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Abstract: The deep biosphere hosted in fractured rocks within the upper continental crust is one of
the least understood and studied ecological realms on Earth. Scarce knowledge of ancient life and
paleo-fluid flow within this realm is owing to the lack of deep drilling into the crust. Here we apply
microscale high spatial-resolution analytical techniques to fine-grained secondary minerals in a deep
borehole (COSC-1) drilled into the Silurian-Devonian Scandinavian Caledonide mountain range in
central Sweden. The aim is to detect and date signs of ancient microbial activity and low-temperature
fluid circulation in micro-karsts (foliation-parallel dissolution cavities in the rock) and fractures
at depth in the nappe system. Vein carbonates sampled at 684 to 2210 m show a decreased C
isotope variability at depths below 1050 m; likely due to decreased influence of organic-C at great
depth. Micro-karsts at 122–178 m depth feature at least two generations of secondary calcite and
pyrite growth in the voids as shown by secondary ion mass spectrometry analytical transects within
individual grains. The younger of these two precipitation phases shows 34S-depleted δ34Spyrite values
(−19.8 ± 1.6%� vs. Vienna-Canyon Diablo Troilite (V-CDT)) suggesting microbial sulfate reduction in
situ. The calcite of this late phase can be distinguished from the older calcite by higher δ18Ocalcite

values that correspond to precipitation from ambient meteoric water. The late stage calcite gave
two separate laser ablation inductively coupled mass spectrometry-derived U-Pb ages (9.6 ± 1.3 Ma
and 2.5 ± 0.2 Ma), marking a minimum age for widespread micro-karst formation within the nappe.
Several stages of fluid flow and mineral precipitation followed karst formation; with related bacterial
activity as late as the Neogene-Quaternary; in structures presently water conducting. The results
show that our combined high spatial-resolution stable isotope and geochronology approach is suitable
for characterizing paleo-fluid flow in micro-karst; in this case, of the crystalline crust comprising
orogenic nappe units.

Keywords: in situ U-Pb geochronology; secondary minerals; stable isotopes; Caledonides; deep
drilling (COSC-1)

1. Introduction

Fluid circulation and mixing in fractures and during vein formation can lead to metal leaching
and accumulation of ores, such as those in the Harz mountains, Germany [1]. Microbial activity in
fractured rock volumes can also be of importance for ore-forming processes [2,3] and may involve
potentially significant microbial natural gas accumulations [4,5]. Furthermore, microbial activity
and fluid flow may involve important redox processes and fluctuations that are relevant for safety
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assessments of repositories for toxic wastes such as spent nuclear fuel [6,7]. Knowledge of ancient
microbial processes and fluid flow in the upper crust can, therefore, have wide-ranging implications.
Information about these processes can be preserved as diagnostic isotope signatures within authigenic
minerals over geological timescales, for instance as excursions in 13C/12C (δ13C) in carbonate due to
methane oxidation or formation [8–11] as well as excursions in 34S/32S (δ34S) in sulfides due to microbial
sulfate reduction (MSR) [12–14]. These isotopic markers are related to the fractionation that occurs
during microbial metabolisms, at degrees that are beyond what abiotic sources and thermochemical
reactions produce [15,16]. In addition, the 18O/16O composition (δ18O) of the carbonate can reveal
origins of fluids [6,17,18] owing to the fact that the O isotope composition is a conservative tracer for
different water types [19], when temperature-related fractionation during calcite formation has been
considered [20–22].

In deep granitoid fractures of the Fennoscandian Shield in eastern Sweden (Laxemar and Forsmark
sites) and western Finland (Olkiluoto, Figure 1), several recent studies have applied micro-scale
secondary ion mass spectrometry (SIMS) techniques to fine-grained secondary low-temperature
calcite and pyrite mineral coatings, revealing several discrete events of microbial-related mineral
precipitation [14,23–27]. The isotopic variability for both δ34S (−54%� to +132%�V-CDT, Vienna-Canyon
Diablo Troilite reference value) and δ13C (−125%� to +37%� V-PDB, Vienna-Pee Dee Belemnite reference
value) [14,28,29], is beyond what has been reported from other settings. At Forsmark, U-Pb carbonate
geochronology using laser-ablation inductively coupled mass spectrometry (LA-ICP-MS) was
successfully applied to calcite with anaerobic oxidation of methane-related (13C-depleted) composition,
revealing a Jurassic age [28]. In the fractured Devonian impact structure at Siljan, central Sweden,
U-Pb dating was used to constrain dominantly Eocene–Miocene ages of secondary calcite formed
following microbial methanogenesis and methane oxidation [5].

Here we use the aforementioned high spatial resolution isotopic and geochronological techniques
to decipher low-temperature fluid circulation and to trace ancient microbial activity within a single deep
borehole. The COSC-1 borehole is part of the Collisional Orogeny in the Scandinavian Caledonides
(COSC) project, part-funded through the International Continental Drilling Project (ICDP). COSC
focuses on mountain-building processes in a major mid-Paleozoic orogen in western Scandinavia
and its comparison with modern analogues [30,31]. The deep borehole and core, with ~2.5 km at
~100% recovery, offers an excellent opportunity for geophysical and geochemical characterization of
the crystalline crust. For the Scandinavian Caledonides, extensive characterization exists for tectonics
of the nappe units [32,33] and for denudation and uplift [34,35], but knowledge of low-temperature
fluid circulation and microbial activity in the deep fracture systems of the nappes is non-existent.
Secondary mineral investigations of Caledonide-related hydrothermal brine-type mineralizations have
been carried out, such as at Laisvall, Vassbo and Osen, but these mineralizations are temporally very
close to the Caledonide orogenic event itself [36]. The preliminary borehole investigations of COSC-1
have shown that there are several micro-karst horizons formed within carbonate-rich layers of the
gneisses, as well as abundant calcite veins [30,37,38], which both enable studies of low-temperature
mineral formation and consequently of fluid circulation and ancient microbial activity. This study of
secondary carbonate and sulfide mineralization in deep micro-karsts and veins of the COSC-1 core
aims to increase our understanding of low-temperature fluid circulation and microbial activity in the
nappe system of an ancient orogeny.
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Figure 1. Geological map of the study area and the location of the COSC-1 (Collisional Orogeny in 
the Scandinavian Caledonides) borehole (yellow star symbol marks surface location, at coordinates 
63°24′ N, 13°5′ E) along with information about the thrust sheets. Modified from Lorenz et al., [30,38]. 
Sites of previous geochemical and geobiological studies in fractures and veins are also indicated. 

3. Materials and Methods 

Eight samples containing secondary minerals (carbonate ± sulfides) were collected from the 
COSC-1 borehole core (core log with samples marked in Supplementary Figure S1). The samples 
were cut into thick polished blocks and analyzed with a petrographic microscope and scanning 
electron microscope (SEM). Micro-karst samples were analyzed directly in the drill core specimen 

Figure 1. Geological map of the study area and the location of the COSC-1 (Collisional Orogeny in the
Scandinavian Caledonides) borehole (yellow star symbol marks surface location, at coordinates 63◦24′

N, 13◦5′ E) along with information about the thrust sheets. Modified from Lorenz et al., [30,38]. Sites of
previous geochemical and geobiological studies in fractures and veins are also indicated.

2. Geological Setting and the COSC-1 (Collisional Orogeny in the Scandinavian
Caledonides) Borehole

The COSC-1 borehole was drilled in 2014 and is a ca. 2.5 km deep (2495.8 m), cored drill hole
located close to the town of Åre in Jämtland, central Sweden (Figure 1). It targeted a thick section
of the lower part of the Seve Nappe Complex and was planned to penetrate its basal thrust zone
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into the underlying lower-grade metamorphosed allochthon, but drilling did not reach that planned
horizon [30].

The Caledonides of western Scandinavia and eastern Greenland formed as the result of a set
of events that started with the closure of the Iapetus Ocean during the Ordovician, and subsequent
underthrusting of continent Laurentia by Baltica in the Silurian and Early Devonian during the Scandian
collisional orogenic stage. The allochthons were subjected to high-grade metamorphism and emplaced
onto the adjacent platforms by eastward thrust emplacement by up to several hundred kilometres [33].
In central Sweden, the thrust sheets are divided into the Lower, Middle, Upper and Uppermost
allochthons [39] that are unconformably overlying the Proterozoic crystalline basement, as marked
by a front thrust sheet that dips 1–2◦ to the west [31]. Sedimentary successions of Neoproterozoic
and Cambro-Silurian strata dominate the Lower Allochthon (Jämtlandian Nappes). The overlying
Middle Allochthon is of higher metamorphic grade and contains a basal basement-derived thrust
sheet, overlain by Offerdal Nappe metasandstones, and the Särv Nappe [40,41]. The Seve Nappe
Complex is the uppermost tectonic unit in the Middle Allochthon and has a lower part that has
experienced ductile deformation in dominantly amphibolite facies; a central part (e.g., Åreskutan
Nappe) of migmatites and paragneisses and an upper, amphibolite-dominated unit [42]. Absolute
ages reported from migmatite and associated rocks of the Åreskutan mountain 6 km to the west of the
COSC-1 borehole are in the range of c. 455 to 420 Ma [43–47]. The Köli Nappes in the Upper Allochthon
are the tectonostratigraphically highest rocks in study area (Figure 1). This unit is dominated by
sedimentary rocks of Early Paleozoic age, and has experienced greenschist facies [42]. The Uppermost
Allochthon contains metasedimentary rocks of inferred Laurentian margin origin, but are not present
in the study area.

The drilling of the COSC-1 borehole aimed to study mountain building processes at mid-crustal
levels in a major orogen, with a focus on the Seve Nappe Complex. The borehole lithology is briefly
described in Figure S1 and, according to Lorenz et al., [30,38], the core has the following characteristics:
the upper 1800 m is dominated by gneisses of varying compositions (e.g., felsic, amphibole, Calcium
silicate) belonging to the Lower Seve Nappes. Highly strained metagabbros and amphibolites are
common, and marbles, pegmatite dykes and minor mylonites also occur. Fractures that are interpreted
to be of young, i.e., post-orogen, age are sparse. A water-conducting set of very steep fractures has
resulted in dissolution of bands in the gneisses to form foliation parallel micro-karst (e.g., at about
175 m and between 1200 and 1320 m). Narrow deformation bands and mylonites mark the first signs of
increasing strain below 1700 m. The base of the Seve nappes was interpreted to be at c. 2000–2100 m [37].
Below 2100 m, mylonites dominate. The lower part of the drill core is dominated by mylonitized
quartzites and metasandstones of unclear tectonostratigraphic position that are mylonitized to varying
degrees. A set of hydrological tests run during the drilling campaign revealed the location of likely
water-conductive fractures between the tested depth range of 300–2500 m, these occurred at 339, 507,
554, 696, 1214, 1245, 2300 and 2380 m [48]. Borehole temperature profiling suggest a geothermal
gradient of ~20 ◦C km-1 with temperatures reaching almost 55 ◦C in the bottom of the hole [30].

3. Materials and Methods

Eight samples containing secondary minerals (carbonate ± sulfides) were collected from the
COSC-1 borehole core (core log with samples marked in Supplementary Figure S1). The samples were
cut into thick polished blocks and analyzed with a petrographic microscope and scanning electron
microscope (SEM). Micro-karst samples were analyzed directly in the drill core specimen and euhedral
calcite and pyrite crystals were hand-picked from the karst voids and embedded in epoxy. These epoxy
grain mounts were polished to expose a cross section of the crystals, and the interiors of these crystals
were targeted with SIMS analysis for stable C, O, (calcite) and S (pyrite) isotopes and with LA-ICP-MS
for U-Pb geochronology (calcite) after SEM-documentation of zonations and impurities.
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3.1. Scanning Electron Microscopy (SEM)

The mineralogy and appearance of the uncoated fracture coatings and rock chips of veins were
examined under low-vacuum conditions in a Hitachi S-3400N scanning electron microscope (SEM)
equipped with an integrated energy-dispersive spectroscopy (EDS) system. The coatings were then
scraped off for analyses of stable isotopes and U-Pb geochronology.

3.2. Secondary Ion Mass Spectrometry for δ13C, δ18O, δ34S

Intra-crystal SIMS-analysis (10 µm lateral beam dimension, 1–2 µm depth dimension) of sulfur
isotopes in pyrite and carbon and oxygen isotopes in calcite was performed on a Cameca IMS1280 ion
microprobe at the NordSIM facility at the Museum of Natural History, Stockholm, Sweden, following
the analytical settings and tuning reported previously [14,29,49]. Sulfur was sputtered using a 133Cs+
primary beam with 20 kV incident energy (10 kV primary, −10 kV secondary) and a primary beam
current of ~1.5 nA. A normal incidence electron gun was used for charge compensation. Analyses were
performed in automated sequences, with each analysis comprising a 70 second pre-sputter to remove
the gold coating over a rastered 15 × 15 µm area, centering of the secondary beam in the field aperture
to correct for small variations in surface relief, and data acquisition in 16 four-second integration
cycles. The magnetic field was locked at the beginning of the session using a nuclear magnetic
resonance (NMR) field sensor. Secondary ion signals for 32S and 34S were detected simultaneously
using two Faraday detectors with a common mass resolution of 4860 (M/∆M). Data were normalized
for instrumental mass fractionation using matrix matched reference materials which were mounted
together with the sample mounts and analyzed after every sixth sample analysis. Results are reported
as per mil (%�) δ34S based on the V-CDT reference value [50]. Analytical transects of up to ten spots
were made from core to rim in the crystals. In total, 89 analyses were made for δ34S of pyrite from
11 crystals from three fracture samples. The pyrite reference material S0302A with a conventionally
determined value of 0.0%� ± 0.2%� (R. Stern, University of Alberta, pers. comm.) was used. Typical
precision on a single δ34S value, after propagating the within run and external uncertainties from the
reference material measurements was ±0.07%�.

For calcite, a total number of 84 δ13C and 93 for δ18O SIMS-analyses were performed on the
same Cameca IMS1280 described above. Settings follow those described for S isotopes, with some
differences: O was measured on two Faraday cups (FC) at mass resolution 2500, C used a FC/Electron
Multiplier combination with mass resolution 2500 on the 12C peak and 4000 on the 13C peak to resolve
it from 12C1H. Calcite results are reported as per mil (%�) δ13C based on the Pee Dee Belemnite (V-PDB)
reference value. Analyses were carried out running blocks of six unknowns bracketed by two standards.
Analytical transects of up to nine spots were made from core to rim in the crystals. Up to five crystals
were analyzed from each fracture sample. Analyses were made for 31 crystals from 8 fracture samples.
Isotope data from calcite were normalized using calcite reference material S0161 from a granulite facies
marble in the Adirondack Mountains, kindly provided by R.A. Stern (Univ. of Alberta). The values
used for instrumental mass fractionation correction were determined by conventional stable isotope
mass spectrometry at Stockholm University on ten separate pieces, yielding δ13C = 0.22%� ± 0.35%�

V-PDB (1 std. dev.) and δ18O = −5.62%� ± 0.22%� V-PDB (1 std. dev.). Precision was δ18O: ± 0.2%� −

0.3%� and δ13C: ± 0.4%�–0.5%�. Values of the reference material measurements are listed together with
the samples in Supplementary Table S1 (δ13C), Table S2 (δ18O), and Table S3 (δ34S).

3.3. Laser Ablataion Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) for U-Pb Geochronology

U-Pb geochronology via the in situ LA-ICP-MS method was conducted at the Geochronology and
Tracers Facility, British Geological Survey (Nottingham, UK). The method utilizes a New Wave Research
193UC excimer laser ablation system, coupled to a Nu Instruments Attom single-collector sector-field
ICP-MS. The method follows that previously described in [51], and involves a standard-sample
bracketing with normalization to NIST 614 silicate glass for Pb-Pb ratios and WC-1 carbonate for U-Pb
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ratios. The laser parameters comprise a 80 µm static spot, fired at 10 Hz, with a ~6 J/cm2 fluence, for 20 s
of ablation. Material is pre-ablated to clean the sample site with 120 µm spots for 2 s. No common lead
correction is made; ages are determined by regression and the lower intercept on a Tera-Wasserburg
plot (using Isoplot 4.15; [52]). Duff Brown, a carbonate previously measured by isotope dilution mass
spectrometry was used as a validation, and pooling of all sessions yields a lower intercept age of 64.2 ±
1.6 Ma (MSWD = 4.0), overlapping the published age of 64.04 ± 0.67 Ma [53]. All ages are plotted and
quoted at 2σ and include propagation of systematic uncertainties according to the protocol described
in Horstwood et al., [54]. Data are screened for low Pb and low U counts below detection, and very
large uncertainties on the Pb-Pb and Pb-U ratios which indicate mixed analyses. The spots are also
checked after ablation for consistent ablation pit shape, and data are rejected if the ablations were
anomalous (this results from material cleaving off, or clipping the resin mount).

Eight samples of calcite were screened from the COSC-1 drill core, but only one sample yielded
measurable radiogenic lead. This sample (178 m) yielded variably robust U-Pb ages in the first session
(based on the SIMS-analyzed crystals), and so a second session was added to this dataset using further
mounted crystals. Full analytical data from the sessions are listed in Supplementary Table S4).

4. Results

4.1. Mineralogy

Mineralogical composition was characterized in eight samples, three from micro-karst (122, 122.8,
178 m) and five from deeper veins (684, 743, 1051, 1369, 2210 m). The micro-karst samples were
investigated in the SEM in the karst cavities of the porous rocks in cut-off rock chips. The deeper veins
were studied in the SEM as polished blocks (Figure 2).

4.1.1. Micro-Karst

The micro-karsts occurred as foliation parallel cavities in the gneiss (Figure 2a,c, Supplementary
Table S5) and contained secondary fine-grained euhedral (rhombohedral) calcite crystals of up to
400 µm in size (Figure 2b,d) that line the walls of the micro-karst cavities. The calcite crystals commonly
occur in aggregates of several equant crystals (see also Figure S2a–d). No growth zonations or
overgrowths are evident based on the observation of morphology of the crystals in situ within the
voids. Subhedral to euhedral pyrite crystals of up to 400 µm size occur together with calcite in the karst
voids (Figure 2b,d). In sample 178 m, the zeolite chabazite is abundant, as euhedral blocky crystals of
up to 1 mm in size (Figure 2d, Figure S2b–d). Chabazite is commonly intergrown with calcite. Albite
and radiating aggregates of platy clay mineral crystals (Figure S2d) are occasionally present, and very
fine-grained Ni-rich grains, which have detectable amounts of C, P and Si (EDS-analysis). Fine-grained
C-rich filaments occur, particularly in sample 122.8, but also in sample 178 m (see SEM-images in
Supplementary Figure S3). The polished calcite cross sections from the micro-karst revealed only
scattered single-phased inclusions.

4.1.2. Veins

The sampled calcite veins were 1–10 mm in width (Figure 2e,g, more sample photos are shown in
Supplementary Table S6), and occur both as individual veins and as breccias with calcite cement and
wall rock fragments. Apart from calcite, the veins contain quartz, albite, chlorite and sulfides (pyrite
and/or pyrrhotite) (Figure 2e–h). In sample 1051, albite lines the fracture and calcite is in the vein
center. In sample 684, dolomite is abundant together with calcite (Figure 2f). Talc, pyrite and Ti-oxide
(Figure S2e) also occur in this sample intergrown with the carbonates, suggesting formation of this
mineral assemblage at a single event. There is also a younger calcite-talc filled micro-vein running along
the edge of the main vein of this sample. Ca-Al-silicates occur in two samples, as epidote in sample
from 1369 m occurring together with quartz (lining the fracture), calcite and pyrrhotite (Figure S2g),
and as laumontite in sample from 743 m, where it is intergrown with calcite (Figure S2f). The deepest



Geosciences 2020, 10, 56 7 of 17

sample (2210 m) holds secondary rare earth element (REE)-carbonate and ilmenite, intergrown with
albite (Figure S2h). See Supplementary Tables S5 and S6 for detailed sample descriptions.
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Figure 2. Mineral characteristics in photographed drill core samples (left) and back-scattered scanning
electron microscope (SEM) images (right). (A–B): sample 122, micro-karst, showing secondary calcite
and pyrite in a cavity. (C–D): sample 178, micro-karst, showing secondary chabazite, calcite and pyrite
in a cavity. (E–F) calcite vein that also holds dolomite, talc and pyrite, sample 684. (G–H) vein with
abundant albite, calcite and sulfides (intergrown pyrite and pyrrhotite), sample 1051.

4.2. Stable Isotopes

Calcite shows stable isotope compositions of δ18O: −28.9%� to −10.7%� V-PDB (span 18.2%�, nspots

= 93, nsamples = 8) and δ13C: −17.4%� to −3.5%� V-PDB (span 13.9%�, nspots = 84, nsamples = 8). The karst
calcite generally shows different populations of C and O isotope composition than the calcite veins
(Figure 3a). The veins generally have depleted δ18O values, mainly lighter than −22%� (Figure 3b),
and δ13C values that are quite invariable at −8%� ± 1%� V-PDB in the two deepest samples and a larger
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variability in the three shallowest veins (−17%� to −5%� V-PDB Figure 3c). The shallow veins also
show larger spans in δ18O than the deeper two (Figure 3b).
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Figure 3. Stable isotope scatter and depth plots, divided into micro-karst samples (blue symbols) and
vein samples (transparent symbols and black crosses). (A) δ18Ocalcite vs. δ18Ocalcite, with marker for
the different micro-karst groups (spheres), as well as spans of calculated values for hypothetical calcite
precipitated from ambient meteoric or glacial water. For this comparison, temperature dependent
fractionation factors for calcite precipitation at ambient temperatures are used for δ18O [22]. See text for
details of temperatures and isotope spans of the model waters. (B) δ18Ocalcite vs. depth. (C) δ13Ccalcite

vs. depth. (D) δ34Spyrite vs. depth.

Two main groups of micro-karst calcite are evident, particularly manifested by the δ18O
composition, which shows a cluster at −25%� to −20%�V-PDB with most values below −22.5%�,
and one cluster with heavier values, at −14.5%� to −10.8%�V-PDB, with most values between −13%�

and −11%�. The latter group occurs in samples 122 and 178, but not in sample 122.8 (Figure 3a).
In sample 178, the isotopically heavy δ18O values dominate. There is petrographic evidence for a
temporal trend in the δ18O values. The isotopically light δ18O group is older than the isotopically
heavier group as shown in Figure 4 where the core of the crystals is 18O-poor compared to the later
growth zone(s). In sample 122, the relatively 18O-rich overgrowths make up very small parts of the
crystal volume (Figure 4a–d), in contrast to in sample 178 where most of the crystal volume is made
up of the 18O-rich younger calcite (Figure 4e,f). The outermost overgrowth in sample 122 (with high
Back Scattered Electron-intensity, Figure 4a,c) features a significant decrease in 13C compared to the
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other parts (Figure 4b,d). This means that three generations are observed within the calcite in the
micro-karst (1: early karst, 2: late karst, 3: outermost overgrowth of late karst calcite, Figure 3a).
A similar overgrowth occurs in sample 178 (δ13C: −11.2%�), but only in one spot, showing that the
second calcite group dominated this sample.
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Figure 4. Microanalytical secondary ion mass spectrometry (SIMS) transects within calcite. Back 
scattered electron images of polished crystal cross sections are shown to the left (A, C, E) with spot 
locations indicated, for closely spaced 10 μm δ13C (black) and δ18O (white) SIMS spots. Corresponding 
isotopic values are shown on the graphs in B (sample 122 m), D (122 m), and F (178 m). 

Pyrite shows δ34S compositions ranging from −20.5‰ to +20.9‰ V-CDT (span 41.4‰, nspots = 89, 
nsamples = 3). Two samples show very narrow span, vein 1051 m: 7.8‰ ± 1.6‰ and micro-karst 122 m: 
18.8‰ ± 2.2‰. The karst sample 178 m shows two distinct groups (−19.8‰ ± 1.6‰ and +16.4‰ ± 
1.0‰) and one value in between (−0.1‰), of which the isotopically heaviest group overlaps with 
micro-karst sample 122 m. Petrographically, the isotopically heavy pyrite in sample 178 m is oldest, 

Figure 4. Microanalytical secondary ion mass spectrometry (SIMS) transects within calcite.
Back scattered electron images of polished crystal cross sections are shown to the left (A,C,E) with spot
locations indicated, for closely spaced 10 µm δ13C (black) and δ18O (white) SIMS spots. Corresponding
isotopic values are shown on the graphs in B (sample 122 m), D (122 m), and F (178 m).

Pyrite shows δ34S compositions ranging from −20.5%� to +20.9%� V-CDT (span 41.4%�, nspots =

89, nsamples = 3). Two samples show very narrow span, vein 1051 m: 7.8%� ± 1.6%� and micro-karst
122 m: 18.8%� ± 2.2%�. The karst sample 178 m shows two distinct groups (−19.8%� ± 1.6%� and
+16.4%� ± 1.0%�) and one value in between (−0.1%�), of which the isotopically heaviest group overlaps
with micro-karst sample 122 m. Petrographically, the isotopically heavy pyrite in sample 178 m is
oldest, as it is found in the inner part of a crystal with an isotopically light rim (Figure 5a). The same
sample also features pyrite crystals having both light values throughout the whole crystal (Figure 5B)
as well as heavy values throughout the whole crystal (Table S3). The isotopically light pyrite is coeval
with the calcite zonation group “late karst” with δ13C values of −7%� to −3%�.
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Figure 5. Microanalytical SIMS δ34S transects within pyrite. Back Scattered Electron images of polished
crystal cross sections are shown in A and B with spot locations indicated, for closely spaced 10 µm δ34S
SIMS spots. Corresponding isotopic values are shown in C. In A, a part of the crystal is not exposed in
the cross-section, as indicated by the line.

4.3. U-Pb Geochronology

The only calcite sample yielding a robust U-Pb age determination was 178 m. The spatial
correlation between the SIMS spots for stable isotopes and the U-Pb LA-ICP-MS spots shows that
the dating represents the late karst calcite group in Figure 3a (most δ18O values between −13%� and
−11%� and δ13C of −7%� to −4%�), but not the outermost overgrowths. The LA-ICP-MS spots from a
couple of different crystals within the late karst calcite population line up along two distinct regressions
(Figure 6), with ages of 9.6 ± 1.3 Ma (MSWD = 1.4) and 2.5 ± 0.2 Ma (MSWD = 0.9). Each of these
regressions represents several spots from multiple crystals, but each crystal only conforms to one of
the ages. The latest calcite overgrowth and the older crystal cores were not targeted in this sample due
to the small size of the crystal domains of these groups.
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5. Discussion

The different populations of isotope compositions in the mineral veins and micro-karst precipitates
suggests several discrete events of precipitation and fluid circulation in the fracture system of the
thrust sheets.

5.1. Microbial Activity

Microbial activity typically results in distinguishable C isotopic excursions [15] that can be
traced in authigenic carbonate minerals [10,55]. The samples in this study show very moderate
C-isotope variations, especially compared to fracture coatings from other sites on the Fennoscandian
shield [26,28,56]. The C isotope signatures in the calcites of the COSC-1 core are thus no strong marker for
microbial activity in situ, at least not for processes involving methane formation or oxidation, which are
known to produce carbonates strongly enriched in 13C or depleted in 13C, respectively [8,15,55,57],
as documented elsewhere on the Fennoscandian shield [26,28,29,58,59]. The moderate δ13C-depletion
that is observed may, however, reflect the influence of C originating from dissolved organic carbon
that has been oxidized by microbial communities and then mixed with less 13C-depleted dissolved
inorganic carbon in the waters. The C isotope composition of calcite reflects the result of several
(cryptic) potential processes, and interpretations of δ13C compositions in the observed span are not
straightforward without additional evidence. Remnants of a biofilm occur on the karst cavity walls in
sample 122 (Figure S3) and is another indication of microbial activity. The SEM-EDS analysis confirmed
a carbonaceous composition, but the sample volume of the biofilm was too small for biomarker analysis,
which could have offered further information about what communities inhabited this cavity. The small
variation and small depletion in δ13C values of the two deepest samples, suggest very small, if any,
influence from microbial activity here and formation from a single precipitation event and fluid source,
in contrast to the shallower samples (Figure 3c).
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The generally large fractionation of the stable sulfur isotopes associated with microbial sulfate
reduction, due to faster turnover of 32S than 34S [60], thus leading to discrimination of 34S, has made
this isotope system one of the most extensively used for understanding both modern and ancient
biogeochemical cycles [61,62]. Laboratory culture measurements have reported sulfur isotope
enrichments (δ34Ssulfate-sulfide or 34ε) as large as 66%� [63] but even larger have been inferred from
natural observations [64–66].

The low minimum δ34Spyrite values (−19.8%� ± 1.6%�) in the young pyrite population reflect 32S
enrichment in the produced sulfide during MSR in the micro-karst. The initial sulfate δ34S composition
is unknown, but ambient water within the Fennoscandian Shield at other sites have δ34SSO4 values in the
+15%� to +25%� range [67], which implies an isotope enrichment, 34ε (δ34SSO4-δ34Spyrite), of 35–45%� if
we assumed pyrite in the studied fractures formed from water of similar δ34SSO4 composition. This 34ε
is fully in line with MSR [66]. This younger generation of pyrite is related to the second and dominant
calcite in the micro-karst at 178 m. A calcite generation that gave two different ages for two grain
populations (2.5 ± 0.2 Ma and 9.6 ± 1.3 Ma) which thus also represents the age span of this MSR-related
pyrite generation. The relatively narrow span in values for this pyrite suggests that it formed under
open system conditions because there is no indication of successively increasing values with growth,
which is a typical feature of Rayleigh isotope fractionation at closed or semi-closed conditions for
sulfate [12].

The older pyrite generation in the micro-karst (dominating in sample at 122 m depth) showing
more 34S-enriched values can be thermochemical in origin, as this process generally does not involve
significant degrees of fractionation [16,68]. Alternatively, the δ34S values of this generation can reflect a
late stage MSR-system undergoing Rayleigh fractionation in a semi-closed system, but this requires
that significant amounts of isotopically light sulfide has been produced and precipitated elsewhere
along the flow path [14].

5.2. Paleo-Fluid Flow and Water Types

The O isotope composition of the calcite crystals and veins can provide information about the
fluid source. Unfortunately, there is no hydrochemical data available from the deep fractures in the
COSC-1 borehole for comparison. Instead, we compare our determined δ18O values with model
glacial and meteoric waters at ambient temperatures, taking into account the temperature-dependent
O-isotope fractionation that occurs during calcite precipitation (Figure 3a, [22]. For the late micro-karst
precipitates, there is no temperature estimate available due to the fact that no two-phased fluid
inclusions could be detected. This feature points to fluid inclusion entrapment at temperatures below
50 ◦C [69], and the detection of coeval MSR-related δ34Spyrite values also is in favor of low-temperature
formation. If we assign a hypothetical meteoric water (δ18O: −11.5%� to −9.5%� SMOW) based on
modern precipitation in Sweden [67] and formation temperatures of 5 to 20 ◦C, it is in accordance
with the composition of the 2.5 ± 0.2 / 9.6 ± 1.3 Ma micro-karst calcite (Figure 3a). This means that
precipitation of this calcite from a meteoric water is possible. However, it should be noted that in
high latitude terrains, the δ18O values can be even lighter than those we assigned [70]. This period of
fluid flow and mineral growth in the micro-karst is temporally related to late Oligocene to Pliocene
continental uplift of Fennoscandia [71] and the present relief of the Caledonides is largely the result of
uplift during these times [35] with subsequent glacial-erosion modification [34].

The δ18O composition of glacial meltwater from Pleistocene ice sheets in Fennoscandia has been
estimated to a range of −22%� to −20%� [72], but recent studies of sub-ice sheet runoff at western
Greenland show even more depleted values. When assigning a hypothetical glacial water with δ18O of
−27%� to −20%� SMOW, and temperatures of 5–10 ◦C, the temperature dependent fractionation results
in modeled values in calcite of c. −26%� to −18%� V-PDB (Figure 3a), which is significantly lighter than
the young micro-karst calcite, but in line with the early micro-karst and vein calcite. This means that it
is unlikely that the young micro-karst calcite precipitated from a glacial water, but that the older calcite
and veins may be glacial precipitates. However, if we assign a brine with similar composition as at
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Sellafield (δ18O: −5%� SMOW [73], Figure 1) and higher formation temperatures (100–150 ◦C), we will
end up with hypothetical calcite with δ18O values (c. −23 to −19 V-PDB) that also match the most
18O-rich precipitates of these calcite groups. Furthermore, the mineralogical assemblage of the veins,
with minerals such as epidote and laumontite, that are not formed at ambient temperatures [74,75],
also speak against low-temperature formation from glacial water. For future studies, we suggest
that the clumped isotope methodology is utilized for COSC-veins in order to potentially obtain
formation temperature estimates of the carbonates. This approach has recently been proven successful
to determine calcite precipitation temperatures in veins and constrain fluid sources, and fluxes, e.g.,
in the Peak District, UK [76]. Taken together, the calcites can be divided into groups based on their
isotopic composition (mainly decided on δ18O) of which the veins seems to be of higher temperature
type based on the presence of epidote and laumontite. The young micro-karst calcite was the only
group that was dated (2.5 ± 0.2 / 9.6 ± 1.3 Ma) and overlaps with a low-temperature meteoric water.
There is also an even younger group of overgrowths (i.e., younger than 2.5 ± 0.2 Ma) with lower δ13C
values than the dated calcite, but the overgrowths were too small for U-Pb LA-ICP-MS dating.

6. Conclusions

We present a microanalysis study (SIMS and LA-ICP-MS) recording ancient secondary mineral
formation, fluid flow and microbial activity in a nappe unit of the Scandinavian Caledonides (utilizing
the deep COSC-1 borehole). Petrographic and isotopic evidence for several generations of calcite and
pyrite growth in micro-karst are determined. 34S-depleted composition of pyrite suggests formation
following microbial sulfate reduction in the karst and the O isotope composition of coeval calcite dated
to 2.5 ± 0.2 / 9.6 ± 1.3 Ma overlap with low-temperature meteoric water, in contrast to older calcite that
has significantly lower δ18O values. Our results mark the potential of combined SIMS and LA-ICP-MS
micro-analysis within fine-grained mineral grains to understand and temporally determine discrete
events of fluid flow and microbial activity in deep fracture systems and karsts of mountain ranges.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/10/2/56/s1:
Table S1: SIMS analyses of C isotopes in calcite and matrix matched reference material; Table S2: SIMS analyses
of O isotopes in calcite and matrix matched reference material; Table S3: SIMS analyses of S isotopes in pyrite
and matrix matched reference material; Table S4: LA-ICP-MS analyses for U-Pb calcite geochronology of sample
178 and matrix matched reference materials. Table S5: Sample photo documentation. Table S6: Sample details.
Supplementary Figures S1–S4 with captions; Figure S1. Core log with mineral samples marked. This log is based
on on-site descriptions, and the depth is subject to minor corrections post-drilling (this file is adopted from the
‘operation datasets’ for COSC-1, http://dataservices.gfz-potsdam.de/icdp/showshort.php?id=escidoc:1095929).
Figure S2. Back-scattered SEM-images showing (A) aggregates of calcite crystals on the walls of micro-karst
cavities of sample 122 m depth, (B) Euhedral and partly intergrown crystals of chabazite and calcite on the walls
of micro-karst cavities of sample 178 m depth. Chabazite is slightly darker and not as fine-grained as calcite.
(C) Euhedral and partly intergrown crystals of chabazite and calcite on the walls of micro-karst cavities of sample
178 m depth. (D) Euhedral and partly intergrown crystals of clay minerals (radiating aggregate of platy crystals),
chabazite and calcite on the walls of micro-karst cavities of sample 178 m depth. (E) Vein assemblage of calcite,
chlorite and Ti-oxide in polished block of sample 684 m. (F) Vein assemblage of calcite and laumontite (darker grey
than calcite) in polished block of sample 743 m. Note that laser-ablation spots (visible) for dating tries have altered
the sample slightly (darker areas). (G) Vein assemblage of calcite, pyrrhotite, quartz and epidote in polished block
of sample 1369 m. (H) Vein assemblage of calcite, albite and ilmenite in polished block of sample 2210 m. Figure
S3. Back-scattered SEM-images showing remnants of biofilm (carbonaceous matter) on the walls of micro-karst
cavities of sample 122.8 m depth. Figure S4. Spot locations for LA-ICP-MS U-Pb geochronology analyses in
polished calcite grains of sample 178 m, numbers and colors correspond to analytical details in Table S4.
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