of the methodology to calculate the weight factor (W) for simulation k. The values for the probability of the collapse height (Ho), and

PDC mobility (φ), from the target (f ) and uniform (g) probability density functions (PDFs) are evaluated at the value of φ and Ho used in simulation k. Wk can then be

calculated by Equation (5). In this example, Wk = 0.641, meaning that grid cells in the output of this simulation will be multiplied by 0.641, lowering their relative

importance.

FIGURE 9 | Weighting factors associated with each of the 10,000 collapse

height-mobility parameter pairs for energy cone simulations at Aluto. Uniformly

distributed parameter pairs are simulated in the energy cone model at each

vent, and then the desired weighting can be applied retrospectively. This allows

updated collapse height and mobility distributions to be included in future

PVHAs without having to re-run the time consuming energy cone model.

which a PDC inundated cell j from vent i. The final step is to also
consider the probability of the PDCs being sourced from each
vent; this gives the probability of inundation in grid cell j given
an eruption [P(PDCj)], by Equation (7).

P(PDCj) =
N
∑

i= 1

P(PDCj|venti)× P(venti) (7)

where P(venti) is the probability of vent i being the source of
the next eruption; calculated in Equation (1). Equation (7) is
applied to every grid cell, producing a map of P(PDC|eruption).
Importance sampling was conducted using Python, and a fully

reproducible exemplar Jupyter notebook with sample energy-
cone model data can be found in the via Zenodo/Github (https://
doi.org/10.5281/zenodo.3778328).

6. A PVHA OF PDCS AT ALUTO VOLCANO

The main result of the Monte Carlo energy cone PVHA
is presented as a map (Figure 10), showing the contoured
conditional probability of PDC indundation given an eruption
from Aluto [P(PDC|eruption)] at a 30 m resolution (this
probability map is available as a georeferenced “.Tiff” in the
Supplementary Material). The 0.01 (1%) probability contour
circles the volcano at a 5 km distance from the break in slope
at the edge of the edifice, though is somewhat closer on the
Eastern flank where it meets steeper topography nearing the edge
of the Main Ethiopian Rift. In general, the probability increases
toward the edifice, but is particularly high on the outer flanks
of the volcano in the SE (between O’Itu Woshe and Kelibo),
and the W and NW (between Abule and Sedecha). The caldera
floor has the highest probability of PDC inundation with a
maximum conditional probability just exceeding 0.12 (12%). This
maximum probability is in the eastern region of the caldera
floor, which happens to be the location of the geothermal power
station. Despite being the most probable location of the next vent
(Figure 4), the highest topography on the volcano (just beyond
the southern edge of the caldera floor) represents the lowest
probability of PDC inundation on the edifice.

7. DISCUSSION

7.1. PDC Hazard Around Aluto
The map presented in Figure 10 indicates the areas that are most
likely to be inundated during the next pumice cone eruption
at Aluto volcano. The highest probabilities are in low lying
regions close to, and on, the edifice. The wide area of possible
vent locations around Aluto means that the probability of PDC
inundation is spread broadly around the edifice. This means that
a wider region may potentially be affected by any given PDC,
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FIGURE 10 | Result of the energy cone modeling showing the conditional probability of PDC inundation around Aluto given an eruption P(PDC|eruption). Probability is
provided at a 30 m resolution and has a precision of 0.01 (1%). Apart from the bounding 0.01 (1%) contour, contours of probability are in increments of 0.02 (2%).

Settlements names and locations are sourced from the Ethiopian mapping agency. Roads are sourced from OpenStreetMap. High resolution (2 m) LiDAR DTM of

Aluto is from Hutchison et al. (2014). Lower resolution (1 arc second) STRM DTM of surrounding regions is from NASA (2014).

but that probability of inundation is more homogeneous across
the hazard domain. This “dissipating effect” has been observed at
other caldera systems (e.g., Campi Flegrei, Italy; Neri et al., 2015;

Sandri et al., 2018), although the computed probability map of
PDC inundation may still strongly depend on the vent-opening
model used (e.g., Long Valley caldera, USA; Rutarindwa et al.,
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2019). By Comparison, at “central-vent” volcanoes, conditional
(or even absolute temporal) PDC inundation probabilities
approach 1 close to the vent [e.g., Somma-Vesuvius, Italy; (Tierz
et al., 2016a,b); Soufrière Hills, Montserrat; (Dalbey, 2009)]. In
any case, Aluto is more geomorphologically complex than the
two cases just illustrated; with many connected prominences, a
central caldera depression, and a diversity of eruptive centers.
This means that topographically high regions on the edifice
itself, despite being the most probable source location of PDCs,
are amongst the least likely to be inundated. This is because
their high elevation renders them accessible only to PDCs that
originate locally, as opposed to basins around the volcano which
are susceptible to inundation by PDCs from a far wider range
of potential vents. The caldera is therefore the most likely
region to be inundated, as it represents a basin surrounded
on all sides by regions with a high vent opening probability.
This result is particularly relevant from a risk perspective, as
the caldera hosts a school, small settlements, and a geothermal
power station. Away from the volcano, flat lying plains to
the NE, S, and W provide little impedance to PDCs, whereas
topographically complex regions to the E provide barriers that
shelter regions comparatively closer to the edifice. It is also
important to consider that the maximum area inundated during
simulations also strongly depends on the choice of widest vent
radius and minimum gas mass fraction (thus tallest H0), and the
most mobile PDC (smallest φ); so that the results are a direct
consequence of decisions made in the model parameterization.

Despite Ziway’s (the main town in the region) proximity to
a region of high vent opening probability (the hills between
Sedecha and Dodicha), the conditional probability of PDC
inundation given an eruption there is relatively low. This is
because Ziway sits on the NW edge of the hazard domain, and
so is only susceptible to inundation by locally generated PDCs;
mostly those from the Sedecha-Dodicha hills, which represent a
small subset of those simulated in the entire analysis. However,
if the vent opening probability was conditioned so that the vent
opened in the region of these hills, the probability of PDC
inundation in Ziway would be higher. With the results of the
Monte carlo energy cone model at Aluto, it is possible to conduct
the importance sampling such that particular scenarios (such
as an eruption from somewhere in the region of the Sedicha-
Dodicha hills) can be assessed. These scenarios could be useful
during a volcanic crisis, where monitoring information (seismic
swarms, ground deformation etc.) may indicate the probable
location of the vent (e.g., Sandri et al., 2012; Sigmundsson et al.,
2015).

7.2. The Use of Field Data to Parameterize
Energy Cone Models
To generate a robust PVHA, the model parameterization must
reflect the range and distribution of processes that occur at the
particular volcano in question (e.g., Connor et al., 2001; Newhall
andHoblitt, 2002;Marzocchi et al., 2004; Bebbington, 2014). This
presents a significant challenge for volcanoes which are poorly
studied, or behave in a manner distinct to other volcanoes. As far
as the authors are aware, this work represents the first PVHA for

PDCs at any African volcano, and is certainly the first for pumice-
cone style eruptions globally. For any volcano, it is essential to
understand the behavior of the system in order to tailor the
methodology for PVHA to (1) minimize epistemic uncertainty;
gaining the most precise picture possible; and (2) to evaluate
aleatory uncertainty, to present a result that reflects an inherently
uncertain volcanic system. This understanding is gained through
field, laboratory and remote sensing investigations (e.g., Tierz,
2020). In the case of this work, such investigations played a
central role, they:

1. Indicated that pumice cone eruptions frequently generate
PDCs, and suggested that they were generated by a column
collapse mechanism.

2. Showed that at Aluto pumice cone eruptions occur in distinct
locations, and that individual vents tend only to be active
during one eruption. Which was essential information to
quantify the vent-opening probability.

3. Provided evidence to quantify the mass flux, gas mass fraction
and vent radius just prior to column collapse, and in turn
estimate the height of the gas thrust region (therefore the
collapse height of PDCs) (Clarke, 2020).

4. Provided criteria for filtering the FlowDat PDC dataset.

However, there are problems inherent in the use of such data.
The first is that they only represent events that have occurred
in the past, and so do not necessarily represent the range of
events that could occur in the future (e.g., Marzocchi et al., 2012).
In order to consider such eventualities, it may be appropriate
to extend model parameter distributions. At Aluto, we did
this for the vent radius, extending beyond the measured range
taking a precautionary, or conservative, approach to consider the
possibility of more intense events in the future.

Characterizing a particular eruption style for a volcano is
also problematic, as volcanoes often change their behavior over
time, and current activity unavoidably represents a “snap-shot”
in the geological history of the volcano. Aluto, for example, first
existed as a trachytic shield volcano, dominated by trachyte lava
flows and tuffs (Hutchison et al., 2016c). Later it generated a
caldera during one or two large-magnitude eruptions generating
ignimbrite sheets (Hutchison et al., 2016c). Most recently,
eruptions are dominated by the relatively modest magnitude
peralkaline rhyolite pumice cones modeled here (Fontijn et al.,
2018; Clarke et al., 2019; Clarke, 2020). We assume that the most
recent pumice cone eruptions at Aluto are the most likely to be
representative of the next eruption at Aluto, and so our PVHA
does not consider the possibility of a different eruption style. Such
caveats need to be clearly communicated to ensure that decisions
made upon the PVHA are well informed.

Sampling issues must also be considered when using field
data. The field investigations of pumice cones at Aluto focused
on 9 pumice cone eruptions, out of 96 vents visible at the
surface, and doubtless many more buried vents (Clarke, 2020).
It is therefore important to question how much confidence
should be placed on eruption scenarios based on these data.
Field investigations are also limited by both exposure and
preservation. Small events, or events that produce deposits which
are more susceptible to erosion, for example, are likely to be
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under-represented in the geological record (e.g., Brown et al.,
2014; McNamara et al., 2018). It is therefore possible that the
larger, perhaps more hazardous, events are over represented in
the energy cone models. The fact that new deposits cover older
ones also presents a bias in the data set, where more recent
events are the most likely to be exposed and therefore excessively
influence the conceptual model of eruptions. However, if
we assume stationarity of post-caldera volcanism (i.e., future
eruptions will behave similarly to the post-caldera eruptions that
were investigated), this bias is not necessarily problematic, and
is implicit in the stationarity assumption. These issues are not
unique to Aluto, and are important caveats to PVHA. Because of
these limitations, careful and transparent extrapolation from the
existing data set is required. Without extrapolation, there is a risk
that the modeled parameter range is insufficient to truly reflect
the natural variability. However, excessive extrapolation risks
an overly-cautious and pessimistic PVHA, which might unduly
influence decision making. Ultimately, decisions surrounding
extrapolation are subjective, and so it is essential that a PVHA
clearly and transparently communicates the scope, limitations
and caveats of the assessment.

7.3. Scope, Limitations, and Caveats of Our
Assessment
1. The PVHA presented here provides a conditional probability

of PDC inundation around Aluto during its next eruption,
assuming that the next eruption is similar to previous dry (not
phreatomagmatic) post caldera eruptions at Aluto.

2. The intensity of eruptions (mass eruption rate: ultimately
relating to H0; Clarke, 2020) modeled here exceeds the
range of intensities based purely on measured vent radii and
assumed water contents of the magma. To be cautious, we
assume potential vent radii (<100 m) are capable of reaching
roughly twice the largest measured vent radii. This increases
the top-end of H0 to reflect the potential for more intense
eruptions in the future.

3. The energy cone model does not consider eruption magnitude
(total erupted mass), or the volume of any resulting PDCs.
PDC volume is positively correlated to mobility (e.g., Hayashi
and Self, 1992; Ogburn, 2012), and so volume remains
an uncontrolled variable that may influence φ at Aluto.
Considering the relatively low magnitudes of post-caldera
eruptions at Aluto in the past (Fontijn et al., 2018; Clarke
et al., 2019; Clarke, 2020), it is possible that some of the higher
mobilities sampled here exceed those likely to occur naturally
at Aluto.

4. The energy cone model does not consider PDC
channelization, and so an increase in effective mobility
within drainages is not considered.

5. The energy cone model assumes a radial PDC footprint
around the vent, this can be unrealistic for PDCs with a strong
directionality (e.g., Charbonnier and Gertisser, 2012; Tierz
et al., 2016a,b; Ogburn and Calder, 2017). However, it does
provide a cautious estimation of areas that could be inundated
by a given PDC. It is also important to note that directionality
of PDCs can be related to transient controlling mechanisms

(Wolpert et al., 2018), and so assuming a radial footprint
removes this bias (though admittedly does not address the
uncertainty in directionality).

6. The PDC inundation footprint from the energy cone model is
contingent on an accurate digital terrain model, even though
it has been shown that uncertainty linked to DTM resolution
is the lowest contribution to total epistemic uncertainty
at other volcanoes (Somma-Vesuvius; Tierz et al., 2016b).
However, terrain changes over time, particularly in dynamic
volcanic-tectonic systems. For example, the generation of
fault scarps, volcanic edifice collapses, or channel/basin-filling
during eruptions may all influence the final PDC inundation
footprint. Such potential changes are not considered in this
assessment. The DTM acquisition dates are 2014 on the
edifice, and for the wider region (Hutchison et al., 2014, NASA
STRM, 2014).

7. The behavior of PDCs when they enter water is complex, and
poorly understood (e.g., Branney and Kokelaar, 2002; Dufek
et al., 2009; Sulpizio et al., 2014). The energy cone model does
not consider the influence of the substrate on flow mobility,
and therefore the footprint over water is highly uncertain
(Sandri et al., 2018). For this reason, the PDC inundation
probability map is clipped to exclude Lake Ziway in the north,
and Lake Langano in the south.

8. As the understanding of Aluto’s physical volcanology is in its
early stages, and there has not been an observed eruption of
the volcano, this model relies heavily on proxy and modeled
data. This situation is quite common for many volcanoes
around the world (e.g., Loughlin et al., 2015), but obviously
introduces epistemic uncertainty into the PVHA results (e.g.,
Marzocchi et al., 2004). This epistemic uncertainty can be
in part reduced using the recently developed VOLCANS
methodology to more objectively select the most appropriate
volcano analogs based on relatively first-order characteristics
of the target volcano (Tierz et al., 2019).

8. CONCLUSIONS

By informing a Monte Carlo energy cone model with field
constraints, volcanic plume modeling and global proxy data sets,
we have developed the first PVHA for a pumice cone volcano.We
find that at Aluto volcano (Ethiopia), the wide spread of potential
vent locations means that despite the modest eruption columns
that are likely to occur during pumice cone eruptions (Fontijn
et al., 2018; McNamara et al., 2018; Clarke et al., 2019; Clarke,
2020), there is a wide area with a probability of PDC inundation
equal or >5%, in the event of a pumice cone eruption. Given
the aleatory uncertainty in vent opening, the probabilities tend to
be more homogeneous and lower than those typically computed
at “central-vent” stratovolcanoes (e.g., Bayarri et al., 2009; Tierz
et al., 2016a,b, 2018). The highest conditional probability of
PDC inundation is 12% within the caldera floor. Other relatively
hazardous regions are the western and the south eastern flanks.
This probability decays to 1% at around 5 km from the break in
slope surrounding the edifice. This area encompasses numerous
settlements, and the highest risk region, the caldera floor, hosts
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a school and geothermal infrastructure. Though the Monte Carlo
energy conemodelingmethod comes with important caveats, this
work now provides a robust background on which further PVHA
(for PDCs and other volcanic hazards) at Aluto volcano can be
developed. The work also provides a transferable methodology
which could be applied to quantify PDC hazards at other caldera
systems worldwide; particularly at peralkaline caldera systems,
where volcanism is often dominated by pumice cone eruptions.
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