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Abstract: The Narmada river basin is a highly regulated catchment in central India, supporting a
population of over 16 million people. In such extensively modified hydrological systems, the influence
of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological
models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada,
with all major dams, water abstractions and irrigation command areas included, which allows for the
development of a holistic methodology for the assessment of water resources in the basin. The model
is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin
for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to
intensify over the next half-century as a result of future climate change, causing long-term increases
in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry
season flows, in comparison to water demand intensification over the same period, which may lead
to increased water stress in parts of the basin.
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1. Introduction

The management of water resources across the world is becoming an increasingly challenging
task, owing to the impending threats of climate change, rapid urbanisation, growing population,
and unsustainable exploitation. In few places is the impact of climate change and human intervention
on water resources more prominent than in India [1–3]. Many of India’s major rivers are impounded
along their course for multifarious purposes [4]. The semi-arid and arid regions of the country are
facing multiple challenges of water scarcity and deteriorating water quality. The National Water Policy
of India [5] recognises the need for a national perspective on the development and management of
water resources in the context of a changing climate and anthropogenic influences, in order to conserve
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the already scarce water resources in an integrated and environmentally sound way. Ensuring the food
security of a burgeoning population will further increase water requirements from systems that are
already under stress due to the conflicting demands of multiple users, including domestic, agricultural,
energy generation, industrial and environmental [1,6].

Future climate change will likely lead to increases in average temperatures across south-east
Asia over the next century, along with changes in rainfall distribution, magnitude and intensity [7,8].
Work by Mukherjee et al. [9] showed that the intensity of extreme rainfall events in India has increased
over recent decades. Episodes of intense precipitation are expected to become more commonplace,
with more overall rainfall being produced for any given storm. The year-to-year variability of the
monsoon ultimately shapes the extremity of hydrological events, from severe droughts through to
devastating floods. This has a direct effect on water storage and utilisation [2,10]; at present, around
45% of the average annual precipitation in India reaches the sea as runoff [2,11], whilst drought events
become ever more prevalent [10,12].

Future water availability will be affected not only by climate change, but also by growing demands
across user sectors. The domestic, agricultural and industrial sectors are projected to increase water
use over the next half century [13]. Water demand is growing fast due to rapid population growth
and economic activity, and is not being matched by water supply [14]. If such trends continue,
many regions of India will face critical levels of water scarcity during the dry season exacerbated
by climate change, causing conflicts amongst sectors and regions, and affecting food supply and
livelihoods [1,2,13,15]. The sustainable management of water resources across India, and the means
to achieve this, is imperative going forward [16]; water availability and appropriate allocation are
therefore likely to become an even more prominent issue in the near future [17,18].

Large-scale hydrological models are increasingly used for the simulation of water availability
and extreme events, including droughts and floods [19–21]. This facilitates scenario-based analysis,
wherein the impacts of climate change, land use change and water resource development activities
can be comprehensively evaluated for the formulation of appropriate adaptation and mitigation
strategies [22–25]. The need for robust, coherent river basin management plans has thus become a
driving force behind the use and development of large-scale hydrological models in understanding
how basin hydrology will be affected by naturally and human-induced changes, and the influence of
intersectoral resource linkages on water availability [1,26–28].

Large-scale hydrological modelling does, however, involve many challenges [21,29–33]. The high
spatial variability of input data such as land use, soil properties and topography across large catchments,
the uncertainties in driving climate data, along with the difficulties of capturing micro-watershed scale
hydrological processes and the ever-growing number of anthropogenic interventions incorporated
at different periods in many river basins, directly affect the hydrological regime. This can make the
accurate representation of river basins extremely difficult. For example, global runoff estimations can
differ by as much as 70% between studies for individual continents [34]. Due to the highly influenced
nature of many of India’s major river basins, including the presence of dams and water abstractions,
the modelling of Indian water resources becomes extremely challenging [35]. The acquisition of
reliable, relevant data poses a major challenge, where information on river flow and interventions is
often not widely available. In light of this, a more holistic methodology and long-term assessment
are needed for water resources management across many Indian catchments [36]. Large-scale model
application in India ideally needs to incorporate anthropogenic basin interventions, such as water
resource development projects, and account for population growth and demand from other water
users [37], including industry and irrigated agriculture.

This study applies the Global Water Availability Assessment (GWAVA) model, including human
interventions, to the Upper Narmada basin, India. The objectives of the study are (1) to test the
suitability of a large-scale grid-based water resources model in replicating the hydrology of the heavily
impacted Upper Narmada, and (2) to assess the impacts of future climate change on the hydrological
regime and future water resources of the basin.
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2. Materials and Methods

The Narmada river basin is a highly regulated system, traversing the states of Chhattisgarh,
Madhya Pradesh, Maharashtra and Gujarat, supporting a population of over 16 million people [5].
The main river reach, the Narmada river, is the largest west-flowing river in India, with a drainage area
of 98,796 km2 [5,38]. The majority of the basin sits between 300 m and 500 m in elevation, with extremes
in the steep hills of the upper tributaries of the Maikala to the east, reaching 1317 m in elevation,
through to the west coast where the river drains into the Arabian sea through the Gulf of Khambhat [39].
The Narmada basin is subject to a tropical monsoon climate, with the south-west monsoon between
July and September the major controlling factor of river discharge. The monsoon supplies over 75% of
the basin’s annual precipitation, with a rainfall gradient of 650 mm per annum to more than 1400 mm
per annum in the upper regions. This climate also leads to two distinct growing seasons, the Kharif
(monsoon season) and the Rabi (non-monsoon season). Average temperatures range from 18 ◦C to
32 ◦C in January and May, respectively [38].

The Narmada is an example of a river basin facing numerous managerial challenges with
sectoral competition for water. Over half of the catchment is used for agricultural production,
with the majority of this designated as irrigation command area. There are over 4000 water-related
interventions in operation across the basin, with more than 250 dams [4]. The dams vary in purpose
and size, from supplying water for irrigation through to the generation of hydropower and supply
for consumptive and domestic use. Previous studies have applied models for the establishment of
hydrological parameters for the Narmada basin for streamflow simulation, and for the assessment
of the impacts of climate change on river basin hydrology [3,40–42]. However, the influence of
anthropogenic modifications present in the basin is often under-represented or excluded entirely,
therefore providing little information on plausible future states of water resources for water practitioners
and stakeholders [3].

This study models the water resources of the upper part of the Narmada basin, from the most
eastern extent of the basin to the downstream gauging station at Hoshangabad, draining 44,548 km2

(Figure 1). Major dams, abstractions, irrigation practices and corresponding canal networks are
included to gain an improved representation of the impact of future climate change on water resources
in the Upper Narmada basin.
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Figure 1. Index map of Upper Narmada basin [43].

GWAVA is a large-scale hydrological model developed to provide a robust methodology for the
assessment of water resources at the regional to global scale [44]. It is a gridded, semi-distributed
model, incorporating key elements of river infrastructure and water demands. The model provides a
comparison of surface water availability and demand on a cell-by-cell basis, often spanning across
large river basins through to regions. Previous studies have therefore seen GWAVA applied at spatial
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resolutions of between 0.5◦ × 0.5◦ (approximately 50 km × 50 km) and finer resolutions of 5′ × 5′

(approximately 7 km × 9 km) [44,45]. The GWAVA model includes modules for the inclusion of
water demands and returns across the domestic, agricultural and industrial sectors. The routing of
water through lakes and reservoirs is also accounted for, including basic operational rules specific to
reservoir purpose, i.e., irrigation, hydropower and environmental flows. Runoff generation in GWAVA
is derived through the probability distributed model (PDM) [46,47]. Surface runoff is routed through a
linear reservoir, whilst subsurface flow is routed through a nonlinear reservoir, providing appropriate
lag times based on the nature of the processes for each of the hydrological pathways. Runoff generated
by each cell is then accumulated along the gridded river drainage network. Evaporation losses from
the cell occur at the potential rate when soil moisture levels are above field capacity, decreasing to a
rate proportional to the ratio of soil moisture to soil depth below field capacity, until no water can
be extracted when moisture levels reach the wilting point. An empirical interception loss model is
applied to tree and shrub classes [48]. Field capacity, maximum saturation capacity and wilting point
are linked to the physical characteristics of land cover and soil texture class.

For this study, the Upper Narmada basin was divided into 318 grid cells of 0.125◦ × 0.125◦

(approximately 13 km × 13 km). This resolution was chosen largely as a consequence of data
availability and suitability for the analysis of regional water resource assessment. See Table 1 for the
data sources used in the study.

Table 1. Data sources used for Global Water Availability Assessment (GWAVA) model configuration.

Model Component Key Inputs Data Sources/Derivation

Topography Topography
Extracted from SRTM (Shuttle Radar Topography
Mission) 90 m resolution DEM (Digital Elevation

Model) [49].

Land use/vegetation Land use distribution
USGS LULC map [50]. Reclassified to six land cover

types: Forest, Shrub, Water bodies, Wetlands, Bare soil
and Grass/cropland.

Soil Soil classes
The spatial distribution of six soil classes was specified
using a 1 km × 1 km grid based on a georectified and

digitised soil map [51].
River discharge Discharge time series India-WRIS (Water Resources Information System) [52].

Catchment meteorology
Precipitation and

evapotranspiration modules.
Precipitation and Temperature

0.25◦ × 0.25◦ gridded daily precipitation obtained from
the IMD (India Meteorological Department) / NCC

(National Climate Centre) High Spatial Resolution (0.25◦

× 0.25◦) Long Period (1901–2013) Daily Gridded Rainfall
Data Set Over India [53].

Artificial influences
Reservoir and lake

abstractions/operations, water
body dimensions

Relevant information obtained from literature [38,54,55].

Population and Domestic
consumption Indian Population Census [56,57].

Irrigated crops Relevant information obtained from literature [58–60].

Water transfers Relevant information obtained from literature and field
surveys [55,61].

Cattle, sheep and goat populations Indian Livestock Census [62].

Contributions to runoff generation are reduced by the proportion of cells that is a lake, wetland or
reservoir. Lakes, reservoirs and wetlands are taken into account in a broadly similar way, with each
being treated as a tank and outflow generated as a function of average storage and monthly inflow.
Reservoir operations can be tailored depending on data availability. Irrigation canal networks and
pipelines are incorporated, transferring water from water bodies to any grid cell within the model
domain, or alternatively to outside of the watershed. For the model application in the Upper Narmada,
reservoir operations were based on annual releases disaggregated in to seasonal regimes, including
those releases via irrigation canals to command areas. Reservoir operations were included for the
major Tawa, Bargi and Barna dams (Figure 1), and simplified to enable their inclusion in the model
configuration. Detailed water transfers out of the basin were also incorporated, including those running
from the Tawa Dam to the adjacent Ganga basin. See Table 2 for details of the three reservoirs included
in the model.
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Table 2. Reservoirs included in the Upper Narmada application [38].

Dam River Year of Completion Gross Storage Capacity (MCM)

Bargi Narmada 1988 3924.8
Barna Barna 1978 539
Tawa Tawa 1978 2312

Rural and urban domestic water use in GWAVA is determined based on the human population per
grid cell and per capita water demand. Estimates of return flows and, where relevant, network losses,
are included to provide gross amount of water abstracted, i.e., consumptive use. Domestic water
demands are assumed to be constant throughout the year. For this study, the Indian population
census [56] provided information at the taluk level (i.e., an administrative division), which were then
classified as urban or rural based upon their locality to major cities and towns. Additional agricultural
water demands arise from livestock watering, estimated by the number of cattle, sheep, pigs and small
ruminants and a per head water requirement. Livestock water demands are assumed to be constant
throughout the year. Information on these requirements in the Upper Narmada basin were gathered
from the Indian Livestock Census [62], with consumption applied via estimates from the Food and
Agricultural Organization (FAO) [57].

Crop water demands in GWAVA are modelled using the FAO crop water requirement model [58],
based on established crop coefficients that vary throughout the growing season [63]. Irrigation
efficiencies are included to provide an estimate of the gross amounts of water abstracted. For this
study, surface irrigation methodologies were assumed via the use of canals and their offtakes. In the
Upper Narmada, the two main command areas are those supplied by the Bargi and Barna reservoirs
(Figure 1), covering an area of 1570 km2 and 579 km2, respectively. The command area for the Tawa is
located downstream of the Upper Narmada basin; therefore, any water allocation from this reservoir
was treated as a water transfer to outside of the model domain. The Rabi and Kharif growing seasons
were represented on an annual basis, with crop rotation based on information gathered by the National
Institute of Hydrology (NIH) for wheat and paddy [59].

The model application for this study is primarily concerned with assessing the impact of climate
change on surface water availability. Groundwater reserves are drawn upon to meet grid cell demands
based on a ratio split between surface water and groundwater withdrawals. The quantifiable impact
on groundwater reserves was not assessed in this study. Multi-site model calibration was conducted at
a daily time step using an automatic calibration routine, based on Nelder and Mead [64]. Calibration
was undertaken against mean daily flow data for eight gauging stations in the Upper Narmada basin
(Figure 2 and Table 3), obtained from India-WRIS [52]. The selection of these stations was based upon
the completeness of their records and their location within the basin.Water 2020, 12, x FOR PEER REVIEW 6 of 20 
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Table 3. Information on the gauged subcatchments used for this study, based on Gupta and Chakrapani
[4] and Jain et al. [65].

Gauge River Reach Catchment Area (km2)

Manot Narmada 4467
Mohgaon Burhner 4090

Patan Hiren 4795
Belkheri Sher 2903

Barmanghat Narmada 26,453
Gadarwara Shakkar 2270

Sandia Narmada 33,954
Hoshangabad Narmada 44,548

A general overview of the modelling approach used in this study is displayed in Figure 3. IMD
(India Meteorological Department)/NCC (National Climate Centre) gridded rainfall and temperature
data were used to drive the model for calibration and validation [53,66]. Potential Evapotranspiration
(PET) was calculated from IMD temperature data using the FAO56 Hargreaves methodology [63].
Only years following the construction of all three dams (Table 2) were chosen for calibration and
validation, to gain a better understanding of their impact on the hydrology in the Upper Narmada,
and to represent their influence on the key hydrological processes within the basin. Following
automatic calibration, model parameters were explored through visual inspection of modelled and
observed hydrographs. Model output was aggregated to a monthly time step and assessed using
statistical measures, including the Nash–Sutcliffe coefficient (NSE), the Pearson correlation coefficient
(r) and the percentage deviation in simulated mean flow from the observed mean flow (Dv) [67].
Model performance statistics for the calibration and validation periods are shown in Table 4.
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The model generally performs well during both calibration and validation periods in reproducing
monthly river discharges at the eight gauging stations. NSE metrics range from 0.64 to 0.96, with all
but the validation period at Gadarwara categorised as “very good” to “excellent”, along with r values
ranging from 0.88–0.98. Dv is again classed as “very good” to “excellent” for both calibration and
validation at all but two of the eight stations, these being Patan and Belkheri. These stations both
overestimate total flows, indicating that the processes present in these catchments are not as well
represented as at the other stations. This trend to overestimate total flows is, however, also evident
at some other gauges, albeit to a lesser extent. This may partly be a result of the many small-scale
anthropogenic influences, such as check dams, field bunds and farm ponds present throughout
the basin, which are not adequately represented in the model set-up, largely due to a lack of data
being available for these features. Such structures are likely to attenuate flow and reduce quick flow
response [2], promoting groundwater recharge and therefore slower flow pathways. Such structures
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also lead to greater rates of actual evapotranspiration (AET) due to the resultant bodies of open water,
and therefore increase water losses from the system. Despite this, the annual hydrological regime is
well represented by the model, with the timing and magnitude of flow for the south-west monsoon
being captured reasonably well at all sites for both the calibration and validation periods, as can be
seen in Figure 4. The metrics for simulated model flow suggest a good fit to the observed discharge
data, especially when taking in to account the extent of modification along the river reaches of the
Narmada and the relatively coarse temporal and spatial resolution being used. As such, the GWAVA
application for the Upper Narmada was demonstrated to be suitable for exploring the future impacts
of climate change on the water resources of the basin with the current calibrated parameter set.

Table 4. Model performance statistics at the eight gauges for the calibration and validation periods.

Station Period Dv NSE r

Manot Cal: 1990–2000 5.72 0.95 0.97
Val: 2001–2010 2.30 0.96 0.98

Mohgaon Cal: 1990–1996 −0.55 0.87 0.88
Val: 2001–2010 −6.7 0.90 0.95

Patan Cal: 1990–2000 16.93 0.92 0.97
Val: 2001–2010 17.8 0.90 0.97

Belkheri Cal: 1990–2000 11.07 0.87 0.94
Val: 2001–2010 5.2 0.80 0.89

Barmanghat Cal: 1992–2000 0.25 0.90 0.94
Val: 2001–2010 −6.2 0.90 0.95

Gadarwara Cal: 1990–2000 8.60 0.92 0.96
Val: 2001–2010 −5.4 0.64 0.80

Sandia Cal: 1990–2000 6.73 0.92 0.96
Val: 2001–2010 2.5 0.87 0.93

Hoshangabad Cal: 1990–2000 1.16 0.93 0.97
Val: 2001–2010 −2.1 0.89 0.95

Performance indicator Excellent Very good Fair Poor Very poor

Dv <5% 5–10% 10–20% 20–40% >40%
NSE >0.85 0.65–0.85 0.50–0.65 0.20–0.50 <0.20

To provide simulated discharge for a 30-year baseline period, the GWAVA model was forced
with gridded IMD climate data, as described above, for the period 1981–2010. For future river flow
projections, GWAVA was forced with GCMs included in CMIP5 for a future period of 2031–2060,
under a RCP 4.5 scenario (Representative Concentration Pathway that can produce 4.5 W m−2 radiative
forcing by the end of 21st Century). See Table 5 for details of the GCMs used in this study.

The CMIP5 GCM data were downscaled to a spatial resolution of 0.25◦ × 0.25◦ using the
Bias-Correction Spatial Disaggregation (BCSD) method [68], following the approach by Rahman [69].
An additional stage of bias correction was subsequently undertaken, where the GCM bias for the
historical period was assessed in relation to the IMD/NCC data, and this information used to correct
the future GCM projections. The final GCMs chosen for the study are exemplars from the CMIP5
database, providing different representations of global climate features [70].



Water 2020, 12, 1762 8 of 19

Water 2020, 12, x FOR PEER REVIEW 8 of 20 

 

hydrological regime is well represented by the model, with the timing and magnitude of flow for the 
south-west monsoon being captured reasonably well at all sites for both the calibration and validation 
periods, as can be seen in Figure 4. The metrics for simulated model flow suggest a good fit to the 
observed discharge data, especially when taking in to account the extent of modification along the 
river reaches of the Narmada and the relatively coarse temporal and spatial resolution being used. 
As such, the GWAVA application for the Upper Narmada was demonstrated to be suitable for 
exploring the future impacts of climate change on the water resources of the basin with the current 
calibrated parameter set. 

 

Water 2020, 12, x FOR PEER REVIEW 9 of 20 

 

 

Figure 4. Average monthly observed and modelled output at the eight gauging sites for 
(a) Calibration; (b) Validation. 

To provide simulated discharge for a 30-year baseline period, the GWAVA model was forced 
with gridded IMD climate data, as described above, for the period 1981–2010. For future river flow 
projections, GWAVA was forced with GCMs included in CMIP5 for a future period of 2031–2060, 
under a RCP 4.5 scenario (Representative Concentration Pathway that can produce 4.5 W m−2 
radiative forcing by the end of 21st Century). See Table 5 for details of the GCMs used in this study. 

Table 5. Details of Global Circulation Models (GCMs) used in the study. 

Model Name Institution 

ACCESS1-0 Commonwealth Scientific and Industrial Research Organisation (CSIRO) 
and Bureau of Meteorology (BOM), Australia 

bcc-csm1-1 Beijing Climate Center, China Meteorological Administration 

BNU-ESM 
College of Global Change and Earth System Science,  

Beijing Normal University 
CanESM2 Canadian Centre for Climate Modelling and Analysis 
CCSM4 National Center for Atmospheric Research 

CESM1-BGC Community Earth System Model Contributors 

CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen de 
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Table 5. Details of Global Circulation Models (GCMs) used in the study.

Model Name Institution

ACCESS1-0 Commonwealth Scientific and Industrial Research Organisation (CSIRO) and
Bureau of Meteorology (BOM), Australia

bcc-csm1-1 Beijing Climate Center, China Meteorological Administration

BNU-ESM College of Global Change and Earth System Science, Beijing Normal University

CanESM2 Canadian Centre for Climate Modelling and Analysis

CCSM4 National Center for Atmospheric Research

CESM1-BGC Community Earth System Model Contributors

CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen de Recherche et
de Formation Avancée en Calcul Scientifique

CSIRO-Mk3.6.0 Commonwealth Scientific & Industrial Research Organisation in collaboration with
the Queensland Climate Change Centre of Excellence

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory
GFDL-ESM2M

IPSL-CM5A-LR Institut Pierre-Simon Laplace
IPSL-CM5A MR

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National
Institute for Environmental Studies, and Japan Agency for Marine-Earth Science

and Technology
MIROC-ESM

MIROC-ESM-CHEM

MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology)
MPI-ESM-MR

3. Results

3.1. Basin Climatology

Projected changes in future climate for the period 2031–2060 were assessed relative to the baseline
period of 1981–2010. Mean annual precipitation projections across all GCMs show an increase at all sites
by 2060, with a median increase of between 13.7% at Barmanghat and 18.1% at Hoshangabad (Figure 5a).
There is considerable variation in mean annual precipitation between the GCMs, with IPSL-CM5A-LR
predicting increases of over 40% at Sandia, Gadarwara and Hoshangabad. Beyond these more extreme
changes, the Interquartile Range (IQR) is relatively small, varying between 13% at Hoshangabad
and 16.6% at Patan. Only three out of seventeen models across all sites show a decrease in annual
precipitation, these being at Belkheri, Gadarwara and Patan.

Figure 5b shows the majority of GCMs projecting an increase in precipitation. The baseline
median of the annual means (1136.61 mm) is exceeded by all models, the largest increase predicted by
the IPSL-CM5A-LR model at 1560.54 mm (37%). Interannual variation is relatively large and is also
predicted to increase by all of the GCMs when compared to the baseline IQR of 242.19 mm. The IPSL
models again show the largest variation in mean annual precipitation, with IQR values of 872.75 mm
(260.3%) for IPSL-CM5A-LR and 902.56 mm (272.6%) for IPSL-CM5A-MR.

Changes in PET within the basin are less pronounced, although the annual mean across all GCMs
increases at each of the eight sites (Figure 5c). Median values range from a 2.5% increase at Patan,
through to a 4.6% increase at Manot. The spread in mean annual values across all sites is relatively
small, with the largest IQR being displayed at Belkheri. Total PET variation between years within
models is more pronounced (Figure 5d). The median baseline PET from 1981–2010 of 1758.63 mm is
exceeded by all of the GCM models, the most substantial increase displayed by the CanESM2 model
with a median of 1879.39 mm (6% increase). The variation between GCMs is less marked than for
future precipitation, with the lowest median value of 1805.37 mm being displayed by the CNRM-CM5
model. The IQR between models is also less pronounced, ranging from 40.06 mm for the CCSM4,
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through to 122.45 mm for the IPSL-ESM2-MR model, compared to a baseline IQR of 73.29 mm; a −45%
and 67% change, respectively. Despite variation between models for both future precipitation and
PET, the direction of change remains consistent throughout for the majority of years from 2031–2060,
with increases in precipitation and PET projected at all eight gauging sites.Water 2020, 12, x FOR PEER REVIEW 11 of 20 
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Figure 5. (a) Percentage change in total mean precipitation at each gauging site between baseline and
future period; (b) Annual precipitation in the Upper Narmada for each GCM (c) Percentage change in
total mean Potential Evapotranspiration (PET) at each gauging site between baseline and future period;
(d) Annual PET in the Upper Narmada for each GCM. Values more than 1.5 times the interquartile
range below the 25th quartile or above the 75th quartile are plotted as outliers (+).

3.2. Simulated Scenario Discharge

All projected changes in flow under the RCP 4.5 scenario are assessed relative to the baseline
period of 1981–2010. Figure 6 displays simulated river regimes of mean monthly discharge at the
eight gauging stations for each of the seventeen GCMs, along with those for the baseline period and
ensemble mean. It is during the months of the prevailing south-west monsoon where the greatest
changes can be seen between baseline and future scenario flows, as there is little change during the
dry season low flows. All stations display the largest difference between baseline and ensemble mean
in August, for example, with the flow at Hoshangabad and Manot increasing by 1143 m3s−1 and
166 m3s−1, respectively. The timing of the monsoon closely follows that of the baseline period across
all sites, but intensifies earlier in June before reaching its peak in August, with the recession of flows
hereon through to the start of October. The increase in flows during the monsoon is substantial for
a number of the individual GCM runs, with MIROC-ESM1 projecting a 101.3% increase in flow in
August at Hoshangabad, and MIROC-ESM-CHEM an increase of 68.1%. MIROC5 projects a less
extreme change in streamflow, predicting lower peaks in August than that of the baseline period.
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Figure 6. Future monthly flows from seventeen CMIP5 GCM models with ensemble mean (2031–2060),
and baseline (1981–2010).

Figure 7 shows how flows across the whole basin are projected to change based on the annual
mean output from GWAVA for the CMIP5 ensemble. Changes in flow generally follow the same
trend as that seen at the eight gauging stations in Figure 6, with increases displayed in the majority
of river reaches across the basin. Changes in the ensemble mean flow of up to 49% are projected for
tributaries to the north of the Bargi command area, with an average increase of 25% across all river cells.
Changes in mean flow also show an increase across all gauging stations, the highest being 183.2 m3s−1

at Hoshangabad (8), representing a 27.1% increase from the baseline flow. As would be expected,
the smaller tributary catchments of Manot (1), Mohgaon (2), Patan (3), Belkheri (4) and Gadarwara (6)
show the smallest increase in absolute flow.

Flows at the 10% exceedance level (Q10) represent high flows during the monsoon season,
and again show an increase for most of the basin, largely driven by the rise in monsoon rainfall.
This increase in high flows is particularly prevalent in the smaller tributaries in the west of the basin,
with increases of up to 58%. An average rise of 21% at Q10 is seen across the basin. Increases in Q10
flow are also seen at each of the gauging stations, with fifteen of the seventeen GCMs displaying
amplified Q10 flows from the baseline across all sites. Flows at Sandia (7) and Hoshangabad display
the largest absolute increases from the baseline, with mean values of 150.3 m3s−1 and 196.8 m3s−1,
respectively. Decreases in mean Q10 flows are also evident within the ensemble runs, with a 46.7%
decrease at Barmanghat (5), a 27% decrease at Sandia, and a 21.6% decrease at Hoshangabad, all of
which are driven by the same GCM, IPSL-CM5A-MR.
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Figure 7. Percentage changes in flow between the baseline (1981–2010) and the simulated future period
(2031–2060) for the Upper Narmada basin: (a) Change in mean flow (b) Change in 10% exceedance
flow (Q10); (c) Change in 90% exceedance flow (Q90). (1) Manot; (2) Mohgaon; (3) Patan; (4) Belkheri;
(5) Barmanghat; (6) Gadarwara; (7) Sandia; (8) Hoshangabad. Dark grey depicts the two command areas.

Future mean flows at the 90% exceedance level (Q90) display a less significant change from
the baseline, with large stretches of the river network showing only small increases in low flows.
These increases are evident in 20% of river cells, ranging from 0.5% to 47%. The largest percentage
changes are seen in the smaller tributaries of the basin, however, and represent relatively small absolute
increases in flow. This results in a 2.5% average increase at Q90 across the basin. Low flows also display
slight increases at each of the eight gauging sites, most noticeable again at Hoshangabad, which has an
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average increase of 22.5 m3s−1, equating to a 24.2% rise in Q90 flows compared to the baseline period.
Q90 flows at Manot, Mohgaon, Patan, Belkheri and Gadarwara show very little change, with Patan
and Belkheri displaying no change due to the intermittent nature of the gauged rivers, i.e., Q90 flow
values are 0 m3s−1 for baseline and all future ensemble runs.

4. Discussion

One of the key challenges for water practitioners is how future climate change will affect water
resources, and what adaptation strategies are available to best equip basins and their stakeholders for
any possible future change. Therefore, there is a requirement to make assessments of vulnerability that
are authentic and reliable [3]. Using a large-scale grid-based water resources model, future river flows
have been simulated, driven by projected climates for 2031–2060 from 17 GCMs using the RCP 4.5
scenario. Model outputs suggest that the hydrological regime within the Narmada basin is likely to
intensify over the next half-century as a result of a changing climate, with future flows being highly
susceptible to climate drivers, supporting the findings of Shah and Mishra [71] and Thomas et al. [72].
The GCM ensemble indicates that total annual rainfall is likely to increase in the Narmada basin over
the next half-century, along with increasing rates of evapotranspiration linked to rising temperatures,
potentially having a significant impact on how much runoff is produced, stored, and subsequently used.

The increased magnitude of the monsoon rainfall has a direct impact on water resources within
the basin. Increases in flow are likely to impact the sectors currently reliant on water supply. Mean and
high flows within the basin are set to increase, apparent along the main river reach of the Narmada and
its tributaries, as seen in Figures 6 and 7. More intense monsoons in the future equate to more water in
a short period. Extra water generated during the monsoon may lead to more severe flooding across
the basin [2], as riverine infrastructure, including small-scale interventions, may not currently have
the capacity to both store and utilise the increase in precipitation projected up to 2060. Surface runoff

will increase, and therefore much of the water may be lost without the opportunity for recharge into
groundwater stores. This may have a direct impact on dry season flows. Despite projected future
increases in annual precipitation, low flows (Q90) in the basin display little change from the baseline.
Outside of command areas and reservoir-fed regions, this has the potential to lead to greater water stress
during the dry season, as water may not be available at the time when it is most needed. This study
assumes that current demands remain stationary for the future period. In reality, sectoral demands are
likely to rise with a growing population and the need for more food and power generation [1,73,74],
exacerbating the impact of climate on flows across the hydrological regime. This will directly affect
water availability across all sectors, and so the management and storage of water during the monsoon
season is of key importance [1,36].

For this study, the change in hydrology is assessed in the context of anthropogenic climate change.
However, GCM climate projections are inherently uncertain, from the RCP emission scenarios, through
to the GCM model structure, the downscaling methodology, regridding, and postprocessing via bias
correction [70,75]. Moreover, understanding both current and future changes for the Indian climate,
and specifically the Indian Summer Monsoon Rainfall (ISMR), remains a major challenge. It has
already been shown that GCMs show poor skill in simulating the regional distribution of the monsoon
rainfall [1,76]. Menon et al. [77] noted that with the limited ability of the models to reproduce the
current monsoon rainfall, the consistent increase in rainfall displayed in GCMs during the monsoon
season for the period 1850–2100 implies low confidence and reliability [1,7,78]. This element of
uncertainty is supported by the results from this study, where flow in the summer is both highly
variable between GCMs and sensitive to input precipitation, having a significant impact on surface
water availability [71]. The majority of models within the CMIP5 GCM ensemble do, however, project
that central India will experience a wetter and warmer climate up to the mid-21st century, albeit highly
spatially variable, which is the current consensus amongst other bodies of work [7,71,79].

This study indicates how climate change may affect the total water availability within the Upper
Narmada basin, and not just the natural runoff. The sustainability of water resources is vital for
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agriculture and socio-economic development in the Narmada basin [71]. Without adaptation to a
changing climate, the alterations in flow shown here, even from the less extreme GCM projections,
could have a significant impact on water resources and the sectors reliant upon its supply in the Upper
Narmada. However, climate is only one of the interlinkages with land and energy that form part of the
nexus within water resources [1]. Many factors are currently modifying the hydrological cycle in the
Narmada, including agricultural expansion, rapid urbanisation, population growth, and economic
development [2,80,81]. As such, human intervention has the potential to surpass the impacts of climate
change alone [1,82].

The Indian population has increased six-fold over the past century, resulting in significant land use
change [1,83]. Rapid urbanisation has altered flow paths and rates of groundwater recharge, impacting
directly on groundwater-fed rivers and the supply of water from boreholes for irrigation [84,85].
India’s continued population growth will further exacerbate changes in agricultural land use and
force the adaptation of crops and farming practices [71,86]. Indian agriculture is the biggest consumer
of water in the country, with approximately 83% of available water used for agriculture alone [2].
As populations continue to grow and agriculture becomes more intensive, demand for water is likely
to increase [3]. Technological changes mean that the use of water will alter over time, such as the
improvement of irrigation efficiency [87], whilst riverine infrastructure will be forced to adapt to
changes in both climate and demand. The harvesting of rainwater in relation to the wetter monsoon
season may need to be built into any future policy and infrastructural planning [2]. This may include
smaller scale coping strategies, such as command area development, drainage and water logging
practices, crop diversification, irrigation water management, flood control, and conjunctive use of both
surface water and groundwater [2,3].

India is now the third largest power producer in the world. Water consumption by thermal plants
is predicted to increase by up to 80% over the next decade. Despite this, the gap between supply and
demand for electricity across India is expected to increase in the future [88,89]. The Government of
India has set specific targets for clean, renewable energy, which includes pushing the development of
small hydropower projects (SHPs), and providing concessions for existing hydro projects including
financial support for renovation, modernisation and capacity upgrading [90]. Such schemes often
require that rivers are diverted and land submerged, altering the natural hydrology within a basin and
having an effect not only on water demand, but also on land resources.

Like much of India, the Narmada basin is likely to see competition for water across sectors at
critical times, shaped by changing demographic and social requirements. Madhusoodhanan et al. [1]
suggest that an integrated approach to climate change policy may be needed to distinguish the impacts
of future climate from that of human interventions. As such, further exploration of these types of
inter-related scenarios needs to be conducted via the use of models to assess the impact and coexisting
influences on the water balance within the basin.

Future work will incorporate plausible future scenarios of anthropogenic influence and
socio-economic behaviours for the Narmada basin, as discussed above. Projections of population and
land use change will be explored, in combination with a changing climate. The derivation of water
availability is the result of a multitude of dynamic linkages; only by incorporating these linkages can
water practitioners begin to understand potential future states of water resources within the basin,
and be equipped to design relevant management strategies.

5. Conclusions

The aims of this study were two-fold: To (1) assess the appropriateness of a large-scale grid-based
water resources model in replicating the hydrology of the heavily managed Upper Narmada basin;
(2) assess the impact of future climate on the water resources within the basin.

In highly managed environments, large-scale models need to consider the impact of anthropogenic
influences and water demands. The ability to be able to incorporate interventions, structures, and water
demands within the GWAVA water resources model allows for an accurate representation of the
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assessment of the hydrological regime of the Upper Narmada basin. Calibration and validation outputs,
along with goodness-of-fit metrics, suggest that the model is an appropriate method in its application
to this highly modified basin.

The Indian water sector is spatially heterogeneous and highly developed. Anthropogenic
interventions have altered the natural regime of the Upper Narmada significantly, which is likely to be
exacerbated by future climate change. GCMs project a warmer, wetter climate in the Narmada basin,
driving increased monsoon flows and annual mean flows. Dry season flow remains largely unchanged
through the influence of climate alone, although future changes in sectoral demands are likely to pose
further challenges in dealing with water stress and allocation.

Future work will apply the GWAVA model to the Narmada basin and include the influence
of changing sectoral demands on water resources as a result of projections in drivers, including
population, land use change, agriculture, and riverine infrastructure. Environmental flow requirements
and associated ecological risk shall also be explored. The inclusion of these interlinkages will go some
way to help identify management options and potential changes in practices for the sustainable use of
water resources within the basin.

Author Contributions: Conceptualization, N.R., T.T., H.H.-C. and S.K.J.; methodology, N.R. and T.T.; formal
analysis, N.R., A.K. and T.T.; investigation, N.R., T.T. and A.K.; resources, H.D., S.K.J., G.R. and A.J.; data curation,
N.R., T.T., A.K., P.K.M., M.K.N., R.H. and M.M.R.; writing—original draft preparation, N.R.; writing—review
and editing, T.T., A.K., H.H.-C., H.D., S.K.J., G.R., M.K.N. and A.J.; supervision, H.H.-C. and H.D.; project
administration, H.H.-C., H.D., G.R. and S.K.J.; funding acquisition, G.R., S.K.J. and A.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Environment Research Council award number NE/R000131/1
as part of the SUNRISE programme delivering National Capability, and the APC was paid from the UKRI Open
Access Block Grant.

Acknowledgments: We would like to thank Julian Thompson and Amanda Robinson for their contribution to
the pilot study prior to the conception of this project. Thanks also go to the two anonymous reviewers for their
constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Madhusoodhanan, C.G.; Sreeja, K.G.; Eldho, T.I. Climate change impact assessments on the water resources
of India under extensive human interventions. Ambio 2016, 45, 725–741. [CrossRef] [PubMed]

2. Mall, R.K.; Gupta, A.; Singh, R.; Singh, R.S.; Rathore, L.S. Water resources and climate change: An Indian
perspective. Curr. Sci. 2006, 90, 1610–1626.

3. Gosain, A.K.; Rao, S.; Basuray, D. Climate change impact assessment on hydrology of Indian river basins.
Curr. Sci. 2006, 346–353.

4. Gupta, H.; Chakrapani, G.J. Temporal and spatial variations in water flow and sediment load in Narmada
River Basin, India: Natural and man-made factors. Environ. Geol. 2005, 48, 579–589. [CrossRef]

5. Government of India. National Water Policy; Department of Water Resources, Government of India: New Delhi,
India, 2012.

6. Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [CrossRef]
7. Mishra, S.K.; Sahany, S.; Salunke, P. CMIP5 vs. CORDEX over the Indian region: How much do we benefit

from dynamical downscaling? Theor. Appl. Climatol. 2017, 133, 1–9. [CrossRef]
8. IPCC AR5 Climate Change 2013: The Physical Science Basis—IPCC. Available online: https://www.ipcc.ch/

report/ar5/wg1/ (accessed on 20 April 2020).
9. Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in extreme precipitation events under anthropogenic

warming in India. Weather Clim. Extrem. 2018, 20, 45–53. [CrossRef]
10. SMHI Climate Change Is Affecting Water Supply in India. Available online: https://www.smhi.se/en/research/

research-news/climate-change-is-affecting-water-supply-in-india-1.34468 (accessed on 11 June 2020).
11. Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers.

Science 2010, 328, 1382–1385. [CrossRef]

http://dx.doi.org/10.1007/s13280-016-0784-7
http://www.ncbi.nlm.nih.gov/pubmed/27170012
http://dx.doi.org/10.1007/s00254-005-1314-2
http://dx.doi.org/10.1016/j.agwat.2005.07.001
http://dx.doi.org/10.1007/s00704-017-2237-z
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
http://dx.doi.org/10.1016/j.wace.2018.03.005
https://www.smhi.se/en/research/research-news/climate-change-is-affecting-water-supply-in-india-1.34468
https://www.smhi.se/en/research/research-news/climate-change-is-affecting-water-supply-in-india-1.34468
http://dx.doi.org/10.1126/science.1183188


Water 2020, 12, 1762 16 of 19

12. Udmale, P.; Ichikawa, Y.; Manandhar, S.; Ishidaira, H.; Kiem, A.S. Farmers’ perception of drought impacts,
local adaptation and administrative mitigation measures in Maharashtra State, India. Int. J. Disaster Risk
Reduct. 2014, 10, 250–269. [CrossRef]

13. Asokan, S.M.; Dutta, D. Analysis of water resources in the Mahanadi River Basin, India under projected
climate conditions. Hydrol. Process. 2008, 22, 3589–3603. [CrossRef]

14. Saleth, R.M. Water scarcity and climatic change in India: The need for water demand and supply management.
Hydrol. Sci. J. 2011, 56, 671–686. [CrossRef]

15. Pathak, H.; Pramanik, P.; Khanna, M.; Kumar, A. Climate change and water availability in Indian agriculture:
Impacts and adaptation. Indian J. Agric. Sci. 2014, 84, 671–679.

16. Simonovic, S.P. World Water Resources at the Beginning of the Twenty-First Century; University Press: Cambridge,
UK, 2012.

17. Loch, A.; Adamson, D.; Dumbrell, N.P. The fifth stage in water management: Policy lessons for water
governance. Water Resour. Res. 2020, 56, e2019WR026714. [CrossRef]

18. Delorit, J.; Gonzalez Ortuya, E.C.; Block, P. Evaluation of model-based seasonal streamflow and water
allocation forecasts for the Elqui Valley, Chile. Hydrol. Earth Syst. Sci. 2017, 21, 4711–4725. [CrossRef]

19. Schumacher, M.; Forootan, E.; van Dijk, A.I.J.M.; Müller Schmied, H.; Crosbie, R.S.; Kusche, J.; Döll, P.
Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation
of GRACE data into the WaterGAP Global Hydrology Model. Remote Sens. Environ. 2018, 204, 212–228.
[CrossRef]

20. Prudhomme, C.; Parry, S.; Hannaford, J.; Clark, D.B.; Hagemann, S.; Voss, F. How Well Do Large-Scale Models
Reproduce Regional Hydrological Extremes in Europe? J. Hydrometeor 2011, 12, 1181–1204. [CrossRef]

21. Kauffeldt, A.; Wetterhall, F.; Pappenberger, F.; Salamon, P.; Thielen, J. Technical review of large-scale
hydrological models for implementation in operational flood forecasting schemes on continental level.
Environ. Model. Softw. 2016, 75, 68–76. [CrossRef]

22. Pappenberger, F.; Thielen, J.; Del Medico, M. The impact of weather forecast improvements on large scale
hydrology: Analysing a decade of forecasts of the European Flood Alert System. Hydrol. Process. 2011, 25,
1091–1113. [CrossRef]

23. Alfieri, L.; Burek, P.; Dutra, E.; Krzeminski, B.; Muraro, D.; Thielen, J.; Pappenberger, F. GloFAS–global
ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 2013, 17, 1161–1175.
[CrossRef]

24. Van Loon, A.F.; Van Huijgevoort, M.H.J.; Van Lanen, H.A.J. Evaluation of drought propagation in an ensemble
mean of large-scale hydrological models. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 8375–8424. [CrossRef]

25. Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and testing of the HYPE
(Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res.
2010, 41, 295–319. [CrossRef]

26. Vicente-Serrano, S.M.; Zabalza-Martínez, J.; Borràs, G.; López-Moreno, J.I.; Pla, E.; Pascual, D.; Savé, R.;
Biel, C.; Funes, I.; Azorin-Molina, C.; et al. Extreme hydrological events and the influence of reservoirs in a
highly regulated river basin of northeastern Spain. J. Hydrol. Reg. Stud. 2017, 12, 13–32. [CrossRef]

27. Anis, R.; Razavi, M.; Wheater, S. Howard An integrated modelling framework for regulated river systems in
Land Surface Hydrological Models. EGU Gen. Assem. Conf. Abstr. 2017, 19, 9753.

28. Johnston, R.; Smakhtin, V. Hydrological Modeling of Large river Basins: How Much is Enough? Water Resour.
Manag. 2014, 28, 2695–2730. [CrossRef]

29. Müller Schmied, H.; Eisner, S.; Franz, D.; Wattenbach, M.; Portmann, F.T.; Flörke, M.; Döll, P. Sensitivity of
simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human
water use and calibration. Hydrol. Earth Syst. Sci. 2014, 18, 3511–3538. [CrossRef]

30. Beven, K.J.; Cloke, H.L. Comment on “Hyperresolution global land surface modeling: Meeting a grand
challenge for monitoring Earth’s terrestrial water” by Eric F. Wood et al. Water Resour. Res. 2012, 48.
[CrossRef]

31. Guo, Z.; Dirmeyer, P.A.; Hu, Z.-Z.; Gao, X.; Zhao, M. Evaluation of the Second Global Soil Wetness Project soil
moisture simulations: Sensitivity to external meteorological forcing. J. Geophys. Res. 2006, 111. [CrossRef]

http://dx.doi.org/10.1016/j.ijdrr.2014.09.011
http://dx.doi.org/10.1002/hyp.6962
http://dx.doi.org/10.1080/02626667.2011.572074
http://dx.doi.org/10.1029/2019WR026714
http://dx.doi.org/10.5194/hess-21-4711-2017
http://dx.doi.org/10.1016/j.rse.2017.10.029
http://dx.doi.org/10.1175/2011JHM1387.1
http://dx.doi.org/10.1016/j.envsoft.2015.09.009
http://dx.doi.org/10.1002/hyp.7772
http://dx.doi.org/10.5194/hess-17-1161-2013
http://dx.doi.org/10.5194/hessd-9-8375-2012
http://dx.doi.org/10.2166/nh.2010.007
http://dx.doi.org/10.1016/j.ejrh.2017.01.004
http://dx.doi.org/10.1007/s11269-014-0637-8
http://dx.doi.org/10.5194/hess-18-3511-2014
http://dx.doi.org/10.1029/2011WR010982
http://dx.doi.org/10.1029/2006JD007845


Water 2020, 12, 1762 17 of 19

32. Van Huijgevoort, M.H.; Van Loon, A.F.; Hanel, M.; Haddeland, I.; Horvát, O.; Koutroulis, A.; Machlica, A.;
Weedon, G.; Fendeková, M.; Tsanis, I.; et al. Simulation of Low Flows and Drought Events in WATCH Test Basins:
Impact of Different Climate Forcing Datasets; Technical Report No. 26, European Commission Sixth Framework
Programme; 2011.

33. Wetterhall, F.; Pappenberger, F.; Alfieri, L.; Cloke, H.L.; Thielen-del Pozo, J.; Balabanova, S.; Daňhelka, J.;
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