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Abstract  

In this study, the distributed catchment-scale model, DiCaSM, was applied on five catchments across the 

UK. Given its importance, river flow was selected to study the uncertainty in streamflow prediction using 

the Generalized Likelihood Uncertainty Estimation (GLUE) methodology at different timescales (daily, 

monthly, seasonal and annual). The uncertainty analysis showed that the observed river flows were within 

the predicted bounds/envelope of 5% and 95% percentiles. These predicted river flow bounds contained 

most of the observed river flows, as expressed by the high containment ratio, CR. In addition to CR, other 

uncertainty indices – bandwidth B, relative bandwidth RB, degrees of asymmetry S and T, deviation 

amplitude D, relative deviation amplitude RD and the R factor – also indicated that the predicted river flows 

have acceptable uncertainty levels. The results show lower uncertainty in predicted river flows when 

increasing the timescale from daily to monthly to seasonal, with the lowest uncertainty associated with 

annual flows.  

Keywords distributed catchment-scale model, DiCaSM; GLUE, model uncertainty, River Eden, River Don, 
River Ebbw, River Frome, River Pang, UK  
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The results of hydrological models are judged by their reliability, accuracy and level of uncertainty. There 

are a number of factors that affect the model results. They include the model structure, the accuracy in 

describing the hydrological processes, the parameter values and the inherent errors in input and observation 

data. These factors, if not closely representing the natural system, could lead to imprecision and uncertainty 

in model results (Loucks and Van Beek, 2017). One of the most applied methods for assessing the 

uncertainty is the Generalized Likelihood Uncertainty Estimation (GLUE), proposed by Beven and Binley 

(1992). This methodology has been used in numerous hydrological studies (e.g. Xue et al. 2018, 

Teweldebrhan et al. 2018, Kan et al. 2019, Xie et al. 2019, Tegegne et al. 2019).  

The GLUE methodology assumes that there is no optimal parameter set that could describe the catchment 

hydrology. As stated by Beven and Binley (1992), “there may be many sets of parameter values that are 

equally likely as simulator of the hydrological system.” The GLUE methodology states that the performance 

of simulation is not decided by one specific parameter, but by the combination of parameters in a 

parameter set. The methodology recognises the possible equifinality and the multiple behavioural (Beven 

and Binley, 1992) of the different parameter sets and assesses the likelihood of a set being acceptable when 

compared with the observed datasets.  

Although several studies have applied the GLUE methodology to assess model performance, little work has 

been carried to study model performance over different timescales (daily, monthly, seasonal and annual), 

and over different catchments of different sizes, land-use characteristics, geographical location and soil 

physical characteristics.  

This work is part of a large project, DRY1, aimed at investigating the impact of climate and land use on 

water resources, with special emphasis on the drought aspect. The aim of this paper is to assess the level of 

uncertainty in predicted river flows at different timescales, since its quantification at different timescales will 

be valuable. The project involves national and local stakeholders, each of which has different interest. For 

example, the National Farmers Union (UK) has an interest in the seasonal water requirement for the farming 

community, which is more associated with seasonal predictions, while local councils have an interest in 

                                                            
1 http://dryproject.co.uk/ 
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water availability for the new urban developments, which is more associated with annual prediction of water 

resources availability. 

2 DiCaSM, the data and the studied catchments  

2.1 The DiCaSM model 

This study applied the Distributed Catchment Scale Model, DiCaSM (Ragab and Bromley, 2010, Ragab et 

al., 2010). The model is physically based and considers commonly known hydrological processes, such as 

rainfall interception, infiltration, evapotranspiration, surface runoff to streams, recharge to groundwater, 

water uptake by plants, soil moisture dynamics and streamflow. The model has been developed to estimate 

the catchment water balance components and to account for the impact of changes in climate and land use on 

the catchment water resources, including streamflow and recharge to the groundwater. The model adopts a 

distributed approach with a variable spatial scale (default is a 1 km × 1 km grid square). It requires daily 

input data of rainfall, temperature, wind speed, vapour pressure and radiation. The model runs on a daily 

timestep; however, if hourly rainfall data is available, the model can run on an hourly timestep. The model 

also addresses the heterogeneity of input parameters of soil and land cover within the grid square using three 

different algorithms (Ragab and Bromley, 2010). The model has been successfully applied on a catchment in 

Brazil (Montenegro and Ragab 2010, 2012), Italy (D’Agostino et al. 2010) and Cyprus (Ragab et al. 2010).  

2.2 Components of DiCaSM  

The key model components of DiCaSM are rainfall interception, potential evapotranspiration, the catchment 

water balance, infiltration, surface runoff /overland flow and groundwater recharge. The processes include 

rainfall interception by grass surface (calculated according to Aston 1979), by crops (according to Von 

Hoyningen-Huene 1981) and by trees (according to Gash et al. 1995). Potential evapotranspiration of mixed 

vegetation is calculated according to Raupach (1995), whereas the surface runoff calculation is based on 

either excess saturation or excess filtration. The infiltration is calculated according to the equations of either 

Philip (1957) or Green and Ampt (Green 1911). The runoff is routed between the low points of each grid 

square along the prevailing slope using a digital terrain model (DTM). The model calculates the soil water 

balance of the root zone based on the four-layer model of Ragab et al. (1997) and calculates overland and 
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channel flow according to Yu and Jeng (1997). Further details about the model are given in Ragab et al. 

(2010) and Ragab and Bromley (2010).  

2.3 Input data for DiCaSM  
 

The DiCaSM model was applied on five selected catchments located in different parts of the UK (Fig. 1), as 

part of a project to study the climate change impact on water resources. The data required to run the model 

are: climate data, elevation map data, land cover map data, soil cover map data, soil hydraulic properties and 

land cover properties. The climate data required are temperature, wind speed, vapour pressure and radiation, 

as well as the rainfall. The climatic data were obtained from the Climate, Hydrology and Ecology research 

Support System (CHESS) (Robinson et al., 2015, Tanguy et al., 2016). The catchment boundary and gauging 

station location data were collected from the UK Centre for Ecology and Hydrology (Morris et al., 1990b, 

Morris and Flavin, 1994) and the National River Flow Archive (NRFA2) provided data for the daily river 

flow for the studied catchments. The river flow data were collected from the UK Centre for Ecology and 

Hydrology: “Digital Rivers 50km GB”' Web Map Service3 and the land cover data were obtained from the 

“Land Cover Map 2007 (25m raster, GB)” Web Map Service (Morton et al., 2011). 

2.4 Key model parameters and model simulations 

The observed streamflow data were obtained from the UK Environment Agency (one of the stakeholders in 

the project). The river flow in the DiCaSM model depends on six parameters: the percentage of surface 

runoff routed to stream, an exponent function describing the peak flow, the catchment storage/time lag 

coefficient, the stream storage/time lag coefficient, the baseflow index and the streambed 

infiltration//leakage. In addition, there are other parameters that affect the calibration, such as the soil 

hydraulic parameters. For the model calibration, the model was run with a range of the above-mentioned 

model parameters using first the best periods, i.e. those available with the best quality data (no gaps), for the 

model simulations. The selected time period was chosen using a simple iteration algorithm for optimization, 

in which each of the above-selected parameters was assigned a range described by a minimum and a 

                                                            
2 http://nrfa.ceh.ac.uk/ [Accessed 2014] 
3 https://data.gov.uk/dataset/3c7ea82e-83e0-45a3-9a3f-8ba653b3211b/ceh-digital-river-network-of-great-britain-web-
map-service [Accessed 2014] 
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maximum value. Each range was divided into several steps and the number of total iterations is the product 

of multiplication of the steps of the six key parameters. The number of iterations for each parameter was 

assigned according to the parameter sensitivity, i.e. a higher number was assigned to parameters that showed 

more impact on the streamflow. The model calculates the Nash-Sutcliffe efficiency, NSE, for each iteration. 

The model optimisation process helps in finding a good set of parameters that produces a good model 

efficiency factor. In addition to the NSE, other indices such as lnNSE (using natural logarithmic values of 

streamflow) and R2 were also used to compare the simulated and the observed data. 

Generally, the model calibration was carried out over a shorter period and then the model was validated for 

several years to the entire available record to ensure the consistency and coherence of the parameter ranges. 

For distributed models such as DiCaSM (grid square area of 1 km2 and using 52 years of data), this process 

helps in identifying the range of each parameter to reduce the number of iterations required by the GLUE 

methodology. Conceptual non-distributed models such as rainfall–runoff models have less computing power 

requirement and can be run with a large number of iterations within significantly a shorter time period than 

distributed models. 

2.5 Assessing model efficiency/performance  

To determine the model efficiency/goodness of fit, the modelled and observed river flow data were 

compared using a number of indices, including the NSE criterion (Nash and Sutcliffe, 1970). The NSE is the 

most widely used factor to assess the performance of hydrological models (Gupta et al., 2009). An NSE of 1 

indicates a perfect match.  

NSE	 = 1 −	∑ (ை೔ିௌ೔೙೔సభ )మ∑ (ை೔ି	ைത೙೔సభ )మ	   (2) 

where Oi and Si refer to the observed and simulated flow data, respectively, Ō is the mean of the observed 

data and n is the number of observations. The calibration procedure consisted of adjusting the model 

parameters to achieve the best model fit, with the latter assessed using the NSE values. Krause et al. (2005) 

indicated that extreme values in a time series can result in a low NSE coefficient because hydrological 
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models tend to underestimate river flow during peak flows. For this reason, they suggested calculating the 

NSE coefficient with natural logarithmic values of the flow, as used in Afzal et al. (2015):  

ln NSE 	= 1 −	∑ (୪୬	ை೔ି୪୬	ௌ೔೙೔సభ )మ∑ (୪୬	ை೔ି୪୬Ō౤౟సభ )మ 	  (2) 

In addition, the model performance was also evaluated using the statistical indicators, namely the coefficient 

of determination, R2 as follows:  

ܴଶ = 	 ቄଵே	∑ [(ை೔ିைത]	(ௌ̅ିைത೙೔సభ	ఙை೔ିఙௌ೔ ቅ        (3) 

where N is the total number of observations, ݕതo is the average measured (observed) value, పܵഥ  is the average 

simulated value, ߪ ௜ܱ is the observed data standard deviation and ߪ ௜ܵ is the simulated data standard 

deviation. The values of this index can range from 1 to 0, with one indicating perfect fit.  

3 Generalized Likelihood Uncertainty Estimation (GLUE) methodology 

Although there are a number of ways to evaluate the uncertainty, the GLUE methodology has the advantage 

of using only a small number of assumptions and of being simple in its application. It is based on the 

estimation of the weights, or probabilities, associated with different parameter sets. The set that produces the 

least errors (good fit) is usually associated with the highest likelihood function, and the highest probability. 

In the GLUE methodology, the likelihood uncertainty level is calculated as: 

ܮ ቀఏ೔௒ ቁ = ൬1 − ఙ೔మ	ఙ౥ౘ౩మ ൰											(4) 

where L is the likelihood measure of the ith model simulation made with the parameter set θi related to the 

measured streamflow Y, and is a function of the ratio of errors variance, σ2
i for the ith model simulation 

(representing the variance of the error between the model prediction and the observed streamflow) and the 

variance of the observed streamflow, σ2
obs. A distribution function is obtained by rescaling of the likelihood 

measures such that the sum of all the likelihood values would equal 1. The cumulative distribution and the 

prediction quantiles (95% and 5% confidence levels) are used to assess the uncertainty level.  
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The application and results of the GLUE approach vary, based on the threshold assigned for acceptable 

goodness-of-fit indicator and the likelihood measure (i.e. minimum NSE value) chosen to evaluate whether 

the selected set of parameters is behavioural or not (Beven and Binley 1992, Beven 2006, Viola et al., 2009). 

Different likelihood measures could be used, such as the NSE or the sum of squared errors (Beven and 

Binley 1992, Freer et al. 1996). Users could define the threshold of efficiency criteria according to their 

model preference and for each individual catchment. The GLUE methodology rejects non-behavioural 

parameter sets when the likelihood measure selected takes lower values than the designated threshold. The 

behavioural sets are retained together with the likelihood values, which are used for the weight calculation. 

The cumulative likelihood weighted distribution of predictions can be used to estimate the quantiles for the 

predictions at any timestep.  

To apply the GLUE methodology, one needs to define the threshold value of the likelihood measure that 

differentiates between behavioural and non-behavioural models.  

3.1 Uncertainty indicators  

In this study, the uncertainty analysis was carried out on calibration and validation sub-periods of the 

dataset. Different sets of model parameters were used to generate the modelled river flow time series and the 

NSE criterion was chosen as a likelihood measure indicator. Based on previous studies (Jackson et al., 

2016), the NSE threshold was set to 0.5 (50%), which implies that all parameter sets with NSE below 0.5 are 

considered non-behavioural and not included in the GLUE analysis. The uncertainty levels are evaluated 

with a number of indicators: CR, B, RB, S, T, R factor, D, and RD as reported by Xiong et al. (2009) and 

defined in the Appendix. The CR parameter is the containment ratio, which is the percentage of observed 

river flows that are enveloped by the prediction bounds of the 5% and 95% confidence levels, i.e. the Q5%–

Q95% likelihood-weighted quantiles. The CR is probably the most basic requirement for the prediction 

bounds. A high CR for the estimated prediction bounds is always the aim.  

The indices S and T are used for assessing the geometric structure/average asymmetry degree of the band 

formed by the lower and upper prediction bounds. An average asymmetry degree index value of S < 0.5 
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indicates that, on average, the river hydrograph lies within the prediction bounds. In the completely 

symmetrical case, the value of S is zero. Desirable bounds should have values of 0 < S < 0.5 and 0 < T < 1.  

The bandwidth of the prediction bounds Q5%–Q95%, B, should be as narrow as possible, so as to capture the 

most important information about the modelling uncertainty. The average relative bandwidth, RB is used to 

facilitate the comparison of results of the prediction bounds on different catchments, it is necessary to 

eliminate the impact of discharge magnitude on the bandwidth of the prediction bounds.  

The average deviation amplitude, D, quantifies the discrepancy between the trajectory consisting of the 

middle points of the prediction bounds and the observed discharge hydrograph. The average relative 

deviation amplitude, RD, eliminates the impact of discharge magnitude on the value of the index of average 

deviation amplitude.  

The uncertainty parameter R factor is the average thickness of the band divided by the standard deviation of 

the observed data. A value of less than 1 is a desirable measure for the R factor (Singh et al., 2014). More 

details about the indicators are given in the Appendix.  

3.2 GLUE methodology application  

The DiCaSM model provides, for each parameter set combination, a single value of simulated streamflow. 

Performance evaluation is carried out, including rejection of some parameter sets as non-behavioural (NSE < 

0.5). This is followed by calculation of the likelihoods of behavioural parameter sets and rescaling to 

produce a cumulative sum of 1. This is carried out by ranking in ascending order all the simulated 

streamflow data (only of those behavioural parameter sets) and the corresponding cumulated efficiencies 

(NSE). Each cumulated efficiency value, divided by the maximum value, results in a value ranging between 

0 and 1. These values are referred to as the ‘probability weighted in efficiency’ (Viola et al., 2009, 

D’Agostino et al. 2010). A cumulative distribution function (cdf) of the simulated streamflow is also 

constructed, relating each value of the simulated flow to the corresponding value of the probability weighted 

in efficiency.  
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The model uncertainty analysis is carried out over daily, monthly, seasonal and annual timescales. This helps 

to assess the uncertainty level of different timescales. To calculate the uncertainty level for the simulated 

streamflow, the following steps are followed (see also Fig. A1 in the Appendix): 

Step 1. Select a likelihood measure; the NSE was selected as it is widely used. 

Step 2. Assign parameter ranges (minimum, maximum, number of steps). 

Step 3. Assign a threshold value for the likelihood measure to differentiate between behavioural and non-

behavioural parameter sets; a value of NSE = 0.5 (Jackson et al., 2016) was selected. 

Step 4. Simulate flow with several parameter sets and record the likelihood value of each parameter set.  

Step 5. Retain the behavioural parameter sets together with the likelihood values which are considered the 

simulation weights. 

Step 6. Rescale the weights obtained in Step 6 so that the sum equals one, to produce a cumulative 

distribution.  

Step 7. From the cumulative likelihood distribution function of streamflow prediction, derive the 5% and 

95% quantiles of uncertainty in the streamflow prediction at any timestep. 

The procedure followed here is in accordance with Beven and Binley (1992) and similar to the procedure 

followed by a number of scientists, such as Freer et al. (1996), Blasome et al. (2008), Freni et al. (2008), 

Xiong and O’Connor (2008), Viola et al. (2009), Xiong, et al. (2009), Jin et al. (2010), Beskow et al. (2011), 

Chen et al. (2013), Khoi and Thom (2015), Jackson et al. (2016) and Teweldebrhan, et al. (2018). 

There are several ways of presenting the results of the uncertainty analysis, as given below.  

• Statistical data about the behavioural and non-behavioural simulations: for example, the percentage 

of behavioural simulations. If the model is run 1000 times and achieves 100 behavioural 

simulations, then the percentage of behavioural simulations = 100/1000 = 10%. Table 1 shows that 

this ratio varies from >50% to >90% for the studied catchments.  

• Different indicators (Section 3.1). In the description of the results, a combination of indicators can 

give valuable information about the uncertainty results. For example, a low average bandwidth 
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combined with high CR denotes that the uncertainty bounds are low (low average bandwidth) and 

that a large part of the observed values is included in these bounds (high CR). This would show that 

the model and the parameter sets are reliable and could be used for further analysis and decision 

making.  

• Simulated time series of the observed, calibration and validation periods together with the envelopes 

of percentiles 5%–95% (Freer et al., 1996; Beven and Freer, 2001; Jackson et al., 2016). Average 

volumes are plotted against their rescaled likelihoods, which results in a plot of variation interval of 

the average volume. By projecting the probability weighted in efficiency values of 0.05 and 0.95 

onto the volume curve, the upper and lower confidence bands can be identified. The mean values of 

the observed volume, plotted as a vertical line, should lie within the confidence region of the model. 

In order to compare the behavioural time series with the observed volume, a cumulative distribution 

function (cdf) can be plotted for all behavioural time series.  

 

4 Results and discussion 

4.1 Model river flow simulations for uncertainty analysis  

To reduce the number of simulations, the sensitivity of each parameter for each catchment was tested by 

running the model for a short time period, e.g. 2 years. This provided more insight into the range of 

parameters and number of iteration steps that could be considered in order to get the best results (e.g. to get 

iterations with an NSE between 50% and 100%). The benefit of the sensitivity analysis prior to application 

of the GLUE was to reduce the number of iterations, which led to a reasonable number of parameter sets 

selected for the five catchments (Table 1).  

For all the selected time periods, the threshold for GLUE was set at NSE = 50%. This means that 

behavioural simulations must have an NSE value equal to or above 50%. All simulations with NSE below 

50% were discarded from the GLUE analysis. The range of parameters and the number of iterations used in 

the study for all studied catchments are shown in Table 2. Some parameters were sampled over a very broad 
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range, while others were sampled over a narrow range (as the model proved the streamflow data were less 

sensitive to those parameters).  

4.2 Model river flow calibration and validation  

The five study catchments were calibrated and validated using the observed naturalized river flows for 

different periods from 1961 to 2012. Detailed goodness-of-fit indices as model performance indicators for 

the calibration and validation periods of the five studied catchments are shown in Table 3. 

An example of calibration for the Ebbw catchment is shown in Figure 2, which shows a good agreement 

between the observed simulated flows. The NSE for this period is 91%. Overall, the model performed well 

for both the rainy and dry events and responded according to the soil hydrological status, i.e., for the soil 

moisture deficit period, a small rainfall event did not generate a significant increase in streamflow and for a 

heavy rainfall event when the soil was wet, especially in winter months, the model generated streamflow. 

For all catchments, in the model calibration stages, the NSE was, on average, around 89% and the maximum 

percentage error did not exceed 1% (Table 3). The model also performed very well for the well-known 

1970s drought events. Generally, the overall model performance for the whole period (1961–2012) for all 

catchments was extremely good, with an NSE, on average. of around 85% and a maximum error not 

exceeding 5%.  

4.3 Model uncertainty analysis  

Based on the simulated river flows of the five catchments, for the calibration and validation periods, the 

envelope of 5% and 95% likelihood-weighted quantiles (the envelope of all behavioural models, i.e. NSE 

>50%) was plotted against the observed time series. Tables 4, 5, 6 and 7 show the uncertainty indicator 

values for daily, monthly, seasonal and annual river flows, respectively. An example of monthly river flows 

of the Ebbw catchment is shown in Figure 3, which shows the envelope of the 5% and 95% likelihood-

weighted quantiles for the calibration period 2000–2004 (blue) and the validation period 1961–2012 

(brown), and the observed river flow (solid line). For most of the time, the observed discharge is contained 

within the calculated uncertainty bounds, and the predictions bracketed the observations, given that, for the 
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Ebbw catchment, the calibration had an NSE value of 91% and the validation NSE of 87%, as shown in 

Table 3.  

The number of observations contained within the 5% and 95% GLUE uncertainty bounds, expressed as CR, 

ranged from 72% to 84%. Such high values of CR mean that the model captured the observed flow quite 

well, as more observed values are included in the envelope, showing that those sets of parameters used can 

be considered acceptable to be used for future projections, such as climate change scenarios. Similar results 

with good CR values were also obtained for monthly flows of the other catchments, as shown in Table 5.  

The uncertainty level could differ according to the timescale. Figure 4 shows the seasonal river flow for the 

Don catchment as an example. The results reveal that the model performed well over different seasons, 

including summer. The envelope of the 5% and 95% likelihood-weighted quantiles is shown for the 

calibration and validation periods. For most of the time, the observed discharge is contained within the 

calculated uncertainty bounds, i.e. the predictions bracketed the observations to a great extent (CR = 76%), 

given that the calibration NSE value was 91% and the validation NSE value was 87% for the Don 

catchment, as shown in Table 3. Similar results of seasonal flows for other catchments were obtained, and 

values are shown in Table 6.  

Figure 5 shows the simulated annual flows and the envelope of 5% and 95% likelihood-weighted quantiles 

compared against the observed annual time series for the Frome catchment as an example. In Figure 5, the 

envelope of the 5% and 95% likelihood-weighted quantiles are given for the calibration (2001–2012) and the 

validation period (1971–2000); the black line represents the observed flow. All the time the observed 

discharge is contained within the calculated uncertainty bounds, the predictions bracketed the observations, 

where CR ranged from 90% to 100%. In most of the studied catchments the annual CR was above 80, and 

the lowest was 73%. The higher values of CR mean that the model captures the observed flow quite well as 

more observed values are included in the envelope.  

Figure 6 shows the ‘probability weighted in efficiency’ based on the methodology given by Viola et al. 

(2009), D’Agostino et al. (2010), Beskow et al. (2011) and Hoang et al. (2018). The solid (red) vertical line 

represents the average value of the measured river flow for the simulated period. It should be noted that this 
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value falls within the confidence region of the model for the Don and Ebbw catchments as examples (Fig. 6). 

Other catchments showed similar results.  

To compare the behavioural time series with the observed volume, the cdf is plotted for all behavioural time 

series. Figure 7 shows, as an example, the cumulative distribution probability of the Don and Eden 

catchments for the period 1962–2012. It is shown in Figure 7 that the observed streamflow data fall within 

the range of the number of simulated values obtained from the iterations.  

4.4 Statistic indices 

The uncertainty indicators were calculated for daily (Table 4), monthly (Table 5), seasonal (Table 6) and 

annual (Table 7) river flows for different periods. Table 4 shows the uncertainty indicators for daily river 

flows. The containment ratio CR ranged from 62% to 71%, for the Eden catchment, 76% to 86% for the 

Ebbw catchment, 56% to 60% for the Don catchment, 48% to 50% for the Frome catchment and 35% to 

38% for the Pang catchment. The CR values differ from one period to another, as the validation and 

calibration goodness of fit are also different for different periods. However, for the full period of record 

(1961–2012), the CR values were 66%, 80%, 57%, 49% and 36% for the Eden, Ebbw, Don, Frome, and 

Pang catchments, respectively.  

The asymmetry degree expressed by S and T shows S value ranges of 0.39–0.50, 0.30–0.40, 0.53–0.61, 

0.75–0.93 and 0.99–1.02 for the Eden, Ebbw, Don, Frome, and Pang catchments, respectively, with S for the 

total period of  0.43, 0.36, 0.6, 0.85 and 1.01, respectively. The S value was within the recommended range 

0.0 < S < 0.5 for the Eden and Ebbw catchments. The T value was in the ranges 0.86–0.98, 0.76–0.87, 1.02–

1.10, 1.26–1.48 and 1.54–1.57 for the Eden, Ebbw, Don, Frome, and Pang catchments, respectively, with T 

for the whole period of 0.90, 0.82, 1.10, 1.38 and 1.56, respectively. Similar to S, the T value was within the 

recommended range 0 < T <1 in the Eden and Ebbw catchments. One should note here that larger values of S 

or T represent more asymmetrical prediction bounds around the observed flow hydrograph.  

The R factor value was in the ranges 0.72–0.90, 0.55–0.67, 0.64–0.70, 0.46–0.52 and 0.51–0.6 for the Eden, 

Ebbw, Don, Frome, and Pang catchments, respectively, with R for the whole period of 0.86, 0.62, 0.68, 0.49, 
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and 0.53, respectively. A value of R less than 1.0 is desirable (Singh et al., 2014) and the values obtained for 

the five catchments largely meet this requirement.  

The average bandwidth B of the prediction bounds Q0.95–Q0.05 and the relative average bandwidth RB are 

also shown in Table 4. The relative bandwidth values for the whole period (1961–2012) were 0.84, 0.81, 

0.79, 0.93, and 0.37 for the Eden, Ebbw, Don, Frome and Pang catchments, respectively. 

Table 4 shows the average deviation amplitude of the middle points of the predicted bounds from the 

observed flow hydrograph, D and the relative average RD. The relative average deviation amplitude values 

for the whole record were 0.35, 0.24, 0.39, 0.48 and 0.25 for the Eden, Ebbw, Don, Frome and Pang 

catchments, respectively. 

Both RB and RD values indicate a small relative bandwidth and deviation amplitude relative to observed 

flow values, respectively. The S, T, B, RB, D and RD values are comparable with the results of Xiong et al. 

(2009), who found that higher CR values are associated with lower values of S and T and higher values of B, 

RB and D. They stated that it is very difficult to achieve a desirable level of the CR, T and B, e.g. a high CR 

associated with a narrow bandwidth, B, and a low average asymmetry S and T with respect to the observed 

flows.  

The monthly, seasonal and annual flow uncertainty indicators, as presented in Tables 5, 6 and 7, 

respectively, show much improved values of CR, S, T, RB, RD and R. Generally, the annual flows show 

better results of low uncertainty than seasonal; seasonal results are better than monthly and monthly better 

than daily. This is explained in the next section.  

4.5 Temporal scale impact on the uncertainty levels 

4.5.1 Containment ratio (CR) 

The CR values (Tables 4–7) were plotted to illustrate the difference in CR when calculated for daily, 

monthly, seasonal and annual river flow/volume. Figure 8 shows an example of four catchments. From 

Tables 4–7, in most of the catchments, the CR value was improving (getting larger} when the temporal scale 

increased from daily to monthly to seasonal to annual. In most cases, the highest CR was associated with 
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annual flows and the lowest with daily flows. The CR annual value increased to almost 100% from lower 

values at daily, monthly or seasonal CR for the Eden, Don, Frome and Pang catchments.  

4.5.2 Asymmetry degree, S and T  

Ideally the asymmetry indicators such as S and T should be in the ranges 0 < S < 0.5 and 0 < T < 1 to have a 

good symmetrical condition; i.e. low uncertainty occurs within those ranges. Figure 9 shows the asymmetry 

indicator S for four catchments and at four timescales. Generally, the S values are reasonable and show a 

better symmetry when considering annual flows (0 < S < 0.5), followed by seasonal, then monthly, then 

daily flows. Clear examples are the cases of the Eden, Don, Frome and Pang catchments. Similar results 

obtained for the T indicator for the four catchments and at four timescales are shown in Fig. 10. Reasonable 

results were obtained showing a better symmetry when considering annual flows (0 < T < 1), followed by 

seasonal, then monthly, then daily. Good examples are the cases of the Eden, Don, Frome and Pang 

catchments.  

4.5.3 Average relative bandwidth, RB  

Relative bandwidth (RB), if narrow, indicates lower uncertainty. Tables 4–7 show both the bandwidth (B) 

and the RB. Figure 11 shows an example of RB for the four study catchments. The RB values look 

reasonable and indicate a relatively narrower bandwidth when using annual flows, followed by monthly, 

then seasonal, then daily flows. Figure 11 shows the significant difference between daily and annual RB 

values.  

4.5.4 Average relative deviation amplitude, RD 

The relative deviation amplitude (RD), if smaller, indicates lower uncertainty. Tables 4–7 show the deviation 

amplitude (D) and the RD. Figure 12 shows an example of RD of the four study catchments. The RD values 

look reasonable and indicate a relatively small deviation when using annual flows, followed by monthly, 

then seasonal, then daily flows. Figure 12 shows the significant difference between daily and annual RB 

values.  
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4.5.5 The R factor  

The R factor gives the average thickness of the band Q0.95–Q0.05 relative to the standard deviation of the 

observed data, where a value of 1 is ideal. Tables 4–7 show reasonable values for the R factor. An example 

of R factor for the four study catchments is shown in Figure 13; it can be seen that there are fewer variations 

between daily, monthly and seasonal flow, with the annual flows sometimes slightly better.  

In contrast to the daily, monthly and seasonal uncertainty indicators, such as CR, annual river flows had 

lower uncertainty levels. For example, the annual CR for some periods was as high as 100% for some 

catchments. Moreover, in comparison to the monthly and seasonal flows, the uncertainty levels of annual 

river flows of both the Frome and Pang catchments were reduced significantly, with the CR of the Pang 

ranging from 77% to 100% and that for the Frome from 90% to 100%. Other uncertainty indicators such as S 

and T were also been improved for all five catchments. Generally, this indicates that the uncertainty level is 

reduced when considering annual rather than monthly or seasonal river flows.  

5 Conclusion 
 

The uncertainty indicators of the five catchments revealed the following results:  

• The average containment ratio (CR) value that gives the percentage of observed river flows 

enveloped by confidence levels Q5%–Q95% likelihood-weighted quantiles for daily, monthly, seasonal 

and annual flow values, was 60%, 64%, 66% and 84%, respectively (a higher value is desirable).  

• The average relative bandwidth (RB) values for daily, monthly, seasonal and annual flows were 

0.77, 0.67, 0.52 and 0.25, respectively (a narrow value is desirable).  

• The average asymmetry indicator (S) values for daily, monthly, seasonal and annual flows were 

0.59, 0.46, 0.43 and 0.30, respectively, and the average T values were 0.09. 0.94, 0.91 and 0.76, 

respectively (desirable bounds should have values of 0 < S < 0.5 and 0 < T < 1).  

• The average relative deviation amplitude (RD) for daily, monthly, seasonal and annual flows were 

0.34, 0.27, 0.20 and 0.07, respectively (a smaller value is desirable). 

• The average R factor values for daily, monthly, seasonal and annual flows were 0.66, 0.73, 0.76 and 

1.08, respectively (a value closer to 1 is desirable).  
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Generally, the different uncertainty indicators (CR, S, T, B, RB, D, RD and R factor) all gave desirable 

values indicating a reasonable low uncertainty level in model prediction.  

The GLUE methodology showed lower uncertainty in predicted river flows when increasing the timescale 

from daily to monthly to seasonal river flows with the lowest uncertainty associated with annual flows. 

The results showed that DiCaSM provided a small level of uncertainty in the predicted river flows and 

subsequently, a higher confidence level in the results. The results presented in this paper, for different 

timescales, could be useful for various stakeholders, water resources planners and decision makers.  
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Figure captions 

 

Figure 1. Overview map of the UK showing the case study catchments.  

Figure 2. Ebbw River catchment – model calibration for the period 2000–2003.  

Figure 3. Model output uncertainty boundaries (5th and 95th percentiles) when performing the GLUE 
analysis on model calibration (2000–2004) and validation (1961–2012) periods for the Ebbw catchment river 
flow (monthly values).  

Figure 4. Model output uncertainty boundaries (5th and 95th percentiles) when performing the GLUE 
analysis on model calibration (2001–2012) and validation (1967–2012) periods for the Don catchment river 
flow (seasonal values).  

Figure 5. Model output uncertainty boundaries (5th and 95th percentiles) when performing the GLUE 
analysis on model calibration (2001–2012) and validation (1971–2000) periods for the Frome catchment 
using annual observed and simulated data. 

Figure 6. Uncertainty band of the DiCaSM parameters for the period 1962–2012 for the Don and Ebbw 
catchments. The solid (red) vertical line represents the average value of the measured river flow for the 
simulated period. 
 

Figure 7. Cumulative probability plot of flows for the Don and Ebbw catchments (1962–2012). 
*the time period in grey was used for the model calibration. 
 

Figure 8. Containment ratio (CR) at different timescales for the Frome, Eden, Don and Ebbw catchments. 
 
Figure 9. Asymmetric degree S for the Frome, Eden, Don and Ebbw catchments. 
 
Figure 10. Asymmetric degree T for the Frome, Eden, Don and Ebbw catchments. 
 
Figure 11. Average relative band width, RB, for the Frome, Eden, Don and Ebbw catchments. 
 
Figure 12. Average relative deviation, RD, for the Frome, Eden, Don and Ebbw catchments. 
 
Figure 13 R factor values for the Frome, Eden, Don and Ebbw catchments. 
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Table 1. Number of iterations and ranges of NSE for monthly percentiles. 

Catchment Total no. of 
iterations 

No. of iterations with 
monthly NSE > 0.50 

Range of  
monthly NSE  

Range of monthly 
NSE > 0.50 

Eden 60 60 0.50–0.85 0.50–0.85 
Frome 490 396 -0.25–0.93 0.50–0.93 
Ebbw 108 103 0.27–0.95 0.51–0.95 
Pang 648 342 -0.92–0.91 0.50–0.91 
Don 336 225 -0.35–0.89 0.50–0.89 

 

Table 2. Key model parameter ranges and number of iterations. 
 
Catchment Model parameters 

Base percentage 
of flow routed to 
stream 

Exponent function 
of flow routed to 
stream 

Catchment 
storage/ time lag 

Stream storage/ 
time lag 

Baseflow factor 

 Range/ Iterations Range/ Iterations Range/Iterations Range/Iterations Range/ Iterations 
Frome 9–90 10 0.02–0.04 7 45 1 15 1 0.2–0.8 7 
Pang 0.2–1.8 9 0 to 0.004 3 0.1–1 8 0.015 1 1.75 10-8–3.3 × 

10-7 
3 

Ebbw 10 - 90 9 0.02–0.4 2 2 1 20 1 2.2 × 10-9–2.2 × 10-7 6 
Eden 40-95 4 1.0 × 10-5 1 315 1 15–55 3 0.14–0.75 5 
Don 10-90 8 0–0.3 6 143 1 18 1 0.02–0.95 7 

 

Table 3. Model performance for the calibration and validation stages of the six catchments studied. 

Catchment  
Period NSE lnNSE R2 

Square 
root of R2 

Modelled 
flow  

(m3 s-1) 

Observed 
flow 

(m3 s-1) 
% Error 

Eden 2012† 0.90 0.95 0.89 0.94 5.03 5.04 –0.19 

1971–1980 0.79 0.89 0.79 0.89 3.60 3.54 1.69 
1971–2012 0.79 0.90 0.80 0.89 4.11 4.13 –0.48 

Ebbw 2000–2003† 0.91 0.88 0.92 0.96 7.19 7.23 –0.55 
1971–1980 0.87 0.82 0.88 0.94 6.70 6.53 2.56 
1961–2012 0.87 0.82 0.88 0.93 6.98 7.21 –3.17 

Don 2011–2012† 0.92 0.86 0.91 0.95 5.41 5.32 1.81 

2001–2012 0.87 0.73 0.87 0.93 4.86 4.73 2.61 

1971–1980 0.82 0.66 0.83 0.91 4.68 4.90 – 4.63 

1966–2012 0.83 0.73 0.84 0.91 5.06 5.08 –0.60 

Frome 2001–2012† 0.86 0.83 0.86 0.93 1.79 1.78 0.94 
1971–1980  0.80 0.78 0.81 0.90 1.56 1.48 4.93 
1962–2012 0.82 0.80 0.83 0.91 1.71 1.74 –2.25 

Pang 2001–2003† 0.92 0.89 0.94 0.97 0.79 0.81 –2.14 
2000–2012 0.90 0.83 0.90 0.95 0.66 0.64 2.96 
1971–1980 0.78 0.79 0.78 0.88 0.62 0.61 1.76 
1971–2012 0.81 0.80 0.83 0.91 0.66 0.64 3.47 

†calibration period.  
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Table 4. Results of daily GLUE prediction bounds for all the studied catchments (See the Appendix for 
description of the parameters). 
 
Catchment Daily prediction bounds 
 CR B  RB S T D RD R factor Period 
Eden 61.70 2.29 0.74 0.50 0.98 0.88 0.31 0.72 1975–1976

61.97 2.82 0.82 0.42 0.89 0.97 0.36 0.71 1976–1977
62.61 2.51 0.87 0.46 0.94 0.96 0.38 0.88 1971–1980
69.69 2.94 0.84 0.39 0.86 1.06 0.32 0.87 1981–1990
67.78 2.91 0.87 0.40 0.87 1.05 0.35 0.90 1991–2000
63.43 2.99 0.80 0.46 0.93 1.15 0.34 0.82 2001–2012
65.76 2.85 0.84 0.43 0.90 1.06 0.35 0.86 1971–2012

Ebbw  75.83 4.54 0.83 0.40 0.87 1.50 0.29 0.67 1971–1980
81.22 5.25 0.77 0.35 0.82 1.74 0.21 0.61 1981–1990
85.60 5.34 0.82 0.30 0.76 1.64 0.21 0.57 1991–2000
83.87 4.96 0.83 0.33 0.79 1.57 0.23 0.59 2001–2010
79.87 4.97 0.81 0.36 0.82 1.63 0.24 0.62 1961–2012

Don 55.49 4.17 0.83 0.56 1.05 1.76 0.42 0.68 2000–2012
57.35 3.88 0.74 0.61 1.10 1.67 0.36 0.68 1971–1980
58.38 4.24 0.79 0.55 1.04 1.82 0.39 0.70 1981–1990
59.51 4.16 0.78 0.53 1.02 1.72 0.38 0.64 1991–2000
57.31 4.10 0.79 0.60 1.10 1.76 0.39 0.68 1967–2012

Frome 47.50 1.23 0.93 0.88 1.41 0.60 0.49 0.50 1971–1980
48.60 1.37 0.96 0.86 1.40 0.63 0.49 0.52 1981–1990
48.15 1.38 0.88 0.93 1.48 0.71 0.47 0.49 1991–2000
48.48 1.34 0.93 0.85 1.38 0.64 0.48 0.49 1971–2012

Pang 35.40 0.22 0.37 1.02 1.57 0.16 0.25 0.51 2000–2012
38.18 0.22 0.37 0.99 1.54 0.15 0.24 0.60 1993–1999
36.37 0.22 0.37 1.01 1.56 0.15 0.25 0.53 1993–2012
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Table 5. Results of monthly GLUE prediction bounds for all the studied catchments. 
 
Catch-
ment 

Monthly prediction bounds 

 CR B  RB S T D RD R factor Period 
Eden 70.83 4.72 0.58 0.38 0.85 1.37 0.20 0.75 1975–1976 

75.00 5.23 0.62 0.33 0.81 1.48 0.24 0.70 1976–1977 
70.00 5.09 0.68 0.38 0.85 1.62 0.28 0.93 1971–1980 
71.67 5.63 0.61 0.34 0.80 1.77 0.21 0.95 1981–1990 
68.33 5.40 0.63 0.38 0.85 1.89 0.25 0.87 1991–2000 
66.67 5.57 0.59 0.42 0.90 2.13 0.25 0.87 2001–2012 
69.05 5.43 0.63 0.38 0.85 1.87 0.25 0.89 1971–2012 

Ebbw  65.83 8.39 0.80 0.53 1.02 3.34 0.34 0.65 1971–1980 
75.83 10.11 0.84 0.41 0.88 3.86 0.24 0.64 1981–1990 
73.33 10.17 0.82 0.37 0.84 3.75 0.26 0.64 1991–2000 
84.17 9.32 0.84 0.34 0.81 3.11 0.28 0.66 2001–2010 
72.44 9.27 0.78 0.42 0.90 3.51 0.27 0.65 1961–2012 

Don 68.59 7.76 0.70 0.39 0.86 2.83 0.29 0.79 2000–2012 
72.50 7.28 0.62 0.38 0.85 2.54 0.23 0.84 1971–1980 
68.33 7.99 0.67 0.39 0.86 2.83 0.28 0.83 1981–1990 
75.00 7.91 0.68 0.35 0.82 2.62 0.26 0.73 1991–2000 
70.47 7.70 0.66 0.38 0.85 2.76 0.27 0.82 1967–2012 

Frome 46.67 2.18 0.74 0.66 1.15 1.20 0.37 0.60 1971–1980 
50.83 2.36 0.76 0.57 1.07 1.21 0.34 0.60 1981–1990 
50.83 2.36 0.68 0.68 1.19 1.40 0.33 0.53 1991–2000 
51.19 2.33 0.73 0.59 1.08 1.21 0.33 0.58 1971–2012 

Pang 45.51 0.67 0.43 0.69 1.19 0.38 0.25 0.61 2000–2012 
39.29 0.65 0.44 0.69 1.19 0.37 0.25 0.72 1993–1999 
43.33 0.66 0.44 0.69 1.19 0.38 0.25 0.64 1993–2012 
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Table 6. Results of seasonal GLUE prediction bounds for all the studied catchments.  
 
Catch-
ment 

Seasonal prediction bounds 

 CR B  RB S T D RD R factor Period 
Eden 87.50 3.64 0.41 0.29 0.73 0.67 0.10 0.61 1975–1976 

75.00 4.19 0.40 0.32 0.79 1.23 0.14 0.71 1976–1977 
70.00 3.77 0.49 0.37 0.84 1.25 0.19 0.84 1971–1980 
80.00 4.12 0.43 0.35 0.82 1.37 0.15 0.95 1981–1990 
60.00 3.95 0.45 0.44 0.92 1.68 0.19 0.82 1991–2000 
65.96 4.00 0.41 0.43 0.92 1.67 0.17 0.95 2001–2012 
68.86 3.96 0.44 0.40 0.88 1.50 0.18 0.88 1971–2012 

Ebbw  57.50 6.73 0.62 0.52 1.01 2.85 0.29 0.67 1971–1980 
52.50 7.50 0.59 0.53 1.00 3.32 0.19 0.63 1981–1990 
80.00 7.52 0.57 0.38 0.86 2.87 0.19 0.61 1991–2000 
71.79 7.27 0.58 0.32 0.77 2.29 0.19 0.70 2001–2010 
63.77 7.04 0.56 0.45 0.92 2.85 0.21 0.64 1961–2012 

Don 72.55 6.44 0.59 0.36 0.82 2.30 0.23 0.92 2000–2012 
82.50 6.24 0.52 0.36 0.82 2.16 0.18 0.89 1971–1980 
72.50 6.58 0.56 0.37 0.85 2.36 0.23 0.87 1981–1990 
77.50 6.56 0.56 0.35 0.83 2.32 0.21 0.80 1991–2000 
75.96 6.43 0.56 0.36 0.83 2.29 0.21 0.90 1967–2012 

Frome 52.50 1.90 0.66 0.55 1.04 0.97 0.27 0.65 1971–1980 
57.50 2.10 0.63 0.47 0.93 0.94 0.24 0.71 1981–1990 
50.00 2.08 0.56 0.54 1.03 1.15 0.24 0.61 1991–2000 
56.29 2.05 0.61 0.48 0.96 0.95 0.23 0.67 1971–2012 

Pang 52.94 0.67 0.44 0.55 1.04 0.33 0.22 0.64 2000–2012 
48.15 0.66 0.46 0.60 1.10 0.35 0.23 0.78 1993–1999 
50.63 0.66 0.44 0.57 1.06 0.34 0.22 0.68 1993–2012 
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Table 7. Results of annual GLUE prediction bounds for all the studied catchments.  
 
Catchment Annual prediction bounds 
 CR B  RB S T D RD R factor Period 

Eden 50.00 20.32 0.19 0.52 0.94 9.02 0.09 3.20 1975–1976 
100.00 23.46 0.19 0.09 0.49 2.12 0.02 1.28 1976–1977 
90.00 22.42 0.23 0.25 0.71 5.01 0.05 0.89 1971–1980 

100.00 24.11 0.20 0.23 0.68 5.65 0.04 1.14 1981–1990 
90.00 23.64 0.20 0.27 0.74 6.11 0.05 1.12 1991–2000 
91.67 24.13 0.19 0.24 0.69 5.48 0.04 0.89 2001–2012 
92.86 23.60 0.20 0.25 0.71 5.56 0.05 0.93 1971–2012 

Ebbw 60.00 34.62 0.19 0.45 0.92 17.05 0.11 0.71 1971–1980 
40.00 30.73 0.13 0.72 1.24 21.50 0.08 0.80 1981–1990 
70.00 32.29 0.13 0.33 0.78 10.38 0.04 0.71 1991–2000 
90.00 39.24 0.19 0.28 0.75 10.37 0.05 0.74 2001–2010 
65.38 36.10 0.17 0.44 0.91 15.15 0.07 0.73 1961–2012 

Don 76.92 44.27 0.30 0.25 0.70 10.26 0.08 0.75 2000–2012 
80.00 41.60 0.28 0.35 0.84 14.43 0.11 1.00 1971–1980 

100.00 44.18 0.28 0.19 0.65 8.04 0.05 1.35 1981–1990 
80.00 43.91 0.28 0.25 0.69 10.34 0.08 0.96 1991–2000 
84.78 43.20 0.28 0.26 0.72 10.76 0.08 1.02 1967–2012 

Frome 100.00 13.99 0.29 0.21 0.67 2.97 0.06 1.09 1971–1980 
100.00 14.34 0.26 0.17 0.62 2.44 0.05 1.57 1981–1990 

90.00 14.42 0.25 0.25 0.71 3.74 0.06 0.92 1991–2000 
97.62 14.55 0.27 0.19 0.65 2.88 0.05 0.99 1971–2012 

Pang 76.92 7.22 0.37 0.32 0.80 2.28 0.12 0.81 2000–2012 
100.00 8.74 0.43 0.27 0.76 2.37 0.12 1.38 1993–1999 

85.00 7.75 0.39 0.30 0.78 2.31 0.12 0.97 1993–2012 
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Appendix  

A.1.1 Containment ratio, CR 
The containment ratio, is the percentage of the number of observed flows enveloped by its prediction bounds 

to the total number of the observed flows. This index is commonly used for measuring the goodness of the 

prediction bounds. The larger the value of CR, the greater is the proportion of the observed flow points that 

fall within the interval defined by the prediction bounds. A high CR for the estimated prediction bounds is 

always the aim.  

A.1.2 Average band width, B 

The average bandwidth, B, of the prediction bounds for the whole simulated period is calculated as:		ܤ = 	 ଵே 	∑ ܾ௜ே௜ୀଵ 		with	ܾ௜ = ܳ௜௨ − ܳ௜௟     (A1) 

where bi is the bandwidth of the prediction bounds for the flow at time i. For a given confidence level. ܳ௜௨ 

and ܳ௜௟ represent the upper and lower prediction bounds of flows, respectively and are associated with a 

particular confidence level (5% and 95% selected for this study). Narrow bandwidth is considered better 

than wide band width.  

 

A.1.3 Average relative bandwidth, RB 

In order to compare the results of the prediction bounds of different catchments, it is necessary to eliminate 

the impact of flows magnitude on the bandwidth of the prediction bounds. This can be done by using a 

dimensionless index, the average relative bandwidth of the prediction calculated as: RB = 	 ଵே ∑ rb௜ே௜ୀଵ 	; 			rb௜ = ܾ௜/ܳ௜  (A2) 

where rbi is the ratio of the bandwidth of the prediction bounds at time i to the corresponding observed 

discharge Qi. 

 

A.1.4 Asymmetry degree indices, S and T  

There are two indices for assessing the average asymmetry degree of the prediction bounds with respect to 

the observed flows. These two indices are referred to as S and T. The index S is calculated as: ܵ = 	 ଵே	∑ ௜ே௜ୀଵݏ     (A3a) 
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௜ݏ = 	 |	ℎ௜ − 0.5|		(A3b) ℎ௜	 = 	 ொ೔ೠିொ೔ொ೔ೠିொ೔೗	= 	ொ೔ೠିொ೔௕೔ 		(A3c) 

where ݏ௜ represents the asymmetry degree of the prediction bounds with respect to the corresponding 

observed discharge, Qi. ݏ௜ is a function of ℎ௜, which is the ratio of the difference between the upper limit, ܳ௜௨ 

and the observed discharge, Qi to the actual bandwidth, bi. An average asymmetry value of S < 0.5 would 

mean that, on average, the river flows lie within the prediction bounds. In a 100% completely symmetrical 

case the value of S would be zero. The larger the value of S, the greater asymmetrical the prediction bounds 

are around the observed flows. 

The second index for assessing the average asymmetry degree of the prediction bounds withrespect 

to the observed flows, is referred to as T, calculated is defined as: ܶ = 	 ଵே	∑ ௜ே௜ୀଵݐ     (A4a) 

௜ݐ = 	ቆቀொ೔ೠିொ೔)యା(ொ೔೗ିொ೔ቁయ[ொ೔ೠିொ೔೗]య ቇଵ/ଷ (A4b) 

The variations of the ݐ௜  values depend on the location of the observed flows with respect to the 

prediction bounds. It is expected that 0 ≤ t < 1, with t = 0 when the value of ܳ௜ is equal to the lower and 

upper prediction bounds. The larger the value of T, the more asymmetrical the prediction bounds are around 

the observed flows. 

 

A.1.5 Average deviation amplitude 

In some cases, where the estimated prediction bounds are asymmetric with respect to the observed flows, the 

middle point of the prediction bounds Qm deviates from the corresponding observed flow Q. To quantify the 

actual discrepancy between the trajectory consisting of the middle points the prediction bounds and the 

observed flows, another index, D, the average deviation amplitude of the prediction bounds from the 

observed flow is calculated as: ܦ = 	 ଵே	∑ ݀௜ே௜ୀଵ   (A5a) 

݀௜ = 	 |ܳ௜௠ − ܳ௜| = ቚଵଶ (ܳ௜௨ − ܳ௜௟) − ܳ௜ቚ (A5b) 
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A.1.6 Average relative deviation amplitude 

To eliminate the impact of flow magnitude on the value of the D index, the dimensionless relative average 

deviation amplitude RD, would be a better option. It is calculated as: RD = 	 ଵே	∑ rd௜ே௜ୀଵ   (A6a) 

rd௜= 
ቚభమ(ொ೔ೠିொ೔೗)ିொ೔ቚொ೔  = ቚொ೔೘ொ೔ − 1ቚ  (A6b) 

where rdi is the relative deviation of the mid-point of the prediction bounds ܳ௜௠ from the corresponding 

observed flow, ܳ௜ at time i.  

 

A.1.7 The R factor 

The R factor is calculated as: ܴ	 = 	 ௗషೣఙೣ    (A7a) 

݀௫ି = 	 ଵ௡ ∑ ௨௡௜ୀଵݔ)  ௟)  (A7b)ݔ	−

 
where ߪ௫ is the standard deviation of the measured streamflow x; ݀௫ି  is the average distance between the 
upper and lower boundaries (Q0.95 and Q0.05); and n is the number of observations.  
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