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Abstract

Zoonotic diseases affect resource-poor tropical communities disproportionately, and are

linked to human use and modification of ecosystems. Disentangling the socio-ecological

mechanisms by which ecosystem change precipitates impacts of pathogens is critical for

predicting disease risk and designing effective intervention strategies. Despite the global

“One Health” initiative, predictive models for tropical zoonotic diseases often focus on nar-

row ranges of risk factors and are rarely scaled to intervention programs and ecosystem

use. This study uses a participatory, co-production approach to address this disconnect

between science, policy and implementation, by developing more informative disease mod-

els for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is

spreading across degraded forest ecosystems in India. We integrated knowledge across

disciplines to identify key risk factors and needs with actors and beneficiaries across the rel-

evant policy sectors, to understand disease patterns and develop decision support tools.

Human case locations (2014–2018) and spatial machine learning quantified the relative role

of risk factors, including forest cover and loss, host densities and public health access, in

driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka

State). Models combining forest metrics, livestock densities and elevation accurately pre-

dicted spatial patterns in human KFD cases (2014–2018). Consistent with suggestions that

KFD is an “ecotonal” disease, landscapes at higher risk for human KFD contained diverse

forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high
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indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new

hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-

production was vital for: gathering outbreak data that reflected locations of exposure in the

landscape; better understanding contextual socio-ecological risk factors; and tailoring the

spatial grain and outputs to the scale of forest use, and public health interventions. We

argue this inter-disciplinary approach to risk prediction is applicable across zoonotic dis-

eases in tropical settings.

Author summary

Worldwide, impacts of zoonotic diseases, that cycle between animals and people, are con-

centrated in tropical communities and often linked to the way people use and change eco-

systems. Interventions for zoonotic diseases could be targeted better using risk maps

based on computer models that integrate social and ecological risk factors across degraded

ecosystems. However, such predictive models often perform poorly at local scales, incor-

porate narrow ranges of risk factors, and are disconnected from policy, managers and

interventions. Co-production brings together stakeholders and knowledge, across the

human health, animal health and environmental sectors, aligning with the OneHealth Ini-

tiative, to develop more informative predictive tools for zoonotic diseases. Through co-

production, we develop predictive models for a fatal tick-borne disease, Kyasanur Forest

Diseases (KFD) that is spreading across the degraded Western Ghats forest in India.

These models incorporating contextual risk factors identified by stakeholders, accurately

predicted patterns in human cases of KFD (2014–2018) in Shivamogga district, Karnataka

State, and identified new hotspots of infection during the subsequent 2019 outbreak.

Landscapes at highest risk encompassed diverse forest-plantation mosaics with high cov-

erage of moist evergreen forest and plantation, high indigenous cattle density, and low

coverage of dry deciduous forest. Co-production resulted in outbreak data that reflected

where exposure occurred in the landscape and outputs of value for targeting of interven-

tions, matched to the scale of forest use and public health interventions.

Introduction

Zoonotic diseases disproportionately affect poor tropical communities[1–3], accounting for

around 26% of Disability-adjusted Life Years lost to infectious diseases in Lower Middle

Income Countries (LMICs). Communities affected by zoonoses often depend on surrounding

ecosystems for livelihoods and food security. In India, for example, around 300 million people

depend directly on degraded forest ecosystems for food, fuel, livestock fodder and other non-

timber forest products (NTFPs)[4]. A key cost of altering forest structure and accessing forest

goods and services is the increased exposure of humans and livestock to multi-host zoonotic

pathogens [5]. Forest habitats and their ecotones are a significant source of emerging and re-

emerging infections because they support complex ecological communities, including high

wildlife host and vector diversity [6–8]. Upsurges in incidence of several high burden zoonotic

diseases have been linked to deforestation or reforestation in LMICs (e.g. malaria[9], Leish-

maniases [10,11], Crimean-Congo Haemorrhagic Fever Virus) and to forest dependence. Liv-

ing in or near forests has been linked to unfair accumulation of geographic and social

disadvantages including political and economic marginalisation [12]. Forest communities are
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rendered even more vulnerable by their remoteness from healthcare infrastructure [13]. Dis-

entangling the ecological and social mechanisms by which changes in forest habitat can precip-

itate impacts of multi-host pathogens is critical for the design of effective intervention

strategies.

Integrating land use patterns, ecosystem and social factors into interpretations of past dis-

ease patterns at a range of geographical scales [14] can indicate potential mechanisms and

facilitate prediction of disease risk across new landscapes or for the same landscapes under

future alternative environmental and development policies [15]. Conceptual frameworks, like

the global “One Health” paradigm, recognise the interconnectedness of human health, wildlife

and domestic animal health and the environment[16]. Despite this, models of zoonotic disease

risk in tropical regions have often focussed on a single set of processes that drive variability in

disease risk and effectiveness of interventions ([17] but see [14,15,18–20]). For example, pub-

lished risk maps and spatial decision support tools for tick-borne zoonoses tend to focus on

mapping environmental hazard (or presumed correlates of environmental hazard like tick

abundance or presence[21]), but often do not integrate the social factors which drive patterns

in exposure [20,22]. Tools and maps are rarely linked to intervention programs at a scale

appropriate to sources of epidemics[17] and ecosystem use. Leach & Scoones [17] recommend

instead that disciplines, data and models are not only integrated, but “triangulated” with delib-

eration around framing assumptions, policy narrative, politics and values. The process of co-

production is ideally suited to the development of models to understand and predict zoonotic

diseases. Co-production is based on the need to integrate different forms of knowledge into

decision-making. It involves active engagement of stakeholders from different sectors and

scales as knowledge holders and future model users through three key stages of framing the

problem, knowledge integration and experimentation [23].

In our inter-disciplinary One Health Indo-UK partnership, the MonkeyFeverRisk project

[24], co-production is used to improve understanding and develop decision support tools for a

fatal tick-borne zoonotic disease, Kyasanur Forest Disease (KFD), that is spreading across

degraded Western Ghats forest ecosystems in India.

Kyasanur Forest Disease Virus (KFDV; family Flaviviridae, genus Flavivirus) causes debili-

tating and fatal haemorrhagic disease (around 500 cases p.a., up to 10% mortality[25]) in forest

communities. Key affected groups include small-holder farmers engaged in cultivation and

grazing of cattle in forests [26], forest-dependent tribal communities who gather NTFP, day

labourers in plantations and State forest department workers[27–29].

As well as affecting diverse human communities, the transmission cycle of KFDV is com-

plex. KFDV cycles between different life stages of tick species from several genera (principally

Haemaphysalis but also some Ixodes species) and amplifying vertebrate hosts including wild

rodents and shrews, monkeys and some birds [25]. Humans contract KFDV when bitten by an

infected tick, but are incidental hosts for the disease. Monkeys, principally the black-footed

grey langur (Semnopithecus hypoleucos) and the bonnet macaque (Macaca radiata), are

thought to act as amplifying hosts, by infecting large numbers of larval ticks with the virus

[30]. Cattle do not amplify KFD since they do not develop viraemia of long duration [31], but

may amplify tick populations through their importance as a blood meal host.

The emergence of KFD in humans has been widely linked to human modification of the

forest ecosystem through deforestation [10,26,30]. The initial epidemics in Karnataka in the

1950s and those in the 1980s were preceded by population increases and extensive deforesta-

tion, to make way for plantations (such as Areca and cashew), paddy cultivation, housing and

roads. This created mosaic tropical evergreen and deciduous forest, interspersed with cultiva-

tion (e.g. paddy), and interface scrub habitat between villages and forests that was conducive

to both tick populations and cattle grazing [26,30,32]. These conditions are hypothesised to
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have facilitated the emergence of KFDV into humans from a cryptic sylvatic enzootic cycle

involving small mammals and monkeys [30]. However, it is still unknown how tick vectors

and potential amplifying vertebrate hosts are linked to different habitats and to human expo-

sure within agro-forest mosaics.

Human epidemics were restricted to focal areas of Karnataka State from 1957 to 2012, but

since then human cases have been detected in four neighbouring states (Tamil Nadu, Kerala,

Goa and Maharashtra)[33]. Human serological evidence indicates wide KFDV circulation in

other states across India (Gujarat, West Bengal, the Andaman and Nicobar Islands) and on the

border with China. Therefore, the landscape conditions favouring KFDV transmission are

widespread [33], and the subset of these conditions that lead to human disease impacts, need

to be delineated urgently. KFD impacts are managed currently through vaccination, awareness

campaigns and promotion of tick protection measures in and around recently affected areas.

However, constraints on availability and efficacy of the vaccine, and reluctance of local com-

munities to be vaccinated and adopt personal protection measures can exacerbate epidemics

[28,29,34]. Thus targeting of interventions towards the most vulnerable communities is

critical.

This paper describes the co-production–with actors and beneficiaries across the public

health, animal health and forestry sectors–of the landscape-level spatial models and under-

standing of risk factors for a case study zoonotic disease, Kyasanur Forest Disease. The model

is developed for Shivamogga district in Karnataka, which has been affected by KFD since the

1950s, and reports a high proportion of India’s human cases (e.g. 656 or 34% of 1929 cases

reported between 2010 and 2019). Because of this, health managers of this district have long

experience in disease surveillance and control. Using point locations for human cases recorded

at sub-village level by health managers between 2014 and 2018, spatial Boosted Regression

Tree models [35,36] are used to quantify the relative role of forest characteristics and loss,

topography, host densities and public health factors in driving patterns in KFD at the land-

scape scale.

The co-production process involved framing potential key risk factors for KFD with cross-

sectoral managers [37]. Spatial proxies of these risk factors were integrated into the model

framework. The spatial grain of the model and its output was tailored to the scale at which peo-

ple use forests (from household surveys) and the scale at which public health managers collect

and report outbreak data. The models were then validated during the 2019 outbreak season

with health managers, in terms of their predictive accuracy and utility for management.

Furthermore, through geographical thinning [38,39], the model framework accounted for

the sparse, spatially clustered recording effort that often arises in public health surveillance

datasets[40]. We discuss the extent to which disease patterns were predictable from landscape,

topographical host and landscape metrics, whether human cases of KFD are associated with

particular forest types, mosaic habitats or forest loss and how model predictions could improve

targeting of interventions and surveillance.

Methods

Ethics statement

The protocols for this study were approved by the Institutional Ethics Committee of the Insti-

tute of Public Health (IPH IEC), Bangalore (Study ID, IEC-FR/04/2017) and received a

Favourable Ethical Opinion from the Liverpool School of Tropical Medicine Research Ethics

Committee (research protocol 17/062). All workshop participants were adults and provided

informed consent via email through acceptance of the workshop invitation. The IPH IEC
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approved the access and use of confidential patient data from DHFWS and all data were anon-

ymised appropriately prior to analysis.

Study area

Shivamogga covers an area of 8465 km2 between 13.45o and 14.65˚ Latitude and 74.63o and

75.73˚ Longitude (Fig 1). The district is diverse in topography and vegetation, comprising

Western Ghats mountains that are subject to high annual rainfall (900 to 8000 mm per

annum) and drier inland plateau areas (range in elevation across Shivamogga is -70 m to 2674

m a.s.l., mean ± s.d. = 460 m ± 379 m a.s.l.), and a corresponding transition from evergreen

and semi-evergreen forests, to moist deciduous forest and scrub. The forests of the Western

Ghats have been degraded and fragmented throughout the 19th and 20th centuries, due to tim-

ber extraction, industrial development (roads, railways, dams and mines) and increases in

agriculture and plantations [41,42]. The area of forest vegetation in Shivamogga has declined

from an estimated 43.8% of the district in 1973 to 22.3% of the district in 2012, producing

patch and edge forest [43].

Human case data

Human cases of Kyasanur Forest Disease occur seasonally between December and May when

the abundance of infected nymphal ticks in the forest is at a peak. Designated laboratories for

processing human samples of KFD from Shivamogga District include the Virus Diagnostic

Laboratory (VDL), Shivamogga, the ICMR-National Institute of Virology, Pune and Manipal

Centre for Virus Research. Human cases, arising from samples testing positive for Kyasanur

Forest Disease by RT-PCR or IgM ELISA in either laboratory in the five years between the

December 2013 / May 2014 and December 2017 / May 2018 outbreak seasons, were compiled

by co-author, Dr S. K. Kiran, who served as Taluka Medical Officer for Tirthahalli from 2010–

2019. Cases were assigned to locations retrospectively using Google Earth, following personal

visits to households of affected patients conducted by Dr Kiran, or Medical Officers in other

talukas, during the outbreak seasons. These locations were marked on Google Earth to retrieve

the geographical coordinates in Latitude and Longitude to an estimated spatial precision of

around 300 m. Cases of febrile illness may be reported to Primary Health Centres and from

home addresses that are very distant from where infection is acquired. For example, migrant

agricultural labourers work in plantations and pilgrims visiting temples in forest areas that can

be 10s to 100s of kilometres from their homes [29]. Based on case-tracing that Taluka Medical

Officers had performed during the outbreak seasons, such cases (< 10) could be excluded

from the analysis. In total, 329 cases from 117 different household or village locations were

compiled over the five transmission seasons (144 cases from 2013/2014, 32 from 2014/2015, 32

from 2015/2016, 89 from 2016/2017, 32 from 2017/2018). The presence and number of cases

were summarised at a 1 km x 1 km and 2 km x 2 km grid resolution across Shivamogga, result-

ing in 65 (of a total of 7732) land cells and 53 (of a total of 1926) land cells positive for KFD

respectively at these study grains. These two study grains were chosen to reflect the range of

distances from households at which forest users may acquire infection from forest habitats

during their livelihood activities. Interviews with members of similar forest communities in

Wayanad, Kerala revealed that forest users move between 1 and 4 km through forest habitats

from their homes during the main risk KFD period(January to March, see S1 File).

During the 2018/2019 transmission season in Shivamogga District, households with cases

throughout Shivamogga District were geo-located as a passive independent validation dataset.

Between 21 November 2018 and 16 June 2019, 344 human cases of KFD were reported across

104 villages, causing 20 deaths. The majority of these cases (212 cases or 61%) and 17 deaths
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were concentrated in a new geographical focus in Sagara taluka in northern Shivamogga (Fig

1B, closed red circles). This area had reported no human cases and only one or two human or

tick positives in the 2014/2015 and 2017/2018 season during the prior decade. Geo-location of

affected households was achieved directly in the field using the Smartphone Android App

“AndLocation” or by health workers who shared their live location on WhatsApp with project

staff for transfer to Google Earth and retrieval of coordinates. These 2018/2019 season cases

spanned 84 of the 1 km grid cells and 68 of the 2 km grid cells. They provided an ideal test of

whether the risk maps developed before the transmission season (using human cases data

from the prior five transmission seasons) are capable of predicting new outbreaks, including

new geographical foci like the one in Sagara taluka.

Framing key socio-ecological risk factors for KFD with stakeholders

The participatory MonkeyFeverRisk Framing workshop was held on 16th August 2018 in Ben-

galuru, Karnataka, India. It involved over 20 experts from different KFD-affected districts and

states level of Karnataka, Maharashtra and Kerala, including officials from the public and ani-

mal health, agriculture, forestry and social welfare sectors [37]. Participants of the workshop

were selected based on a stakeholder mapping exercise. This identified key actors from differ-

ent sectors and working at different scales, likely to play major roles in the understanding and

management of KFD. The two aims of the workshop were to (i) identify the key risk factors for

KFD as prioritized by stakeholders and (ii) identify key policies that affect KFD transmission

and management using participatory approaches, as outlined in S2 File. The key risk factors

Fig 1. (a) Map of India depicting the location of Shivamogga district (black shading) within Karnataka State (grey shading). (b) Map of Shivamogga district showing

locations of households with human cases in black (2014–2018 seasons) and red (2018–2019 season). Amongst the 2018–2019 cases, closed red circles are affected

households in Sagara taluka and open red circles are affected households in Tirthahalli taluka, whilst crosses are affected households from other talukas. The

administrative boundary dataset is from HindudstanTimesLabs (https://github.com/HindustanTimesLabs/shapefiles/), reproduced under the MIT License. Note

that Bhadravathi taluk, in the southeast corner of Shivamogga district, is omitted from the study.

https://doi.org/10.1371/journal.pntd.0008179.g001
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for KFD that received four or more votes during the ranking exercise among stakeholders are

shown in Table 1, together with their links to particular spatial environmental predictors in

the analysis (right hand column). The full suite of gridded spatial environmental predictors

that was generated within topographical, landscape, host and public health categories is shown

in Table 2, including additional risk factors drawn from scientific literature on KFD epidemi-

ology and ecology. The sources and processing methods for selected spatial environmental

predictors, including measures to account for collinearity between predictors, are detailed in

S3 File.

Forest loss and degradation was the highest ranked environmental risk factor for KFD by

stakeholders, consistent with scientific literature linking forest loss and creation of mosaic for-

est-paddy-scrub village habitat to human emergence events [26,30,32]. Stakeholders consid-

ered that abrupt shifts in land use between forest and village areas made communities more

vulnerable to KFD. Metrics of forest change considered in the analysis were area of forest loss

and gain since 2000 per grid cell derived from Hansen et al. [44]. Area of forest gain was highly

collinear with area of forest loss (Pearson’s correlation coefficient, r = 0.968), and much less

prevalent (making up 0.16% versus 1.2% of 30m land pixels), so was excluded from the analy-

sis. To quantify mosaic habitat, the amount and diversity of different forest types, of agricul-

tural or fallow land and plantation and overall land use diversity were extracted from the

MonkeyFeverRisk Land Use Land Cover map (LULC map), derived from Landsat Thematic

Mapper imagery (2016–2017) as detailed in S4 File. Edge metrics for forest types were also cal-

culated as a measure of the amount of interface habitat between forest, agriculture and villages

but were highly collinear with amount of individual forest types and so were not included in

the final analysis (S3 File).

Stakeholders also ranked human use of forests and living in/around forests as key risk fac-

tors. They identified policies (or poor policy implementation) linked to grazing and encroach-

ment in and around forest areas as increasing the risk of KFD. This is consistent with case-

control studies that have linked grazing cattle inside forests, handling cattle and gathering of

dry leaves for animal bedding to higher exposure to KFD [29] and the hypothesised role of cat-

tle in amplifying tick populations. Available spatial proxies for extent of forest use for grazing

were the densities of indigenous cattle (since smallholders in Shivamogga keep indigenous

breeds) and buffalos per grid cell.

Again consistent with literature [28,34], diverse public health factors were ranked by stake-

holders as key risk factors for KFD (Table 1) such as lack of awareness of KFD and preventative

measures, low acceptance and coverage of vaccination, poor diagnostics and surveillance

including under-reporting of human cases or monkey deaths. Available spatial proxies of

access to health services and education and surveillance effort, developed from Indian Govern-

ment census data (S3 File), were the proximity to a primary health centre, overall human pop-

ulation size and the number of medics available per head of population at village level (S3

File). Some risk factors like poor data management, low vaccine uptake and under-reporting

of monkey deaths by the Forest Department, will be less well linked to such spatial proxies.

Consistent with literature linking tick demography and host-seeking behaviour to micro-

climatic factors [21,45,46], stakeholders also mentioned suitable micro-climates for tick popu-

lations among key risk factors for KFD (Table 1). However, available gridded weather station

data is too coarse in resolution to define spatial variation in climate at village to district levels.

Topographical factors, namely slope and elevation, and associated vegetation types from the

LULC map were considered to be better proxies of micro-climatic conditions at village and

district scale. Small water bodies of around 10m2 were hypothesised by disease managers to be

key locations in the landscape where monkeys carrying KFD, nymphal ticks and grazing ani-

mals might co-occur. Conversely, large water-bodies could constitute barriers to dispersal of
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Table 1. Ranked list of key risk factors for Kyasanur Forest Disease produced by cross-sectoral stakeholders during the MonkeyFeverRisk Problem Framing

workshop.

Rank Risk factors Number of

votes

Spatial proxies in models that link to each risk factor

1 Lack of awareness about KFD 10 Proximity to health centre, number of medics per head of population, human population

density

2 Under or late reporting of monkey deaths 9 None

2 Deforestation and/or forest degradation 9 Forest loss, human population density, cover of agriculture and plantations, forest and

land use diversity

2 Lack of awareness of preventative measures (tick

repellants, vaccination)

9 Proximity to health centre and number of medics per head of population

3 Lack of understanding of alternative hosts 8 None, though alternative hosts linked to forest types

4 Human use of forests 7 Cover and diversity of forest types

4 Low vaccination coverage 7 Both factors expected to be linked to Proximity to health centre, number of medics per

head of population, human population density4 Poor diagnostics and surveillance 7

4 Lack of OneHealth policy 7 None

5 Poor data management 6 None

5 Poor understanding of tick ecology 6 None

6 Side effects and concerns about vaccines 5 None

7 Living in or around forests 4 Cover and diversity of forest types

7 Favorable environment for ticks 4 Cover and diversity of forest types, micro-climate availability linked to topography

7 Poor tick identification 4 None

https://doi.org/10.1371/journal.pntd.0008179.t001

Table 2. Potential environmental predictors included in models of Kyasanur Forest Disease distribution†.

Category of

predictor

Predictor name(abbreviation) Description / units Mean and s.d. across

the region (1 km)

Range across

the region (1

km)

TOPOGRAPHY Elevation (elev) mean elevation (m. a. s. l.) 559 ± 190 2–1224

Slope (slope) mean slope (degree) 4.5 ± 3.7 0–32.1

LANDSCAPE

CHANGE

Area of forest loss proportional area of cell classified as forest lost during 2000–2014 1.1 ± 2.6 0–43

LANDSCAPE Forest type diversity diversity of forest types(Shannon-Weaver Index accounting for %

area per cell per forest type)

0.77 ± 0.32 0–1.37

Area of dry deciduous proportional area of dry deciduous forest per cell 13 ± 16 0–100

Area of wet deciduous proportional area of moist deciduous forest per cell 20 ± 22 0–100

Area of wet evergreen proportional area of wet evergreen forest per cell 17 ± 24 0–100

Area of plantation proportional area of plantation per cell 15 ± 13 0–90

Area of water bodies proportional area of waterbody per cell 4 ± 14 0–100

Area of agricultural or fallow

land

proportional area agricultural or fallow land 25 ± 24 0–96

HOSTS Buffalo density buffalo density in mean head per km per cell 17.5 ± 17.0 0.0–245.8

Cattle density indigenous cattle density in mean head per km per cell 60.0 ± 40.5 0.1–904.0

Human population density human population size in mean head per km per cell 204.7 ± 528.8 0–7087.8

PUBLIC HEALTH Proximity to primary health

centre (PHC_proximity)

proximity to primary health centrewhere 1 = Primary Health

Centre (PHC) within village, 2 = PHC > 5 km, 3 = PHC 5–10 km,

4 = PHC > 10 km from village

3� 1–4

No. of medics per head of

population (Nmedics)

no. of medics per head of population 0.0006 ± 0.0018 0–0.04

†See S3 File for the sources and processing methods for these environmental predictors.

�modal value.

https://doi.org/10.1371/journal.pntd.0008179.t002
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wildlife hosts for tick vectors and KFD, and in turn, to epidemic spread [47,48]. The LULC

map is based on 30 m resolution Landsat data, thus only detects water-bodies of larger than

30m. Thus, the coverage of such larger water-bodies per grid cell was included a priori

amongst predictors, with the expectation that high coverage of such water-bodies would be

unfavourable for KFD.

Modelling the distribution of Kyasanur Forest Disease with Boosted

Regression Trees

A boosted regression tree (BRT) modelling [35,36] framework was used to determine the sen-

sitivity of patterns in human KFD cases to land use, topographical and host variability, and to

generate maps of potential distribution across Shivamogga. BRTs combine regression trees,

which build a set of decision rules on the predictor variables by portioning the data into suc-

cessively smaller groups with binary splits [35,36], and boosting, which selects the tree that

minimises the loss of function, to best capture the variables that define the distribution of the

input data. BRTs have been shown to have high performance amongst methods used to predict

species distributions [49], probably due to their ability to fit complex, non-linear responses to

environmental covariates and their robustness to outliers. However, they can be prone to

over-fitting data and therefore a number of stringent cross-validation checks were used to

avoid this (see below).

Due to the high degree of spatial clustering in the case presence data (Fig 2), it was clear

that this presence data should be thinned prior to analysis to avoid inflation of model accuracy

and pseudo-replication of particular environmental conditions in the model [38,39]. Presence

data can be thinned in geographical or environmental space [38]. The lack of quantitative

information on the environmental drivers of KFD makes it difficult to select key environmen-

tal axes by which to thin the data. Thus thinning in geographical space was conducted. A rule

of thumb is to take the peak distance between pairs of presence records (this is 10 km for KFD

in S1 Fig) and thin the points so that they are no closer than half this distance (~ 5 km for

KFD), ensuring that there is only 1 presence in each 5 km grid cell. Thus, at each resolution (1

km grid cell and 2 km grid cell), we randomly selected one of the presence records per 5 km

grid cell, for each of the 30 x 5 km grid cells in which presence records were found. The whole

process was repeated 100 times to generate 100 presence datasets at each resolution.

Absence data: Since Boosted Regression Trees require both presence and absence data, the

presences were matched with an equal number of selected absence grid cells as recommended

by Barbet-Massin et al.[50] for BRTs. When selecting absence data, it is important to try to

mimic the recording process that gives rise to the presence data. For example, human cases of

KFD tend to be reported from rural land areas and communities. Therefore very large water

bodies and built-up areas like towns and cities were excluded from the absence selection pro-

cess by including only 1 km or 2 km grid cells encompassed by the census village boundaries

in the selection area. Cells containing presences were also removed from the selection area at

each resolution. We then randomly selected 30 absence cells at each resolution, each of which

occurred in a different 5 km grid cell, and this process was repeated 100 times to generate 100

absence datasets. Each presence dataset was combined with one of the absence datasets to gen-

erate 100 presence-absence datasets at each resolution.

Due to the disparity between local land use maps and global forest loss data (S3 File), at

each resolution, a set of 100 BRT sub-models was fitted to all environmental predictors and

another set fitted to all predictors except area of forest loss. Models were fitted using the gbm.

step function of the dismo package in R [51]. Model settings were as follows: learning

rate = 0.001; tree.complexity = 4; bag rate = 0.6; to allow two way interactions between
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environmental predictors and to ensure that optimum number of trees always exceeded 1000.

The gbm.step function automatically identifies the optimum number of trees for a BRT model

using ten-fold cross-validation, selecting the number of trees that minimises hold-out deviance

(cross-validation deviance) across folds. In addition to the cross-validation deviance, gbm.step

reports several metrics of model performance in cross-validation across folds including; (i) the

Area Under the Receiver Operator Curve Statistic (AUC) on hold-out dataset [52], or cross-

validation AUC, where an AUC value of 0.5 indicates no discriminative ability between

Fig 2. Key landscape predictors of presence of Kyasanur Forest Disease (1 km resolution) overlaid with point locations of human cases

from 2014 to 2018 (black dots).). These are proportional areas of moist evergreen forest, dry deciduous forest, and plantation per grid cell

and forest type diversity. These metrics were derived from analysis of the MonkeyFeverRisk LULC map (see S3 and S4 Files). The

administrative boundary dataset is from HindudstanTimesLabs (https://github.com/HindustanTimesLabs/shapefiles/), reproduced under the

MIT License. Human case data are from the Department of Health and Family Welfare Services, Government of Karnataka. White areas in

Bhadravathi taluka in southeast corner indicate no data.

https://doi.org/10.1371/journal.pntd.0008179.g002
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presence and absence, and a value of 1 indicates perfect discrimination; (ii) cross-validation

coefficient, which is the Pearson’s correlation coefficient between the predicted probability of

presence and the true presence/background for the hold-out dataset. We report the mean,

median and standard deviation of these metrics across the 100 BRT sub-models in each model

set. This provides a full picture of the average performance and consistency across each model

set. The true prevalence of the disease across the study region is unknown, and the models are

parameterised with ad hoc presence data combined with selected pseudo-absences rather than

true absences. Therefore, the models predict the relative rather than absolute probability of

presence between cells. This model fitting process was repeated at each resolution for the two

sets of environmental predictors as above, giving rise to four different model runs- 1 km with

forest loss, 1 km without forest loss, 2 km with forest loss, and 2 km without forest loss.

Relative contribution statistics of predictor variables are reported only for the BRT model

with the optimum number of trees (not for the folds). Relative importance is defined as the

number of times a variable is selected for splitting, weighted by the squared improvement to

the model as a result of each split and averaged over all trees [52]. These contributions are

scaled to sum to 100, with a higher number indicating a greater effect on the response. Again,

we report the average of these values across the 100 BRT sub-models.

The direction of the association between human cases of KFD and particular predictor vari-

ables was evaluated from the response curves produced from the BRT model. The response

curves for a predictor were averaged across the 100 BRT sub-models by calculating mean and

standard deviation of the marginal predicted probabilities within ~40 bins of the predictor

values.

The extent to which geographical thinning was successful in removing spatial autocorrela-

tion caused by clustering of presence records was examined by plotting correlograms of the

residuals of each fitted sub-model using the correlog function in the ncf package in R [53]. The

Moran’s I values and significance values were then averaged across sub-models within differ-

ent distance bins (from 0 to 80 km in increments of 5 km), to look for evidence of systematic

positive spatial autocorrelation.

To predict the distribution of KFD across Shivamogga in unsampled areas, each BRT sub-

model was applied to the prediction layers for a given resolution and environmental set using

the predict.gbm function of the gbm package in R [54]. The predicted relative probability of

presence was averaged across sub-models to produce an ensemble mean ± standard deviation

of the relative probability of presence per grid cell. For each BRT model, the threshold relative

probability of presence that maximises discrimination between presence/background for the

hold-out dataset was calculated by gbm.step and averaged across folds (cross-validation

threshold). Occurrence patterns were summarised across sub-models by converting the pre-

dicted distributions to binary presence-absence maps per sub-model using the mean cross-val-

idation threshold relative probability of presence for each sub-model, and counting the

number of times a cell was predicted to be present across the 100 sub-models. The predicted

extent of occurrence in terms of number of study grid squares or pixels was calculated for each

predictor resolution and environmental set. The geographical extent of predictions was limited

to the region for which the environmental predictors were available and, out of necessity,

omitted very large water-bodies and areas classified as towns or cities in the census.

Independent validation of models was achieved using the presence points from the 2018/

2019 outbreak, by calculating the predicted-to-expected (P/E) ratio for all model sets using the

ecospat.boyce function of the ecospat package in R. Here a graph of predicted versus expected

for a good model should show a monotonically increasing curve [55], and the correlation

between P/E and habitat suitability should be positive if model predictions are consistent with

the distribution of presences in the independent validation dataset [56].
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Not only does this independent data test the validity of the models, but also the assumption

of stationarity that cannot be tested through cross validation. That is to say, the assumption

that any relationships derived from the observed data hold true and are consistent for areas/

periods beyond the range of observed data. This assumption is crucial if derived models are to

be used for any early warning system.

The validation was first conducted using all the 2018 to 2019 season case locations (n = 84

cells at a 1 km resolution, n = 68 cells at a 2 km resolution). Then, to test whether the models

could predict new geographic foci of human cases, we conducted the validation separately and

compared results for: (i) locations from the newly affected sub-district of Sagara (61% of 2018

to 2019 season case locations, spanning 37 cells at a 1 km resolution and 25 cells at a 2 km reso-

lution); and (ii) locations from the sub-district of Tirthahalli (36% of 2018 to 2019 season case

locations, spanning 40 cells at a 1 km resolution and 36 cells at a 2 km resolution), which

recorded 95% of the past cases used to parameterise the model.

Results

Environmental predictors of the recent past distribution of Kyasanur

Forest Disease

Models combining topography, landscape metrics, hosts, and public health predictors pre-

dicted recent patterns in KFD with a high degree of accuracy. Values of AUC in cross-valida-

tion ranged from 0.85 to 0.90 (Tables 3 & 4). Models had a similarly high accuracy whether

area of forest loss was included or not.

At a 1 km resolution, predictors which were consistently most important in predicting pres-

ence of KFD are the area of moist evergreen forest, the diversity of forest types followed by the

density of indigenous cattle and the area of dry deciduous forest (Table 5, left hand columns).

Elevation and the area of plantation were also often ranked highly in importance amongst pre-

dictors. The geographical variability in these key predictors in relation to the 2014 to 2018 dis-

tribution of cases is depicted in Figs 2 and 3.

The response plots in Fig 4 indicate that KFD outbreaks are more likely to occur when the

proportional area of moist evergreen forest is intermediate or high (>15% of the area), when

the proportion of dry deciduous forest is low (<10% of the area), when the amount of forest

loss pixels is higher (> 10% of the area), when indigenous cattle densities are higher, when for-

est diversity is higher (>1.0) and the proportional area of plantation is higher. Figs 2 and 3

illustrate how the cases between 2014 and 2018 were indeed concentrated in 1 km squares with

a diverse mosaic of forest types, namely moist evergreen and plantation that are likely to have

undergone rapid change. Once area of forest loss was added to the model, it ranked second in

importance to the area of moist evergreen forest but the subsequent order of importance of the

other landscape predictors listed above remained the same as for models without forest loss

(Table 5, right hand columns). The addition of area of forest loss to the models at 1 km does

not increase the accuracy in cross-validation over models without area of forest loss.

The results at a 2 km resolution were similar in that the area of moist evergreen forest again

far outranked the other predictors with a relative importance of around 20% and modal

ranked importance of 1 (Table 6). The area of dry deciduous forest and area of plantation were

next in importance followed by forest diversity and elevation. Once area of forest loss was

added to models at a 2 km resolution, it again ranked second in importance to the area of

moist evergreen forest but the subsequent order of importance of the other landscape predic-

tors listed above remained the same as for models without forest loss (Table 6, right hand col-

umns). Again, the addition of forest loss to the models at 2 km did not increase the accuracy in

cross-validation over models without forest loss.

PLOS NEGLECTED TROPICAL DISEASES Predicting risk areas using co-produced risk maps

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008179 April 7, 2020 12 / 27

https://doi.org/10.1371/journal.pntd.0008179


Response plots (see S5 File) indicate that KFD outbreaks are more likely to occur when the

proportional area of moist evergreen forest is intermediate or high (>20% of the area), the pro-

portion of dry deciduous forest is low (<10% of the area), the amount of forest loss is higher

(> 10% of the area), elevation exceeds 650–675 m.a.s.l., forest diversity is higher (>1.0) and

proportional area of plantation is higher.

There was considerable variation in the rank importance of variables across model runs for

all model sets (see rank columns in Tables 5 and 6) which is to be expected given the low sam-

ple size that results from the geographical thinning. In all model sets, the public health predic-

tors (proximity to health centres, number of medics per head of population) and human

population size had consistently low importance.

In tests for spatial autocorrelation in model residuals, significant but low magnitude (Mor-

an’s I< = 0.2) was found at distances between 1 and 15 km but this was not consistent across

Table 3. Accuracy metrics for BRT models of Kyasanur Forest Disease distribution—1 km resolution.

1 km without forest loss metrics 1 km with forest loss metrics

Metric median mean s.d. median mean s.d.

Number of trees 1775 1917 884 1775 1891 945

Total deviance 1.386 1.386 0.000 1.386 1.386 0.000

Residual deviance 0.386 0.406 0.209 0.358 0.399 0.215

Cross validation deviance (mean) 0.937 0.946 0.184 0.944 0.946 0.178

Cross validation deviance (standard error) 0.145 0.144 0.044 0.136 0.140 0.036

Training set correlation 0.930 0.919 0.057 0.940 0.920 0.060

Cross-validation correlation 0.673 0.650 0.119 0.686 0.654 0.116

Cross validation correlation

(standard error)

0.083 0.087 0.030 0.082 0.084 0.027

Training set AUC 0.997 0.989 0.015 0.997 0.989 0.016

Cross validation AUC 0.867 0.851 0.070 0.867 0.857 0.069

Cross validation AUC

(standard error)

0.051 0.052 0.017 0.050 0.050 0.016

Cross validation threshold 0.533 0.533 0.027 0.537 0.537 0.029

https://doi.org/10.1371/journal.pntd.0008179.t003

Table 4. Accuracy metrics for BRT models of Kyasanur Forest Disease distribution—2 km resolution.

2 km without forest loss metrics 2 km with forest loss metrics

Metric median mean s.d. median mean s.d.

Number of trees 950 1095 545 950 1064 492

Total deviance 1.386 1.386 0.000 1.386 1.386 0.000

Residual deviance 0.299 0.323 0.161 0.290 0.313 0.155

Cross validation deviance (mean) 0.837 0.825 0.170 0.848 0.819 0.164

Cross validation deviance (standard error) 0.140 0.146 0.038 0.144 0.148 0.038

Training set correlation 0.938 0.930 0.043 0.945 0.934 0.040

Cross-validation correlation 0.731 0.723 0.090 0.727 0.721 0.088

Cross validation correlation

(standard error)

0.072 0.074 0.025 0.075 0.078 0.029

Training set AUC 0.997 0.993 0.009 0.998 0.994 0.008

Cross validation AUC 0.900 0.900 0.048 0.900 0.897 0.051

Cross validation AUC

(standard error)

0.041 0.042 0.015 0.044 0.045 0.017

Cross validation threshold 0.536 0.540 0.035 0.538 0.537 0.029

https://doi.org/10.1371/journal.pntd.0008179.t004
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model runs. Inference from the BRT models is more robust to small spatial correlation due to

the flexibility of the modelling approach, the robustness to outliers and the use of importance

metrics rather than significance testing. Therefore we expected this remaining small spatial

autocorrelation to have a negligible impact on the above inferred role of environmental predic-

tors and estimates of model accuracy (S6 File).

Predicted distribution of Kyasanur forest disease

Geographical patterns in areas predicted to have a high probability of KFD presence are simi-

lar between 1 km and 2 km grid cell resolutions (S7 File). There was also a high degree of cor-

relation between mean predicted probability of presence layers between models with and

without forest loss (Pearson’s r = 0.974, p< 0.005 at 1 km).

Since the area predicted to be suitable for KFD varies between model runs, it is useful to

look at the orange and red cells in the bottom panel of the prediction figure, which are cells in

which KFD is predicted to be present in more than half of model runs. Suitable habitat for

KFD is predicted to occur across a wide area in the south and south east of the district, extend-

ing between 5 km and 10 km around current presence locations (see Fig 5 for models at 1 km

without forest loss, S7 File for all other model sets). Pockets of suitable habitat for KFD are pre-

dicted to occur also to the south and north of the large water-bodies (white cells) in the east of

the district and in sporadic isolated locations in the north. The absence of KFD in agricultural

areas along the northeastern band of Shivamogga (blue areas in all panels) and the southwest-

ern coast is widely predicted across the models.

Table 5. Relative importance (RI) and modal rank (rank) of predictors in BRT models at a 1 km resolution (median, mean and s.d. of values across 100 model

runs).

1 km resolution without forest loss metrics 1 km resolution with forest loss metrics

Predictor median RI mean RI s.d. RI rank median RI mean RI s.d. RI rank

Area of moist

evergreen forest

13.9 15.9 9.1 1 12.0 13.6 9.1 1

Area of forest loss - - - - 10.6 12.9 8.6 1

Indigenous cattle

density

11.5 11.9 6.7 2 10.0 10.5 6.3 2

Forest diversity 10.7 13.4 8.8 1 9.2 11.4 8.7 1

Area of dry

deciduous forest

10.2 12.1 8.1 3 8.8 10.7 7.6 5

Elevation 9.1 9.7 5.5 4 7.7 8.8 5.2 4

Area of plantation 8.6 11.0 7.4 4 7.3 8.8 6.3 4

Slope 6.5 8.2 5.8 8 5.7 7.2 5.3 9

Buffalo density 3.0 3.6 2.6 9 2.7 3.4 2.6 10

Area of agricultural

or fallow land

2.9 3.7 2.6 9 2.6 3.4 2.4 10

Area of moist

deciduous forest

2.9 3.70 3.1 1 2.4 3.2 2.7 11

Human population

density

2.3 2.79 1.9 11 2.1 2.6 2.0 12

Area of waterbodies 1.6 2.47 2.4 12 1.6 2.2 2.4 13

Proximity to

primary health

centre

0.5 1.03 1.1 13 0.6 1.0 1.1 14

Number of medics

per head of

population

0.0 0.5 1.2 14 0.0 0.4 1.1 15

https://doi.org/10.1371/journal.pntd.0008179.t005
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Validating predictive models in an outbreak situation

The Boyce Index values i.e. the correlation between the predicted to expected ratio and the pre-

dicted probability of presence were uniformly high (r> 0.8) when all case locations in Shiva-

mogga district or only those in the long-affected Tirthahalli taluka were considered in

validation. For these areas, the Boyce Index was slightly higher for 1 km models than 2 km

models and when area of forest loss was excluded from models (Tables S8A & S8B in S8 File)

Fig 3. Other key predictors of presence of Kyasanur Forest Disease (1 km resolution) overlaid with point locations of human cases

from 2014 to 2018 (black dots). These are area of forest loss, densities of indigenous cattle and elevation derived from Hansen et al. [44],

from the Department of Animal Husbandry, Dairying and Fisheries, Government of India Census 2011 data, and from Shuttle Radar

Topography Mission data version 4 respectively (see S3 File). Note that area of forest loss did not improve the overall accuracy of models.

The administrative boundary dataset is from HindudstanTimesLabs (https://github.com/HindustanTimesLabs/shapefiles/), reproduced

under the MIT License. Human case data are from Department of Health and Family Welfare Services, Government of Karnataka. White

areas in Bhadravathi taluka in southeast corner indicate no data.

https://doi.org/10.1371/journal.pntd.0008179.g003

PLOS NEGLECTED TROPICAL DISEASES Predicting risk areas using co-produced risk maps

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008179 April 7, 2020 15 / 27

https://github.com/HindustanTimesLabs/shapefiles/
https://doi.org/10.1371/journal.pntd.0008179.g003
https://doi.org/10.1371/journal.pntd.0008179


suggesting that the predictions from these models are most consistent with the distributions of

the presences in the independent validation datasets. This result was mirrored in the graphs of

predicted versus expected ratios (S8 File) which were closest to a monotonic increase for the 1

km models without forest loss. When the model predictions for Tirthahalli are overlaid with

the locations of cases from the 2018–2019 season (red circles, Fig 6), it can be seen that all but

2 of around 40 cases occur in yellow to red areas of medium to high predicted probability of

presence.

Case locations in the newly affected Sagara taluka were less well captured by the models

than case locations in the long-affected Tirthahalli taluka. Boyce Index values exceeded 0.8 for

most model sets but were consistently lower for the Sagara data than the Tirthahalli data, (S8

File) and the graphs of predicted versus expected ratios were further from a monotonic

increase (S8 File). The 2 km models excluding forest loss were most consistent with the

Fig 4. Marginal response plots for key predictors of presence of human cases of Kyasanur Forest Disease, from models at a 1 km resolution (without forest loss

as a predictor).

https://doi.org/10.1371/journal.pntd.0008179.g004
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distributions of the presences in the Sagara data. Though the major foci of human cases in cen-

tral Sagara were captured by model predictions, several isolated case locations in the north,

east and west occurred in grid cells predicted to have a low probability of presence of KFD (Fig

7).

Forest loss locations from the global dataset [46] did not correspond well with Landsat-

derived estimates of current land use for Shivamogga (S3 File). Models including the area of

forest loss per grid cell as a predictor had equivalent performance to models excluding area of

forest loss in cross-validation, and generally performed worse in validation with the indepen-

dent outbreak data (S8 File).

Discussion

This study advances understanding of the landscape determinants of human cases of a zoo-

notic disease by considering wide-ranging topographical, host, land use factors and public

health constraints. Human cases of Kyasanur Forest Disease tend to be highly localized, with

epidemics lasting three to five years in a particular 30-40km2 area, in which the disease shifts

each season to affect a new handful of villages[28]. As seen in other tick-borne diseases[57],

such highly focal patterns in human epidemics results from the interplay of environmental

and ecological dynamics underpinning hazard and the human activities that govern exposure

across the landscape [14,19].

Our models indicated that focal patterns in human KFD cases can be predicted with a high

degree of accuracy from combined metrics of area and diversity of different forest types, plan-

tation and cattle, as well as elevation. Overall, landscapes that were at high risk of occurrence

of human KFD cases were characterised by diverse forest-plantation mosaics, containing large

amounts of moist evergreen forest and plantation and low amounts of dry deciduous forests,

with high indigenous cattle densities, occurring at elevations over 650 m a.s.l. These findings

are consistent with prior suggestions that KFD is an "ecotonal" disease[8] and that creation of

such habitat mosaics, when forest is removed for paddy cultivation and plantations, precipi-

tates emergence of KFD in humans [25,26]. The models presented here quantify and map

“risky” habitat explicitly.

Table 6. Relative importance of predictors in BRT models at a 2 km resolution (median, mean and s.d. of values across 100 model runs).

2 km resolution without forest loss metrics 2 km resolution with forest loss metrics

Predictor median RI mean RI s.d. RI rank median RI mean RI s.d. RI rank

Area of moist evergreen forest 23.8 24.5 12.7 1 20.5 21.5 12.6 1

Area of forest loss 11.9 14.5 9.4 2

Area of dry deciduous forest 13.8 16.2 9.3 2 11.8 14.6 8.8 2

Area of plantation 11.0 13.4 8.7 2 7.0 9.6 7.5 2

Forest diversity 8.3 9.6 6.7 5 6.9 8.0 6.0 6

Elevation 7.4 8.9 7.3 3 6.1 7.9 6.6 5

Indigenous cattle density 5.8 7.3 5.9 4 4.7 6.3 5.7 3

Area of agricultural/fallow land 4.0 4.9 3.5 6 3.4 4.1 3.0 6

Area of moist deciduous 3.8 5.3 4.5 8 3.4 4.8 4.4 9

Slope 2.6 3.0 2.1 9 1.9 2.4 1.8 10

Area of waterbodies 2.2 2.9 2.2 11 1.9 2.6 2.0 10

Human population density 1.5 1.9 1.6 11 1.3 1.7 1.5 13

Buffalo 1.1 1.6 1.5 12 1.1 1.5 1.6 13

Proximity to public health centre 0.2 0.5 0.7 13 0.2 0.4 0.5 14

Number of medics per head of population 0.0 0.1 0.3 14 0.0 0.1 0.3 15

https://doi.org/10.1371/journal.pntd.0008179.t006
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The models predicted human case locations with high accuracy in the sub-district from

which the input data from the prior four years had been drawn. They also predicted large clus-

ters of human cases in the newly affected sub-district over 30 km away. Their failure to predict

some isolated case locations in the newly affected area, suggests that the models, parameterised

Fig 5. Predicted probability of presence of KFD from Boosted Regression Tree models containing landscape predictors (without forest

loss) at a 1 km resolution. Top panels give mean and standard deviation of the relative predicted probability of presence of KFD in each grid

cell across model runs. Top left panel—areas in orange and red have a higher predicted probability of presence of KFD, whilst areas in blue

have a lower predicted probability of presence of KFD. Top right panel–areas in yellow and red have more variable predictions of probability

of presence of KFD than blue areas. Bottom left panel indicates the number of times KFD is predicted to be present in each cell across the 20

model runs, with orange and red indicating that KFD is often predicted to be present. Bottom right panel again depicts the mean predicted

probability of presence but the locations of affected households are super-imposed, for the 2014 to 2018 seasons as open black circles and for

the 2018 to 2019 season as open red circles. These raster maps are not under copyright since they are a product of this study. The

administrative boundary dataset is from HindudstanTimesLabs (https://github.com/HindustanTimesLabs/shapefiles/), reproduced under the

MIT License. Human case data are from Department of Health and Family Welfare Services, Government of Karnataka. White areas in

Bhadravathi taluka in south east corner indicate no data.

https://doi.org/10.1371/journal.pntd.0008179.g005
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with four years data from an epidemic in one sub-district, may be under-estimating the “envi-

ronmental niche” of human spill-over of KFD cases to some degree. Ideally, such correlative,

pattern-matching models should be updated annually, preferably prior to the transmission

season, as cases arise in new areas.

Fig 6. Predicted probability of presence of KFD from Boosted Regression Tree models for the 2019 outbreak region in Tirthahalli taluk. Models are at a 1

km (left hand panel) and 2 km resolution (right hand panel), with area of forest loss included in the predictors (bottom panel) and without (top panel). The

outbreak locations from the 2018 to 2019 season (open red circles) occur mostly in areas of medium to high probability of presence (yellow to red) in all models,

apart from two outbreak locations in the west. The black circles indicate outbreak locations from the 2014 to 2018 seasons, used to parameterise the models.

White areas have missing environmental data because they contain water-bodies or are outside Shivamogga district (black outline). These raster maps are not

under copyright since they are a product of this study. The administrative boundary dataset is from HindudstanTimesLabs (https://github.com/

HindustanTimesLabs/shapefiles/), reproduced under the MIT License. Human case data are from Department of Health and Family Welfare Services,

Government of Karnataka.

https://doi.org/10.1371/journal.pntd.0008179.g006
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Currently, KFD management activities of vaccination, surveillance and awareness raising

are conducted within a 5 km to 10 km radius of prior known cases (from the past 4 years).

Given that vaccine resources are often constrained during the outbreak season and the uncer-

tainty in our model predictions (depicted in Fig 5), we would not recommend that Health

Departments rely on the resulting maps for spatial targeting of vaccine doses. Instead, pre-sea-

son tick surveillance activities of the Health Department and awareness raising in Primary

Health Centres (early diagnosis of KFD) could be targeted towards areas of high relative pre-

dicted suitability of KFD that fall outside the 5 km radius of known cases. Thus would increase

the likelihood that new foci of transmission are detected rapidly before or very early in the sea-

son, triggering rapid responses including vaccination.

Since model accuracy did not increase substantially when the area of forest loss was added

to the models, this may indicate that the composition of forest and plantation types in the

diverse mosaic around a settlement is of greater importance in determining KFD risk than a

particular level of deforestation per se. This concurs with our a priori expectations that human

contact rates across landscapes of different composition will depend on how human activities

and the dynamics and infection rates of key vectors, wildlife and domestic reservoirs are linked

Fig 7. Predicted probability of presence of KFD from Boosted Regression Tree models for the 2019 outbreak region in Sagara taluk. Models are at a 1 km

(left hand panel) and 2 km resolution (right hand panel), with area of forest loss included in the predictors (bottom panel) and without (top panel). The

outbreak locations from the 2018 to 2019 season (open red circles), occur in areas of medium to high probability of presence (yellow to red) in all models. White

areas have missing environmental data because they contain water-bodies or are outside of Shivamogga district. These raster maps are not under copyright

since they are a product of this study. The administrative boundary dataset is from HindudstanTimesLabs (https://github.com/HindustanTimesLabs/shapefiles/

), reproduced under the MIT License. Human case data are from Department of Health and Family Welfare Services, Government of Karnataka.

https://doi.org/10.1371/journal.pntd.0008179.g007
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to different types of forest and cultivation. However, accurate quantification of the level of for-

est loss that can lead to emergence of KFD in humans was hampered by the poor correspon-

dence between global spatial data on forest loss and gain [44] and the local patterns in forest

types shown on the Land Use Land Cover map. The strong correlation between areas of forest

gain and areas of forest loss in the global dataset for our study area suggests that the forest loss

metric is more of an indicator of ‘intensification’, where forest is converted into plantation,

rather than permanently lost (to make way for crops or built up areas). Local-scale understand-

ing of these loss and intensification processes can be improved through time series analysis of

Landsat Imagery (currently underway in the MonkeyFeverRisk project).

The finding that human cases of KFD are more likely to occur in landscapes with greater

coverage of plantations is consistent with suggestions that large KFD epidemics in the 1970s

and 1980s were linked to international development projects that replaced evergreen forest

with cashew plantations [26]. It is also consistent with observations that migrant agricultural

labourers in plantations have been widely affected in recent epidemics in Maharashtra and

Goa States [27,58]. There are numerous potential explanations for the finding that human

cases or KFD are more likely in landscapes with higher cattle densities. Cattle are thought to

amplify local densities of ticks and bring ticks into households (either directly or through dry

leaves used as fodder) whilst cattle grazing may bring small-holders into contact with tick habi-

tat in forests, paddies and plantation.

Since our models are developed with disease data at household level, and scaled to the daily

movement of local communities of 1–2 km through the landscape, impacts of micro-scale fac-

tors such as small water-bodies (<10 km) on disease patterns may not be detectable. Obtaining

finer scale data on how locations of exposure to relate to such micro-scale factors is difficult

because people are often unable to pinpoint where on their daily routes infected ticks were

picked up and close monitoring of burdens by researchers may hamper livelihood activities.

The socio-ecological mechanisms linking human cases of KFD and landscape factors can

be understood only through joint study across fragmented forest landscapes of the intersecting

(1) human activities and priorities of forest users that underpin exposure and (2) vector and

host population dynamics and infection rates that underpin hazard. Such empirical, inter-dis-

ciplinary, landscape scale studies for KFD are currently underway within the MonkeyFever-

Risk project.

Prior studies have already highlighted several advantages of combining participatory meth-

ods and traditional models for understanding and predicting zoonotic diseases [59,60]. These

include an improved understanding of contextual risk factors (including social, cultural, politi-

cal and economic dimensions), both by corroborating a priori knowledge and highlighting

hitherto unknown factors, and allowing models to be parameterised with realistic data at field

level rather than with aggregated data (that is more often available from Public and Animal

Health Systems). Here we highlight the (additional) benefits from linking participatory meth-

ods and models within a co-production process. Firstly, throughout the framing and knowl-

edge integration stages, cross-sectoral stakeholders contribute valuable hypotheses about key

risk factors and the policy landscape for zoonotic diseases that may have been over-looked in

the scientific literature and can be tested within models (Table 1). For example, a key next step

is to integrate remote sensing of seasonal dynamics of rice paddies into the MonkeyFeverRisk

predictive model framework and field surveys since local disease managers highlighted these

landscape features (and harvest time) as key potential nodes of interaction between people,

wildlife hosts and tick vectors for KFD. Several risk factors highlighted by stakeholders, includ-

ing poor data management, low vaccine uptake and under-reporting of monkey deaths, could

not be integrated into models, either because they are not measured or because they are poorly

linked to available geographical proxies. Awareness of these risk factors still informs treatment
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of input data, interpretation of model outputs and priorities and partnerships for future collec-

tion of both health and environmental data. For example, spatial information on vaccine cov-

erage is now being collected by Primary Health Centres and shared with District Health

Officials whilst the Indian Government National Biodiversity Mission aims to address some

gaps in data on alternative hosts and vectors for priority zoonotic diseases.

A second advantage of co-production in this context is that the spatial grain of models for

zoonotic diseases was tailored to the scale at which forests are used, and to the size and distance

between settlements, that govern how forest communities access health services and report

cases of KFD. Thus co-production helped to bridge the traditional gap between the scale of

model outputs and the scale of intervention and ecosystem use [17] and enabled finer scale

relationships to be established between the environment and human disease cases (household-

level). Many predictive models in the scientific literature that map geographical patterns in

infectious diseases draw data from online databases such as ProMed and HealthMap which

can often record only the locations of hospital or Primary health centres where cases are

reported [40]. By working with disease managers to collate and interpret case data, it becomes

clear that visits to health centres can occur far away from the settlements or forest habitat in

which infection is acquired (e.g. for KFD may range from 5–10 km for small-holders but some

10s of km for tourists, students travelling between home and college, pilgrims and migrant

labourers). If hospital or health centre data are used indiscriminately to parameterise disease-

environment relationships, the resulting associations and predictive maps could be spurious

and unsuitable for spatial targeting of interventions. Though these data drawbacks have long

been noted for tick-borne diseases[61], probably due to the time required to collate fine scale

data and engage with local disease managers, predictive maps are still being developed based

solely on health centre locations and advocated as disease management tools, including for

KFD [62]. We concur with Boden and McKendrick [63], who argued that all models supplied

to health policy makers should adhere strictly to the principles of independence, transparency

(autonomy), beneficence and justice. It is incumbent on disease modellers to appraise and be

transparent about the suitability of available case data for relating and predicting infection pro-

cesses from environmental conditions. The iterative, reflexive engagement with stakeholders’

needs and knowledge, through a co-production process, can facilitate this transparency.

Finally, working directly with disease managers to interpret and validate model outputs

means that the scale, appearance and explanation of resulting maps and guidance can be better

tailored to their needs, increasingly the likelihood of uptake for spatial targeting of interven-

tions. For example, cross-sectoral stakeholders in the MonkeyFeverRisk project indicated that

predictive maps at scales from village level up to clusters of villages, with contextual landscape

features like roads and household locations, would be most helpful for planning of vaccination,

surveillance and awareness campaigns [37]. As a consequence, preliminary risk layers that

could be visualised within Google Earth were supplied to the Shivamogga Health Department

for validation and experimentation.

Our approach of using co-production to guide production of risk maps that integrate haz-

ard and exposure factors influencing human disease, harnessing a broad range of stakeholder

knowledge and expertise across sectors, represents an important step forward in managing

zoonotic disease in LMICs. This approach is applicable across wide ranging individual and

interacting zoonotic diseases affecting dependent communities in different ecosystems. It will

be imperative to develop context-dependent co-production processes that account for the cul-

tural and political dimensions that affect exposure through ecosystem use, alongside local envi-

ronmental and ecological factors that determine hazard, and underpin success of inter-sectoral

One Health collaboration.
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