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Abstract: Dissolved-phase contaminants experiencing enhanced diffusion (i.e., “super-diffusion”) 24 

with a pronounced leading plume edge can pose risk for groundwater quality.  The drivers for 25 

complex super-diffusion in geological media, however, are not fully understood.  This study 26 

investigates the impacts of hydrofacies’ mean lengths and the initial source geometry, motivated 27 

by a hydrofacies model built recently for the well-known MADE aquifer, on the spatial pattern of 28 

super-diffusion for two-dimensional alluvial aquifer systems.  Monte Carlo simulations show that 29 

the bimodal velocity distribution, whose pattern is affected by the hydrofacies’ mean lengths, leads 30 

to super-diffusion of solutes with a bi-peak plume snapshot in alluvial settings where advection 31 

dominates transport.  A larger longitudinal mean length (i.e., width) for hydrofacies with high 32 

hydraulic conductivity (K) enhances the connectivity of preferential pathways, resulting in higher 33 

values in the bimodal velocity distribution and an enhanced leading front for the bi-peak plume 34 

snapshot, while the opposite impact is identified for the hydrofacies’ vertical mean length (i.e., 35 

thickness) on the bi-peak super-diffusion.  A multi-domain non-local transport model is then 36 

proposed, extending upon the concept of the distributed-order fractional derivative, to quantify the 37 

evolution of bi-peak super-diffusion due to differential advection and mobile-mobile mass 38 

exchange for solute particles moving in hydrofacies with distinct K.  Results show that the bi-39 

peak super-diffusion identified for the MADE site and perhaps the other similar aquifers, which is 40 

affected by the initial source geometry at an early stage and the thickness and width of high-K 41 

hydrofacies during all stages, can be quantified by the mobile-mobile fractional-derivative model.  42 

Scale dependency, porous medium dimensionality, and stochastic model comparison are also 43 

discussed to further explore the nature of bi-peak super-diffusion in alluvial systems. 44 

Keywords: Super-diffusion; Alluvial aquifer; Hydrofacies model; Monte Carlo simulation45 
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1. Introduction 46 

Super-diffusive transport (defined by the faster than linear growth of a solute plume’s second 47 

central moment (or variance) in time) in heterogeneous aquifers, which is usually characterized by 48 

an apparent leading edge of the solute plume, can pose a high risk to groundwater quality (Benson 49 

et al., 2001; Schumer et al., 2003a; Zhang et al., 2009). Super-diffusion differs significantly from 50 

sub-diffusion (defined by the slower than linear growth of the plume variance in time) which is 51 

mainly characterized by solute retention and whose transport behavior can be characterized by 52 

various stochastic models (Haggerty and Gorelick, 1995; Schumer et al., 2003b; Berkowitz et al., 53 

2006; Zhang et al., 2010; Dentz et al., 2015; Tyukhova et al., 2016; among many others). Super-54 

diffusion has mainly been identified for a few field tracer tests, including those conducted at the 55 

well-known MAcroDispersion Experiment (MADE) site (a heterogeneous alluvial depositional 56 

aquifer system) focused by hydrogeological modelers for over three decades (Adams and Gelhar, 57 

1992; Zheng et al., 2011). Dynamics of super-diffusion in real-world aquifer systems, including 58 

the MADE site, have not been fully developed or well understood, motivating this study. 59 

Efforts have been made to identify the mechanisms controlling super-diffusion in 60 

groundwater for decades. Numerical and analytical analyses were carried out first, revealing that 61 

the extensive “heavy” tailing behavior (especially the power-law distributed) and long-range 62 

correlation of hydraulic conductivity (K) can lead to early arrivals of solutes in heterogeneous 63 

porous media (Sahimi, 1993; Benson et al., 2001; Herrick et al., 2002; Saadatfar and Sahimi, 2002; 64 
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Kohlbecker et al., 2006; Dentz and Bolster, 2010). Spatial moments analysis also showed that 65 

super-diffusive transport via random walk motion can be driven by power-law distributed, 66 

correlated velocities (Dentz and Bolster, 2010) or as a result of layered media with specific velocity 67 

distributions (Bouchaud et al., 1990). Salamon et al. (2007) conducted numerical experiments and 68 

also found that the strong variation and continuity of K in space caused the heavy (extended) 69 

leading edge of the tracer plumes observed at the MADE site. Most of these studies revealed the 70 

physical condition for super-diffusion, i.e., a random K field with a large variance (and long 71 

correlation lengths for most cases). Particularly, the wide contrasts in hydraulic properties of the 72 

sediments forming typical alluvial systems can promote super-diffusion, because the 73 

interconnected, high-K deposits (such as ancient channels) surrounded by relatively low-K 74 

deposits, representing the common internal architecture of an alluvial setting, can guarantee the 75 

highly correlated K with a large variance (Fogg and Zhang, 2016).  76 

This typical alluvial structure can be reliably captured by the transition probability based 77 

geostatistical tool called “T-PROGS” (Carle and Fogg, 1996, 1997; Carle, 1999), which provides 78 

a feasible way to systematically explore anomalous transport in alluvial systems. T-PROGS can 79 

capture major properties of hydrofacies, including their global volumetric proportion, mean 80 

lengths (i.e., thickness/width along the vertical/longitudinal direction), and juxtaposition tendency, 81 

motivating the numerical exploration of anomalous transport for models of hydrofacies or 82 

lithofacies (representing the assemblage of deposits with similar hydrological properties). 83 

Hydrofacies models built by T-PROGS in Zhang et al. (2013) and Bianchi and Zheng (2016), 84 
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however, led to contrasting conclusions describing the generation of super-diffusion. Zhang et al. 85 

(2013) found that although the hydrofacies models do capture the strong spatial variation and 86 

continuity of K, they cannot generate super-diffusion with a heavy leading plume front, although 87 

apparent sub-diffusion with extensive late-time concentration tailing behavior dominates the solute 88 

breakthrough curves (BTCs). Contrarily, the recent work by Bianchi and Zheng (2016) 89 

successfully captured super-diffusion with an obvious and pronounced leading edge in the plume 90 

snapshots observed at the MADE site (at the sample cycles after ~132 days), using the T-PROGS-91 

generated hydrofacies model. A percolated hydrofacies with a significantly high K (two orders of 92 

magnitude higher than the other hydrofacies) was found to cause the rapid movement of the leading 93 

plume edge (Bianchi and Zheng, 2016). In T-PROGS, the hydrofacies’ mean lengths significantly 94 

affect the hydrofacies’ connectivity, while the estimation of the hydrofacies’ mean lengths 95 

(especially the horizontal mean length) contains high uncertainty due to the typically limited 96 

number of boreholes. The impacts of hydrofacies’ mean lengths along different directions on super-97 

diffusion were not systematically addressed in Bianchi and Zheng (2016), except for a preliminary 98 

sensitivity test. To reliably identify the major geological mechanisms controlling super-diffusion 99 

in typical alluvial systems, discrepancy between these two studies needs be explored by 100 

systematically extending the hydrofacies model for addressing the facies’ mean length uncertainty 101 

on solute transport. Therefore, the exploration of such mechanisms is the major focus of this study. 102 

The following content of this work is organized as follows. Section 2 introduces the Monte 103 

Carlo simulations with multiple scenarios of hydrofacies models generated by T-PROGS to 104 
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explore anomalous transport in the alluvial settings. Section 3 presents the numerical results for 105 

the scenarios, by focusing on the behavior and mechanism of super-diffusion with a bi-peak plume 106 

snapshot. Section 4 discusses the hydrogeological mechanisms dominating bi-peak super-107 

diffusion by analyzing the velocity distribution, the impact of major properties of hydrofacies on 108 

super-diffusion, and the pattern of plume snapshots changing with the initial source geometry. A 109 

novel mobile-mobile transport model is then proposed to quantify and interpret the bimodal 110 

distribution of the pollutant snapshots. Section 5 presents the main conclusions of the study. The 111 

super-diffusion with bi-peak snapshots and its hydrogeological interpretation, as well as its 112 

stochastic quantification, are the new contributions of this work and improve our understating in 113 

the nature of anomalous transport through complex aquifers on the scale of a few hundred meters. 114 

2. Method of Monte Carlo simulations from hydrofacies model to pollutant transport 115 

To explore the dynamics of tracers transport in alluvial settings with intrinsic heterogeneity, 116 

a numerical approach with three main steps was used by adopting the procedures in Zhang et al. 117 

(2013) and Bianchi & Zheng (2016). First, T-PROGS was used to generate two-dimensional (2-d), 118 

different alluvial settings with various hydrofacies structures (Carle and Fogg, 1997). Monte Carlo 119 

simulations of the hydrofacies distribution lead to the random K fields. Second, steady-state 120 

groundwater flow fields were calculated using a block-centered finite difference model (Harbaugh, 121 

2006). Third, conservative tracer transport was simulated using the MT3D program (Zheng et al., 122 

2010). The following subsections briefly describe these steps. 123 
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2.1 Modeling hydrofacies structures and hydraulic conductivity fields 124 

T-PROGS (Carle, 1999; Carle and Fogg, 1997) was used to generate hydrofacies structures 125 

that can be representative of different alluvial aquifers. To construct numerical models representing 126 

major properties of real-world aquifers, the geostatistical characters/properties of the MADE 127 

aquifer identified by Bianchi and Zheng (2016) is used as a reference. As in the previous work, the 128 

generated aquifers are therefore characterized by five hydrofacies, including (1) a highly 129 

conductive gravel (HCG), (2) gravel with sand (GS), (3) sand gravel and fines (SGF), (4) sand and 130 

gravel (SG), and (5) well-sorted sand (S). The hydrofacies properties, including the hydraulic 131 

conductivity, mean lengths, and the volumetric proportion listed in Table 1 are also consistent with 132 

the lithological model proposed by Bianchi and Zheng (2016). 133 

A 2-d vertical profile of the aquifer with a dimension of 300 m in length and 40 m in thickness 134 

is used, with the grid size of 10 m and 0.5 m along the longitudinal and vertical directions, 135 

respectively. The same model and gird dimensions are used for the following flow and transport 136 

models. The sensitivity of transport dynamics to the grid size is discussed in the supplementary 137 

material (section S4), to evaluate the feasibility of the grid resolution selected in this study. 138 

There are three modifications of the hydrofacies modeling in Bianchi and Zheng (2016). First, 139 

multiple scenarios containing different mean lengths along the vertical direction (i.e., thicknesses) 140 

or the longitudinal direction (i.e., widths) for hydrofacies are developed to account for the 141 

uncertainty of hydrofacies mean lengths and their potential impact on transport. Second, no hard-142 

conditional data are used in most scenarios when running T-PROGS, so that the resultant 143 
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hydrofacies models can capture the maximum spatial variation of hydrofacies necessary for a 144 

systematic analysis. Third, the 3-d models used by Bianchi and Zheng (2016) are simplified to 2-145 

d models, since the 2-d models provide the simplest framework to control the longitudinal and 146 

vertical correlations of K and evaluate the impact of K structures on solute transport. The impact 147 

of model dimension on super-diffusion will be discussed in the supplementary material (section 148 

S2). 149 

Eight scenarios are designed, with 100 realizations for each scenario, to investigate the 150 

influence of the internal aquifer structure on super-diffusion. Scenario 1 is the basic case 151 

representing the general statistics obtained from the MADE aquifer, with parameters estimated by 152 

Bianchi and Zheng (2016) (Table 1). Scenarios 2, 3, and 4 have the thickness (i.e., the vertical 153 

mean length) of 1.5, 2.0, and 2.5 times larger than that of the base scenario for all the hydrofacies, 154 

respectively. Scenarios 5, 6, and 7 have a longitudinal mean length or width for each hydrofacies 155 

1.25, 1.5, and 2.0 times larger than the base case, respectively.  156 

Scenario 8 is designed to investigate the influence of the contaminant source vertical 157 

extension on solute transport. Four vertical line sources with the length increasing from 2, 5, 20, 158 

to 40 m (i.e., 1/20, 1/4, 1/2 and 1.0 time of the aquifer thickness, respectively) are considered in 159 

this study. To decrease the impact of low-K zones on the injection of the initial pollutant source, 160 

an aggregate of high-K HCG facies located at z=20~22 m and x=5 m is used as the hard conditional 161 

data (configuration) when building the realizations for Scenario 8, and this zone is selected as the 162 

midpoint of the line source. The same strategy was used by Zhang et al. (2013) in a similar Monte 163 
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Carlo study. Fig. 1 shows one realization arbitrarily selected (realization #1) for each scenario. 164 

2.2 Modeling of groundwater flow and solute transport 165 

The steady-state flow fields are calculated using MODFLOW (Harbaugh, 2006), with the 166 

specified head boundary condition defined for the two vertical boundaries (left and right 167 

boundaries) and the no-flow boundary condition for the two horizontal boundaries (top and bottom 168 

boundaries). A ratio between the vertical and longitudinal K, 0.13, based on the pumping test 169 

conducted at the MADE site (Bianchi and Zheng, 2016; Boggs et al., 1990), is used in the 170 

groundwater flow modeling. The general hydraulic gradient of 0.006 is used in this study, which 171 

is similar to the one (0.0058) used by Guan et al. (2008). The average K (Table 1) is assigned for 172 

each hydrofacies when calculating groundwater flow. 173 

The finite difference transport code MT3DMS (Zheng et al., 2010) is then used to calculate 174 

solute transport. A vertical instantaneous line source with the uniform concentration is used in 175 

Scenarios 1 to 7. In Scenario 8, various lengths (2, 5, 20, and 40 m) of the vertical line source is 176 

considered to investigate the impact of the initial source scale on solute transport. The initial source 177 

for all scenarios is located at x = 5 m. The downgradient boundary along the longitudinal direction 178 

is defined as the zero-value Neumann boundary (i.e., the free exit boundary), while the top and 179 

bottom boundaries are no-flux boundaries. The molecular diffusion coefficient is 1.1610-9 m2/s, 180 

representing the diffusivity for tritium in water (Bianchi and Zheng, 2016). The effective porosity 181 

for each hydrofacies is listed in Table 1. The longitudinal dispersivity 𝛼௅ is 1 m (which is 1/10 182 
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of the grid dimension), and the vertical dispersivity 𝛼௏ is two orders of magnitude lower than 𝛼௅ 183 

(Llopis-Albert and Capilla, 2009; Bianchi and Zheng, 2016). The sensitivity of super-diffusion on 184 

dispersivity will be addressed in the supplementary material (section S4). 185 

3. Results  186 

The ensemble average of the simulated plume snapshots for all the 100 realizations for each 187 

scenario is calculated and shown below (Fig. 2~5). The 1-d normalized longitudinal mass 188 

distribution at 27, 132, 224 and 328 days (after the release of the contaminant source), which 189 

present the four sample snapshots during the MADE-2 experiment (Bogg et al.,1990), is also 190 

plotted for further analysis. The variance of solute plumes is also calculated (shown by Fig. S4), 191 

providing clear evidence for super-diffusion of the simulated transport. The following subsections 192 

introduce the plume snapshots for each scenario in order to explore the impact of medium 193 

architecture and the initial concentration distribution on solute transport in alluvial systems. 194 

3.1 Impact of hydrofacies’ vertical mean length (i.e., thickness) on super-diffusion 195 

The calculated mass distribution for scenarios 1~4 with different thicknesses for hydrofacies 196 

is depicted in Fig. 2. Super-diffusive transport is characterized by the plume’s apparent leading 197 

front moving quickly along preferential pathways, while a large portion of solute remains near the 198 

initial source location. 199 

The transport simulations also show that a smaller thickness of hydrofacies leads to a better 200 

connectivity of the high-K zones, which can enhance the downstream expansion of the plume front. 201 
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In addition, the different shape (i.e., skewness) of the simulated plume snapshots (Fig. 2) imply 202 

that the hydrofacies’ thickness also affects the mass ratio of contaminants in the relatively high and 203 

low velocity zones. Particularly, the scenario with thicker hydrofacies (such as scenario 4) tends 204 

to delay (retain) more contaminants near the source and release less mass downgradient. 205 

Therefore, the hydrofacies’ thickness has the opposite impact on the two edges of the plume 206 

snapshot. A thicker hydrofacies, in fact, enhances the trailing edge due to the longer path for slow 207 

advection, while a thinner hydrofacies promotes the longitudinal facies/flow connection and hence 208 

enhances the downgradient migration of the plume’s leading edge.  209 

3.2 Impact of hydrofacies’ longitudinal mean length (i.e., width) on super-diffusion 210 

Fig. 3 depicts the simulated evolution of contaminant snapshots for scenarios 1, 5, 6, and 7, 211 

with different widths for hydrofacies. Results show that a larger width for the hydrofacies causes 212 

faster transport of the plume’s leading edge, which is opposite to the effect of hydrofacies’ 213 

thickness on super-diffusion. A similar result was found by Bianchi and Pedretti (2017), who 214 

showed that a larger horizontal mean length led to a more slant distribution for solute particles’ 215 

arrival times. In addition, the hydrofacies’ width only slightly affects the plume’s trailing edge, 216 

which is different from the result shown in section 3.1 whereby the hydrofacies’ thickness can 217 

affect both edges of the plume snapshot. 218 

3.3 Impact of the size of the initial contaminant source on super-diffusion 219 

Fig. 4 shows the simulated plume snapshots for scenarios 8 with different sizes for the initial 220 
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source. The initial source condition can significantly impact super-diffusion by affecting the 221 

overall pattern of plume snapshots. Strong super-diffusion is identified for all of the initial source-222 

lengths evaluated in this study. On one hand, a larger initial source (in which orientation is 223 

perpendicular to the general flow direction) causes more solute particles to remain in the low 224 

velocity zones around the initial source, resulting in a more (positively) skewed plume snapshot. 225 

On the other hand, when the source size is much smaller (i.e., 2 m) and can be approximated as 226 

a point source (all mass located in the high-K zone initially), solute particles can move fast and 227 

form a distinct plume peak.  228 

3.4 Two-dimensional plume snapshot  229 

To directly view the solute transport process in heterogeneous structures, the spatial 230 

distribution of K and the corresponding 2-d snapshot of the plume front at different times for one 231 

realization in scenario 1 are plotted in Fig. 5a and Fig. 5b, respectively. The results show that the 232 

preferential flow path generated by continuous high-K hydrofacies has a great impact on plume 233 

evolution and is the main reason for super-diffusion. Meanwhile, a larger fraction of solute located 234 

at the relatively less permeable zone moves slowly. Another interesting phenomenon shown in Fig. 235 

5b is that while the preferential path generates super-diffusion, a front peak can also arise when a 236 

fraction of solutes moves faster along the preferential path. This bi-peak solute transport in alluvial 237 

aquifers will be further discussed and modeled in section 4. 238 
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4. Discussion 239 

Super-diffusion for conservative tracers observed in the Monte Carlo simulations is mainly 240 

driven by the internal structure of the alluvial aquifer settings, where the detailed mechanism is 241 

discussed below. Particularly, we analyze the relationship among the medium’s architecture, the 242 

velocity distribution, and anomalous transport characteristics. A novel physical model is then 243 

proposed to quantify the observed anomalous transport in the alluvial aquifers.  The applicability 244 

of another popular stochastic model (the time nonlocal transport model) is discussed in the 245 

supplementary material to further explore the nature of bi-peak super-diffusion in alluvial systems.   246 

4.1 Statistics of the Eulerian velocity 247 

To calculate the velocity distribution for each scenario, we adopted the approach proposed by 248 

Hyman et al. (2019). Particularly, we define the magnitude of the Eulerian velocity 249 

using 𝑣௘ሺ𝑥, 𝑧ሻ ൌ ‖𝑢ሺ𝑥, 𝑧ሻ‖, where 𝑢ሺ𝑥, 𝑧ሻ is the velocity simulated by our flow model. The PDF 250 

of the Eulerian velocity v in the flow domain Ω௘, denoted as 𝑝௘ሺ𝑣ሻ, is given as: 251 

𝑝௘ሺ𝑣ሻ ൌ
1

𝑈௘
෍ 𝛿ሾ𝑣 െ 𝑣௘ሺ𝑥, 𝑧ሻሿ𝑑𝑈
ஐ೐

,                         ሺ1ሻ 252 

where 𝑈௘ is the domain’s volume, 𝛿 is the Dirac delta function, 𝑑𝑈 is the volume of the cell in 253 

the groundwater flow model, and x and z are the longitudinal and vertical coordinates, respectively. 254 

Since we consider an instantaneous line source in a rectangular aquifer under the condition 255 

of no-flow bottom/top boundaries, the longitudinal velocity is the main factor that may control the 256 

solute plume’s longitudinal mass distribution. Therefore, to reveal the dominant mechanism of 257 
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solute transport in alluvial structures, the longitudinal velocity is analyzed in detail herein. For 258 

each scenario, velocities of ~24,000 grids are counted, resulting in a solid PDF. Fig. 6 shows that 259 

there are two peaks in the calculated velocity distribution with a broad spectrum ranging mostly 260 

between 1.010-4 m/d and 1.0101 m/d. To provide a more quantitative view, several key statistics 261 

of the velocity distribution are listed in Table 2. Notably, the percentage of the slow velocity zone 262 

(represented by “P(v  vm)” in Table 2) is close to the total volumetric proportion (~0.88) of the 263 

hydrofacies excluding the high-K HCG, and the two velocity zones may be separated by the poor 264 

connectivity of some HCGs. A larger width for hydrofacies results in a slightly smaller fraction of 265 

the low velocity zone (Table 2), since the model with a larger width for hydrofacies can produce 266 

better longitudinal connectivity for high-K hydrofacies which in turn increases the proportion of 267 

high velocities in the velocity PDF. The opposite impact can be found for the hydrofacies thickness: 268 

thicker hydrofacies slightly increase the fraction of the low velocity zone (Table 2), likely due to 269 

the decreased longitudinal connectivity. 270 

The bimodal distribution of velocity (Fig. 6) sheds light on the formation of super-diffusion 271 

and may explain the plume snapshots generated for different hydrofacies scenarios. The second 272 

peak of the velocity PDF, representing the high velocity, is associated with preferential flow paths 273 

for solute particles that exhibit the super-diffusion behavior. The proportion of the high to low 274 

velocity zones is approximately 10% to 90%, respectively (Table 2), indicating that most of the 275 

solute particles are transporting in the low velocity zone while the remaining particles move fast 276 

in the high velocity zone, generating the positively skewed plume snapshot and the overall super-277 
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diffusive transport behavior. 278 

The vertical and longitudinal mean lengths of hydrofacies have significant and varied 279 

influences on the distribution of the longitudinal velocity. On one hand, as shown in Fig. 6, the 280 

hydrofacies’ thickness affects the distribution of both the low and high velocities of moving solutes. 281 

Thicker hydrofacies lead to a higher percentage of the low velocity zones and shorter distances 282 

between the two peaks of the velocity PDF. On the other hand, the hydrofacies’ width mainly 283 

affects the distribution of the high velocities with little associated impact on the low velocities (Fig. 284 

6). Wider hydrofacies produce higher velocities and therefore separate the two contrasting velocity 285 

zones further in the velocity PDF. These results are consistent with the Monte Carlo simulations 286 

shown in section 3 and provide further insight on the interpretation of the impact of alluvial 287 

setting’s architecture on solute transport. 288 

4.2 Correlation between hydraulic conductivity and velocity field 289 

The relationship between the velocity field and the hydraulic conductivity field had been 290 

explored by various studies. For example, Veneziano and Tabaei (2004) and Veneziano and Essiam 291 

(2004) found a clear relationship between the velocity field and statistics of the K field. Herrick et 292 

al. (2002) and Kohlbecker et al. (2006) investigated the relationship between the heavy-tailed 293 

logarithm K and the heavy tailed log velocity distribution, and an empirical equation was proposed 294 

by Kohlbecker et al. (2006) to predict the tail of the velocity PDF based on the K distribution. Ａ295 

recent work in revealing the relationship between K and v (Bianchi and Pedretti, 2017) used a 296 
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novel metric, geological entropy, and established a quantitative relationship between structure 297 

settings and the velocity distribution. The geological entropy was found to be a promising way to 298 

describe heterogeneous structure and predict solute transport (Bianchi and Pedretti, 2018). 299 

In this section, we investigate the origin of the bimodal velocity distribution and focus on the 300 

influence of medium architecture on the relationship between the distributions of K and v. The 301 

frequency of the random K distribution (Fig. S5) clearly shows a bimodal pattern with the majority 302 

of K near 1100.5 m/d and a smaller peak but a much larger K around 1102.5 m/d. The similar 303 

bimodal characteristics of the random K field and the velocity’s spatial distribution imply a direct 304 

correlation between these two random fields.  305 

The spatial distributions of K and v of one realization for scenario 1 are shown in Fig. 7, 306 

illustrating a positive correlation between the spatial distribution of high K and large velocities. 307 

We calculate the coefficient of the spatial correlation between K and v using 308 

𝐶௥ሺ𝐾ᇱ, 𝑣ᇱሻ ൌ
஼௢௩ሺ௄ᇲ,௩ᇲሻ

ඥ௏௔௥ሺ௄ᇲሻ ௏௔௥ሺ௩ᇲሻ
   ,                       (2) 309 

where 𝐾ᇱ  and 𝑣ᇱ  are the spatial distributions of the normalized log10(K) and the longitudinal 310 

velocity, respectively. The calculated correlation coefficient 𝐶௥ between K and v is shown in Fig. 311 

8 for the scenarios with different mean lengths of hydrofacies. The porous medium’s architecture 312 

setting has a significant impact on the correlation between K and v distributions. For example, 313 

when the width for hydrofacies is doubled, 𝐶௥ increases from 0.737 to 0.784. This positive impact 314 

may be due to the better connectivity of K with wider hydrofacies. Contrarily, when the hydrofacies’ 315 

thickness increases by 2.5 times, 𝐶௥ decreases from 0.737 to 0.691. This negative impact may be 316 
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due to the fact that thicker hydrofacies result in more high-K zones surrounded by the low-K zones, 317 

resulting in an overall lower proportion of high velocity zones (or isolation of high K zones) for 318 

solute transport. 319 

4.3 Quantify bimodal super-diffusion using a distributed-order fractional-derivative model 320 

To capture super-diffusion with multiple peaks in the plume snapshot, we adopt the concept 321 

of the distributed-order fractional derivative (Lorenzo and Hartley, 2002; Chechkin et al., 2002): 322 

׬ 𝑎ሺ𝑟ሻ௠
ଵ

𝔇ା
௥ 𝑢ሺ𝑥ሻ𝑑𝑟 ൌ 𝑓ሺ𝑥ሻ ,                         (3) 323 

where the variable r (1<r2) denotes the order of the space fractional derivative, 𝑎ሺ𝑟ሻ  is the 324 

weight for order r, and the symbol 𝔇ା
௥   denotes the positive Riemann-Liouville fractional 325 

derivative (Miller and Ross, 1993): 326 

𝔇ା
௥ 𝑢ሺ𝑥ሻ ൌ

డೝ

డ ௫ೝ 𝑢ሺ𝑥ሻ ൌ
ଵ

Γሺଶି௥ሻ
 

డమ

డ ௫మ ׬  𝑢ሺ𝑦ሻሺ𝑥 െ 𝑦ሻଵି௥ 𝑑𝑦
௫

ିஶ  ,            (4) 327 

where Γሺ∙ሻ represents the Gamma function. The multi-term (i.e., discrete components) version of 328 

the distributed-order fractional derivative equation takes the form (Diethelm and Ford, 2009): 329 

∑ 𝑎௜
௞
௜ୀଵ 𝔇∗

௥೔𝑢ሺ𝑥ሻ ൌ 𝑓ሺ𝑥ሻ ,                           (5) 330 

which can be used to quantify the impact of multiple mobile zones (each with a distinct memory 331 

kernel or index) on the material dynamics. The distributed-order time fractional-derivative models, 332 

which replace the space fractional derivative in the above formula using the time fractional 333 

derivative, have been applied to decelerating solute sub-diffusion and the other random processes 334 

with multiple scaling (Mainardi et al. 2008; Eab and Lim, 2011; Gorenflo et al., 2015). To the best 335 
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of our knowledge, the distributed-order space fractional-derivative model has not been applied for 336 

real-world or synthetic groundwater solute transport problems. 337 

The multi-term distributed-order fractional derivative equation leads logically to the 1-d, 338 

Multi-Domain, tempered space Fractional-Derivative Model (MD-tsFDM) proposed by this study. 339 

The total mass 𝑀௧  of the MD-tsFDM within a representative elementary volume (REV) is 340 

calculated by 341 

𝑀௧ሺ𝑥, 𝑡ሻ ൌ ∑ 𝐶௜ሺ𝑥, 𝑡ሻ 𝜃௜𝜑௜𝑈ோா௏
ே
௜ୀଵ     ,                        (6) 342 

where 𝐶௜ሺ𝑥, 𝑡ሻ ሾ𝑀/𝐿ଷሿ is the concentration within the i-th domain at location 𝑥 and time t, 𝜃௜ 343 

[-] and 𝜑௜ [-] are the average porosity and the proportion of the i-th domain, N [-] is the total 344 

number of domains, and 𝑈ோா௏ [L3] is the volume of the REV. To capture the strong super-diffusive 345 

transport observed in the Monte Carlo simulations discussed above, the space fractional-derivative 346 

equation with a truncation parameter proposed by Baeumer and Meerschaert (2010) is selected: 347 

𝜕௧𝐶ଵሺ𝑥, 𝑡ሻ ൌ െ𝑣ଵ𝜕௫𝐶ଵሺ𝑥, 𝑡ሻ ൅ 𝐷ଵ𝜕௫
ఈభ,ఒభ𝐶ଵሺ𝑥, 𝑡ሻ െ 𝑊ଵሺ𝑥, 𝑡ሻ        (7a) 348 

𝜕௧𝐶ଶሺ𝑥, 𝑡ሻ ൌ െ𝑣ଶ𝜕௫𝐶ଶሺ𝑥, 𝑡ሻ ൅ 𝐷ଶ𝜕௫
ఈమ,ఒమ𝐶ଶሺ𝑥, 𝑡ሻ ൅ 𝑊ଶሺ𝑥, 𝑡ሻ        (7b) 349 

where 𝑊ሺx, tሻ is the mass exchange between the two mobile domains: 350 

𝑊௜ሺ𝑥, 𝑡ሻ ൌ
ఠ

ఌ೔ఝ೔
ሾ𝐶ଵሺ𝑥, 𝑡ሻ െ 𝐶ଶሺ𝑥, 𝑡ሻሿ                    (8) 351 

and the operator 𝜕௫
ఈ,ఒ in (7) denotes the tempered fractional derivative and can be calculated by 352 

(Baeumer and Meerschaert, 2010): 353 

𝜕௫
ఈ,ఒ𝑓ሺ𝑥, 𝑡ሻ ൌ 𝑒ିఒ௫𝜕௫

ఈൣ𝑒ఒ௫𝑓ሺ𝑥, 𝑡ሻ൧ െ 𝜆ఈ𝑓ሺ𝑥, 𝑡ሻ െ 𝛼𝜆ఈିଵ𝜕௫𝑓ሺ𝑥, 𝑡ሻ           (9) 354 

where α ∈ ሺ1, 2ሿ  (dimensionless) is the fractional index; 𝑣  [LT-1] and D ሾ𝐿ఈ𝑇ିଵሿ  are the 355 
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average velocity and the effective dispersion coefficient, respectively; 𝜆 ൐ 0  [L-1] is the 356 

truncation parameter in space; and 𝜔 [ML-3T-1] is the mass transfer rate between the two domains. 357 

The space fractional derivative in (7) is used here since it was proved to be an efficient tool in 358 

capturing super-diffusion with a leading edge or positive skewness for the plume snapshot, due to 359 

nonlocal transport along preferential flow paths (Zhang et al., 2015). The truncation parameter 𝜆 360 

in model (7) describes the maximum displacement of solute particles due to the finite size of the 361 

interconnected, preferential pathways. 362 

The MD-tsFDM (7), which is a simplified distributed-order FDM, assumes dual mobile zones 363 

with distinct advective capacities. Model (7) can be conveniently generalized to account for 364 

multiple mobile-immobile zones using the distributed-order, spatiotemporal FDM, which however, 365 

may not be necessary here. This is because, as discussed in sections S1 and S3, solute transport is 366 

dominated by advection in the Monte Carlo models built in this study. It is also noteworthy that 367 

the concept of “multiple mobile zones” in model (7) is consistent with that in the mobile-mobile 368 

mass exchange model proposed firstly by Ginn (2018) and Lu et al. (2018).  369 

The boundary conditions for the stochastic model (7) are the same as those used for the 370 

MT3DMS model discussed in section 2.2. The finite difference method proposed by Baeumer and 371 

Meerschaert (2010) is used to solve the MD-tsFDM in this study. To decrease the uncertainty of 372 

model parameters, we fix the volumetric proportion of each domain representing the low and large 373 

velocity zones, 𝜑௜ (i=1, 2), as 0.88 and 0.12, respectively.  The porosity of each domain is also 374 

assumed to be equal in the MD-tsFDM, following the assumption in Llopis and Capilla (2009) and 375 
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Guan et al. (2008). It is noteworthy that the proportion corresponds to the volumetric fraction of 376 

lithofacies HGC (=0.12) estimated from the borehole logs. A similar conclusion was drawn by 377 

Bianchi and Zheng (2016), who found that the volumetric fraction of HCG corresponds to the 378 

calibrated ratio between the mobile and total porosities of the dual-domain transport model. 379 

Therefore, in real-world applications, this proportion (𝜑௜ ) can be approximated firstly by the 380 

volumetric ratio of low- and high-K deposits gleaned from cores, drillers’ logs, and/or outcrops. 381 

4.3.1 Bimodal mass distribution 382 

The best-fit results of the mean snapshots for scenario 1 using MD-tsFDMs (7) are shown in 383 

Fig. 9. The MD-tsFDM (7) with n=2 (two domains) can capture the bimodal plume snapshots 384 

better than the single-domain model (n=1). The MD-tsFDM also captures the plume evolution in 385 

each domain (shown by the green dashed and dotted line in Fig. 9). Compared with the plume in 386 

domain 1 (i=1, transport slowly) with a small velocity, the plume in domain 2 (i=2, along the 387 

preferential paths) moves faster and dominates the plume front at early time. Additionally, due to 388 

the fast advection, the plume moving in the preferential flow path expands quickly in space. 389 

Therefore, at late time (i.e., t > 300 days), the 2nd peak (formed by the fast motion) of the plume 390 

snapshot tends to be smeared (Fig. 9). 391 

Extending upon the previous analysis, we check whether the biomodal (transport or 392 

distributiom of the plume) snapshot is due to the initial source size. Previous studies have found 393 

that the initial condition of pollutants affects solute transport in heterogeneous media (i.e., Zinn 394 

and Harvey, 2003), because different spatial distributions (uniform or flux-weighted) of the initial 395 
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source can assign different initial velocities to solute particles, thereby impacting subsequent 396 

transport behavior (Morales et al., 2017; Puyguiraud et al., 2019). Here we explore another critical, 397 

unsolved question of whether a point source can produce bimodal super-diffusion. To explore the 398 

impact of initial source conditions on the bimodal transport in alluvial aquifers, we calculate the 399 

mass distribution with different initial source lengths at the sampling time of 27 days and 132 days, 400 

respectively. Two types of initial source geometry are considered, including a “point” source with 401 

a relatively short (2 m) vertical length and a line source with a 40-m vertical length (Fig. 10). 402 

Results show that the plume for the case with a line source exhibits the bimodal shape at both 27 403 

and 132 days. The plume resulting from the initial point source exhibits a single peak for a 404 

relatively short travel distance, which can be fitted by the MD-tsFDM (7) with a single domain. 405 

However, when the travel distance increases, even the plume with an initial point source begins to 406 

show the significant bimodal snapshot. This result indicates that the velocity field (or the related 407 

porous medium architecture setting) is the key factor that controls the bimodal shape of the plume 408 

snapshot, while the initial source condition only affects solute transport at early times. 409 

The generally well fit (Fig. 9) shows that the MD-tsFDM can capture the bimodal snapshot 410 

in alluvial settings with strong heterogeneity (the best-fit results for the other scenarios are shown 411 

in section S6 in the supplementary material) and provides physical intepretation of solute transport 412 

in bimodal structure media. The best-fit parameters of the MD-tsFDM (listed in Table 3) show the 413 

impact of medium architecture on solute transport within each domain. The velocity of the 414 

preferential flow path domain (𝑣ଶ) is much higher than that of the slow domain (𝑣ଵ), and a larger 415 



 

22 
 

horizontal mean length leads to a larger 𝑣ଶ. This result is consitent with the analysis in section 3.2 416 

and section 4.1. The dispersivity for transport along the preferential flow domain is much larger 417 

than that of the slow domain, (which is expected) and expands quickly the plume 2 (Fig. 9). The 418 

fractional index, α, of both domains is relatively small (ranging from 1.1 to 1.4), indicating strong 419 

heterogeneity for each domain (Benson et al., 2001). The small value of λ demonstrates a long 420 

correlation of high-K hydrofacies, and generally decreases with an increasing horizontal mean 421 

length for hydrofacies (Meerschaert et al., 2008). 422 

4.3.2 Bimodal super-diffusion at the MADE-2 site and the other sites 423 

As discussed above, the MD-tsFDM (7) can successfully capture the bimodal mass 424 

distribution in complex alluvial aquifer systems. To check the applicability of model (7) in real-425 

word aquifers, snapshots of the MADE-2 experiment are fitted using the mathematical model (7) 426 

proposed herein. The MADE-2 experiment was conducted in the alluvial aquifer located in 427 

Columbus, Mississippi, USA, under natural hydraulic gradient conditions. Tracer snapshots were 428 

sampled at 27, 132, 224, and 328 days after the injection of 9.7 m3 tritium solution. For this analysis, 429 

we use the last two plume snapshots which were considered to be more reliable and had been 430 

thoroughly analyzed in previous studies (Sun et al., 2014; Zhang et al., 2007). Detailed information 431 

and review about the MADE-2 experiment can be found in Zheng et al. (2011). 432 

The longitudinal mass distribution for tritium is calculated using the same method described 433 

in Bianchi and Zheng (2016). The observed and best-fit mass distributions are plotted in Fig. 11. 434 

The obvious bimodal pattern of the MADE-2 snapshots provides the field evidence for bi-peak 435 
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super-diffusion and validates the applicability of the MD-tsFDM (7) to interpret anomalous 436 

transport in real-world alluvial aquifer systems on the scale of a few hundred meters. 437 

Multi-peak plume snapshots or tracer BTCs were also observed at the other study sites. For 438 

example, Guihéneu et al. (2017) conducted a series of convergent and push-pull tracer experiments 439 

and identified various bimodal BTCs. The bimodal snapshots and BTCs were also observed by Hu 440 

and Huang (2002) for transport in stochastic heterogeneous dual-permeability media. The MADE-441 

1 tracer test also identified the very similar bimodal snapshots for tracers as those observed for the 442 

MADE-2 test (Adams and Gelhar, 1992). The bimodal transport behavior for pollutants was also 443 

widely investigated using column or sand-box experiments and numerical experiments (Coppola 444 

et al., 2009; Leij and Bradford, 2013; Pedretti et al., 2016; Golfier et al., 2011). The multi-domain 445 

models, such as the MD-tsFDM proposed by this study, shed light on the reliable simulation and 446 

prediction of pollutant transport in the complex structures mentioned above.  447 

4.4 Impact of hydrofacies HCG on bimodal super-diffusion 448 

It is critical to explore the dominant properties of hydrofacies defined by the transition 449 

probability model that generate super-diffusion conditions for solute transport in aquifers. So far, 450 

we find that the mean lengths of the hydrofacies affect super-diffusion. In this analysis we explore 451 

how other properties of the hydrofacies may impact solute transport and potential super-diffusion 452 

observations. Two additional scenarios (scenarios A1 and A2 listed in Table 4) were conducted to 453 

explore the impact of the volumetric proportion of the coarse grain hydrofacies (i.e., HCG) on 454 
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super-diffusion. Fig. 12a shows the simulated mass distribution at 224 days for different scenarios, 455 

in which the global volumetric proportion of HCG increases from 7% to 17%. The proportion of 456 

HCG has an obvious impact on super-diffusion by controlling the proportion of the high-velocity 457 

zone in the bimodal velocity PDF. A smaller proportion of HCG reduces the size of the high-458 

velocity zone, resulting in a weaker plume front edge and more mass delayed (retained) near the 459 

source location. In addition, the simulated mass distribution for the scenario with the lower 460 

proportion for HCG (i.e., 7%) also contains more fluctuations of solute mass than the other 461 

scenarios (Fig. 12a). This result is consistent with the conclusion in Zhang et al. (2013) that found 462 

when the proportion of the ancient channel deposits is small (e.g., less than 12%, which is below 463 

the percolation threshold (0.14) suggested by Harter (2005) for the 3-d model), the high-K deposits 464 

are not interconnected throughout the entire model domain. Thus, the discontinuous preferential 465 

pathways may lead to more local mass peaks in the plume snapshot (Fig. 12a). 466 

Second, to further explore the impact of HCG on super-diffusion, we built four additional 467 

scenarios (Scenarios A3~A6 listed in Table 4) with various horizontal or vertical mean lengths for 468 

HCG and the other hydrofacies. The results show that the mean lengths (both thickness and width) 469 

of HCG have a prominent impact on bimodal super-diffusion in the alluvial aquifer (Fig. 12b and 470 

12c). A larger width of HCG (with the other hydrofacies’ mean lengths remaining unchanged) 471 

enhances the second peak of solute mass, resulting in a heavier (more pronounced) plume front 472 

transport (Fig. 12b) because of the enhanced connectivity of the most preferential flow pathways. 473 

Contrarily, a thicker HCG (while keeping the other hydrofacies’s mean lengths unchanged) results 474 
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in a lighter (less pronounced) plume leading edge (Fig. 12c) because of the truncation of the most-475 

permeable transport pathways. This conclusion further expands upon the results provided in 476 

Bianchi and Zheng (2016).  477 

Contrarily, the modeled mass distributions are similar for the scenarios where the fine-grain 478 

materials were changed to incorporate different mean lengths (thickness or width) while keeping 479 

the HCG’s mean lengths unchanged, even though the variation of the fine-grained hydrofacies’ 480 

mean lengths is large (i.e., 1.5 times the hydrofacies’ width and 2.5 times the thickness). This result 481 

provides a robust explanation as to why none of the thousands of hydrofacies models developed 482 

by Zhang et al. (2013) captured the power-law leading edge behavior: there were no extremely 483 

high-K HCG zones used in their hydrofacies models, which could not produce the 2nd peak in the 484 

velocity PDF or the heavy (enhanced) leading plume front of the snapshot. 485 

Overall, these analyses showed that, three primary properties of the hydrofacies HCG 486 

impacted super-diffusion. A relatively high K distribution, a volumetric proportion of HCG higher 487 

than the percolation threshold, and a sufficiently large HCG width for the generated porous 488 

medium systems similar to a fracture/matrix system are essential for producing the bimodal super-489 

diffusive snapshots observed at the MADE site. It is noteworthy that, of the three HCG properties, 490 

the HCG’s mean width contains the highest uncertainty (due to the discontinuous cores/drillers’ 491 

logs along the longitudinal direction), revealing that additional techniques are needed to reliably 492 

define the high-K lithofacies’ width for such field applications. 493 
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5. Conclusion 494 

This study explored the impacts of hydrofacies’ mean lengths and the initial source size on 495 

bimodal super-diffusion for conservative tracer transport through alluvial aquifers captured by the 496 

hydrofacies models built upon the well-known geostatistical tool T-PROGS (Carle and Fogg, 1996, 497 

1997; Carle, 1999). Various scenarios of the hydrofacies models significantly expanded upon the 498 

original hydrofacies model for the MADE aquifer developed by Bianchi and Zheng (2016). This 499 

expanded analysis was conducted to address the following two questions: (1) there is a historical 500 

debate about whether the hydrofacies models for alluvial settings can produce super-diffusion 501 

(Zhang et al., 2013); and (2) the detailed impacts of the hydrofacies’ thickness/width and the initial 502 

source size on super-diffusion remain obscure (Bianchi and Zheng, 2016). By combining Monte 503 

Carlo simulations and stochastic model analysis, this study yielded the following five main 504 

conclusions, not previously identified, that improve our understanding for the characteristics and 505 

description of super-diffusion processes in complex alluvial aquifer settings. 506 

First, Monte Carlo simulations revealed a bimodal velocity distribution with two peaks, which 507 

may explain the bimodal distribution of the plume snapshots observed at the MADE site. The 508 

bimodal velocity distribution is likely caused by the contrasting K between the hydrofacies HCG 509 

and the other hydrofacies at the MADE site (where the K for HCG is two orders of magnitude 510 

higher than the other hydrofacies). The 1st peak of the velocity distribution (representing the 511 

contribution from the fine grain hydrofacies and not the HCG) captures the relatively low velocity 512 

zones that are primarily responsible for delayed transport and the positively skewed plume 513 
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snapshots. The 2nd peak of the velocity distribution (due to the HCG distribution) accounts for fast 514 

motion of solute particles along the preferential flow pathways and the resultant enhanced “heavy” 515 

leading plume front observed for the MADE tests. Super-diffusive transport due to the 2nd peak of 516 

the velocity distribution can dampen quickly in space and time due to the finite size of the 517 

preferential flow paths, making the detection of super-diffusion difficult in real-world aquifers. 518 

Second, the thickness and width of the hydrofacies (especially the high-K HCG) can exhibit 519 

different impacts on the spatial pattern of bimodal super-diffusion and associated solute transport. 520 

A larger width for the hydrofacies enhances the connectivity of high-permeability deposits 521 

(“channels”), resulting in higher values in the bimodal velocity distribution and the enhanced 522 

“heavier” plume front. The opposite impact on super-diffusion is identified for the hydrofacies’ 523 

mean thickness; i.e., a thicker hydrofacies can retard more solutes near the source and shrink the 524 

plume’s leading front. 525 

Third, the size of the initial source affects dynamics of bimodal super-diffusion, due to the 526 

fact that the initial source size controls the initial velocity distribution of solute particles. 527 

Particularly, a larger initial source results in a more positively skewed plume snapshot, as the 528 

particles can experience a wider distribution of velocities (covering both slower and larger 529 

velocities). Contrarily, a point source tends to generate a single peak in the plume mass snapshot 530 

at early time due to the relatively narrow range of starting velocities and then transitioning to a 531 

bimodal pattern in the later plume snapshots after particles sample (experience) greater local 532 

velocity variation over time and space.. 533 
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Fourth, the multi-domain spatial non-local transport model (7), which can be extended from 534 

the distributed-order fractional derivative model, can quantify the bimodal super-diffusive 535 

transport obtained from the Monte Carlos simulations and the bi-peak tracer snapshots observed 536 

at the MADE-2 site. This model may also be applicable for the other aquifers where bi- or multi-537 

peak plumes and/or BTCs were observed. Notably, the slow and fast transport in different domains 538 

account for the two peaks of the bimodal velocity distribution, and therefore the stochastic model 539 

can capture the negatively skewed plume for pollutants undergoing super-diffusion. The generally 540 

well fit shows the applicability of the MD-tsFDM model proposed by this study. 541 

Fifth, as discussed in the supplementary material, additional Monte Carlo simulations and 542 

stochastic model analyses are needed to expand the hydrofacies model dimension and capture 543 

mixed super- and sub-diffusion processes in alluvial aquifer systems. Our preliminary experiments 544 

(shown in the supplementary material) show that the 3-d hydrofacies models can enhance the 2nd, 545 

fast peak in the bimodal super-diffusion and generate enhanced “heavier” leading plume edges 546 

(fronts) than the 2-d models, since the lateral extension of the high-K hydrofacies enhances the 547 

interconnection of high-K materials and generates more preferential flow paths for an extended, 548 

more pronounced plume front. In addition, the time nonlocal transport components need to be 549 

added in the transport model to account for solute retention in complex alluvial aquifers where the 550 

Peclet number is small and molecular diffusion controls solute retention. Extensions of both the 551 

hydrofacies model and the mobile-mobile model will be discussed in the next study. 552 
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Table 1. Geostatistics and hydraulic properties of each of the five hydrofacies. In the legend, “K” denotes 723 

the hydraulic conductivity, “HCG” represents Highly Conductive Gravel, “GS” represents gravel with 724 

sand, “SGF” represents Sand Gravel and Fines, “SG” represents Sand and Gravel, “S” represents well-725 

sorted Sand, and “Pe” denotes the Peclet number. 726 

Hydrofacies 
Width (m) Thickness 

[m] 

Proportion 

[-] 

Porosity 

[-] 

K 

[m/d] 

Pe  

[-] 

SGF 39 0.9 0.35 0.259 2.52 1.68104 

S 35 1.7 0.21 0.415 5.65 5.64104 

HCG 30 1 0.12 0.265 303.39 4.54106 

SG 25 0.4 0.14 0.298 7.74 8.27104 

GS 31 0.5 0.18 0.257 6.76 6.97104 

  727 
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Table 2. Characteristic parameters of the velocity PDF. In the legend, 𝑣௣ଵ and 𝑣௣ଶ denote the peak of 728 

the low and high velocity zones, respectively; 𝑣௠ is the velocity with the lowest probability distributed 729 

between 𝑣௣ଵ and 𝑣௣ଶ; and Pሺv ൑ 𝑣௠ሻ denotes the percentage of the low velocity zone. The units for 730 

velocity are m/d. 731 

Mean Length Scenario 1 

(1.0Z) 

Scenario 

2 (1.5Z) 

Scenario 3 

(2.0Z) 

Scenario 

4 (2.5Z) 

Scenario 5 

(1.25X) 

Scenario 

6 (1.5X) 

Scenario 7 

(2.0X) 

𝑣௣ଵ 0.32 0.32 0.37 0.37 0.32 0.24 0.28 

𝑣௣ଶ 3.89 3.39 1.95 1.95 4.47 5.89 6.76 

𝑣௠ 1.70 1.70 1.70 1.70 1.94 1.94 2.24 

Pሺv ൑ 𝑣௠ሻ 0.91 0.92 0.94 0.92 0.90 0.90 0.89 

  732 
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Table 3. The best-fit parameters of the MD-tsFDM (7) for all scenarios. The superscript “*” denotes the 733 

hydrofacies simulated conditionally, and “SL” means the vertical source length. 734 

  735 

Scenario Mean 
length 

v1 

[m/d] 
v2 

[m/d] 
D1 

[m2/d] 
D2 

[m2/d] 
α1 

[-] 
α2 

[-] 
λ1 

[m-1] 
λ2 

[m-1] 
ω 

[mgL-1d-1]

1 
1.0X 
1.0Z 

0.15 0.6 0.5 1.9 1.3 1.25 0.005 0.03 0.0005 

2 1.5Z 0.13 0.6 0.45 2.1 1.3 1.3 0.007 0.025 0.0006 

3 2.0Z 0.11 0.55 0.5 1.2 1.1 1.3 0.01 0.03 0.0004 

4 2.5Z 0.11 0.5 0.55 1.4 1.1 1.3 0.02 0.025 0.0007 

5 1.25X 0.15 0.85 0.5 1.9 1.3 1.3 0.008 0.02 0.0007 

6 1.5X 0.25 0.9 0.6 2.1 1.1 1.4 
0.000

1 
0.015 0.0008 

7 2.0X 0.17 1.45 0.55 1.8 1.1 1.4 0.003 
0.000

01 
0.0012 

8* 
(SL=40m) 

1.0X 
1.0Z 

0.1 0.8 0.3 2.4 1.25 1.15 0.01 0.03 0.001 

8* 
(SL=2m) 
27 days 

1.0X 
1.0Z 

- 1.05 - 2.7 - 1.5 - 0.02 - 

8* 
(SL=2m) 
132 days 

1.0X 
1.0Z 

0.45 1.25 1.25 1.9 1.25 1.25 0.015 0.06 0.0006 
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Table 4. Additional scenarios built in section 4.4 to explore the impact of HCG properties on bimodal 736 

super-diffusion. 737 

Scenario HCG 

Thickness 

HCG Width HCG 

proportion 

Other hydrofacies 

thickness 

Other hydrofacies 

width 

A1 1.0Z 1.0X 7% 1.0Z 1.0X 

A2 1.0Z 1.0X 17% 1.0Z 1.0X 

A3 1.0Z 1.5X 12% 1.0Z 1.0X 

A4 1.0Z 1.0X 12% 1.0Z 1.5X 

A5 2.5Z 1.0X 12% 1.0Z 1.0X 

A6 1.0Z 1.0X 12% 2.5Z 1.0X 

 738 
  739 
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 740 

Fig. 1. One realization of the hydrofacies model for each scenario (8 scenarios total). Lv and Lh are mean 741 

length of hydrofacies in vertical and horizontal direction, Z and X denote the mean thickness and 742 

longitudinal mean length for the hydrofacies for the base case (which is Scenario 1), respectively. 743 

  744 
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 745 

Fig. 2. The simulated normalized mass distribution at 27 days (a), 132 days (b), 224 days (c), and 746 

328 days (d) after the instantaneous source was released, for four scenarios of hydrofacies models 747 

with different vertical mean lengths. In the legend, “1.0Z, 1.5Z, 2.0Z, and 2.5Z” denote that the 748 

vertical mean length is 1.0, 1.5, 2.0, and 2.5 times of the base case, respectively.  749 
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 751 

Fig. 3. The simulated evolution of (normalized) plume snapshots at 27 days (a), 132 days (b), 224 752 

days (c), and 328 days (d) after the release of an instantaneous source for scenarios of hydrofacies 753 

models with different longitudinal mean lengths. The legend “X” denotes the longitudinal mean 754 

length, and the number “1.0, 1.5, 2.0 and 2.5” denotes the ratio of the longitudinal mean length 755 

between the scenario and the base case. 756 
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 758 

Fig. 4. The simulated and normalized mass distribution for contaminants at 27 days (a), 132 days (b), 759 

224 days (c), and 328 days (d) after the source release for scenarios with various sizes of the initial 760 

line source (scenarios 8). The legend “SL=2m” means that the source length is 2 m. 761 
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 763 

Fig. 5. The simulated spatial distribution of log10(K) field (a) and the temporal evolution of the 764 

simulated plume front (C ൌ 0.01𝐶଴) (b), for one realization of Scenario 1. 765 

  766 
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 767 

Fig. 6. The PDF of the velocity for scenarios with different thicknesses (a) and different widths (b). 768 
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 770 

 771 

Fig. 7. One realization of the simulated spatial distribution of hydraulic conductivity and the 772 

longitudinal velocity for scenario 1: the log10(K) field (m/d) (a) and the corresponding spatial 773 

distribution of velocity (m/d) (b). 774 
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 776 

Fig. 8. The correlation coefficient between the spatial distribution of hydraulic conductivity and the 777 

longitudinal velocity for scenarios with different longitudinal mean lengths (Scenarios 1, 5, 6, and 7) 778 

(a) and mean thicknesses (Scenarios 1, 2, 3, and 4) (b). 779 
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 781 

Fig. 9. The Monte Carlo results for scenario 1 (symbols) versus the best-fit snapshots for the tempered 782 

space fractional-derivative model with a single domain (the blue line, e.g., tsFDM) or two domains 783 

(the red line, e.g., MD-tsFDM) at 27 days (a), 132 days (b), 224 days (c), and 328 days (d) after the 784 

source release. Plume 1 (green dash line) and plume 2 (green dot line) denote the plume of MD-785 

tsFDM within domain 1 and domain 2, respectively. 786 
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 788 
Fig. 10. The Monte Carlo results (symbols) versus the best-fit solutions (lines) using the MD-tsFDM 789 

for the plume snapshot at 27 days (a) and 132 days (b), respectively, after releasing an instantaneous 790 

point source (the black rectangles) or a line source (the red dots) for Scenario 8. 791 
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 793 

Fig. 11. The longitudinal mass distribution of tritium observed in the MADE-2 experiment (symbols) 794 

and the best-fit results (lines) using the MD-tsFDM (7) at the sampling cycle 224 days (blue) and 328 795 

days (red), respectively. 796 
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 798 

Fig. 12. Major factors controlling super-diffusion, including the volumetric proportion of HCG (a), the 799 

horizontal mean length of HCG (denoted by Lh
HCG) and the other hydrofacies (denoted by Lh

*) (b), the 800 

vertical mean length of HCG (denoted by Lv
HCG) and the other hydrofacies (denoted by Lv

*) (c). 801 
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