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ABSTRACT

Eastern boundary currents are some of the most energetic features of the global ocean, contributing sig-

nificantly to meridional mass, heat, and salt transports. We take a new look at the form of an oceanic slope

current in equilibrium with oceanic density gradients. We depth integrate the linearized x and y momentum

and continuity equations and assume an equilibrium force balance in the along-slope direction (no along-

slope variation in the along-slope flow) and zero cross-slope flow at a coastal boundary. We relate the bottom

stress to a bottom velocity via a simple boundary friction law (the precise details are easily modified) and then

derive an expression for the slope current velocity by integrating upward including thermal wind shear. This

provides an expression for the slope current as a function of depth and of cross-slope coordinate, dependent

on the oceanic density field and surface and bottom stresses. This new expression for the slope current allows

for more general forms of oceanic density fields than have been treated previously. Wind stress is also now

considered. The emphasis here is on understanding the simplified equilibrium force balance rather than the

evolution toward that balance. There is a direct relationship between the slope current strength, friction, and

along-slope forcing (e.g., wind), and also between the total along-slope forcing and bottom Ekman transport,

illustrating that ‘‘slippery’’ bottom boundaries in literature are a direct consequence of unrealistically as-

suming zero along-slope pressure gradient. We demonstrate the utility of the new expression by comparison

with a high-resolution hydrodynamic numerical model.

1. Introduction

Eastern (often poleward) boundary currents are com-

mon in the oceans, occurring (for example) off Iberia

(most obviously inwinter; e.g., Frouin et al. 1990), around

the United Kingdom (the European Slope Current, e.g.,

Huthnance 1986; Marsh et al. 2017), off the western

United States (California Undercurrent; e.g., Connolly

et al. 2014), and off western Australia (the Leeuwin

Current; e.g., Smith et al. 1991). They may be seasonal

according to the forcing, and obscured at times by wind-

driven surface flows, notably in upwelling regions (e.g.,

Iberia, California). Nevertheless, they may be impor-

tant contributors to ocean circulation, for example, the

European Slope Current contributes about a quarter of

Atlantic inflow to the Nordic seas (Holliday et al. 2015;

Lozier et al. 2019) and represents a significant portion

of the upper limb of the Atlantic meridional over-

turning circulation (AMOC).

The oceanic density field with associated pressure

gradients has been identified as an important factor of

the European Slope Current (Huthnance 1986) and for

the Leeuwin Current (Smith et al. 1991). This joint effect

of baroclinicity and relief (JEBAR) mechanism reflects

the absence of any rest state when an along-slope oce-

anic density gradient occurs over slope topography.

Huthnance (1984) analyzed the poleward development

and equilibrium formof the resulting slope current.Along-

slope development is also discussed by Csanady (1978).

However, the density field in Huthnance (1984) was

mainly and severely restricted to be a function only of

the along-slope coordinate. Here we consider the equilib-

rium form, nowwithmore general fields of oceanic density,

and with the addition of wind stress. Explicit formulas

for the flow field are obtained, so providing scope for
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wider-ranging comparison with (and diagnosis or tests

of) numerical models in this context where necessary

spatial resolution is challenging. We also show that

there is a direct relationship between along-slope

forcing (arising from a pressure gradient associated

with the oceanic density field, or directly from wind

stress) and the bottom stress and associated bottom

Ekman transport.

2. Analysis

Consider an oceanic margin with depth profile h(x)

that is uniform in the alongshore direction y and boun-

ded by a straight coast at x5 0 (Fig. 1). Initially assume

an oceanic density field r(x, y, z), hydrostatic pressure

p5 g
Ð h
z
r(x, y, z0) dz0, below the free surface z5 h(x, y).

Here z is the vertical coordinate and z0 a bound (verti-

cal) variable that disappears upon depth integration

between definite limits. Then the momentum and con-

tinuity equations for velocity (u, y, w) are
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where the absent nonlinear advection and lateral vis-

cosity terms are discussed in appendixes A and B. The

effects of lateral viscosity (e.g., through eddy action)

are, however, implemented in the hydrodynamic model

comparison of section 3e (through a variable lateral

smoothing length scale). The Coriolis parameter is

f, assumed uniform (see appendix C for justification);

(tx, ty) are internal (turbulent) stresses equating to wind

stress at the surface and friction at the bottom; and

subscripts s and b denote surface and bottom values.

We are considering the simplified equilibrium force

balance for along-slope flow, rather than the evolution

toward that balance (either in time or along the slope).

Hence, we assume ›y/›y 5 0 for the equilibrated along-

slope flow.Depth integrating the continuity Eq. (2) gives
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in which the x derivatives arise from the x dependence

of the integration limits (h and h). Then the surface and

FIG. 1. Schematic of section 3a scenario, viewed from the southwest. The geostrophically

balanced zonal flow is returned in a bottom Ekman layer under the slope current. Yellow to

blue shading represents the meridional density gradient (cooler water to the north),

Yellow and blue arrows represent both the interior geostrophically balanced zonal flow

(horizontal arrow sections) and Ekman flow on the sloping boundary (downslope flow).

Red arrows indicate the slope current, intensified over midslope. Perturbation pressure

surfaces in the deep ocean are in dashed black lines and planar ocean surface in solid blue

lines. Dashed blue lines represent the geoid.
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bottom boundary conditions ws 5 us(›h/›x) and wb 5
2ub(›h/›x) imply

›

›x

�ðh
2h

u dz

�
5 0.

This states that zonal transport is constant in x, and since

there is no flow through the coast at x5 0, we must have

zero depth-integrated zonal flow everywhere, that is,

ðh
2h

u dz5 0: (3)

Depth integrating the along-slope momentum equation

(1) in the steady state ›y/›t 5 0, neglecting h/h in the

final term, neglecting variations of r relative to a typical

density rs, and using (3), gives

05 r
r
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(4)

where tys , t
y
b denote along-slope components of surface

and bottom stress, respectively. The first term on the

RHS of (4) represents the meridional barotropic pres-

sure gradient, the second term the depth-varying me-

ridional pressure gradient, the third term wind stress

forcing and the fourth term a retarding bottom stress.

Under our assumption of a steady, equilibrated state,

surface and bottom stresses may be functions of x but

not of y. The form of (frictional) bottom stress tyb is not

important except that it should tend to zero for small yb,

for example as for linear or quadratic forms of bed stress

tyb 5 rrsyb or tyb 5Cdjujyb. For simplicity we take the

linear form t
y
b 5 rrsyb, with r a linear bottom friction

coefficient, with units of meters per second (m s21).

In the deep ocean (with depth h0 and surface stress t
y
s0)

we assume that the (meridional) bottom current is small,

and therefore neglect tyb. In other words, the under-

lying premise in depth integrating (1b) to give the

oceanic meridional (along slope) pressure gradient

[i.e., the surface slope in (4) in the deep ocean, away

from the slope], is that the overall deep-oceanmeridional

(alongshore) flow is weak, and t
y
b therefore negligible.

This is justified, for example, 0.01m s21 in 2-km depth

and 5000-km breadth corresponds to 100Sv (1 Sv 5
106m3 s21), which is much greater than the alongshore

(typically meridional) transport integrated over any

ocean basin.

Hence from (4)
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where x52W is the oceanward edge of the base of the

continental slope, with W being the width of the ocean

margin (as in Fig. 1); all terms in (5) are evaluated

at x 5 2W.

Now we again invoke the simplified equilibrium force

balance so that terms in (1a), in particular ›h/›x, are

independent of y. Hence (›2h/›x›y) 5 (›2h/›y›x) 5 0,

that is, the zonal sea surface gradient may not vary

meridionally, and vice versa; but note that ›2h/›x2 is not

necessarily zero, allowing for curvature of the sea sur-

face height field in the x direction (depicted schemati-

cally in Fig. 1). On the sloping margin from (4) and after

substituting for ›h/›y from (5) and for tyb 5 rrsyb,

rr
s
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5 g
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For example, if there is no surface (wind) stress and

density r is a function of y only (with no x or z variation),

then as in Huthnance (1984, section 5b)

y(x)5 y
b
5
gh(h

0
2h)

2r
s
r

›r

›y
. (7)

However, (6) allows for more general density fields and

for wind forcing, unlike the expression in Huthnance

(1984). The main constraint in this new derivation is the

assumption of zero along-slope divergence, that is, that

›y/›y5 0; that is to say, the along-slope flow has reached

equilibrium with the wind forcing and pressure field and

is not evolving along the slope. The term yb is given

by (6), and by integrating the thermal wind relation

f(›y/›z) 5 2(g/rs)(›r/›x) in the cross-slope momentum

equation (1a) vertically from the seabed we obtain the z

dependence implied by geostrophic balance

y5 y
b
2

g

fr
s

ðz
2h

›r

›x
dz0 . (8)

Hence ›y/›y 5 0 is satisfied if both RH terms of (8) are

independent of y.

First therefore, we require ›yb/›y5 0, which is satisfied if

(›2r/›y2)5 0 by (6). Thus ›r/›ymaybe a function of x and z

only (not y).We nowdefine ry accordingly, ry(x, z)5 ›r/›y.

Integrating this expression again with respect to y sim-

ilarly yields r 5 ry(x, z)y 1 r2(x, z), and in so doing

defines the constant of integration r2 as the density field

as a function of x and z, at some arbitrary location y5 0.

Second, we require the last term of (8) to be inde-

pendent of y. This is true if ›2r/›x›y 5 0 so that ry is

independent of x, that is,
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r5 r
y
(z)y1 r

2
(x, z). (9)

We note that (9) and its antecedents may not be nec-

essary conditions for zero along-slope divergence since

(6) and (7) only impose integral constraints on ›2r/›y2

and ›2r/›x›y. However, (9) is a sufficient condition.

[With this notation ›r/›y 5 ry(z).]

Given (9), yb is given by (6) with ry in place of ›r/›y

and y(x, z) by (5) with ›r2/›x in place of ›r/›x (noting the

definition given above of r2 as the density field as a

function of x and z, at some arbitrary location y 5 0).

Thus, y, the slope current, is given by (8) as
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with two separate, additive component parts for r, given

by (9), comprising the y-dependent component ry(z)y,

and x-dependent component r2(x, z). On the RHS of

(10), the two double integral terms in ry represent what

has been called JEBAR forcing of the slope current.

Explicitly, this is the difference between the depth-

integrated pressure gradient evaluated at the x location

in question, and that evaluated at the deep ocean

boundary and scaled by relative water depth h(x)/h0. It

expresses that the deep-ocean force balance, with the y

gradient of pressure through the full oceanic depth,

implies an imbalance (offset by bottom friction) on the

shelf and slope that only experience the upper part of

the merdional pressure gradient field, as detailed in

section 3a. The next two terms are due to wind stress

forcing. Vertical (z) dependence of this solution comes

only through the last term in (10), which derives from

the geostrophic balance (8) of z shear with cross-slope

density gradient. Cross-slope (x) dependence may come

explicitly through the last term in (10), implicitly through

the x dependence of depth (h) in all terms, and through x

dependence of the surface stress tys (and, indeed, x de-

pendence in the bottom stress term could be incorpo-

rated through r, see the discussion section on why this

might be physically reasonable).

For illustrative purposes, we consider a particular

example of (10): that is, for uniform r2 and an along-

shore density gradient only above a thermocline (depth

hT), that is, ry 5 0 (z , 2hT) and uniform ry in the re-

gion z . 2hT (above the thermocline). Then if there is

no surface (wind) stress

y(x)5 y
b
5

gr
y

2r
s
rh

0

[h2
T(h0

2 h)], h. h
T
,

or

y(x)5 y
b
5

gr
y

2r
s
rh

0

h(2h
0
h
T
2h2

T 2 h
0
h), h, h

T
.

3. Discussion

a. Physical description of slope-current forcing

For definiteness, consider the meridional eastern

margin of an idealized Northern Hemisphere ocean

(Fig. 1). Note that the slope current results from the

along-slope component of density gradient; the meridi-

onal orientation in this scenario is not necessary. The

density of the ocean (at least of an upper layer) de-

creases toward the equator. Equation (5) determines a

meridional oceanic surface slope on the basis of small

bottom stress. In the absence of other forcing (in par-

ticular, if the wind stress tys0 is zero), there is nothing to

balance the depth-integrated meridional pressure gra-

dient, which is therefore zero. Thus, the meridional

pressure gradient geostrophically balances zero depth-

integrated zonal flow at all points toward the coast [as

represented by (4); there is no ‘‘spare’’ pressure gradient

accelerating meridional flow through the deep ocean].

However, the meridional density gradient implies depth

variation of the meridional pressure gradient [the first

two terms on the RHS of (1b)]. Near the surface, the

surface slope implies a poleward force (pressure de-

creases poleward). Near the bottom, the meridional

gradient of (hydrostatic) pressure is reversed owing to

the density gradient and the condition (5) of zero depth

integral. A sufficient condition for positive JEBAR term

at all values of slope depth, h, is ry . 0 for all z. As an

illustration of the JEBAR term for the rendition of (10)

using the numerical model density field discussed in

section 3e, the meridional density and pressure gradient

fields are shown as functions of depth and related to the

effective JEBAR over varying slope depth at four lo-

cations (Fig. 2). The water depth over the slope is less

than in the deep ocean. Therefore, the depth integral of

the meridional pressure gradient [the first two terms on

the RHS of (1b)], on the slope and shelf, omits at least

some of the reversed deeper pressure gradient, that is,

the depth-integrated pressure gradient acts as a pole-

ward force in the same sense as the surface slope. This

is a barotropic force over and along the slope, with the

baroclinic component balanced by the vertical shear of

the zonal cross-slope flow [represented by the z deriva-

tives of the (1b) terms in u and ›r/›y]. In the steady state,

this meridional barotropic force is balanced by bottom

frictional stress [represented by t
y
b in (4)] on an along-

slope flow, leading to (6) [and hence (10)] if tyb 5 rrsyb.
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If the along-slope flow is ‘‘too weak,’’ physically it is

accelerated by the ‘‘excess’’ pressure gradient minus the

effects of frictional stress until a new balance is reached

with a faster along-slope flow.

Over the slope, the depth is less than oceanic; the

deeper oceanward flow is missing from the geostroph-

ically balanced zonal cross-slope flow. However, it is

contained in the Ekman transport (Fig. 1) associated

with the meridional bottom stress that balances the

depth-integrated meridional pressure gradient.

b. Forcing, stress, and Ekman transport

Equation (4) shows a very direct relation between

the bottom stress (on the one hand) and (on the other

hand) the combined along-slope components of sur-

face (wind) stress and pressure gradient (here the re-

sult of a surface slope and along-slope density gradient).

Although along-slope uniformity of the flow is assumed,

it is clear that the bottom stress (related to current

strength) is determined directly by the forcing arising

from the pressure gradient. The bottom stress should

not be ‘‘defined away’’ by an assumption of zero along-

slope wind stress and pressure gradient, which in any

case varies with depth. In general bottom stress tb is

nonzero in (4) and a cross-slope Ekman transport tb/f

results.

c. The density field

The density components ry(z)y and r2(x, z) in (9) al-

low for stratification and indeed for depth variation of

the along-slope flow through (8). However, stratification

may affect the bottom Ekman layer. Assuming stable

stratification, an Ekman layer with downslope transport

reduces stratification and is thicker than an Ekman layer

with upslope transport, which intensifies stratification

and is thereby inhibited (Brink 2016). These consider-

ations have been neglected here, another idealisation

along with the alongshore uniformity and steady state

that constrain the density field. Diffusion in the cross-

slope plane tends to reduce these effects of stratification.

In principle (Huthnance 1984) the velocity evolves

along the slope (and in time) toward the equilibrated

form. Coastal-trapped waves carry the information

about initial conditions and hence the evolution space

and time scales are expected to be set by their decay

distance and time. Typically these scales will be of the

order of hundreds of kilometers and days, but depend

strongly on the context and the forcing pattern. If the

forcing matches higher-mode coastal-trapped waves,

the scales will be shorter, as also with strong friction

or a narrow shelf with weak stratification. Density fields

approximating the form (9) over an extent greater than

FIG. 2. (a) ›r/›y(z) plotted alongside its depth integral [i.e., the ‘‘inner’’ integral present both in terms 1 and

2 of (10)], which represents the meridional baroclinic pressure gradient. As this inner integral is mono-

tonically increasing, its depth integral (term 2 where h is the depth coordinate) is curved in z such that it is

smaller than a straight line between its end points (term 1) for all values of z. (b) JEBAR (term 11 term 2) is

depicted as a function of z at the four different slope depths: near the ocean boundary, two on midslope, and

on the shelf. Although this is a barotopic term, its value is derived from the values of the depicted curve

where it intersects the slope. JEBAR is therefore zero at the ocean boundary and small on the shelf, but

maximal over the sloping margin.
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the evolution space and time scales may be expected

to give near-equilibrated velocity approximating (10).

Oceanic eddies impinging on the slope, and storms, are

likely to cause departure from (10) owing to short spatial

and time scales, respectively.

Variations in slope topography are subject to similar

considerations. However, the main impact of changes in

slope steepness is to accelerate or retard the primarily

geostrophic flow to maintain along-slope transport be-

tween any pair of converging or diverging isobaths. Such

adjustment can take place on shorter scales (typically

tens of kilometers).

d. Representing a realistic density field

Evolution of the velocity along the slope (discussed in

section 3e) is forced by mismatch between its form at

any one location and the equilibrium form implied by

density gradients. The mismatch has components from

(6) and from (8). Equation (6) relates the strength of

the near-bed slope current to the along-slope density

gradient; cross-slope dependence is entirely related

to water depth if the condition ›2r/›x›y 5 0 is satisfied.

Then (8) completes the distribution over the cross-slope

section by relating the vertical structure of the current to

the cross-slope density gradient ›r/›x. To represent a

realistic density field in the form (9), one must take cross

slope density section, r2(x, z), with oceanic boundary

sufficiently deep that the approximation of t
y
b 5 0 is

valid, and shelf boundary shallow enough that no slope

current structure is omitted. For ry(z), one must linearize

the along-slope density gradient at each depth level,

over a length scale representative of large-scale merid-

ional density gradient [typically O(100) km]. Ideally,

given sufficient along-slope data, one should take the

linear along-slope density trend. However, this can also

be achieved by taking the difference between two near-

slope density profiles with appropriate meridional spacing,

taking care not to alias smaller-scale density structure local

to the profiles (e.g., via spatial or temporal averaging).

Differences between the original and fitted forms of

density through this process arise if the density variation

along the slope is either nonlinear or varies across the slope.

The variance of the differences between the true density

and the fitted form (9) can be compared with the vari-

ance of the true density to estimate the quality of the fit.

e. Comparison with a numerical model

As a demonstration of how one might apply (10), the

procedure in section 3d was applied to the February

2018 density field, 100 km in along-slope extent be-

tween the 200- and 1700-m isobaths, from the nu-

merical Atlantic Margin Model, 1.5 km (AMM15;

Graham et al. 2018) at 568N on the Hebrides shelf and

slopewest of Scotland. AMM15 is a 1.5-km resolution

NEMO configuration, now the U.K. operational forecast

model for the northwest European shelf and adjacent

Rockall Trough. Figure 3 shows the resulting along-slope

velocity field from(10) (with r5 0.01ms21 and ts5 0.1Pa,

approximately the mean value for along-slope wind stress

from ERA-Interim in our region during February 2018)

alongside the corresponding modeled currents. The value

of r 5 0.01ms21 was chosen such as to give comparable

volume transports in (10) and AMM15. The analyti-

cal solution was smoothed laterally using a 15-km

smoothing window, calculated based upon the analysis

in appendix B, to simulate the effect of lateral viscosity.

The two solutions are in general agreement over the

vertical structure of the slope current and both show

flow reversals at depth over the lower slope and on the

shelf. Both solutions show northward bottom currents

over the upper slope. Figure 4 shows the depth integrals

of the thermal wind, JEBAR, and wind forcing terms

(where the second two are anyway barotropic), and

demonstrates that this feature is largely a result of

JEBAR (with a small contribution from wind stress).

There is some disagreement in the horizontal struc-

ture, with the diagnosed form (10) (Fig. 3a) giving a

narrow and stronger current core around x5 25 km. The

positive bottom velocities over the upper slope in (10)

are weaker than those in the numerical solution. The

southward undercurrent over the lower slopes is also

slower in the numerical solution. Expressed as inte-

grated volume transports, the three terms equate to

JEBAR 5 0.6 Sv, wind 5 0.14 Sv, and thermal wind 5
0.82 Sv. Several mechanisms may account for disagree-

ment between the analytic and numerical solutions:

1) An explanation of the narrower slope current may

lie with the application in (10) of a constant linear

bottom friction. If, instead, r varies inversely with

water depth h (e.g., because tidal currents contribut-

ing to linearized bottom stress will be weaker in deep

water) then (10) would enhance the slope current

in deeper water through the extra proportionality

to h, giving rise to a slope current biased farther

offshore than seen in Fig. 3a but retaining the same

on/offshore extent;

2) A uniform wind stress has more effect in shallower

water, but may add or detract from the density-

driven slope current according to its direction. The

application of a stronger southerly wind stress to

(10) would preferentially enhance along-slope flow

on the upper slope.

3) On/off-shelf tidal currents in AMM15 may advect

the slope current, spreading its cross-slope distribu-

tion in the averaged field shown. If we simply assume
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that a cross-slope tidal displacement X(t) causes

the slope current seen at x to be y(x 2 X), then the

average over a sinusoidal tidal cycle of period T is

T21
Ð T
0
y[x2UT(2p)21 cos(2pt/T)] dt. For the simplest

case (7) with h linear in x, y(x) 5 4Vx(W 2 x)W22;

for width W without tidal advection and maxi-

mum V. With tidal advection the average becomes

4VW22[x(W2 x)2 (U02/2)] providedU0 , x,W2U0

(requiring U0[UT/(2p) , W/2). The reduced maxi-

mum is now V[1 2 (2U02/W2)] and evidently the

slope current is spread by U0 to either side. In the

context of the comparison with tidal currents of or-

der 0.1ms21 and hence displacement amplitudes of

order 1km, the overall slope current of width order

30km will not be much affected but finer structure

associated with r2(x, z) may be smoothed.

4) Tidal rectification is expected to give an added

poleward flow over the upper slope (mainly in

water of depth h , 500m; Stashchuk et al. 2017).

Tides and tidal rectification are included in the

AMM15 velocity field (AMM15 contains tides) but

tides are beyond the scope of the present analysis.

However, tidal rectification may be regarded as addi-

tional forcing as discussed in item ii in appendix D.

The cross-slope distribution of tidally rectified

along-slope flow, as h23(›h/›x)fQ2s2 (item ii in

appendix D), is concentrated close to the shelf

break combining shallow depth and steep slope. This

is typically narrower and further on-shelf compared

with a JEBAR-forced slope current such as (7).

Thus, we expect more realistic bottom friction and

the addition of tidal effects to broaden the slope

current from (10) to a closer comparison with the

AMM15 field in Fig. 3. Both these are topics of on-

going investigation.

Further discrepancies between the time averaged

AMM15 velocity field and the steady analytic solution

FIG. 4. Depth-integrated transport associated with JEBAR

[terms 1 and 2 in (10)], wind stress (terms 3 and 4), and thermal

wind shear (term 5). Only the thermal wind term has z dependence,

visualized in Fig. 3. Area integrated (volume) transports equate to

JEBAR 5 0.6 Sv, wind 5 0.14 Sv, and thermal wind 5 0.82 Sv.

Total volume transport 5 1.56 Sv.

FIG. 3. Comparisonof (a) themeridional velocity derived from theAMM15density fieldusing (10)with (b) the correspondingAMM15velocity

field at a portion of the slope near 568Nwest of Scotland. Both fields are averaged spatially, over the along-slope coordinate, and temporally, over

February 2018. A spatially uniform along-slope wind stress of 0.1Pa was imposed for (a), corresponding to ERA-Interim reanalysis values.
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evaluated solely using the AMM15 density field may

arise from topographical irregularities and unstead-

iness in the modeled flow. Within the model density

averaging grid, the slope width (between 200m rep-

resenting the shelf break, and 1700m) varies by a

factor of about 2. This variation is fairly gradual and

is closely followed by along-slope flow. However,

;15 km ‘‘upstream’’ (to the south) is a marked in-

dentation or ‘‘canyon’’ in the slope, mainly showing

in the depth range 500–1700m. The canyon, width

O(10) km, is known to affect the cross-slope distri-

bution of internal wave energy at tidal frequencies,

locally and to the north, that is, impinging on our grid

area (Stashchuk and Vlasenko 2017).

Regarding flow steadiness: Direct current observa-

tions over an annual cycle (Souza et al. 2001) reveal

steadiness factors between 0.8 and 0.9 in summer, and

about 0.7 in winter, and show that (in summer) the ratio

of RMS along-slope velocity to the mean in the core of

the slope current is less than 0.5. To quantify unsteadi-

ness in the modeled flows we examined 5-day averages

of NEMO modeled transport magnitude at 55.78N be-

tween 108 and 88W from 2010 to 2013 (Guihou et al.

2017; J. Polton 2020, personal communication). This

analysis reveals that 77% of the total variance in the

5-day values remains in monthly mean values. Further,

almost half the monthly variance is in the seasonal cycle.

Thus, while there is modeled flow variability at time

scales shorter than our one month averaging window,

there remains a greater proportion of the variance

(77%) at time scales one might consider to be steady

from the point of view of a geostrophic solution, that is,

monthly or greater.

We note that NEMOAMM15, in common with other

three-dimensional hydrodynamic models, uses a smaller

value for r as a linear bottom drag term (;1 3 1023)

than used in our evaluation of (10). In AMM15 there

will be rapid communication in the vertical of bottom

boundary conditions through the model’s vertical vis-

cosity parameterization. To achieve this NEMO uses a

global, gridded field of barotropic to baroclinic tidal

energy conversion rate (Simmons et al. 2004) and as a

result is highly vertically viscous on the northwest

European slope, a region of strong internal tide gen-

eration (e.g., Inall et al. 2000; Inall et al. 2011). This

may be another factor explaining why we need a large

value for r to reproduce in the depth-integrated (10)

the same transport as seen in AMM15.

A final note is made in reference to the commonly

cited heuristic slope current descriptions (e.g., Simpson

and Sharples 2012, and references therein). In these

descriptions, the zonal sea surface gradient increases

with latitude (depicted in cartoon illustrations; e.g.,

Simpson and Sharples 2012, p. 213), and hence in the

geostrophically balanced state ›y/›y . 0. This is not

allowed in the present formulation, but we would argue

there is no strong evidence in the literature for

European Slope Current transport to increase with

latitude.

4. Conclusions

The form of an ‘‘equilibrium’’ slope current has been

derived for a wider range of oceanic density fields than

in previous literature (Huthnance 1984). There are still

constraints by assumptions that forcing and flow are

quasi-uniform along the slope.

A direct relationship exists between along-slope

forcing (arising from the pressure gradient) and the

bottom stress and Ekman transport. This implies that

along-slope pressure gradient should not be assumed

zero. Indeed the along-slope pressure gradient var-

ies with depth in the presence of along-slope density

gradients. It also responds to any forcing [here we

took a depth integral (4) to determine ›h/›y and

hence the along-slope pressure gradient in relation

to the forcing].

Boundary currents are energetic features of the

global ocean, contributing significantly to meridional

mass, heat, and salt transports and yet they are poorly

resolved in global hydrodynamic models, sparsely

measured by global observing systems, and the liter-

ature on the underlying dynamical balances is mod-

est. Our hope is that this note contributes to the

latter, and provides a new dynamical framework for

further investigation of the roles of bed friction, wind

stress, and changing oceanic density fields on the

shape and strength of the slope currents of the world’s

ocean basins.
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APPENDIX A

Neglected Terms: Advection

Advection is represented by the hitherto neglected

nonlinear terms (2ru � =u, 2ru � =y) in (1). We dis-

tinguish between the y–uniform steady flow of (10) and

other flows which are in effect additional forcing

discussed in appendix D.

Hereweevaluate (2ru �=u,2ru �=y)5 {2r[u(›u/›x)1
w(›u/›z)],2r[u(›y/›x) 1 w(›y/›z)} on the basis of (10).
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An explicit expression for cross-slope u follows from the

steady form of (1b) using (5) for ›h/›y and then (9):

rfu5
›ty

›z
1

g

h
0

 ð0
2h0

ð0
z

r
y
(z0) dz0 dz1

t
y
s0

g

!

2 g

ð0
z

r
y
(z0) dz0 .

For density gradients only (no wind stress), ›u/›x 5 0

in the interior and, in the simplest case of ›ry/›z 5 0

leading to (7),

2ru
›y

›x
52 g2r2y

›h

›x
(h

0
2 2h)

�
h
0

2
1 z

�
1

2fr
s
r
.

Moreover, in this simplest case w is of order u(›h/›x),

rf(›u/›z) 5 (›2ty/›z2) 1 gry, ›y/›z 5 0.

Thus the expressions for 2ru(›y/›x) and 2rw(›u/›z)

[i.e., its scaling (u/f)(›h/›x)gry] are to be compared with

the other terms in (1b), for example the bottom stress

distributed through the water column:

t
y
b/h5

rr
s
y
b

h
5

g(h
0
2 h)r

y

2

by (7). The ratios are of order ry(›h/›x)h0g/(2frsr),

gry(›h/›x)/(rf
2), respectively, and represent conditions

that the JEBAR term ry(›h/›x)g/(2frs) is not too

large (relative to the bottom stress r/h0 in the first

case). For example, if (as in Huthnance 1984) ryh0/rs 5
1027, g5 10ms22, f5 1024 s21, r/h0 5 1026 s21, ›h/›x5
h0/(100km) 5 1022 then the ratios are 0.05 and 0.001,

respectively, and indeed small. The conditions may be

broken if friction is relatively weak or the JEBAR factor

ry(›h/›x) is relatively strong.

For only wind stress forcing,

rfu 5
›ty

›z
1

t
y
s0

h
0

,

rf
›u

›x
5

›2ty

›x›z
,

rf
›u

›z
5

›2ty

›z2
,

y5
1

r
s
r

�
tys 2

h

h
0

t
y
s0

�
,

›y

›x
5

1

r
s
r

�
›tys
›x

2
›h

›x

t
y
s0

h
0

�
, and

›y

›z
5 0,

leading to advection terms

(2ru � =u, 2ru � =y)5
�
2r

�
u
›u

›x
1w

›u

›z

�
,2r

�
u
›y

›x
1w

›y

›z

��

5

�
2

1

rf 2

�
›ty

›z
1

tys0
h
0

�
›2ty

›x›z
and order

1

rf 2

�
›ty

›z
1

tys0
h
0

�
›h

›x

›2ty

›z2
,

2
1

r
s
rf

�
›ty

›z
1

tys0
h
0

��
›tys
›x

2
›h

›x

tys0
h
0

��
.

In comparison with the (1a) and (1b) terms (2rfy, ›ty/›z

or tyb/h5 rrsyb/h) and for simplicity taking a localizedwind

stress so that tys0 5 0, the respective ratios are of order

�
tys
rf

r

hLhf 2
and

tys
rf

r

hLhf 2
,

tys
rfrL

�
,

where L is an on/offshore scale for variation of the wind

stress [in the case of u(›u/›x)] or depth [in the case of

w(›u/›z)]. For example, if the wind stress is such as to

give an Ekman transport tys /rf 5 1m2 s21, L 5 100 km,

f 5 1024 s21, r/h0 5 1026 s21 as before with h 5 h0 5
1 km then the ratios are of order (1026, 1022). The

condition is not so well satisfied if winds are very strong

(large tys ) and localized (small L).

APPENDIX B

Neglected Terms: Lateral Viscosity

Lateral viscosity is neglected in our analysis but

present in the comparator numerical model. Its ex-

pected general effect is to broaden any forced flow. We

illustrate this effect most simply with flow of uniform

density in uniform depth along the ocean margin (i.e., in

direction y) under forcing localized in x and derive a

diffusive length scale L as follows.

The RHS of (1b) has an additional viscous term

m(›2y/›x2). Hence for flow of uniform density in uni-

form depth along the ocean margin (i.e., in direction y)

under forcing localized in x, (4) becomes
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05 ghr
s

›h

›y
1 tys 2 tyb 1

�ð0
2h

m
›2y

›x2
dz5 m

›2

›x2

ð0
2h

y dz

�
.

Assuming that y/ 0 in the ocean far from the coast and

localized forcing, (5) becomes

ghr
s

›h

›y
52 tys0 5 0.

Eliminating hrs(›h/›x), writing t
y
b 5 rrsyb as before and

simplifying yb as aV/h, V[
Ð 0
2h
y dz, a being a factor

O(1) to allow for yb 6¼ V/h, we have

rr
s

aV

h
2 m

›2V

›x2
5 tys .

This gives exponential decay away from localized forc-

ing on a decay/diffusive length scaleL[ (mh/rra)1/2. For

example, if r/h0 5 1026 s21, m/r5 100m2 s21, and a5 1,

thenL5 10 km.We show an example with JEBAR form

gh(h0 2 h)ry/2 [see (6) and (7)] with h replaced by 2Sx

(where S is the implicit slope that defines the width of

forcing); this forcing applies in2h0/S, x, 0 and is zero

elsewhere in x. Thus

L22V2
›2V

›x2
5 2g0x(h

0
1 Sx); g0 [

gSr
y

2mh
0

,

with solution

V5V
F
ex/L

�
2‘, x,2

h
0

S

�
;

V52(2SL2 1 h
0
x1 Sx2)g0L2 1V

1
ex/L

1V
2
e2x/L

�
2
h
0

S
, x, 0

�
;

V5V
C
sinh

�
x2X

L

�
(0, x,X) ,

where the term in g0 is a particular integral matching the

forcing; the exponentials are solutions of the unforced

equation with coefficients chosen to satisfy boundary

conditions V / 0 as x / 2‘, V and ›V/›x are contin-

uous at x52h0/S and x5 0, and V5 0 at the coast x5
X. Hence,

V
C
5 g0L3[2LS2 h

0
2 (2LS1 h

0
)e2h0/(SL)]e2X/L ,

V
1
5

g0L3

2
f2LS1 h

0
1 [2LS2h

0
2 (2LS1 h

0
)e2h0/(SL)]

3 e22X/Lg ,

V
2
5

g0L3

2
(2LS1 h

0
)e2h0/(SL), and

V
F
5

g0L3

2
f(h

0
2 2LS)eh0/(SL) 1 2LS1 h

0

1 [2LS2 h
0
2 (2LS1 h

0
)e2h0/(SL)]e22X/Lg .

For large X (coast distant from forcing) we isolate

the effect of lateral viscosity. Then e22X/L / 0 and

in 2h0/S , x , 0

V/(g0L2)52(2SL2 1 h
0
x1 Sx2)1L(2LS1 h

0
)

3 cosh

�
[x1 h

0
/(2S)]

L

�
e2h0/(2SL) :

In comparison with zero lateral viscosity, this remains

symmetric about the location x52h0/(2S) of maximum

forcing, but the value of V there is

V5
gShr

y

2rarh
0

[22SL2 1 h2
0/4S1L(2LS1 h

0
)e2h0/(2SL)] ,

and

V5
gShr

y

2rarh
0

[22SL2 1L(2LS1 h
0
)(11 e2h0/SL)/2]

at x52h0/S or 0. Writing a [ h0/2SL and omitting a

common factor ghryh0/2rar, these values are plotted for

0 # a # 5 (Fig. B1) corresponding to decreasing lateral

viscosity (diffusive length scale L relative to half-width

h0/2S of forcing) as a increases. For small lateral viscosity,

themaximumflowat x52 h0/2S tends to its valuewithout

lateral viscosity and to zero outside the range of forcing.As

lateral viscosity increases, the maximum flow decreases

(e.g., to less than half its no-lateral-viscosity value for

L5 h0/2S) and the relativemagnitude at the edges of the

forcing increases.

APPENDIX C

Neglected Terms: Spatial Variation in f

Spatial (along slope) variation of Coriolis parameter

f is considered by Furue et al. (2013) in the context of

the Leeuwin Current but with more general applica-

bility. In the region where the flow experiences the

sloping bottom, their solution is propagated poleward

along f/h contours and hence off shelf as f increases in

magnitude. This finding is supported by numerical

calculations in Benthuysen et al. (2014). The assump-

tion of uniform f in the present analysis corresponds

to supposing that flow evolves to the equilibrium

form (sought here) ‘‘faster’’ than f/h evolves along the

shelf (‘‘faster’’ being in the sense of short along-shelf

distance).
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Spatial (along slope) variation of the forcing (by

upwelling-favorable winds) is considered by Samelson

(2017). In this context the response is of course also

spatially varying along the slope; the response also

includes a baroclinic planetary wave component.

APPENDIX D

Other Forcings

Along-slope flow may result from JEBAR (along-

slope pressure gradient) and wind stress as formulated

above. Other forcings include freshwater runoff, geo-

strophic adjustment after mixing, bias in form drag and

hence the response to varying wind stress, rectification

through nonlinearity of oscillatory motion (e.g., eddies,

tidal currents, internal waves). Wind-driven ocean gyres

(y dependent) include eastern and western ocean

boundary currents having widths related to Rossby

wave spatial-decay scales. Most of these forcings vary

strongly along slope and are hence outside the scope

of the present discussion. However, we briefly present

two of these.

(i) Asymmetric form drag. Flow along the continental

slope in the sense opposite to coastal trapped wave

propagation is subject to form drag due to bottom

‘‘roughness’’ (Brink 1986; Haidvogel and Brink

1986; Samelson and Allen 1987); drag on flow in

the sense of coastal trapped wave propagation is

much less. If the form drag is very effective and we

consider a simple case of barotropic flow forced only

by an oscillatory along-slope wind stress tys sin(st)

then linearized (1b) becomes

›y

›t
2

tys
rh

sin(st)1 ry/h5
›y

›t
2

›ty

r›z
52g

›h

›y
5 0

by (5) if the forcing is only over the shelf and slope.

If y 5 0 corresponding to large drag r when the flow

‘‘would be’’ in the opposite sense to coastal trapped

wave propagation, then the solution is

y5

tys
rh

r

h
sin(st)2s cos(st)

h i
s2 1

r

h

	 
2� � [0,st, tan21(st)] ,

and y 5 0 for the remainder of 0 , st , 2p. For

large friction (r/hs � 1) the mean of y tends to

tys /rpr. For small friction (r/hs � 1) the mean of

y tends to 1:085tys r/(rsh
2) approximately.

(ii) Wave, eddy, or tide rectification. Eddies (for exam-

ple) may form from instability of the along-slope

flow, as exemplified in the California Current sys-

tem (e.g.,Marchesiello et al. 2003). This is especially

so in regions of strong upwelling, albeit not the

particular focus here. Topographic Rossby waves

incident from the ocean may yield their mean on-

shore flux of longshore momentum to drive along-

shore flow (Garrett 1979). Oscillatory flow from wind

forcing (Denbo and Allen 1983), or tidal currents

(Huthnance 1981), may be rectified to give mean

FIG. B1. Illustration of effect of lateral viscosity on forced slope current. The abscissa is the

ratio of forcing half-width to diffusive length scale (the effect of diffusion decreases to the

right), defined as a. The upper curve shows ratio of slope currentmaximum to the value without

diffusion. The lower curve shows the ratio of the current at the edge of the forcing to the

maximum value without diffusion (as diffusion increases—to the left—the current becomes

almost the same at its maximum and at the edge of the forcing).

JUNE 2020 HUTHNANCE ET AL . 1653

D
ow

nloaded from
 http://journals.am

etsoc.org/jpo/article-pdf/50/6/1643/4947939/jpod190134.pdf by guest on 03 July 2020



along-slope flow. The latter give flow of order

h23(›h/›x)fQ2s2, where Q is cross-slope fluctuating

transport.
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