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Abstract. Accurately predicting total sea-level including tides and storm surges

is key to protecting and managing our coastal environment. However, dynamically

forecasting sea level extremes is computationally expensive. Here a novel alternative

based on ensembles of artificial neural networks independently trained at over 600 tide

gauges around the world, is used to predict the total sea-level based on tidal harmonics

and atmospheric conditions at each site. The results show globally-consistent high skill

of the neural networks (NNs) to capture the sea variability at gauges around the globe.

While the main atmosphere-driven dynamics can be captured with multivariate linear

regressions, atmospheric-driven intensification, tide-surge and tide-tide non-linearities

in complex coastal environments are only predicted with the NNs. In addition, the

non-linear NN approach provides a simple and consistent framework to assess the

uncertainty through a probabilistic forecast. These new and cheap methods are

relatively easy to setup and could be a valuable tool combined with more expensive

dynamical model in order to improve local resilience.

PACS numbers: 07.05.Mh, 92.10.Sx,92.10.hp

Keywords: Sea water anomaly, Extremes, Storm surges, GESLA database, Machine

Learning
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Estimation of Global Coastal Sea level extremes using Neural Networks 3

1. Introduction1

Predicting accurately the sea water level variability from short to large time scales2

is of great importance for coastal communities. The range of impacts and challenges3

is broad, ranging from harbour management (where minimum water level is required4

to allow ships to enter the harbour) to life-threatening natural disasters or long-term5

sea level rise leading to loss of land availability and fertility for agriculture. Coastal6

flooding due to storm surges is considered as one of the biggest sources of casualties7

during tropical cyclones; storm surges have large social, economic and environmental8

impacts[1, 2, 3, 4]. Therefore, timely and accurate prediction of sea-level variability and9

extremes is crucial for global coastal resilience.10

Deterministic numerical models have proven to be powerful tools for predicting sea11

variability. In particular they are effective for simulating storm surge propagation and12

impacts, and facilitate understanding of the complex physical processes associated with13

the storms [5, 6, 7, 8, 9, 10, 11]. However, they are relatively expensive and complex to14

set up and run operationally, with associated additional computation costs if ensemble15

forecasts are required for analysis of risk or variability.16

More generally, machine learning approaches and particularly deep learning have17

shown huge potential in pattern recognition for a wide range of applications. Recently,18

these techniques have emerged in climate, meteorological and oceanographic fields with19

convincing results. For example, convolutional neural networks have been trained to20

predict variations in the El Ninõ/Southern Oscillation (ENSO) with skill superior to21

state-of-the-art dynamical forecast systems[12]. Machine learning algorithms have also22

been used to aggregate “best-estimate” forecasts from an ensemble for the predictions23

of ocean waves[13]. Neural networks have also successfully been used to bias-correct24

measurements leading to more homogeneous climate data records[14].25

In sea level and tide processes, regressions have been used to infer meteorological26

impacts on sea water level and storm surges[15, 16]. Regression models have also been27

successfully driven by offshore gauge data in New York[17] and statistical models have28
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Estimation of Global Coastal Sea level extremes using Neural Networks 4

been applied to estimate extreme storm surges and associated return periods[18], or29

as bias-correction to water level predictions along US East Coast[19, 20]. The latter30

have shown similar performance compared to deterministic hydrodynamic models in31

capturing extremes in some cases. More recently, storm surges hindcasts in estuarine32

ports of the UK have been possible using artificial neural networks leading to accurate33

forecasting coastal flooding [21]. Neural networks have also been used for tide predictions34

at Mangalore, India[22], and along the Swedish coast to analyse long sea level records[23]35

where higher performance was obtained when local sea level forcing was prescribed36

(compared to linear models).37

The aim of this study is to describe a general non-tuned machine learning38

framework, based on neural networks, and apply this around the globe with39

demonstrable skill in predicting non-tidal sea level residuals and extremes. The40

manuscript is structured as follows. Section 2 presents the GESLA tide-gauge data and41

associated pre-processing, the neural network ensemble, and the split between training42

and test sets as well as the scoring probabilistic measure. The first part of Section 343

shows the key results of the study based on performance statistics for over 600 gauges44

around the world while the second part focuses on two particular regions with contrasting45

behaviours. Finally, Section 4 discusses the results, the benefits and limitations of the46

approach, and the future steps.47

2. Methods48

2.1. Global Extreme Sea Level Analysis dataset - GESLA49

The Global Extreme Sea Level Analysis database (GESLA version 2 [24]) provides50

unified high-frequency (15 min to 1 hour temporal resolution) quasi-global coastal sea51

level water information. Only public data (around 1070 gauges) are used in the present52

study. While data have been standardised, a simple but strict methodology was applied53

to pre-process each gauge in a systematic and reproducible manner. The key aspect54
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Estimation of Global Coastal Sea level extremes using Neural Networks 5

of this stage was the elimination or reduction of potential issues arising from spurious55

data (e.g. temporal or reference height shifts) as well as removing long-term trends.56

An example of the pre-processing stage is illustrated in Supplementary Figure 1. The57

following steps were sequentially applied to each gauge:58

• Data from 1980 to 2015 are included and overlaps with the atmospheric reanalysis59

(see 2.2),60

• For simplicity, only gauges with scheduled hourly, data are processed (as this only61

excluded 21 gauges). However, if the time steps are not constant and the percentage62

of time steps equal to the statistical mode is less than 95%, the gauge is rejected;63

• Sections are defined as time-series records where breaks are less than 7 days long;64

• A yearly moving average is computed on each section;65

• Given a record that is N years long, tidal harmonic analysis is computed yearly66

(going backwards) from the most recent one-year period, using the open-source67

pytides python module[25]. The analysis outputs 37 complex constituents per year68

(Sa, Ssa, Mm, MSF, Mf, 2Q1, Q1, rho1, O1, M1, P1, S1, K1, J1, OO1, 2N2, mu2,69

N2, nu2, M2, lambda2, L2, T2, S2, R2, K2, 2SM2, 2MK3, M3, MK3, M4, MS4,70

S4, MN4, M6, N6, M8);71

• Spurious years in harmonic analysis are identified by separately inspecting just the

M2 and K1 constituents. A gauge year can be rejected by either constituent if it

exceeds a threshold separation from the mean (see e.g. Fig S1b). The procedure is

as follows: an average complex value is calculated from N yearly values (red square).

The average separation from this mean is calculated (ε̄) over N years. The complex

difference (εyeari) for each year from the mean is independently assessed and the

gauge year is rejected if

εyeari > max (3cm,min (5cm, 10% ε̄))

(e.g. green diamonds). This procedure ensures the rejection is based on the relative72

size of the separation from the N-year mean whilst preventing rejection for very73
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Estimation of Global Coastal Sea level extremes using Neural Networks 6

small amplitudes.74

• The total water signal is re-interpolated over a constant 1h time vector based on75

the original temporal resolution excluding rejected periods of data;76

• Finally, only gauges with over 3 (not necessarily contiguous) years of data are kept,77

with at least 2 years for training and one year for testing the model.78

At the end of this process, 621 gauges remain and are used in this study. They provide an79

extensive coverage of the coastlines worldwide. The non-tidal residual is computed as the80

difference between the observations and the harmonic tide prediction (computed from81

all remaining sections). The objective was to implement a reasonably simple, robust82

and consistent pre-processing methodology to objectively deal with the large amount of83

data available. However, one could define different thresholds or apply different type of84

pre-processing to the gauge; exploratory analysis suggests that this would not impact85

the key results of this study.86

2.2. High Resolution Atmospheric and Ocean Wave Reanalysis - ERA587

To assess the impact of atmospheric and ocean wave processes on the non-tidal88

residual, an ensemble of hourly physical predictors are extracted from the high-resolution89

atmospheric reanalysis ERA5 of ECMWF[26]. These are pre-processed over three length90

scales:91

Local - 10 m wind components and mean sea level pressure at 0.25o resolution as well92

as significant wave heights (including wind waves and swell) and peak periods (at93

0.5o resolution) at the closest grid point from the gauge;94

Neighbourhood - spatially accumulated precipitation in a 3.5o box centred on the95

gauge;96

Regional - maximum and minimum wind speed components, maximum wave heights97

and minimum mean sea level pressure in a 5o box centred on the gauge.98

In addition, proceeding 3h gradients of all the atmospheric predictors are computed99
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Estimation of Global Coastal Sea level extremes using Neural Networks 7

to capture late intensification / de-intensification (for example a low pressure system100

developing rapidly) as well as for the harmonic tidal level.101

2.3. Machine Learning102

Each gauge is modelled independently using artificial Neural Networks (NNs). Each103

NN is composed of 3 hidden layers of 48 neurones. The input layer has 33 nodes104

(one for each environmental predictor described in previous sections combined with 7105

hourly time steps of harmonic tide), and the outer layer has a single node providing106

the non-tidal residual target. While a sigmoid activation function is used for the last107

layer, the hidden layers consists of Leaky ReLU activation functions[27] combined with108

batch normalization layer to normalise the activations[28]. The NN had just under109

7000 trainable parameters and its schematic view is provided in Supplementary Figure110

2. Finally, an Adam solver[29] is used to minimise the root mean square error between111

non-tidal residual predictions and observations; the NN is fitted for 150 iterations or less112

if the errors is not reduced within 10 consecutive iterations. Due to the large number113

of gauges available, this configuration has been lightly tuned on three random gauges114

(namely, a few combinations of the number of neurones, number of hidden layers and115

type of activation) and then applied to the full set without further adjustment.116

For each gauge, the test set consists of the most recent year of recorded data (8784117

time steps) while the rest is part of the training set. Therefore depending on the gauge,118

the training set extends from 2 years to 32 years permitting an analysis of the impact119

of the training size on the performance. Figure 1a shows the number of gauges as a120

function of the length of the training data.121

An ensemble of 20 Neural Networks (NNs) is trained at each gauge location to122

generate a probabilistic forecast. Each NN is fitted using 50% of the training set,123

randomly sampled. While a larger ensemble would have improved our probabilistic124

forecast, 20 members were chosen as a pragmatic balance between computational cost125

(over 12000 NNs have been fitted in this study) and variability in the predictions.126
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Estimation of Global Coastal Sea level extremes using Neural Networks 8

All data (features and targets) have been standardised and normalised. The127

Neural Networks (NNs) are built with the Keras Python module[30] interfacing with128

Tensorflow [31] while processing was mainly done with the Scikit-Learn packages[32].129

The neural networks have the traditional structure, where each node is connected to130

every node of the next layer. The temporal evolution of sea water level and non-tidal131

residual is continuous. Recurrent layers (such as Long Short-Term Memory, LSTM132

layers [33]) can be used to capture the dynamics of temporal processes. An LSTM133

neural network structure was implemented and tested for a few gauges but it did not134

lead to significant improvements of the predictions, and therefore a more simple and135

traditional structure was kept in this study. Finally, as a baseline, an ensemble of multi-136

variate linear regressions are fitted and used for predicting sea water level in the same137

manner as the neural networks for comparison; again for the linear regression no time138

series model was used.139

Note that the neural network described above did not converge for 11 randomly-140

located gauges. Given the global coverage and the large number of gauges, these141

11 gauges have been removed and no further investigation were carried out on these142

particular gauges.143

2.4. Continuous Ranked Probability Score144

To assess the skills of the probabilistic predictions, a Continuous Ranked Probability145

Score (CRPS) is computed, with units cm. In weather forecasting, this is a common146

qualitative measure of performance for probabilistic forecasts comparing a distribution147

with observations [34, 35, 36].148

The CRPS is defined as a quadratic measure of the difference between predicted,149

Hp(ηr; t), and observed, Ho(ηr; t), cumulative density functions (CDF). The quadratic150

measure is integrated over all possible residuals, z, and then averaged over time t to151

give a CRPS for each gauged location:152
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Estimation of Global Coastal Sea level extremes using Neural Networks 9

CRPS =
1

N

N∑
t=1

(∫ ηr<∞

ηr>−∞
[Hp(ηr; t) −Ho(ηr; t)]

2 dz
)
,

where for each gauged location: Hp(z; t) denotes the probability of an anomaly less153

or equal to ηr being predicted at time t; and Ho(ηr; t) is step-function, denoting the154

probability of an anomaly less or equal to ηr being observed at time t.155

Intuitively, an ensemble producing a wide range of outcomes or an ensemble with a156

mean significantly different from the observed values would be heavily penalised while157

a narrow ensemble centred on the observations would lead to a better score. The158

CRPS is computed for the one year test period as well as for 95th percentile extreme159

values (surge). While a 20-member ensemble is not extensive, using a CRPS metric160

is a better validation approach compared to using the mean or median where the161

information contained in the ensemble is mainly lost. The CRPS are computed using162

the properscoring Python library.163

3. Results164

3.1. Global skills of the NN165

The CRPS is computed for the observed non-tidal residual to provide a baseline metric166

for the signal not captured by the astronomical harmonic analysis. The harmonic167

analysis does not aim (and has not been designed) to capture this kind of variability;168

the non-tidal residual simply provides a first-order baseline for comparison based on a169

37 constituents harmonic analysis and it is expected than any method should capture170

parts of the non-tidal signal. The boxplot summarising this baseline skills per number171

of training years as well as their global distribution for the extreme values (over the 95th172

percentile anomaly) are presented in Figure 1c (yellow box) and Figure 2a, respectively.173

The length of the time series has a weak impact on the CRPS, which ranges from 15 to174

25 cm on average. Figure 2a illustrates the spatial variability of the CRPS with larger175

value in mid latitudes due to consistent winter storms and larger tides compared to176
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Estimation of Global Coastal Sea level extremes using Neural Networks 10

tropical regions.177

The NNs consistently capture the non-tidal residual due to the effect of atmospheric178

forcing as well as tide-tide interactions and tide-surge interactions with a mean CRPS179

of around 10 cm (Fig. 1c - blue box). The CRPS for outlier gauges with large non-180

tidal residual can be improved from over 50 cm to around 25 cm. Figure 1b shows181

the percentage of non-tidal residual (baseline) captured in the NN predictions ranging182

from 30 to 60% on average. While longer training period improves the skills, it appears183

that after 6 years of training data, the performance remains fairly stable. While for184

any gauge, the NN captures the non-tidal residual (Fig. 2b), the skill varies spatially185

(Figure 3a). It is mainly due to the ease of improving a bad skill compared to reducing186

already good skills (lower than 10 cm).187

While the NN approach leads to high skill in reconstructing extremes of non-tidal188

residual, it is worth considering how a multivariate linear regression would perform in189

comparison. Figure 3b shows the percentage improvement between the two methods.190

While tropical regions show the lowest improvements using a NN (10-20%), the skills191

at higher latitude improves by up to 50% with clear regions of the globe emerging as192

Europe, West coast of North America, Alaska, Chinese Coast, North Australia and the193

Northern coastline of Japan (facing the Sea of Japan). Except one point in the Canary194

Islands, the NN outperformed the regression anywhere else; this might be due to a fitting195

issue at this particular site (not investigated).196

Supplementary Figures 3, 4 and 5 highlight similar results for the whole 1 year197

test time series. The skill improvements is not as high as for the extremes but is still198

significant and systematic. The Baltic sea regions can be pointed here as a region of199

lower skill improvement from the regression to the NN. This is potentially due to the200

long time scale sea-level variability that is not included in the predictors used, due201

to seasonally integrated winds and salinity changes[37]. Similar performance are also202

obtained for the lowest levels (5th percentile, lowest level being of importance for harbour203

management) and the 99th percentile (not shown) of the non-tidal residual.204
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Estimation of Global Coastal Sea level extremes using Neural Networks 11

Predicting the full range of non-tidal residuals is key for a broad range of205

applications. However assessing the skill of the models in stressed conditions is also206

of relevant importance. While the usual extreme statistics cannot be applied to this207

study (the test sets bbeing only one year at each gauge), looking at the most extreme208

skew surges within over 600 gauges highlights the capability of the models. Figure 4209

shows the 20 largest skew surges in the test set. Predictions of these large skew surges210

are almost always under-estimated compared to observations, but the neural network211

ensemble shows some skill in capturing them (over 2/3 of the signal) and systematically212

outperforms the multivariate linear regression. Note that the present neural network213

and training set have been designed to predict the complete time series and not only the214

extreme storm surges; therefore the training set is highly unbalanced such that extremes215

are seen as outliers which penalises the model predictions (more details on the impact216

of the the training set are provided in discussion).217

3.2. Time series at two particular locations218

The previous section focus on time-averaged skills in capturing the non-tidal residual.219

However, it is difficult to assess the highly-complex time variability of this residual.220

Therefore, two gauges have been selected for a more detailed investigation for their very221

different characteristics:222

• Anchorage (149.89W / 61.24N - around 14 years of training data - Supp. Fig. 6a),223

Alaska, USA, located at the end of the Cook inlet and protected from the open224

ocean. Due to its location, Anchorage is not exposed to extreme surges (less than225

1 m in the test year) but the time series exhibits significant tide-related variability226

not captured by the harmonic analysis with this constituent set (Fig. 5a),227

• Dunkirk (2.37E / 51.05N - also around 14 years of training data - Supp. Fig. 6b.228

This gauge was used in the light tuning, mentioned in the method section), North229

France, located in the English channel, on the North Sea side. For Dunkirk gauge,230

the test year includes the winter 2013-2014 when severe winterstorm Xaver (Dec.231
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Estimation of Global Coastal Sea level extremes using Neural Networks 12

2013) crossed Northern part of the North Sea and led to significant surges all along232

the North Sea coast [38]. This was also the highest sea water level anomaly in our233

15-year period at Dunkirk (around 2.5m while the highest peak in the 14 training234

years was 2.2 m). Finally, the storm occurred far away from Dunkirk where pressure235

and wind speed did not show any exceptional values but the surge wave travelled236

around the North Sea, making an interesting and challenging case for the NN (Fig.237

5b).238

Figure 5 shows a few weeks of non-tidal residual at each selected gauge. The239

multivariate regression captures fairly well the long-term smoothed variability at240

Anchorage (Fig. 5a) but cannot capture the high-temporal variability induced by241

complex tides in the Cook inlet that were not computed in the tidal harmonic analysis;242

the ensemble variability is also almost non-existent. On the other hand, the NN ensemble243

captures efficiently the variability (with some spread) leading to a good CRPS (9 cm244

versus 21 cm for the regression over the one year test window). A Fourier transform is245

applied to the one-year signal (Fig. 6a), highlighting the compelling skill of the NN to246

capture the energy of the system at all time scales while the regression underestimates247

by an order of magnitude the energy for time scales lower than a day. This shows the248

capacity of a non-linear NN to predict tide-tide interactions or tide components not249

included in the harmonic analysis.250

Similar conclusions are obtained at Dunkirk. While the extreme storm surges251

induced by storm Xaver (around 6th December 2013) are under-estimated (and so is the252

previous peak in late November), the prediction is more accurate than the one predicted253

with a regression. For comparison, the Met Office CS3x deterministic forecast[39] also254

under-estimates the peak by around 75 cm (Fig. 5b). Over the test year, the NN CRP255

scores 8 cm and 18 cm for the mean and 95th percentile when the regression gets 13 cm256

and 32 cm. As for the Anchorage, the energy is well captured by the NN at this gauge257

except the two smaller peaks for periods of around 3 h 40 min and 4 h 50 min. For258

periods longer than 1 day, the energy is slightly under-estimated by both the regression259
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Estimation of Global Coastal Sea level extremes using Neural Networks 13

and the NN. This highlights skills into predicting sea water anomaly and particularly260

extreme events using a simple NN forced by a small range of atmospheric and wave261

data.262

4. Discussion and Conclusion263

An ensemble of NNs have been built for over 600 tide gauges spread around the world in264

order to predict the non-tidal residual (total sea water level minus an harmonic analysis265

based on 37 constituents), in term of general behaviours as well as extremes events. The266

results presented in this study have highlighted the global skill of NNs in capturing non-267

tidal residual variability and extremes, systematically outperforming predictions based268

on multivariate linear regressions (in term of CRPS but also in term of correlations).269

Due to the large amount of available data, the same simple pre-processing and neural270

network structure were applied to each gauge. A higher level of data quality control271

or gauge-by-gauge NN tuning could have been applied, and better performances would272

then be expected. However, analysis and pre-processing requiring localised intervention273

was not the aim of the study.274

While it was expected that the non-linearity of the NN would play a key role275

in predicting extreme events through environmental forcing, the results have shown276

an even better performance of the NNs in their ability to represent tide-tide non-277

harmonic interactions, treat noise, and express uncertainty. Similar advantages are278

also reported in the application of Bayesian approaches to the study of tidal currents279

[40]. Traditional harmonic and response methods [41, 42] have successfully been used280

for decades to predict tidal amplitudes across the world; however the advent of easily281

accessible meteorological data combined with novel applications of methods (for example282

neural networks, as in this study), could offer a new avenue for improving predictions283

by capturing non-linear processes.284

The model has also shown significant skill in reconstructing extreme surges but still285

lacks accuracy in the strongest events, in capturing the peak elevation (Fig 4 and Fig 5b286
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for example). This is partially due to the training data. Extremes can be seen as outliers287

and are only a fraction of the training set. The machine learning technique minimises288

a cost function (here, root mean square errors) which generalises common behaviours,289

and is not well designed for outliers. This leads to bias in the performance toward290

the average dynamics and not towards the extreme anomalies (positive or negative).291

Therefore the capability at predicting extremes could be improved by using a differently292

balanced training set[43]. As a simplistic example, one can draw a similar amount293

of training data in regular bins covering the range of outcomes (using sampling with294

replacement technique for bins with a very small amount of data); this leads to a more295

balanced training set. Supplementary Figure 7a illustrates the impact of the training296

set on the model skill at Dunkirk (during storm Xaver in 2013). The NN now captures297

the amplitude of the peak on the 5th December as well as the deterministic CS3x model,298

and the peak on the 6th December almost perfectly. The mean of the NN ensemble299

with a balanced training set is 50 cm higher than the unbalanced result. As seen in300

Supplementary Figure 7b, in term of energy, the balanced training set is in much better301

agreement with data for a period longer than 12 hours but it penalises the weaker period302

where the energy in-between peaks is over-estimated. In terms of CRPS, the mean score303

decreases by less than 1 cm while the extremes (95th percentile) score improves by 6 cm.304

This type of model can be a great tool alongside a deterministic numerical model305

to improve coastal resilience and potentially set-up warnings in the future as they can306

also be used to solve classification problems instead of regression ones (as done in the307

present work) enabling an outcome such as low risk, high risk and extreme risk for308

example. It was shown here that only a couple of years of training data were enough to309

get reasonable skills, and there is not significant skill improvement in 30 years training310

data compared to 6-7 years. In addition, though not shown, even old data collected311

in the past could be used for present forecasts as long as reference levels have been312

corrected.313

So far the present work has not be extended to locations with no data and the314
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next step would be to built a globally connected tool to predict non-tidal residuals315

spatially. In addition a better representation of the regional / global atmospheric forcing316

might help to improve skill. This could be achieved via dimensionality reduction of317

environmental information based on unsupervised learning such as principal component318

analysis or auto-encoder. Finally, investigating more in depth the impact of using a more319

complex neural network structure adapted to time series (Long- Short Term memory for320

example) could also be of interest in the future. Setting up high-resolution full physics321

numerical models in complex inshore regimes is time and computationally expensive322

and requires physical expertise. These new types of machine learning approaches are323

appealing for informing stakeholders where there is no capacity for implementing such324

deterministic weather - surge forecasting systems.325
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Figure 1. Statistics per number of training years for the 95th percentile.

a) Distribution of the number of GESLA gauges, b) percentage skill gain from the

non-tidal residual to the neural network predictions and c) the continuous ranked

probability score (equivalent to a mean absolute error) for both non-tidal residuals

and neural network predictions. The box plots shows the mean, the quartiles and the

extend of the distributions excluding outliers (marked as diamonds). Systematic gain

of knowledge with the neural network and significant for the full range of training

periods.
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Non-tidal residual
(baseline)

a

Neural Net

b
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CRP Score (cm)

Figure 2. Continuous Ranked Probability Score for the 95th percentile for

each of the 610 GESLA gauges; a) for the non-tidal residual (baseline) and b) for the

Neural Network ensemble predictions. Strong reduction of the errors are consistently

obtained with the Neural network, particularly in the mid-latitude regions.
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Figure 3. Percentage improvements between the different methods for the

95th percentile. a) from non-tidal residual to neural network and b) from multivariate

linear regressions to neural network. The neural network enhanced systematically the

improvement, particularly in regions where tides are large.
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Figure 4. The 20 largest skew surges observed across all gauges in the test

set, and the success of the neural net ensemble and regression at modelling

them. The skew surges are computed as the difference between the highest water

level and the highest harmonic tide level within a 12h window around the maximum

non-tidal residual.
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Figure 5. Example of time series extracted from the test time period in a)

Anchorage, Alaska, USA where strong tidal interactions occurs and b) Dunkirk, North

France during a severe winter. The thick line shows the mean of the ensemble. The

neural network shows significant skills in predicting the variability and extremes. The

green thick line shows the MetOffice deterministic CS3x forecast for the same period

for comparison.
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Figure 6. Energy spectrum extracted from the full test year in a) Anchorage,

Alaska, USA where strong tidal interactions occurs and b) Dunkirk, North France

during a severe winter. Again the neural network shows high skills at capturing the

energy peaks in non-tidal residual.
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