
Marine and Petroleum Geology 120 (2020) 104567

Available online 4 July 2020
0264-8172/© 2020 British Geological Survey, a component body of UKRI. [BGS (c) UKRI 2020. All Rights Reserved]. Published by Elsevier Ltd. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research paper 

Origin and implications of early diagenetic quartz in the Mississippian 
Bowland Shale formation, Craven Basin, UK 

Joseph F. Emmings a,b,*, Patrick J. Dowey c, Kevin G. Taylor c, Sarah J. Davies b, 
Christopher H. Vane a, Vicky Moss-Hayes a, Jeremy C. Rushton a 

a British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK 
b School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK 
c Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK   

A R T I C L E  I N F O   

Keywords: 
Mudstone 
Diagenesis 
Quartz 
Cement 
Porosity 
Compaction 

A B S T R A C T   

Silica cementation exerts a key control on the compaction and geotechnical properties of mudstones, and by 
extension, the style of hydrocarbon and/or mineral systems present in a given sedimentary basin. Integrated 
microscopic and bulk geochemical observations demonstrate that siliceous mudstones in the Bowland Shale 
Formation, a target for UK shale gas extraction, exhibit abundant dispersed, discrete, μm-scale quartz cements, 
and exhibit silica enrichment (‘excess’) above a local detrital Si/Al threshold of 2.5. Dissolution of siliceous 
radiolarian tests during early diagenesis is identified as the main source of silica (opal A) required for quartz 
precipitation, either via opal CT or directly to quartz, and potentially generated as a product of anoxic marine 
‘weathering’ (dissolution) of reactive silicates during early diagenesis. Excess silica correlates with free hydro
carbons (S1) normalised to total organic carbon (oil saturation index; OSI); we propose early diagenetic quartz 
precipitation suppressed pore collapse (‘buttress effect’), retaining the pore space capacity to host oil. Quartz 
precipitation was likely catalysed, for example via low porewater pH, elevated Al and/or Fe oxide content, and/ 
or abundant labile organic matter. Juxtaposition of siliceous mudstones and mudstones lacking quartz cement 
indicates silica was immobile beyond the bed scale. Thus metre-scale siliceous packages likely represent more 
prospective units within the Bowland Shale (in terms of unconventional hydrocarbons), on the basis of early 
diagenetic biogenic-derived quartz cementation leading to improved hydrocarbon storage capacity coupled to 
enhanced brittleness. These findings are relevant for shale oil and shale gas systems, specifically where oil 
retained in pores subsequently cracks to generate gas. These findings also suggest the Bowland Shale is a sub- 
class of black shale, defined by the potential to host a relatively large volume of early diagenetic fluids, 
derived from anoxic bottom waters, which were potentially S- and/or metal-bearing. This is potentially relevant 
for understanding the genesis of adjacent and related Pb-Zn mineral deposits.   

1. Introduction 

Silica cementation exerts a key control on the compaction (e.g., 
White et al., 2011) and geotechnical properties (e.g., Peng et al., 2020) 
of mudstones, critical for understanding unconventional hydrocarbon 
source rock prospectivity (e.g., brittleness; Slatt, 2011; Rybacki et al., 
2016). Quartz cementation can inhibit mudstone compaction (e.g., 
Fishman et al., 2015; Milliken and Olson, 2017) which, by extension, 
suggests it may control the timing of fluid expulsion; with relevance to 
understanding conventional hydrocarbon systems, and mineral systems 
linked to mudstone diagenesis (e.g., Frazer et al., 2014). A variety of 

reactions are attributed to diagenetic quartz genesis in ancient mud
stones, which are often temperature, pressure and/or pH-dependent, 
and catalysed or inhibited by presence of phases such as Fe oxides, 
clay minerals and Mg hydroxides (e.g., Iler, 1955; Hurd, 1973; Williams 
and Crerar, 1985; Kastner et al., 1977; Isaacs, 1982; Hinman, 1990; 
Meister et al., 2014). As a result of this complexity, diagenetic quartz is 
manifested in mudstones in a range of styles, ranging from 
quartz-replaced bioclasts (e.g., Kidder and Erwin, 2001), bedded or 
nodular chert (e.g., Moore, 2008), vein quartz (e.g., Wang et al., 2012) 
and discrete quartz crystals dispersed within the sedimentary matrix (e. 
g., Milliken et al., 2016). The consumption of dissolved silica via 
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precipitation of authigenic clay minerals (rather than quartz), during 
early diagenesis of organic and metal-rich sediments, is also a first-order 
sink for several elements dissolved in seawater, such as K, Mg, Li and F, 
in addition to Si (see Michalopoulos and Aller, 2004). 

Emmings et al. (2020a) demonstrated siliceous (quartz-rich) mud
stones are widespread in parts of the Bowland Shale Formation in the 
Craven Basin (Lancashire, UK). The Bowland Shale is of interest because 
it is a candidate for unconventional hydrocarbon exploration in the UK 
and in equivalents across Europe (e.g., Zijp et al., 2017; Whitelaw et al., 
2019). The Bowland Shale is also partly age equivalent to the Barnett 
Shale, USA, a producing unconventional hydrocarbon reservoir (Smith 
et al., 2011). In addition, the Bowland Shale is a candidate source of 
metals and/or reduced sulphur (S; e.g., H2S, polysulphides) which were 
fed into the adjacent blocks and highs as part of the Pennine lead-zinc 
(Pb-Zn) mineral system (e.g., Dunham and Wilson, 1985; Kendrick 
et al., 2002). 

Quartz cement is limited to facies linked to deposition under pro
ductive water column and anoxic bottom water conditions (Emmings 
et al., 2019, 2020b). Therefore, by integration of microscopic observa
tions and geochemical data, we explore the nature, origin and impor
tance of quartz in the Bowland Shale. We propose precipitation of 
discrete, μm-scale quartz crystals, linked to a biogenic source (radio
larian opal A precursor), formed a supporting network (‘buttress’) 
within the sedimentary matrix of most anoxic facies in the Bowland 
Shale. The buttressing effect by early diagenetic quartz suppressed 
compaction, therefore retaining high fluid storage capacity, in this unit. 
This is important for understanding the distribution of in-situ free hy
drocarbons in the Bowland Shale, and suggests the Bowland Shale de
fines a black shale sub-class defined by the ability to host a relatively 
large volume of early diagenetic fluids derived from anoxic bottom 
waters, which were potentially S- and/or metal-bearing. 

2. Geological Setting 

The Bowland Shale Formation was deposited in a series of fault- 
bound graben and half-graben structures (Anderson and Underhill, 
2020; Fraser and Gawthorpe, 1990), referred to as a ‘block and basin’ 
topography (see Emmings et al., 2020a and references therein), in the 
Rheic-Tethys epicontinental seaway that spanned from present-day 
North America to Poland. Transition from active rifting to thermal 
subsidence broadly aligns with subdivision of the Bowland Shale For
mation into lower and upper units at the Visean-Serpukhovian boundary 
(Waters et al., 2009, Fig. 1a). The upper unit of the Mississippian 
Bowland Shale Formation (Upper Bowland Shale; herein termed ‘Bow
land Shale’; this study) defines a key transition between the 
carbonate-dominated Lower Bowland Shale (Newport et al., 2018) and 
the Millstone Grit Group, a siliciclastic toe-of-slope fan system (Waters 
et al., 2009). 

The switch from rift to thermal sag produced an interdigitating 
succession of hemipelagic and siliciclastic facies in the Craven Basin 
(Emmings et al., 2020a; Waters et al., 2019). Sedimentary facies include 
hemipelagites, turbidites, hybrid event beds and lenticular (mud 
intraclast-bearing) mudstones (Emmings et al., 2020a). Siliciclastic 
sediments were supplied primarily from the advancing from the north to 
north-east (Pendleton Formation; Waters et al., 2009), across and 
around the Askrigg Block in the north-east (Fig. 1b). Basin water depth 
likely ranged from ca. 100–200 m (Davies, 2008; Holdsworth and Col
linson, 1988). The Bowland Shale was deposited under weakly 
restricted, dominantly anoxic and intermittently sulphidic bottom water 
conditions likely driven by primary productivity (Emmings et al., 2019, 
2020b). 

Deposition was moderated by fourth-order eustatic sea level fluctu
ations in response to interglacial-glacial cycles on Gondwana (see Wa
ters and Condon, 2012 and references therein). Packages deposited 
during marine transgressions and/or highstands are termed ‘marine 
bands’ and are associated with a macrofaunal body fossil assemblage, 

used to define biozones including E1a1 to E1c1 (e.g., Waters and Condon, 
2012, Fig. 1a). The inherited carbonate-to-mixed syn-rift system was 
gradually inundated by siliciclastic submarine turbidite systems as part 
of the Millstone Grit Group (e.g., Waters et al., 2009, Fig. 1b). 

Several phases of intrusive and explosive volcanism occurred during 
the Mississippian in the UK, although there is no evidence for direct 
volcanic input (e.g., volcanic glass) into the Craven Basin during depo
sition of the Bowland Shale. During the Visean and early Namurian, the 
Midland Valley of Scotland towards the north experienced long-lived 
volcanism (Browne et al., 1999). Brigantian basaltic lavas, sills and 
pyroclastic rocks are also present on the Derbyshire Platform and in the 
adjacent Widmerpool Gulf basin to the south (Ramsbottom et al., 1962; 
Walters and Ineson, 1981). Several thin Arnsbergian bentonite horizons 
are also recognised in the Central Pennine Basin (Spears et al., 1999), in 
similar geographic position to the Craven Basin (Waters et al., 2007). 

The hinterland drainage area, feeding rivers linked to the Pendle 
delta (e.g., Emmings et al., 2020a, Fig. 1b), was probably very large and 
thus drained a variety of igneous, volcanic and metamorphic rocks 
(Collinson, 1988; Drewery et al., 1987; Spears, 2006). An anomalously 
high Se content in the Bowland Shale, compared to other black shales, 
supports the presence of volcanic rocks in the hinterland (Parnell et al., 
2016). Palaeoclimate indicators suggest prevalence of tropical to 
sub-tropical conditions (Boucot et al., 2013). Lowlands were likely 
vegetated; the Strait of Malacca in south-east Asia is a candidate modern 
analogue (Stephenson et al., 2008). Therefore the particulate and dis
solved fraction of local rivers, feeding the Pendle delta system, likely 
included a significant component of physical and chemical weathering 
products. Dunham and Wilson (1985) and Fairbairn (2001) interpreted 
time-equivalent chert beds on the Askrigg Block (Fig. 1b) as primary or 
diagenetic precipitates related to a locally high dissolved silica riverine 
input, or from hydrothermal vents at seabed (although there is no direct 
evidence for the latter). Regionally, detrital kaolinite and mixed-layer 
illite-smectite typically dominate the allochthonous mud fraction 
(Spears, 2006). The silt to sand-sized fraction typically comprises 
detrital quartz, feldspar, muscovite, chlorite and heavy minerals such as 
rutile and magnetite (e.g., Spears, 2006; Brandon et al., 1998; Emmings 
et al., 2020a; Emmings et al., 2020b). 

Variscan inversion of the Craven Basin during the Pennsylvanian 
generated a set of north-east to south-west trending folds, thrust-folds 
and monoclines, collectively defined as the Ribblesdale Fold Belt 
(Arthurton, 1984; Gawthorpe, 1987a; Pharaoh et al., 2019). Maximum 
burial was likely attained during the Late Cretaceous (Andrews, 2013; 
Clarke et al., 2018; Pearson and Russell, 2000). An immature to early oil 
window thermal maturity is expected on the basis of apatite fission-track 
analysis (Lewis et al., 1992) and illite crystallinity (Waters et al., 2019) 
measurements for the Bowland Shale at outcrop, textural and isotopic 
analysis of burial dolomites in the Lower Bowland Shale in the Rib
blesdale Fold Belt (Gawthorpe, 1987b) and burial modelling (Pearson 
and Russell, 2000). Pb-Zn mineralisation on adjacent shelves, including 
the Askrigg Block, include a suite of deposit sub-classes (e.g., Wilkinson, 
2014), which developed primarily along fracture systems (Dunham and 
Wilson, 1985) during the early Variscan inversion of basin-bound faults 
(Frazer et al., 2014; Late Westphalian to Stephanian inversion; ca. 304 
Ma; e.g., Pharaoh et al., 2019), and potentially continued to the end of 
the Triassic (e.g., Bouch et al., 2006). 

3. Materials and Methods 

Sedimentological observations and geochemical data are integrated 
through the Bowland Shale from a ca. 124 m thick outcrop at Hind 
Clough, Lancashire, north-west England (British National Grid 364430 
453210; 53.973725� lat., � 2.543778� long., WGS, 1984) and two 
nearby ca. 20 m and 67 m thick borehole core sections from the Craven 
Basin (MHD4 [BGS ID 18006] 367426 446752; 53.915882�� 2.497411�; 
Cominco S9 [BGS ID 32766] 386010 463500; 54.067245�� 2.215257�; 
Fig. 1c), respectively. These open-access datasets are reported by 
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Emmings et al. (2020a), Emmings et al. (2019) and Emmings (2018). 
Sampling was conducted systematically through the outcrop, tar

geting unweathered material within a stream section (see Emmings 
et al., 2017), and through each borehole section. Samples were finely 
powdered prior to bulk geochemical analysis. All geochemical data are 
reported in Emmings et al. (2020b). Major and trace element concen
trations were measured on fused beads (109 samples) and powder bri
quettes (108 samples) with a PANalytical Axios Advanced X-Ray 
Fluorescence (XRF) spectrometer using default PANalytical SuperQ 
conditions. Accuracy and precision are both typically � 1–2% for Si, Al, 
Ti and Zr reported in this study. ‘Excess silica’ was defined by Emmings 
et al. (2020a) as Siexcess ¼ Sitotal–2.5(Al) sensu. Sholkovitz and Price 
(1980), for example, where 2.5 is a local detrital Si/Al threshold which 
delineates silica-rich facies. Si/Al ¼ 2.5 does not represent a line of best 

fit (see Results and Discussion). 
110 samples were pyrolised in a Rock-Eval 6™ apparatus (Vinci 

Technologies), in standard mode, at the British Geological Survey. Ac
curacy is typically 1–2% for most Rock-Eval parameters, based on repeat 
analyses of the IFP Rock-Eval standard. Repeat measurements provide 
estimates for precision (two standard deviations) of �0.11 mgHC/g and 
0.44 mgHC/g, for S1 and S2 parameters, respectively. Total organic 
carbon (TOC) and inorganic carbon (MINC) precision is estimated at �
0.03 wt %. Oil saturation index (OSI) is defined as OSI ¼ (S1*100)/TOC. 
Hydrogen index (HI) is defined as HI ¼ (S2*100)/TOC. 

Most samples exhibit RockEval pyrolysis Tmax between 417 �C and 
446 �C (including a bitumen-extracted subset), indicating these samples 
are thermally immature to early oil mature (Emmings et al., 2019, 
2020b). Samples at Cominco S9 exhibit higher Tmax (437�C–458 �C); this 

Fig. 1. Stratigraphy and location map for sections. (a) Stratigraphy of the Upper Bowland Shale and Craven Basin composite log modified from Emmings et al. (2019, 
2020a) and references therein. Absolute ages and ‘marine band’ regional extents from Waters and Condon (2012). Arns. ¼ Arnsbergian. HS ¼ Hind Sandstone 
Member. HC ¼ Hind Clough (Site A; outcrop; see Fig. 2). MHD4 ¼ Marl Hill 4 (Site B; borehole). CS9 ¼ Cominco S9 (Site C; borehole). (b) Inherited Visean regional 
basin structure, and Pendle delta and feeder system extent, redrawn from Emmings et al. (2020b). Based on observations and interpretations in Bijkerk (2014); Fraser 
and Gawthorpe (2003); Fraser and Gawthorpe (1990); Waters et al. (2007) and Waters et al. (2014). (c) Location map of the Ribblesdale Fold Belt (Lancashire, UK) 
including Westphalian-Stephanian structural elements (Fraser and Gawthorpe, 1990) and outcrop extent (DiGMapGB-625, published with permission of the British 
Geological Survey), redrawn from Emmings et al. (2019). Contains Ordnance Survey data © Crown Copyright and database rights. Study sites as labelled in (a). 
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potentially indicates higher thermal maturity (i.e., late oil window) or 
may relate to matrix effects (Emmings et al., 2020b). Thermal maturity 
was also estimated using Laser Raman spectroscopic analysis of phyto
clasts, using two samples from Hind Clough (samples 04B and 73; Henry 
et al., 2018). The lowest G-band full-width half-maximum and scaled 
spectrum area parameters were selected for each sample (2σ of mean 
values as reported in Henry et al., 2018). Vitrinite reflectance was 
estimated (eqVRo) using calibration curves of Henry et al. (2019). eqVRo 
between 0.7 and 1.3% suggests burial into the early to late oil window 
for samples at Hind Clough (e.g., Merriman and Kemp, 1996). Burial to 
the base of the early oil window (ca. 90–110 �C) is consistent with 
regional estimates for maximum burial (see Geological Setting). 

A subset of 37 samples, spanning the observed sedimentary and 
geochemical heterogeneity, were cut into ‘ultrathin’ 20 μm thick, pol
ished and uncovered thin sections and studied under optical and re
flected light using a standard petrological microscope. Scanning electron 
microscopy (SEM) was conducted using an S-3600N Hitachi microscope 
with Oxford INCA 350 EDS at the University of Leicester, and a JEOL 
JXA-8530F Hyperprobe microscope equipped with a JEOL panchro
matic cathodoluminescence (SEM-CL) detector at the University of 

Manchester. False colour composite SEM–EDS images were compiled 
using Fiji (ImageJ) software and overlain onto each corresponding BSE 
microphotograph. Elements were mapped to red (R), green (G) or blue 
(B) channels (as annotated on the respective figure). 

4. Results and Discussion 

Of the ten sedimentary facies (A-J) defined in Fig. 2 (see also 
Emmings et al., 2019, 2020a), Facies A-F samples exhibit ‘excess silica’ 
(i.e., Si/Al > 2.5; see discussion below; Figs. 2–3a; Emmings et al., 
2020a). Al is utilized as a proxy for the detrital clay fraction (e.g., Hild 
and Brumsack, 1998), where detrital clays plot with Si/Al < 2.5 
(Fig. 3a). Claystone and siltstone facies (H-I), present only in Cominco 
S9 proximal to the Pendle delta (Fig. 1), typically also exhibit Si/Al <
2.5. Petrographic observations and qualitative XRD data (Emmings 
et al., 2020a) indicate feldspar content is relatively low, suggesting Al 
content is dominantly a proxy for clay minerals (rather than feldspars). 
The coefficient of variation of Al is 0.52, similar to trace elements (mean 
coefficient of variation ¼ 0.66), supporting Al-normalization (see Tri
bovillard et al., 2006). Si/Al > 2.5 is observed in all Facies A-F samples 

Fig. 2. Sedimentary log through Hind Clough outcrop after Emmings et al. (2019, 2020a), including positions of key thin section SEM analyses (this study). 
Palynological data, geochemical data and interpretations compiled from Emmings et al. (2019, 2020a, 2020b). Sorg ¼ organic S (methodology in Emmings 
et al., 2020b). 
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to below the contact with Facies G at approximately 81 m above base, at 
the outcrop Hind Clough (Fig. 2). 

The high Si/Al in Facies A-F is best explained by abundant: (i) 
detrital quartz silt (where input was decoupled from the detrital Al 
supply); and/or (ii) preserved biogenic skeletal material; and/or (iii) 
quartz cement. In order to resolve the potential for detrital quartz as an 
explanation for the high Si/Al (‘excess silica’), Zr is utilized as a proxy 
for the silt to sand-sized detrital fraction (i.e., zircon heavy minerals 
expected to partition with detrital quartz; e.g., Hild and Brumsack, 
1998; Wright et al., 2010; Davies et al., 2012; Dowey and Taylor, 2017, 
Dowey and Taylor, 2019). Zr content is highest in Facies H-I (Fig. 3b), 
consistent with petrographic observations which shows abundant silt to 
sand-sized detrital grains in these proximal mudstones and siltstones 
(such as quartz, chlorite, feldspar, heavy minerals; see Emmings et al., 
2020a). Thus Facies H-I Si/Al variation between Si/Al ¼ 2.5 and detrital 
clays (Fig. 3a) is best explained by changing proportions of detrital 
quartz silt and detrital clay minerals. 

Unlike Facies H-I, the lack of correlation between Zr and Si for Facies 
A-F (Fig. 3b) suggests the high Si/Al is not related to detrital quartz silt 
or sand content. This is supported by BSE and SEM-CL imaging (sensu. 
Schieber et al., 2000), which shows detrital quartz grains are rare in 
Facies A-F (Fig. 4). In few cases, low luminescence overgrowths are 
developed on high luminescence detrital grains (Fig. 4i). Siliceous bio
clasts (such as radiolarian tests, sponge spicules) are also rare to absent 
in the matrix of Facies A-F. Instead, SEM-CL shows presence of highly 
abundant, matrix-dispersed mm to nm-scale quartz cements (Fig. 4), 
which are absent in Facies H-I (Emmings et al., 2020a). Thus Si/Al > 2.5 
delineates the zone where all samples contain quartz cements (Fig. 3a). 
This zone also delineates deposition under anoxic bottom water condi
tions (Emmings et al., 2020b). One Facies I siltstone is an exception, 
because it exhibits Si/Al > 2.5 but lacks silica cement; this shows Si/Al is 
an imperfect proxy for ‘excess silica’ and therefore should be supported 
by textural observations and assessment of Si/Zr, for example (Fig. 3b). 
In all other cases, increasing detrital quartz silt content is not a credible 
explanation for the ‘excess silica’ component defined using Si/Al. 

Potential sources of the quartz cements are: (i) the dissolution (and 
re-precipitation) of nearly completely amorphous biogenic silica (e.g., 
Lancelot, 1973; Schink et al., 1975), opal A, to more thermodynamically 

stable (lower entropy) forms; via opal CT to quartz (e.g., Isaacs, 1982; 
Rice et al., 1995; Milliken et al., 2016; Milliken and Olson, 2017), or 
directly to quartz (i.e., without an intermediate CT phase; e.g., Keene, 
1975; Kastner et al., 1977; Meister et al., 2014); (ii) precipitation of 
quartz as a product of anoxic marine silicate weathering, where CO2 
reacts with silicate phases to produce cation-depleted silicates, HCO3

� , 
cations, and dissolved silica (e.g., Wallmann et al., 2008; sensu Mack
enzie and Garrels, 1966); (iii) the dissolution of detrital K-feldspar (see 
Yuan et al., 2019 and references therein) or other reactive detrital sili
cate phases such as mica (e.g., Boles and Franks, 1979) and volcanic 
glass (White et al., 2011); (iv) the transformation of smectite to illite (e. 
g., Perry and Hower, 1972; Merriman and Kemp, 1996; Thyberg et al., 
2010), and; (v) other external sources, such as intrusions and/or seabed 
hydrothermal vents. For example, chert nodules in pelagic sediments in 
the Pacific derive from the circulation of hydrothermal fluids derived 
from underlying basaltic crust (e.g., Moore, 2008). Fluids derived from 
felsic intrusions (i.e., potentially oversaturated with respect to silica) are 
also often associated with a variety vein and/or bedded quartz textures 
within overlying sedimentary rocks (e.g., Wang et al., 2012). Where 
Fe-bearing hydrothermal fluids reach seabed, reaction with relatively 
silica-rich Palaeozoic seawater likely explains the genesis and distribu
tion of hematitic chert (jasper) deposits in the rock record (Grenne and 
Slack, 2003). 

The juxtaposition of siliceous mudstones (Facies A-F) and mud
stones/siltstones lacking silica cementation (Facies G-I; Fig. 2, see also 
Emmings et al., 2020a), indicates silica was strata-bound and immobile 
beyond the lamina/bed scale (i.e., cm-scale). Low mobility was likely 
due to low permeability and diffusion coefficients (Bjørlykke, 2011) 
and/or presence of catalysts which decreased silica solubility. Factors 
controlling silica solubility (in addition to temperature and pressure) 
include biogenic particle specific surface area (e.g., Hurd, 1973), Al 
availability (e.g., Van Beueskom et al., 1997; Hinman, 1998; Dixit et al., 
2001), Fe oxide availability (e.g., Grenne and Slack, 2003; see also 
Meister et al., 2014 and references therein) typically coupled to redox 
conditions (Michalopoulos and Aller, 1995; Morris and Fletcher, 1987), 
Mg hydroxide availability (e.g., Iler, 1955; Kastner et al., 1977), organic 
matter abundance and type (Hinman, 1990), detrital clay mineral 
abundance and type (Isaacs, 1982) and porewater pH (e.g., Hurd, 1973; 

Fig. 3. XRF analyses plotted for all sedimentary facies. (a) Si versus Al plot shows all siliceous mudstones (Facies A-F) contain ‘excess silica’ above a local basin 
threshold of Si ¼ 2.5Al, as defined by Emmings et al. (2020a). Detrital clay mineral Si/Al ratios in Facies I determined using SEM-EDS are also plotted. Si/Al variation 
within Facies G-I, below Si/Al ¼ 2.5, indicates variable proportions of detrital quartz silt (labelled Qtz) and detrital clays. Samples which exhibit Si/Al > 2.5 contain 
quartz cements (with the exception of one Facies I sample; see discussion). Palaeoredox proxies indicates the zone above Si/Al ¼ 2.5 also delineates deposition under 
anoxic bottom water conditions (Emmings et al., 2020b) (b) Si versus Zr plot supports the definition of ‘excess silica’, where most Facies A-F data plot above Si ¼
7.1log(Zr)–11 (analogous to the detrital fit of Dowey and Taylor, 2019 for the Haynesville-Bossier Shale). Facies G samples plot with marginal Si/Zr enrichment, and 
contain nodules of stacked kaolinite booklets but lack quartz cement (Emmings et al., 2020a). This suggests localised, fully coupled Si and Al mobility during 
diagenesis of Facies G. 
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Williams and Crerar, 1985). Low porewater pH, elevated Al and/or Fe 
oxide content, high alkalinity, and/or abundant labile organic matter, as 
catalysers of quartz precipitation, are all plausible given the depositional 
setting (i.e., an anoxic, carbonate-, metal- and organic-rich setting, with 
a high mean sediment accumulation rate, proximal to riverine input; 
Emmings et al., 2020a; Emmings et al., 2020b). Clay minerals and 
organic matter are thought to retard opal CT precipitation whereas 
elevated alkalinity (i.e., associated with dissolved carbonate) promotes 
opal CT nucleation and may accelerate quartz precipitation (e.g., Kast
ner et al., 1977; Isaacs, 1982). 

The Si/Al ratio of Facies A-F exceeds the stoichiometric composition 
of feldspar and dioctahedral (i.e., Al-rich) smectite, indicating closed- 
system feldspar dissolution or smectite to illite transformation are un
likely mechanisms for generation of quartz-cements. Furthermore, 
smectite to illite transformation is a relatively late diagenetic reaction 
(between ca. 60–100 �C; e.g., Thyberg et al., 2010); this is contrary to 
the evidence for early silica mobility in most anoxic facies (Fig. 4a–c; 
5a-d). Quartz cement infills pores within organic matter (Fig. 5a; see also 
Emmings et al., 2020a) and potentially infills bioclast-sheltered pores in 
Facies B (Fig. 5c and d), suggesting an early diagenetic origin (e.g., 
Taylor and Macquaker, 2014). The most common quartz cement style is 

defined by discrete equant crystals dispersed throughout the matrix of 
Facies B-C and E-F, including infill of pores within organic matter (e.g., 
Fig. 5a; see also Emmings et al., 2020a). This texture differs from the 
sheet-like, amalgamated quartz cements that are likely associated with 
smectite-illite transformation (Thyberg and Jahren, 2011). Kaolinite 
cement (with apparently randomly oriented booklets) in silty laminae 
(Facies D; Fig. 4h), and presence of nodules of randomly oriented 
kaolinite booklets in Facies F and G (Emmings et al., 2020a), also sug
gests early diagenetic mobility of Si and Al. The relatively high abun
dance of quartz cement in Facies B-C and F (at least ca. 50% by volume; 
e.g., Fig. 5a) suggests precipitation within 10s–100 s m of seabed, 
assuming a mud-rich compaction curve (Kominz et al., 2011; Velde, 
1996) and that the quartz cement filled open pores (e.g., Milliken et al., 
2016; Milliken and Olson, 2017). 

Facies D, and Facies E basal beds (Fig. 3; herein included as part of 
Facies D), are grain size-fractionated deposits interpreted to represent 
grain deposition from turbulent and hybrid flows, respectively (i.e., as 
silic-calci-turbidites and hybrid beds; see Emmings et al., 2020a). Thus a 
biogenic or siliciclastic ‘silt’ or ‘sand’-rich compaction curve (e.g., 
Kominz et al., 2011), defined by subdued closure of primary porosity, 
may best describe the compaction of Facies D. On this basis, quartz 

Fig. 4. Scanning electron microphotographs focussed on quartz cements in Facies A-F, imaging backscattered electrons (BSE) and cathodoluminescence (CL), in 
samples 21, 125 and 04B (see Fig. 2). (a–c) Weakly lenticular bioclastic mudstone (Facies B; ‘marine bands’) including abundant quartz cements. Low luminescence 
suggests detrital quartz is absent. (d–f) Lenticular mudstone (Facies F) including rare fine detrital quartz grains, often mantled by nm-scale quartz cements (arrow in 
f). nm-scale quartz cements are widespread in the matrix of Facies B-F. (g–i) Relatively coarse-grained calciturbidite silt laminae (Facies D), with interlocking quartz- 
calcite-dolomite-kaolinite-monosulphide cements. Quartz crystals are dominantly diagenetic, which may mantle detrital quartz grains (arrow in i). Stacked book-like 
kaolinite cement suggests coupled, relatively early diagenetic Si and Al mobility. 
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Fig. 5. Example transmitted light and scanning electron microphotographs.(a–b) Additional examples of the nm to μm-scale quartz cements present in Facies B-C and 
E-F. Note the matrix of sample 21 (a; b, left panel) also contains dispersed calcite cements. (c–d) Typical weakly ‘lenticular’ and bioclastic mudstone texture of Facies 
B, including quartz hosted within a skeletal (trilobite) cavity (white arrow). This texture may represent authigenic quartz cement within the shelter porosity of a 
trilobite test, requiring precipitation during very early diagenesis and under relatively acidic (but potentially high alkalinity) conditions. In the absence of CL imaging 
for this sample, however, an alternative interpretation favours pressure solution along the contacts between skeletal calcite and a fractured detrital quartz grain. Note 
also partial replacement of the primary calcite by dolomite (high-Mg areas of bioclast). (e) Early diagenetic calcite-phosphate concretion containing abundant 
radiolarian tests, such as spumellarian entactinids (Casey, 1993). (f). Detail of abundant radiolarian tests within the concretions, where tests are typically absent in 
the adjacent matrix. (c,e) are reproduced from Emmings et al. (2020a). 
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cementation in Facies D likely proceeded within ca. 1000 m of seabed 
(Kominz et al., 2011), therefore also during early diagenesis but 
potentially later than quartz cementation in Facies B-C and E-F. 

The evidence for early diagenetic quartz precipitation implies 
dissolution of detrital K-feldspar and mica, as key late diagenetic sources 
of K required for illitization (Boles and Franks, 1979), is an unlikely 
candidate for the majority of quartz cement observed. Thus open-system 
silica input derived from feldspar dissolution or smectite to illite trans
formation is not supported. The quartz textures observed (e.g., partially 
pore-filling and discrete, equant crystals disseminated through the 
sedimentary matrix; Fig. 5a–d) are also not comparable to quartz asso
ciated with hydrothermal fluids (e.g., quartz veins, nodular or bedded 
chert, jasper, etc.). There is also no direct evidence for hydrothermal 
seabed vents and/or intrusions within the Craven Basin; thus other 
external sources of silica not supported. 

Therefore the best explanation for the source of quartz cements is 
either dissolution of opal A (biogenic silica) and precipitation as quartz 
(Eq. (1)), and/or precipitation of quartz as a product of anoxic marine 
weathering of reactive silicates (Fig. 6; Eq. (2); Wallmann et al., 2008). 
Evidence (e.g., infill of shelter porosity; Fig. 5c and d) suggests at least 
some silica precipitated rapidly, thus without an intermediate CT phase. 
Such silica precipitation reactions are dependent on availability of cat
alysts (or retardants; see above) and temperature. Quartz precipitation 
typically proceeds during relatively late diagenetic conditions (for 
example between 50 �C and 110 �C; Murata and Larson, 1975), although 

catalysts promote lower temperature precipitation (i.e., during early 
diagenesis) (Behl, 2011; Behl and Garrison, 1994; Meister et al., 2014). 
Anoxic marine silicate weathering is equivalent to chemical weathering 
of silicates exposed on the continents; dissolution of detrital reactive 
silicates in sediment porewaters is a sink for CO2 and a source of alka
linity. Operation of silicate weathering is consistent with the evidence 
for an anoxic, organic-rich setting and shallow methanogenesis 
(Emmings et al., 2020b).  

Opal A → Opal CT → Quartz                                                            (1)  

Cation-rich silicates þ CO2 → cation-depleted silicates þ dissolved cations þ
dissolved silica þ HCO3

� (2) 

Carbonate-and-phosphate cemented concretions, interpreted as fish 
faecal pellets, contain abundant preserved radiolarian tests (Fig. 5e and 
f). The concretions are interpreted to have precipitated exceptionally 
early, before any sediment compaction, because the contents are rafted 
and uncrushed (Emmings et al., 2020a). Rarity of radiolarian tests in the 
matrix surrounding radiolarian-bearing concretions (e.g., Fig. 5a and b) 
indicates widespread diagenetic mobilisation of biogenic (radiolarian) 
silica. This shows biogenic silica was a credible source for most or all 
quartz cements observed. An inherently high dissolved silica content in 
Palaeozoic seawater (Canfield et al., 2005; Conley et al., 2017; Siever, 
1991) and/or elevated dissolved silica content supplied from local deltas 
or vents (Dunham and Wilson, 1985), potentially promoted colonisation 

Fig. 6. SEM-EDS imaging as evidence for early diagenetic silicate precipitation (sample 21). Reverse and marine weathering reactions from Wallmann et al. (2008). 
RGB composite from Emmings et al. (2020a). 
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by radiolaria (assuming sufficient availability of other growth-limiting 
nutrients; see Conley et al., 2017 and references therein). Absence of 
quartz cement in Facies G-I is best explained by deposition under rela
tively low productivity, ventilated conditions (Emmings et al., 2020b); 
this process likely exerted a dual control on silica diagenesis via; (i) 
greatly reduced (or absence of) biogenic silica exported to seabed, and; 
(ii) diminished availability of catalysts for quartz fixation (e.g., Fe 
oxides). 

Candidate substrates for anoxic marine weathering include volcanic 
glass or trioctahedral smectite (e.g., Mg-clays; Christidis and Koutso
poulou, 2013); the latter potentially derived from input of physical 
weathering products (detrital silicate grains), from volcanic input or 
generated via ‘reverse weathering’ during very early diagenesis 
(Michalopoulos and Aller, 2004; Michalopoulos et al., 2000), prior to 
anoxic marine weathering. One definition of reverse weathering is the 
reaction between biogenic opal, metal hydroxides, dissolved cations and 
HCO3

� to produce cation-rich clays and CO2 (Wallmann et al., 2008) (Eq. 
(3)); a precipitation reaction between continental chemical weathering 
products (Michalopoulos and Aller, 2004). K and Mg-bearing clays 
present as infill of encased (calcite-cemented) bioclasts, indicates 

operation of reverse weathering reactions, at least locally (Fig. 6). It is 
difficult to fully assess the role of reverse weathering, however, because 
the products of this reaction were potentially entirely consumed by 
subsequent marine weathering reactions.  

Biogenic opal þ metal hydroxides þ dissolved cations þ HCO3
� → cation-rich 

silicates þ CO2                                                                               (3) 

In summary, most or all (and at least some) quartz cements likely 
precipitated directly from biogenic silica opal A (Eq. (1)), perhaps with a 
short-lived opal CT intermediary, prior or concomitantly with reverse 
weathering. In addition, some or most of the authigenic quartz possibly 
also precipitated via marine silicate weathering of reactive cation-rich 
phases (Eq. (2)), including dissolution of reverse weathering products 
(Eq. (3)). The stoichiometry of silicate weathering suggests the ratio of 
dissolved silica versus clay minerals derived from this reaction is likely 
to be very low (Wallmann et al., 2008). At least ca. 50% quartz by 
volume (e.g., Fig. 5a) therefore suggests opal A/CT recrystallization was 
quantitatively more important, in terms of quartz precipitation, rather 
than silicate weathering. Since reverse weathering requires a source of 
dissolved silica, both mechanisms implicate biogenic opal as a key 

Fig. 7. Selected Rock-Eval pyrolysis parameters plotted versus Siexcess and carbonate content (MINC), and with interpretations annotated. (a) ‘Free’ hydrocarbon 
yield (S1) versus Siexcess shows high S1 and Siexcess content are weakly coupled. The exception of very low S1 and high Siexcess is best explained by pore occlusion by 
quartz and/or carbonate cements. (b) Oil saturation index (OSI) versus Siexcess/TOC shows positive correlation up to a threshold of ca. 7.5 Siexcess/TOC, suggesting 
precipitation of quartz cements buttressed (and prevented collapse of) pores and/or strengthened grains during early diagenesis. (c) HI and Siexcess/TOC are not 
correlated. (d) OSI versus MINC/TOC suggests significant pore occlusion via carbonate precipitation is minimal. 
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precursor phase. 

4.1. Implications: evidence for pore buttressing by authigenic quartz 

Early diagenetic quartz cementation exerts a key control on 
mudstone compaction and thus porosity, permeability and potential for 
overpressure (e.g., Wangen, 2000; White et al., 2011). Petrographic 
observations (e.g., Fig. 4a–f; 5a-b) show quartz crystals form a ‘but
tressing’ framework within the matrix of the Facies B-C and E-F. Using 
RockEval pyrolysis S1 (free hydrocarbons) and oil saturation index (OSI; 
see Materials and Methods) as proxies for oil-charged pores, we propose 
early diagenetic precipitation of quartz crystals suppressed pore collapse 
and therefore improved fluid storage capacity in Facies B-C and E-F. 
Correlation between Siexcess versus S1 (Fig. 7a), and Siexcess versus OSI 
(Fig. 7b), is best explained by oil-charging of pores buttressed by quartz. 
Lack of correlation between Siexcess/TOC and HI (Fig. 7c) shows coupled 
input of biogenic silica and oil-prone organic matter is not a credible 
explanation for the positive relationship between OSI and Siexcess 
(Fig. 7b). 

Early diagenetic quartz precipitation likely initially partially filled 
open pores (therefore initially lowering porosity); the resultant but
tressing network of quartz crystals, however, ensured the remaining 
pores were much more resistant to closure. Thus samples with high 
Siexcess also exhibit high OSI because an increased density of quartz 
crystals reduced compressibility during burial, enhancing preservation 
of pore space. This is in contrast to clay-rich, highly compressible (low 
Siexcess) samples. Quartz buttressing promoted preservation of inter
granular porosity and likely limited the re-alignment of detrital or early 

diagenetic clay flocs (i.e., end on end or edge-edge aligned) during 
physical compaction (Velde, 1996). In addition, this process suppressed 
collapse of amorphous organic particles, as supported by petrographic 
observations (see Emmings et al., 2020a), preserving intragranular 
pores within organic matter. 

Samples with Siexcess/TOC >7.5 progressively exhibit reduced OSI 
(Fig. 7b; typically Facies D and associated Facies E beds; and rarely B); 
this is interpreted as a result of pore occlusion by relatively ‘late’ quartz 
cement and/or carbonate cement. Pervasive cementation in Facies D is 
consistent with microscopic observations (sample 125; Fig. 4a–c, g-i). 
This is interpreted as a paragenetically late diagenetic phase of pore 
occlusion, prior to oil generation, which operated along porous and 
permeable laminae (Fig. 4g–i). Carbonate content exerts an autodilution 
effect on TOC (Fig. 2), but substantial pore occlusion is limited to Facies 
B where it directly overlies Facies A (Fig. 7d). Moderate to low OSI in 
sample 21 (Facies B overlying Facies A) is best explained by the com
bination of pervasive, dispersed quartz and carbonate cement within the 
matrix (Fig. 4a–c, 5a-b; 6). 

A spectrum of quartz cementation styles in mudstones is envisaged 
(Fig. 8). In the Bowland Shale, early diagenetic quartz precipitation was 
apparently triggered by high initial opal A solubility and porewater 
conditions favourable for rapid nucleation of opal CT followed by 
quartz, or directly from opal A to quartz. Either process was likely 
facilitated by lowering of opal CT porewater saturation, perhaps via 
localised high porewater alkalinity, the presence of Fe oxides, or retar
dation by clay minerals or organic matter. A similar buttressing mech
anism was proposed by Fishman et al. (2015) for cementation in the 
upper shale member of the Bakken Formation (‘Facies Association 1’). In 

Fig. 8. Model for the early diagenetic quartz pore buttress effect in the Bowland Shale Formation. Quartz likely precipitated rapidly in Facies B-C and E-F (i.e., during 
early diagenesis); it is unclear whether this reaction proceeded via a short-lived opal CT intermediate phase. 
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comparison to siliceous mudstones in the Cline Shale, as described by 
Peng et al. (2020), Facies B-F best compare to Type B and/or Type C 
siliceous mudstones, whereas Facies G-I best compare to Type A argil
laceous mudstones. 

4.2. Paragenetic sequences 

Simplified paragenetic sequences for anoxic facies (A-F) (Fig. 9) 
synthesise recent observations and interpretations with respect to the 
Bowland Shale (Emmings, 2018; Emmings et al., 2019, 2020a, 2020b). 
Facies B-C and F most closely resemble ‘hemipelagic muds’ (i.e., not 
deposited en-masse), which were deposited under contrasting (and 
cycling) Eh conditions, and are interbedded with Facies D and E (mass 
transport deposits). Emmings et al. (2020b) showed early diagenetic 
redoxclines migrated through the shallow sediment column relatively 
quickly during deposition of Facies A-F. The upper boundary of the 
sulphate-methane transition zone was likely positioned within deci
metres (i.e., 10 s cm) to metres below seabed (Emmings et al., 2020b). 
Lack of evidence for overprint of the redox-sensitive metal record (pri
marily associated with sulphides and organic matter; Emmings et al., 
2020b) suggests closed system conditions developed in Facies B-C and F 
during early diagenesis. The following section details a series of 

simplified paragenetic relationships for all anoxic facies (A-F). 
Facies B-C mudstones are interpreted to represent deposition under 

the most strongly reducing conditions (i.e., relatively negative Eh) 
during periods of high sea level; anoxic and at least intermittently sul
phidic bottom water conditions (Fig. 9). This is consistent with a variety 
of textural and geochemical proxy evidences (see Emmings et al., 
2020b), including abundant framboidal pyrite and early diagenetic 
monosulphide (e.g., ZnS; see Emmings, 2018). Exceptionally early 
phosphate precipitation coupled to quartz precipitation in Facies B is 
consistent with the evidence of locally acidic porewaters (i.e., partial 
dissolution of skeletal carbonate; Fig. 5d), conditions which promote 
phosphate fixation (Taylor and Macquaker, 2011). It is clear that one or 
more factors, perhaps localised high porewater alkalinity or the pres
ence of Fe oxides (e.g., Kastner et al., 1977; Meister et al., 2014), suf
ficiently reduced porewater saturation in opal A and opal CT, enabling 
direct low temperature quartz precipitation. Indeed evidence for partial 
dissolution of primary (allochemical) carbonate during quartz precipi
tation suggests porewaters locally exhibited high alkalinity. Whilst the 
role of porewater composition is unresolved, the evidence shows early 
diagenetic quartz precipitation enhanced fluid storage capacity in Facies 
B-C (Figs. 4–9). 

Calcite crusts in Facies B, often ‘mantling’ bioclasts, post-date reverse 

Fig. 9. Interpreted syngenetic and early diagenetic 
paragenetic sequence for anoxic facies (A–F), based 
on integration of observations and interpretations by 
Emmings (2018), Emmings et al. (2019), Emmings 
et al. (2020a, 2020b) and this study. Each row 
(phase) represents a formation/precipitation reaction 
unless otherwise stated. Diagenetic zones are based 
on Curtis (1977). Temperature ranges for diagenetic 
zones are equivocal. The depth of SMT likely fluctu
ated through time (within ca. 18 �C and 40 �C). An 
SMT intermittently close to 18 �C is considered likely 
if based on observations of sediment cores from the 
West African upwelling zone, an area defined by 
organic-rich sediments and high sediment accumula
tion rates (see Wefer et al., 1998; Moore et al., 2004). 
An SMT between 18 and 40 �C is supported by car
bonate isotope data from Facies A (see Emmings 
et al., 2020b). Smectite decomposition temperature 
from Boles and Franks (1979). Oil window tempera
ture range based on Jarvie and Lundell (2001). A 
bottom water temperature of 18 �C is based on the 
Cariaco Basin (Alvera-Azc�arate et al., 2011) assuming 
this is a partial modern analogue for Craven Basin 
(Emmings et al., 2020b). End bacteriogenesis and 
peak organic acid temperature range from Yuan et al. 
(2019). *Late diagenetic phases in the Bowland Shale 
include calcite-cemented fractures (e.g., Clarke et al., 
2018). SMT ¼ sulphate reduction-methanogenesis 
transition zone. M ¼ zone of methanogenesis. ≫D 
¼ zone dominated by decarboxylation reactions. AVS 
¼ acid-volatile (Pb, Zn) sulphide (e.g., Cooper and 
Morse, 1998; Landner and Reuther, 2005); DIC ¼
dissolved inorganic C. OSI ¼ Oil Saturation Index. 
Note Facies A exhibits very low storage capacity due 
to pervasive precipitation of spherulitic calcite asso
ciated with shallow anaerobic oxidation of methane. 
Where Facies B directly overlies Facies A (arrow 
labelled ‘210, e.g., sample 21), low fluid storage ca
pacity is best explained by enhanced calcite mantling 
and precipitation within the matrix (Figs. 2 and 6).   
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weathering (Fig. 6) and indicate increased porewater pH, alkalinity and 
Ca saturation as requirements for calcite precipitation. Observations 
(and modelling) of modern diagenetic systems suggests calcite precipi
tation typically proceeds within the sulphate-methane transition zone 
via anaerobic oxidation of methane (e.g., Meister, 2013; e.g., 
methane-derived authigenic carbonate; e.g., Joseph et al., 2013). Pre
cipitation of Facies A spherulitic limestones within the zone of anaerobic 
oxidation of methane, likely relatively close to seabed, is supported by 
textural observations and isotopic data (Emmings et al., 2020b). Sample 
21 represents a thin (cm-scale) transitional zone where Facies A is 
directly overlain by Facies B (Fig. 2). Continued, localised shallow 
anaerobic oxidation of methane within this zone best explains combi
nation of quartz crystals, abundant primary carbonate and discrete 
calcite crystals and mantled calcite (Fig. 6). Dual quartz and carbonate 
cementation within the matrix reduced fluid storage capacity in sample 
21 (Fig. 9). The majority of Facies B-C samples, however, do not exhibit 
such discrete carbonate cements (thus retaining high fluid storage ca
pacity due to quartz buttressing). This is likely related to an expanded 
and deepened base of the sulphate-methane transition zone (Emmings 
et al., 2020b), considered less favourable for calcite precipitation within 
the matrix. CO2 generated during methanogenesis was likely at least 
partially consumed via precipitation of dolomite coupled to marine 
silicate weathering (e.g., Torres et al., 2020, Fig. 9). This is supported by 
observations of relatively late diagenetic replacement of primary and 
mantled calcite with non-ferroan dolomite in Facies B (Figs. 5d and 6). 

Falling sea level likely increased the export of reactive Fe from the 
shelf into the basin, prompting ‘redox oscillation’ between zones of Fe 
and sulphate reduction (i.e., generally less negative Eh), during depo
sition of Facies F muds. Oscillation between ferruginous and sulphidic 
bottom water states significantly complicate the early diagenetic para
genetic sequence for Facies F (Fig. 9), including; multiple phases of 
pyrite and sulphate precipitation associated with anaerobic oxidation of 
pyrite; long-lived organic matter degradation, and; complete carbonate 
dissolution under acidic conditions (Emmings et al., 2020b). Despite 
this, quartz precipitation was apparently robust to, and unaffected by, 
changing porewater Eh and pH (i.e., quartz textures are broadly similar 
in both Facies B and F). DeMaster (2003) suggested the dynamic range 
for pH during early diagenesis is potentially sufficiently small so that 
variations in pH produce minimal change in terms of silica solubility. 
Thus Facies F exhibits relatively high fluid storage capacity. Downward 
advection or diffusion of acidic fluids following quartz precipitation 
apparently enhanced porosity (therefore storage capacity), by triggering 
dissolution of phases such as carbonate and/or reactive silicates 
dispersed between the quartz crystals. This mechanism potentially ex
plains why the highest OSI occurs at the contacts between Facies B/C 
and overlying Facies F mudstones (Fig. 2). 

Absence of discrete ZnS in Facies F suggests Zn, likely together with Pb 
(both with faster H2O exchange kinetics than Fe; Morse and Luther, 1999), 
was initially retained in solution under weakly reducing and acidic condi
tions (e.g., Cooper and Morse, 1998). Precipitation as solid sulphides (e.g., 
ZnS, PbS) via reaction with H2S was potentially blocked due to complexa
tion with polysulphides (or another presently unresolved complex; e.g., 
Rickard, 2012a), considered stable under relatively low Eh conditions 
(Rickard, 2012b). Such aqueous Zn and Pb species potentially (at least 
initially) complexed with organic matter (e.g., Holman et al., 2014), as 
supported by relatively high organic S (Sorg) content (Emmings et al., 2019). 
Subsequently or alternatively, Zn and Pb aqueous species migrated within 
acidic fluids, enriched in dissolved inorganic C and other cations, from 
Facies F into Facies D laminae and beds during ‘relatively’ late diagenesis 
(Fig. 9). Such fluids are the proposed source for the interlocking 
quartz-calcite-dolomite-kaolinite-monosulphide cements in Facies D, 
which significantly decreased porosity and permeability, therefore fluid 
storage capacity (Fig. 4g). 

The exact timing of cementation in Facies D is uncertain. Calcite 
mantling pre-dates the interlocking cements (Emmings, 2018), sug
gesting precipitation likely proceeded within the sulphate-methane 

transition zone, or within the zone of methanogenesis or decarboxyl
ation (Fig. 9). Dissolved silica was potentially generated early (Fig. 8), 
particularly if local porewater catalysts for opal CT/quartz precipitation 
were exhausted/saturated. Alternatively, Facies D quartz and kaolinite 
cementation proceeded during ‘late’ early diagenesis (prior to oil gen
eration), using migrated silica generated from marine silicate weath
ering or possibly related to silica phase transitions (e.g., illitization; 
Fig. 8). Cementation in Facies D coeval with illitization (i.e., dissolution 
and re-precipitation, collapse) of clays pinned between quartz grains in 
the matrix of surrounding Facies F muds is a particularly attractive 
mechanism because the process potentially generated overpressure 
(thus promoting fluid migration). 

4.3. Synthesis 

In summary, anoxic facies in the Bowland Shale contain abundant 
biogenic Si, now manifested as pervasive early diagenetic dispersed 
quartz cements. This is important for several reasons. Firstly, it enhances 
brittleness (e.g., Slatt, 2011; Rybacki et al., 2016; Peng et al., 2020) and 
in most cases fluid storage capacity (Fig. 7), and is therefore important 
for understanding the Bowland Shale as a target for unconventional oil 
or gas. This is particularly relevant in shale oil and shale gas systems, 
where oil retained in pores cracks to gas, rather than where gas is 
generated directly from kerogen (e.g., Jarvie et al., 2007). In contrast, 
sediments deposited under suboxic to oxic conditions (Facies G-I), 
proximal to the Pendle delta system, lack pervasive cement (e.g., 
Emmings et al., 2020a, b). Secondly, standard compaction curves (e.g., 
Velde, 1996) may be impacted by the quartz buttress effect, which could 
lead to spurious estimations or interpretations of mean sediment accu
mulation rates (when corrected for timespan; e.g., log-log ‘Sadler’ 
biplots; Sadler, 1981, 1999; Emmings et al., 2020a). 

Increased storage capacity linked to early diagenetic quartz but
tressing is also important with respect to mineral systems. The Bowland 
Shale apparently exhibited a high capacity for retention of fluids, orig
inally derived from anoxic (ferruginous to euxinic) bottom waters, 
during diagenesis. This is important particularly in mineral deposits 
generated via mixing of several fluids, such as Pb-Zn systems, which are 
linked to supply of reduced S and/or metals during deposition or dew
atering of organic-rich muds including the Bowland Shale (Kendrick 
et al., 2002; related to e.g., Navan-type; e.g., Ashton et al., 2016, and 
Pennine-type deposits; Dunham and Wilson, 1985). 

Thus the Bowland Shale possibly defines a black shale sub-class with 
the following attributes; (i) the ability to host (and potentially transfer) a 
relatively large volume of early diagenetic fluids, derived from anoxic 
(ferruginous to euxinic) seawater, likely ligand- and/or metal-bearing 
(this study; Facies B-C, E-F); (ii) a sustained and high mean sediment 
accumulation rate (Emmings et al., 2020a) coupled to a high probability 
of encasement by highly cemented (thus likely low permeability) beds 
(e.g., Facies D), which promoted overpressure development (Frazer 
et al., 2014); (iii) a low early diagenetic compressibility (i.e., via early 
quartz buttressing, this study) but with a high likelihood of increasing 
compressibility during late diagenesis via temperature-driven clay 
mineral transformation reactions (e.g., illitization, Boles and Franks, 
1979, particularly of clays pinned between quartz crystals); (iv) het
erogeneous fill (i.e., interbedded carbonate-clastic facies; Emmings 
et al., 2020a) with high effective anisotropy, promoting lateral fluid flow 
(i.e., along Facies D beds), and; (v) positioned adjacent to 
carbonate-cemented (thus high-rigidity) platforms. Such properties, as 
originally proposed by Frazer et al. (2014), are considered favourable 
for Pb-Zn mineralisation. 

Finally, quartz cementation is localised (bed-scale, closed-system) 
and linked to a biogenic source (radiolarian tests) associated with 
relatively productive water column conditions overlying anoxic bottom 
waters (Emmings et al., 2019, 2020b). Presence of chert on the southern 
edge of the Askrigg block (Fig. 1b) (Fairbairn, 2001) suggests these 
conditions were relatively widespread. Textural evidence (Fig. 6) also 
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shows operation of reverse weathering during early diagenesis, consis
tent with observations in partially analogous modern diagenetic systems 
(Michalopoulos and Aller, 2004; Michalopoulos et al., 2000; Wallmann 
et al., 2008). This indicates the Bowland Shale was potentially an 
important sink for seawater cations (e.g., K, Mg, Li, F; see Michalopoulos 
and Aller, 2004; Wallmann et al., 2008). More broadly, Mississippian 
anoxic, organic and mud-rich successions were clearly subject to highly 
dynamic early diagenetic processes, with implications for related hy
drocarbon and mineral systems. 

5. Conclusions 

Integrated microscopic and bulk geochemical observations show 
siliceous mudstones in the Bowland Shale contain ‘excess silica’ and are 
quartz-cemented. Key conclusions are:  

1. The distribution of quartz cementation is linked to the input of 
abundant, highly labile radiolarian tests under productivity-driven 
water column conditions; 

2. Dissolution of the siliceous tests during early diagenesis is inter
preted as the key source of silica required for quartz precipitation. At 
least ca. 50% silica cement by volume suggests precipitation within 
10s–100 s m of seabed and implicates a biogenic source;  

3. Dissolved silica was also partially consumed (at least initially) via the 
precipitation of authigenic clay minerals (‘reverse weathering’), 
suggesting the Bowland Shale was an important sink for key cations 
dissolved in seawater;  

4. Positive correlation between oil saturation index and excess silica, 
supplemented with microscopic observations, indicates early diage
netic quartz precipitation suppressed pore collapse, and therefore 
retained the pore space capacity, in order to host oil; 

5. Pore buttressing during early diagenesis is a key aspect of under
standing coupled brittleness and fluid storage capacity in the Bow
land Shale. Therefore metre-scale siliceous packages in the Bowland 
Shale likely represent more prospective units within the Bowland 
Shale; 

6. Evidence for multiple-phases of quartz and clay mineral precipita
tion and relatively low oil saturation content in relatively coarse, silt- 
rich facies suggests a paragenetically late diagenetic phase of pore 
occlusion operated along permeable laminae. Encasement by highly 
cemented (thus likely low permeability) beds potentially promoted 
overpressure development;  

7. Early diagenetic quartz pore buttressing suggests the Bowland Shale 
exhibited a high capacity for retention of fluids originally derived 
from ferruginous anoxic to euxinic bottom waters. Thus the Bowland 
Shale possibly defines a black shale sub-class with the ability to host 
(and possibly transfer) a relatively large volume of early diagenetic 
fluids, which were potentially S- and/or metal-bearing. This is 
particularly relevant to understanding the genesis of adjacent (Pen
nine-type) Pb-Zn deposits, which were likely generated from fluids 
enriched in ligands (e.g., reduced S) and/or metals expelled from the 
Bowland Shale during diagenesis. 
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