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ABSTRACT

The production of geomagnetic hourly average values from discrete one minute

sampled data,are investigated. It is shown that hourly average values obtained
from an average of one minute values within the hour should form a homogeneous

set with those previously obtained by handscaling of analogue records. Generation
of the one minute values by digital filtering of more rapidly sampled data is
recommended. A simple cosine weighting applied to 5 or 10 second sampled data

(13 or 7 point filter respectively) is suggested.



INTRODUCTION

Hourly average values of geomagnetic field elements have long been the staple

" oufput of magnetic observatories and haVé been used for may scientific and

soem commercial applications. When most observatories operated analogue

recording instruments,hourly average field values were something that could
be produced relatively simply by handscaling methods. A large world-wide

databank of these data has been built up and international standards are in

use for their format of storage and exchange.

For shorter period field variations,however,no such stable situation has existed

up to now. The value of such data was recognised (particularly for the study
of external inluences on the geomagnetic field) but few observatories were in

a position to produce them easily. For aperiod in the late 1950s to early 1960s

attempts were made to accumulate a databank of 2.5 minute values but the tedium
of producing these by the hand digitization of analogue records led to this

effort not being sustained.

In this decade,however,the introduction into observatories of digital sampling
i and recording systems has greatly reduced the effort necessary to produce and
store short period variation data. At this time about 33% of all observatories
have digital recording and there is also an increasing trend towards full
automation. One minute values have become the de facto standard for short
period observatory digital output and it has recently been suggested at the
International Association of Geomagnetism and Aeronomy (IAGA) that these one

minute values be used in the generation of the hourly average values.

In this paper we discuss the generation of hourly average field values from

digital data and compare them with those produced by traditional methods. We also



investigate the generation of the one minute values themselves following

HOURLY AVERAGE VALUES

The process of taking an average corresponds to a form of low pass filtering

of the original data. If the data,x(t),are in continuous form,as on an analogue

record, the transfer function of this averaging filter can be derived as
G(f) = sin(nfT)/(nfT) eee (1)

where £ is frequency and the T is the time interval over which the average is

taken (see e.g. Owens,1978). If ,however,the data are discrete samples taken at
a time interval At (i.e. X = x(n.At) ) a modified expression is obtained. For an

average over M data points

G(f) = sin(MnfAt) /Msin(nfAt) vee (2)
To ease comparison between the continuous and discrete cases we can use T = M.At

and rewrite (2) as

G(f) = sin(nfT) /Msin(nfT/M) eee (3)
Because Nsin(@/N) < @ for all 8 the magnitude of the transfer function in (3) is
greater than or equal to that in (1) for all f but the value obtained from (3)
- converges to that from (1) for large M and small f. Another difference to note
is that the discrete transfer function has a sine function in the denominator and
is therefore symmmetric about the Nyquist frequency fN ( = 1/2.At ). Kennedy (1980)
discusses the difference between mean values obtained from continuous and discrete

data and derives an equivalent expression to (2).

Obtaining geomagnetic hourly average values from a continuous analogue record
is equivalent to putting T = 60 minutes in equation (1),giving
G(f) = sin(60nf)/(60nf) Y

It has been suggested that for discrete data the hourly average be obtained from
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an average over the hour of one minute sampled data. Putting M = 60 and

At = 1 minute in equation (2) gives
| G(f) = sin(66nf)/60§;;(nf) ‘... (55-

It can easily be shown that that the difference between (4) and (5) for f in

the range 0 < £ < fN is insignificant,particularly as the current amplitude

resolution for published hourly values is 1 nT. Thus it can be said that

hourly average values obtained from an average of discrete one minute values

should form a homogeneous set with those previously obtained from analogue records.

The hourly average value from continuous records is usually centred on the half-
hour. To retain this for discrete data there are two options:
(a) Average 60 one minute values each centred on the half-minute,between
t = 0 minutes 30 seconds -and t = 59 minutes 30 seconds. This is strictly
what has been used in puttiné M = 60 in (2) to obtain’ (5).

(b) Average 61 one minute values each centred on the minute,between

t = 0 minutes and t 60 minutes. This corresponds to putting M = 61 in

equation (2) giving

G(f) sin(61lnf) /6lsin(nf) ... (6)

Transfer function values obtained from (6) are still negligibly different from
those obtained from (4) for 0 < £ 5'fN' It should be noted,however,that successive
hourly average values obtained using the second option are not absolutely

independent of each other because the minute values at t = 0 minutes and

t = 60 minutes are each used in the calculation of two hourly averages.

Up to this point it has not been defined what a one minute value is. Ideally it
should be a simple spot value that in sampling terms tells us everything about
the frequency content of the data below the Nyquist frequency ( = 1/120 Hz) and

nothing above this frequency. Unfortunately this cannot be,because the spectrum



of geomagnetic variations just does not cease for frequencies >1/120 Hz,so if

one minute spot values were to be used the spectrum for frequencies 0 < f < fN

happens is known as aliasing,and can be thought of as a folding operation thus

0
fN
ZfN
3fN
4fN
SfN etc.

The power spectrum for f > fN is folded back about stuch that for 0 < £ < fN
there is a contribution at f from power at frequencies (2an—f) and (2an+f)
where n is an integer. If S(f) is the true power spectrum at £ and Sa(f) the
aliased spectrum,we can write “

9 0
Sa(f) = S(f) + 2;& S(anN—f) + g;% S(2an+f)

To estimate the effects on aliasing on our hourly average values obtained from
discrete one minute values,aliased spectra were calculated for true geomagnetic
spectra assumed to behave as S(f) = (f/fN)_Awhere A=1,2 and 3. The summations
above were terminated at n = 5 which corresponds to é cut-off period of about
11 seconds for a sampling period of one minute. This limit incorporates,most of
the geomagnetic pulsation band into the aliased spectrum. Defining the
normalized frequency p as.f/fN we have .

s_(p) = S(p) + I; (2n-p) M+ :/—:41 (2n+p) N
The quantity finally calculated was the percentage increase in the true spectrum
at p due to aliasing and this quantity is plotted in figure 1 for the three values

of A\ ;p is on alog scale. With a sampling interval of one minute,the value of p

corresponding to to a period of one hour is p = 1/30. A vertical dashed line has
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beén drawn on figure 1 at this frequency. The precentage increase in the spectrum
at this frequency due to aliasing is 7.6% for A = 1,0.08% for A= 2,and 0.00001%

for A = 3. Values of A between 2 and 3 are usual for the background geomagnetic
spectrum and the effect of aliasing would be negligible for these values of A. The
presence of large amplitude magnetic pulsations (usually with periods between

20 seconds and éOO seconds) could effectively flatten the spectrum and it can be
seen that aliasing becomes more significant as A decreases. It is recommended,
therefore, that the one minute values used for hourly value calculations be 'average'

or filtered values from which the frequency content of the data above f = 1/120 Hz

has been reduced as much as is practical.

A proposal has already been made at IAGA that the one minute values should be
derived from digital filtering methods and possible simple options for this are

discussed in the next section.

ONE MINUTE VALUES

As a starting point we make the assumption that successive one minute values should
be as indebendent from each other as possible,thus approximating spot values. This
means that each value should be derived from other discrete spot values sampled

within that minute period.

We also require that the final minute value be centred on the minute or half-
minute and that the filter has zero phase shift at all frequencies. The
filtering operation in the time domain is a convolution with a series of filter

weights and is thus defined by

+m

Yo = 2 WiFnu
k=-m

where Y, and X are the discrete values of the filtered and raw data series

respectively at t = n.At and w, the filter weights. For zero phase shift the

k

filter has to be symmetric (i.e. w_, = wk) and for the gain of the filter to be

k
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unity at zero frequency for a low pass filter

m —
QZj Wy =1
==m

The operation as defined above has the total number of filter weighté (M) = 2m+1,

which is an odd number. This means that if all possible samples taken in a minute
are used to obtain the filtered value,successive filtered values will have one

of the original data values in common;the first and last values in each minute

are used in two filtering operations. This does not meet the criterion of full
data independence but the use of an odd number gives more filtering options and

the significance of the overlap decreases with increasing M. The transfer

function for the filter as defined above is

m
G(p) = v + 2 wkcos(nkp)
k=1

where p is the normalized frequency as before.

For our purposes the ideal transfer function is one that has unit gain for

f < 1/120 Hz and zero gain for £ > 1/120 Hz. This ideal 'step function' low
pass filter can only be achieved with an infinite number of filter weights., To
retain independence of filtered values the number of filter weights can only be
increased by increasing the data sampling rate. Practical considerations such
as data storage,instrumental response times and reliability suggest that
sampling rates should not be pushed to extremes. Also, the amount of
computation necessary to generate the filtered data values is proportional to
the number of filter weights. Sampling intervals of 30,15,10,5,2 and 1 second
will be considered. 1If all the values in the minute are used in the filter and
M is odd,these intervals correspond to values of M =3,5,7,13,31,and 61

respectively.

There are several types of filter weighting scheme that could be used but this
discussion will be confined to four that are simple to implement and have a

transfer function that is smooth in the pass band.
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{(a) Rectangular weighting
For this scheme wk = 1/M for all k,which corresponds to the taking of a
filter is
G(p) = sin(Mnp/2)/Msin(np/2)
(b) Triangular weighting
For this scheme wk = (1 - {k{/L)/L where L = m+l = (M+1)/2,and the transfer
function is
G(p) = (sin(Lnp/2) /Lsin(np/2))”
{c) Cosine weighting
For this scheme wk = (1 + cos(nk/L)/2L where L is as above,and the transfer

function is

G(p) = 1 + cos(Lnp/2)sin(mrp/2) - sin(Lnp/2)sin(ma(p+l/L)/2)
L Lsintnp/2) 2Lsin{(n(p+1/L) /2)

+ sin(Lnp/2)sin(mn(p-1/L)/2)
2Lsin (n (p-1/L) /2)

(d) Binomial weighting

For this scheme w, = (2m) ! where 2m = M-1,and the transfer

k 2
2°™ (m+kl )t (m-1k|) !

function is
G(p) = cos’™(np/2)

For illustration,these weighting schemes and their transfer functions are shown
plotted in figures 2 and 3 for the case M = 7. The modulus of the transfer
function has been plotted and where a lobe is shaded this is an indication that
it is really negative. From these figures some general conclusions can be drawn.
The rectangular function has the most most rapid attenuation with frequency but
large lobes (alternately negative and positive) outside the main pass band. The
traingular function gives less rapid attenuation for the same value of M but
smaller side lobes which are always positive because the transfer function is
a squared sinc function. Cosine weighting gives slightly less rapid attenuation

than triangular but smaller (alternating sign) side lobes;these result from the
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transfer function being the sum of three sinc functions and the side lobes tend

to cancel each other out. Binomial weighting has a transfer function that has

the least rapid attenuation for a given M but ﬁb.éide iébés at ali.

A filter is required that attenuates frequencies < 1/120 Hz as little as possible
and passes the minimum above this frequency up to the Nyquist frequency. 2An

integral transfer function can be defined that is

1
H(p) =ﬁG<p>l-dp /J|G(p)|.dp
This is the fraction ofothe total rgsponse of the filter which is between 0 and p.
Suitable criteria for judging the effectiveness of the filter might be that G(pc)
and H(pc) be greater than some chosen values,where pc is the normalized frequency
for a period of 120 seconds,given by pc = (.1/120)/fN = (1/120)/(2.At) = 1/(M-1),

if all the values in the minute are used.

Figures 4 and 5 show G(pc) and H(pc) respectively plotted as a function of M for

the four weighting schemes. The limiting values chosen were G(pc)> 1/2;5

{equivalent to the transfer function being 3 dB down in power at this point) and
H(pc) > 0,5, These limits are represented by the horizontal dashed lines on the
figures. Both criteria must be satisfied. Rectangular weighting fails to

achieve this for any M. For triangular weighting only M = 13 is satisfactory,

for cosine weighting M = 7 or 13,and for binomial weighting only M = 5. There seems
no advantage in choosing triangular weighting over cosine weighting. Their values
of H(pc) are almost identical but cosine weighting has G(pc) higher. 1In terms of

the criteria we have adopted there is little difference between the remaining

options. Binomial weighting with M 5 has a slightly better integral response
and a slightly worse differential response than cosine weighting with M = 7;

the difference is accentuated for cosine weighting with M = 13.

Possible aliasing effects must also be considered however. Choosing M = 5 implies



At = 15 seconds,and M = 7 and M = 13 imply At

10 seconds and At = 5 seconds

respectively. The Nyquist frequencies for At 15,10 and 5 seconds are 1/30 Hz,

1/26 Hz and I/lO Hz. Frequenciés above thése Nyﬁﬁist frequenciéénére'aliaéed.

We require the aliasing to be small for £ < 1/120 Hz. Figure 6 shows the same
aliasing curves as in figure 1. The vertical dashed lines are drawn at the values
of p corresponding to £ = 1/120 Hz for the three different sampling intervals.

The percentage increases in the spectrum at £ = 1/120 Hz due to aliasing are
summarized in Table 1 for the different values At (and M) and for the different

values of the spectral index A .

A between 2 and 3 is typical for the background geomagnetic spectrum and
aliasing is small for all At for these values. With A = 1,aliasing becomes much
more significant and increases with increasing At. A value of A = 1 is not
usually encountered but the presé;ce of large amplitude magnetic pulsations can
effectively flatten the spectrum so the use of a sampling interval of 10 seconds
or 5 seconds ( implying cosine weighting filters of M = 7 or M = 13 respectively)
is recommended. Also,because the Nyquist periods for At = 10 seconds and
At = 5 seconds are 20 seconds and 10 seconds,and most significant pulsations have

periocds > 20 seconds,the majority of the pulsation activity will not be aliased if

either of these shorter sampling intervals is used.

CONCLUSIONS

It has been shown that geomagnetic hourly average values derived from an average

of discrete one minute values will form a data set that is homogeneous with that

previously obtained from continuous records. 60 one minute values centred on the
half-minute give a slightly closer approximation to the continuous case than the

use of 61 one minute values centred on the minute but the difference would not

be detectable at the 1 nT resolution used for hourly values.
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An investigation into the generation of the one minute values themselves has

suggested that they be derived from 10 or 5 second sampled discrete values, low

- pass. -filtered using a symmetrical cosine-weighting funetien (7 -or-13 peint

filters respectively). Our results do not give sufficient evidence to choose
conclusively between 10 and 5 second sampling;either would seem satisfactory.
In this situation it might be preferable to opt for 10 second sampling because
this would require less data storage and/or processing and prove less of a

problem for the instrumentation.
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TABLE 1

At * 5 seconds oo 10 i | 15

M= I3 7 5
A= 1 19.0% 38.2% 57.6%
2 0.5% 2.1% 4.7%
3 <«<0.1% 0.1% 0.5%

Percentage increase due to aliasing in the power spectrum at £ = 1/120 Hz

for different sampling intervals (At) and spectral indices (M).



FIGURE CAPTIONS

Figure 1 : Percentage increase in the power spectrum due to aliasing for spectra

The dashed line is for £ = 1/120 Hz when At = 1 minute.

Figure 2 : Filter weights and transfer function of a 7 point filter for

(a) rectangular weighting and (b) triangular weighting.

Figure 3 : Filter weights and transfer function of a 7 point filter for

(a) cosine weighting and (b) binomial weighting.
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Figure : Magnitude of the filter transfer function,G,at f =1/120 Hz vs.

number of filter weights,M,for different filter weighting schemes:

(a) rectangular (b) trfangular (c) cosine (d) binomial.

Figure 5 : Integral filter transfer function,H,at f = 1/120 Hz vs. number of
filter weights,M, for different filter weighting schemes:
(a) rectangular (b) triangular (c) cosine (d) binomial.

Figure 6 : Percentage increase in the power spectrum due to aliasing for spectra

assumed to vary as p—x where p is the normalized frequency f/fN.
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The dashed lines correspond to £ = 1/120 Hz when At =15,10 and 5 seconds.
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