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Whales from space: assessing the feasibility of using satellite 

imagery to monitor whales 

Hannah Charlotte Cubaynes 

By the mid-twentieth century, the majority of great whale species were threatened with 

extinction, following centuries of commercial whaling. Since the implementation of a 

moratorium on commercial whaling in 1985 by the International Whaling Commission, the 

recovery of whale population is being regularly assessed. Various methods are used to survey 

whale populations, though most are spatially limited and prevent remote areas from being 

studied. Satellites orbiting Earth can access most regions of the planet, offering a potential 

solution to surveying remote locations. With recent improvements in the spatial resolution of 

satellite imagery, it is now possible to detect wildlife from space, including whales.  

In this thesis, I aimed to further investigate the feasibility of very high resolution (VHR) 

satellite imagery as a tool to reliably monitor whales. The first objective was to describe, both 

visually and spectrally, how four morphologically distinct species appear in VHR satellite 

imagery. The second objective was to explore different ways to automatically detect whales in 

such imagery, as the current alternative is manual detection, which is time-consuming and 

impractical when monitoring large areas. With the third objective, I attempted to give some 

insights on how to estimate the maximum depth at which a whale can be detected in VHR 

satellite imagery, as this will be crucial to estimate whale abundance from space. 

This thesis shows that the four species targeted could be detected with varying degrees of 

accuracy, some contrasting better with their surroundings. Compared to manual detection, the 

automated systems trialled here took longer, were not as accurate, and were not transferable to 

other images, suggesting to focus future automation research on machine learning and the 

creation of a well-labelled database required to train and validate. The maximum depth of 

detection could be assessed only approximately using nautical charts. Other methods such as 

the installation of panels at various depths should be trialled, although it requires prior 

knowledge of the spectral reflectance of whales above the surface, which I tested on post-

mortem samples of whale integument and proved unreliable. Such reflectance should be 

measured on free-swimming whale using unmanned aerial vehicles or small aircraft. Overall, 

this thesis shows that currently VHR satellite imagery can be a useful tool to assess the presence 

or absence of whales, encouraging further developments to make VHR satellite imagery a 

reliable method to monitor whale numbers.   
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Chapter 1 

The study of great whale population 

recovery 

 

1.1 Introduction 

The populations of great whales (hereafter referred interchangeably as whales or great 

whales), which includes baleen whales and sperm whales (Physeter macrocephalus) 

dramatically declined following centuries of commercial whaling (Rocha, Clapham & 

Ivashchenko, 2014; Clapham & Baker, 2018). At the end of the twentieth century, commercial 

whaling was banned in most waters to allow whale populations to rebound (Clapham & Baker, 

2018). More than three decades later, few whale species have recovered to pre-whaling levels, 

and those that have are being exposed to new threats, such as entanglement in fishing gear and 

ship strike (van der Hoop, Vanderlaan & Taggart, 2012; Vaes & Druon, 2013; Clapham & 

Baker, 2018; Reeves, 2018). International and national policies have been developed and 

implemented to mitigate these threats (Reeves, 2018), such as the International Whaling 

Commission moratorium on commercial whaling, and the Marine Mammal Protection Act 

1972 in the US. Appraising the efficiency of these policies is critical and is best achieved 

through rigorous population monitoring (Marsh & Sinclair, 1989). Various methods are 

presently employed to assess the recovery of whale abundance and trends. Assessment is 

conducted via various observation platforms, particularly boats and planes, which tend to be 

unsuitable for monitoring whales in large, remote places (Aragones, Jefferson & Marsh, 1997). 
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Novel applications of existing platforms might help survey whales in previously inaccessible 

places (e.g. VHR satellite imagery; Fretwell, Staniland & Forcada, 2014).  

In this chapter, I aim to consider the reasons for monitoring whales, and the advantages 

and disadvantages of using various surveying platforms (both traditional and emerging 

approaches). First, I review the drivers of whale populations decline and the current obstacles 

to their recovery. Alongside the threats, I look at some of the main legislation and regulations 

established to facilitate whale recovery. As most conservation policies require whale 

populations to be monitored, I compare the various platforms used to currently survey whales, 

as well as emerging platforms, with regards to their suitability, as whale populations recover 

and their distribution ranges expand. 

1.2 Rationales for the study of great whale populations recovery 

Great whale populations were dramatically reduced following commercial whaling, 

bringing some populations to extinction (e.g. North Atlantic population of grey whales, 

Eschrichtius robustus), some close to it (e.g. North Pacific right whales, Eubalaena japonica) 

and others driven to low numbers for much of 20th century (e.g. fin whales, Balaenoptera 

physalus; Clapham and Baker, 2018). Although commercial whaling was stopped to allow 

whale populations to recover, whales are facing new human-made threats. Some of which are 

being addressed through existing international and national legislations (Clapham & Baker, 

2018; Reeves, 2018). 

1.2.1 Collapse of great whale populations 

In the 11th century, the Basques initiated commercial whaling at a regional scale (Aguilar, 

1986; Ellis, 1992), an effort that would later become fully international, reaching remote places 

such as Antarctica, by the 20th century (Townsend, 1935; Tønnessen & Johnsen, 1982; Reeves 

& Smith, 2006). No international organisation or framework regulating commercial whaling 

existed until 1930s, leading to a tragedy of the commons, as each country involved in 

commercial whaling engaged in the race to catch as many whales as technically feasible, 

depleting whale populations globally (Gambell, 1977; Smith, 1984; Reeves & Smith, 2006; 

Clapham & Baker, 2018).  

At the beginning, the focus was primarily on the right whales (Tønnessen & Johnsen, 1982; 

Aguilar, 1986; Clapham & Baker, 2018), represented by three species; North Pacific, North 

Atlantic (Eubalaena glacialis) and southern right whales (Eubalaena australis; Table 1.1). 
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They were the prime target, as they were the “right” whales to hunt. Their slow speed made 

them easy to catch. Their buoyancy also made them easy to collect once dead compared to 

other whales such as rorquals, which would sink (Brown, 1976). Right whales, as with all great 

whale species, are long lived and could not reproduce as fast as they were hunted, precipitating 

their decline.  

Commercial whalers ended up targeting all great whale species, due to a decline in the 

population of the favoured species, which includes the three right whale species, bowhead 

(Balaena mysticetus), sperm whale, grey whale and humpback whale (Megaptera 

novaeangliae; Brown, 1976; Reeves, 2018). When a population of one of the preferred species 

was diminished, whalers moved on to the next new whaling ground, until too few whales (for 

these species) were left to make them a financially sustainable target. Commercial whalers 

moved their attention onto the next best species and perpetuated their ecologically 

unsustainable harvest, reducing whale numbers globally and among almost all species (Brown, 

1976; Reeves, 2018). For some species, up to 90 % of the population was removed (Best, 1993; 

Clapham, 2016). 

Commercial whalers were able to hunt all species due to technological improvements in 

the methods and materials used to catch and process whales (Smith, 1984). Basque whalers 

started by hunting whales from small barges powered by oars and caught whales by throwing 

harpoons by hand. Coastal areas tended to be the preferred area to hunt, with the processing of 

the whale carcasses happening on land (Aguilar, 1986; Ellis, 1992). Then larger ships, powered 

by sail, went on whaling voyages, from which small barges were launched and whales were 

harpooned by hand. The processing of the carcasses occurred mostly on board (Scammon, 

1874). Later in the 19th century, commercial whalers started using steam powered ships, 

equipped with explosive Norwegian harpoons fired with a cannon, meaning the faster 

swimming whales such as fin and blue whales (Balaenoptera musculus) were no longer out of 

reach (Brown, 1976; Fitzmaurice, 2017; Clapham & Baker, 2018). 

1.2.2 First legal protection of great whales 

As whale populations reduced dramatically one after the other, with no new grounds left 

to explore, some major whaling companies, particularly Norwegian and British ones, became 

aware of the necessity to manage whale populations sustainably (Gambell, 1977). 

Internationally, the League of the Nations and the International Council for the Exploration of 

the Sea (ICES, 1964), also recognised that whale populations were depleted, which led to the 

establishment of the International Bureau of Whaling Statistics in 1930 to gain a reliable 
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knowledge of whale catches, and the establishment of the first Convention for the Regulation 

of Whaling (CRW) in 1931 to manage this activity (Gambell, 1977; Bekiashev & Serebriakov, 

1981; Smith, 1984; Fitzmaurice, 2017). However, not all countries involved in commercial 

whaling joined the CRW, such as Germany and Japan, considered to be two large whaling 

countries at the time. When this first agreement came into force in 1935, it prohibited the taking 

and killing of bowhead and right whales (CRW, 1931).  

A decade later, the International Convention for the Regulation of Whaling was signed in 

1946, which led to the establishment of the International Whaling Commission (IWC) in 1949, 

the implementation of quotas for all great whale species, and continuation of the ban on hunting 

of particular species (ICRW, 1946; Clapham & Baker, 2018). However, whale stocks showed 

no signs of recovery, partly because quotas were not usually scientifically informed (Smith, 

1984; Clapham & Baker, 2018; Reeves, 2018) and the primary reason for international whaling 

regulations up until 1965 was to keep the whaling industry profitable by stabilising the oil 

market, as opposed to ensuring an ecologically sustainable harvest (Gambell, 1977; Smith, 

1984). The ineffectiveness of the quotas led to the implementation of the moratorium on 

whaling in 1985/86. A few countries have continued to be involved in commercial whaling 

under objection to the moratorium (i.e. Iceland, Russia, Norway), or have left the IWC, such 

as Japan and Canada. Japan used to hunt whales in international waters under the exemption 

of “scientific whaling” up until July 2019 (IWC, 2018a, 2019a). Since the moratorium, the IWC 

Scientific Committee meet every year to review the recovery of the various whale stocks and 

to advise the IWC on best practice conservation management measures, as well as 

recommending catch quotas for populations that are still hunted (IWC, 2018b). 

1.2.3 Current threats 

Although the whaling moratorium was established with the aim to eliminate the impact of 

commercial whaling on whale populations, whales continue to face a range of other human-

made threats, the impact of which appear to be increasing. In many parts of the world, whale 

populations are impacted by ship strikes, and entanglement in fishing gear (Laist et al., 2001; 

IWC, 2011; Knowlton et al., 2012; Vaes & Druon, 2013). Other threats include noise and 

chemical pollution (Aguilar, 1983; Reijnders et al., 1999; Rolland et al., 2012; Rossi-Santos, 

2015), climate change (Learmonth et al., 2006; Schumann et al., 2013; Silber et al., 2017), 

ozone depletion (Martinez-Levasseur et al., 2011, 2013), and unregulated and inappropriate 

tourism activity (Christiansen, Rasmussen & Lusseau, 2013; Senigaglia et al., 2016). Human 

impacts are causing direct death of whales or weakening their health due to emaciation, 
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infections of injuries, and increased level of stress hormones, which can also lead to their death 

(Knowlton & Kraus, 2001; Hunt et al., 2006; Cassoff et al., 2011; Moore & van der Hoop, 

2012; Moore et al., 2013; Rolland et al., 2017). Appropriate monitoring of regional whale 

distribution and habitat use can help find solutions to avoid or mitigate the impact of such 

threats, which can then be transformed into policy. 

Shipping traffic has increased rapidly since the 1950s (Corbett, 2004), including within 

important whale habitats, such as their feeding or breeding grounds (Vaes & Druon, 2013; 

Bezamat, Wedekin & Simões-Lopes, 2015). For example, the Ligurian Sea is an important 

feeding ground for fin whales, but it also harbours intensive maritime traffic, which has been 

responsible for several collisions with whales (Vaes & Druon, 2013). Measures to reduce the 

number of whales impacted by ship strikes rely on assessing the relative density of whales 

across an area of intense shipping traffic, in order to identify zones of high risk (Di-Méglio, 

David & Monestiez, 2018; Crum et al., 2019; Frantzis et al., 2019). Some of the regions, where 

ship strikes are known to occur, are data poor regarding whale densities, which hinders the 

identification of high collision risk areas and mitigation of that risk. For instance, in the North 

Indian Ocean, opportunistic observations of dead blue whales impacted by ship strikes were 

reported (de Vos, Wu & Brownell, 2013). However, in that region limited data is available on 

blue whale densities and occurrences of ship strikes, prohibiting assessments of the level of 

threat and implementation of appropriate mitigation measures (de Vos et al., 2016). 

Entanglement of whales in fishing gear is also becoming of increasing concern for the 

health of whale populations (Read, 2008; Cassoff et al., 2011; Reeves, McClellan & Werner, 

2013; Basran et al., 2019). As the amount of fishing gear present in the water increased over 

the years, the number of whales getting entangled also increased (Meÿer et al., 2011; Moore, 

2019). Whales tend to get caught mostly in fixed nets (e.g. shark net, lobster and crab pots; 

Meÿer et al., 2011; van der Hoop et al., 2013; Citta et al., 2014), or drift nets (Reeves, 

McClellan & Werner, 2013). The survival of the North Atlantic right whale species is 

particularly affected by entanglement in lobster and crab pots (van der Hoop et al., 2013; 

Moore, 2019). As the North Atlantic right whale is well surveyed, the level of impact that 

entanglement has on this species could be assessed (Knowlton et al., 2012; Moore & van der 

Hoop, 2012; Pace, Corkeron & Kraus, 2017). Entanglement was recognised as one of the main 

threats for North Atlantic right whales, allowing the implementation of measures to reduce 

entanglement, such as modified fishing gear (e.g. Myers et al., 2007; Brillant and Trippel, 

2009; Moore, 2019) and fisheries closure (e.g. Fisheries and Oceans Canada, 2019). In many 

regions of the world, whales are known to be impacted by fisheries entanglement; however, 
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monitoring of the extent of the impact is restrained, due to data deficiency on whale density 

and distribution in areas overlapping with fisheries (Read, Drinker & Northridge, 2006; 

Reeves, McClellan & Werner, 2013). 

1.2.4 Legal requirements to monitor whales 

Various national and international legislation has been implemented to protect whales from 

human-made threats, and to require regular assessment of their recovery (Reeves, 2018). 

Internationally, all species of great whales are granted protection under one or a combination 

of agreements, the main ones being the IWC moratorium on commercial whaling since 1985, 

the Convention on International Trade in Endangered Species of wild fauna and flora (CITES) 

effective since 1973, and the Convention on Migratory Species (CMS) effective since 1983. 

All countries that ratified CITES and CMS already had or subsequently developed appropriate 

legislation and regulations to protect whales in their waters (Reeves, 2018).  

Overviewing this regional work, the Scientific Committee of the IWC continues to review 

periodically how well each whale population is recovering, as previously discussed (IWC, 

2018b). CITES and CMS also have equivalent committees reviewing how whale species are 

faring, respectively the Scientific Council and the Animal Committee (CITES, 2019; CMS, 

2019). These three organisations require regular and continuous monitoring of whale 

population abundance, distribution and trend. 

Nationally, some countries have developed their own laws and regulations requiring the 

monitoring of whale populations (Bejder et al., 2016; Reeves, 2018). For instance, the US has 

been legally bound to monitor whale populations in their waters since 1972 under section 177 

of the Marine Mammal Protection Act 1972 (Reeves, 2018). Another example, the 

Environment Protection and Biodiversity Act 1999, requires Australia to survey whale 

populations inhabiting its waters (Bejder et al., 2016). 

1.3 Recovery status of great whale species 

Since the moratorium on commercial whaling, the recovery of whale populations has been 

studied in many parts of the ocean, particularly in places where they used to be hunted. 

Population recovery was initially delayed for most species, as the Soviet Union was involved 

in illegal whaling by misreporting or underreporting whale catches to the IWC from 1933 to 

1979 (Yablokov, 1994; Yablokov et al., 1998; Ivashchenko & Clapham, 2014; Brownell, 
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Yablokov & Ivashchenko, 2018). Among the 15 species of great whales that the IWC 

recognises, seven are classified under an IUCN Red List threatened category (Table 1.1).   

The rate of recovery has been unique to each species and population, including shifting 

trends in recovery. Species are recovering at different rates, with some not showing signs of 

increase (Table 1.1; Thomas, Reeves & Brownell, 2016; Clapham & Baker, 2018). The North 

Pacific right whale is struggling to recover and is classified as endangered (Table 1.1; Cooke 

and Clapham, 2018; Wade et al., 2011), although they received the same protection in 1935 as 

southern right whales, which are in the least concern category (Table 1.1; Cooke and Zerbini, 

2018). Within a same species, recovery can be uneven among sub-populations and sub-species, 

as populations and sub-populations face threats in one part of the world and not in another 

(Clapham & Baker, 2018). Bowhead whales are considered to be of least concern on the IUCN 

Red List since 2008 (Table 1.1; Cooke and Reeves, 2018), although the Okhotsk Sea sub-

population is deemed endangered (Table 1.1; Cooke, Brownell & Shpak, 2018) and the East 

Greenland-Svalbard-Barents Sea remains critically endangered (Table 1.1; Cooke and Reeves, 

2018b). There are species that showed signs of recovery but later their number decreased. North 

Atlantic right whales were on their way to recovery after the international prohibition to kill 

them in 1935; however, their survival is being threatened by ship strikes and entanglement in 

fishing gear (van der Hoop, Vanderlaan & Taggart, 2012; Pace, Corkeron & Kraus, 2017; 

Cooke, 2018).  

Assessing the recovery of some whale populations remains difficult in some parts of the 

world considered remote, such as deep and pelagic regions, which most great whale species 

inhabit (Webb, vanden Berghe & O’Dor, 2010; Kaschner et al., 2011, 2012; Pyenson, 2011). 

Kaschner et al., (2011, 2012) showed that at a global scale great whale biodiversity was 

expected to be higher in less studied areas of the globe (e.g. South Pacific). The paucity of 

spatial and temporal information for some species prevents the assessment of their recovery. 

For instance, Omura’s whale (Balaenoptera omurai) is classified as data-deficient, since 

insufficient information was available during its last conservation status assessment in 2017 

(i.e. no abundance estimate and uncertain distribution range; Table 1.1; Cooke and Brownell, 

2019).
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Table 1. 1 IUCN Red List conservation status for all great whale species recognised by the Society for Marine Mammalogy (SMM) and the 

IWC. The “not assessed” whales are species and sub-species recognised by SMM but not accepted by the IWC Scientific Committee 

(Committee on Taxonomy, 2018; IWC, 2019b). The IUCN Red List was last consulted on 4th July 2019. 

Species 
Common 

English name 
Sub-species 

Sub-

population 

IUCN Red List 

Status 

Assessment 

year 

Recognised 

by SMM 

Recognised 

by IWC 

Eubalaena glacialis 
North Atlantic 

right whale 
  Endangered 2017 Yes Yes 

Eubalaena japonica 
North Pacific 

right whale 
  Endangered 2017 Yes Yes 

   
Northeast 

Pacific 

Critically 

endangered 
2017 NA NA 

Eubalaena australis 
Southern right 

whale 
  Least concern 2017 Yes Yes 

   Chile-Peru 
Critically 

endangered 
2017 NA NA 

Balaena mysticetus 
Bowhead 

whale 
  Least concern 2018 Yes Yes 

   

East 

Greenland-

Svalbard-

Barents Sea 

Endangered 2018 NA NA 

   Okhotsk Sea Endangered 2018 NA NA 
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Species 
Common 

English name 
Sub-species 

Sub-

population 

IUCN Red List 

Status 

Assessment 

year 

Recognised 

by SMM 

Recognised 

by IWC 

   

Bering-

Chukchi-

Beaufort Sea 

Least Concern 1996 NA NA 

Caperea marginata 
Pygmy right 

whale 
  Least concern 2018 Yes Yes 

Balaenoptera musculus Blue whale   Endangered 2018 Yes Yes 

 
Northern blue 

whale 
Ssp. musculus  Not assessed  Yes  

 
Pygmy blue 

whale 
Ssp. brevicauda  Not assessed  Yes  

 
Antarctic blue 

whale 
Ssp. intermedia  

Critically 

endangered 
2018 Yes  

 

Northern 

Indian Ocean 

blue whale 

Ssp. indica  Not assessed  Yes  

 
Chilean blue 

whale 
Un-named  Not assessed  Yes  

Balaenoptera physalus Fin whale   Vulnerable 2018 Yes Yes 

   Mediterranean Vulnerable 2010 NA NA 

 
Pygmy fin 

whale 
Ssp. patachonica  Not assessed  Yes  
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Species 
Common 

English name 
Sub-species 

Sub-

population 

IUCN Red List 

Status 

Assessment 

year 

Recognised 

by SMM 

Recognised 

by IWC 

 
Northern fin 

whale 
Ssp. physalus  Not assessed  Yes  

 
Southern fin 

whale 
Ssp. quoyi  Not assessed  Yes  

Balaenoptera borealis Sei whale   Endangered  2018 Yes Yes 

 
Northern sei 

whale 
Ssp. borealis  Not assessed  Yes  

 
Southern sei 

whale 
Ssp. schlegelii  Not assessed  Yes  

Balaenoptera edeni Bryde’s whale   Least concern 2017 Yes Yes 

 
Offshore 

Bryde’s whale 
Ssp. brydei  Not assessed  Yes  

 Eden’s whale Ssp. Edeni  Not assessed  Yes  

   
Gulf of 

Mexico 

Critically 

endangered 
2017 NA NA 

Balaenoptera omurai 
Omura’s 

whale 
  Data deficient 2017 Yes Yes 

Balaenoptera 

acutorostrata 

Common 

minke whale 
  Least concern 2018 Yes Yes 
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Species 
Common 

English name 
Sub-species 

Sub-

population 

IUCN Red List 

Status 

Assessment 

year 

Recognised 

by SMM 

Recognised 

by IWC 

 
North Atlantic 

minke whale 

Ssp. 

acutorostrata 
 Not assessed  Yes  

 
North Pacific 

minke whale 
Ssp. scammoni  Not assessed  Yes  

 
Dwarf minke 

whale 
Un-named  Not assessed  Yes  

Balaenoptera 

bonaerensis 

Antarctic 

minke whale 
  Near threatened 2018 Yes Yes 

Megaptera 

novaeangliae 

Humpback 

whale 
  Least concern 2018 Yes Yes 

   Arabian Sea Endangered 2008 NA NA 

   Oceania Endangered 2008 NA NA 

 

Southern 

humpback 

whale 

Ssp. australis  Not assessed  Yes  

 

North Pacific 

humpback 

whale 

Ssp. kuzira  Not assessed  Yes  

 

North Atlantic 

humpback 

whale 

Ssp. 

novaeangliae 
 Not assessed  Yes  
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Species 
Common 

English name 
Sub-species 

Sub-

population 

IUCN Red List 

Status 

Assessment 

year 

Recognised 

by SMM 

Recognised 

by IWC 

Eschrichtius robustus Grey whale   Least concern 2017 Yes Yes 

   Western Endangered 2018 NA NA 

Physeter 

macrocephalus 
Sperm whale   Vulnerable 2008 Yes Yes 

   Mediterranean Endangered 2006 NA NA 
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1.4 Platforms to study great whale recovery 

To assess the recovery of a species and to better support their conservation, reliable 

biological, ecological and geographical data needs to be assembled on population abundance, 

distribution and trends (IUCN, 2016; IWC, 2018b; CITES, 2019; CMS, 2019), particularly for 

the less studied regions. Various platforms can collect information about whales, via either 

direct or passive observation, or individual identification of whales (Aragones, Jefferson & 

Marsh, 1997; DEWHA, 2010; Hunt et al., 2013). Here I review some of the platforms used to 

survey whale abundance, distribution and trends; including emerging platforms (Table 1.2). 

1.4.1 Boat 

1.4.1.1 Visual 

Visual surveys conducted from a boat is the best approach for whale abundance surveys. 

From a boat, line-transect surveys (Buckland & Turnock, 1992; Hedley & Buckland, 2004; 

Bortolotto et al., 2016) and mark-recapture surveys (Jolly, 1965; Seber, 1965; Calambokidis 

& Barlow, 2004; Straley, Quinn & Gabriele, 2009) can be conducted. Mark-recapture surveys 

can either use visual sighting data only (photo-identification; e.g. Calambokidis & Barlow, 

2004; Straley, Quinn & Gabriele, 2009) or visual data combined with non-visual data (i.e. 

biopsy sample; e.g. Smith et al., 1999; Carroll et al., 2011). A main advantage of visual boat-

based surveys (i.e. line-transect and mark-recapture) is the possibility to differentiate species 

and individuals (Friday et al., 2000; Constantine et al., 2007), which allows to estimate 

abundance, build trends, and assess the spatial and temporal distribution of whales. For 

instance, a multi-year line-transect survey revealed an increase in humpback whale abundance 

for the western South Atlantic population (Bortolotto et al., 2016), and a mark-recapture survey 

showed a decline in the abundance of North Atlantic right whale (Pace, Corkeron & Kraus, 

2017). Another prime advantage of visual boat-based surveys is the slow speed at which 

surveys can be conducted, allowing higher detection probabilities in comparison to other 

platforms.  

Although visual monitoring conducted from a boat is the best approach for whale 

abundance surveys, it presents some limitations. Such surveys are limited by weather 

conditions, as it impacts the confidence in the sighting data, restraining the amount of time that 

can be spent surveying whales (Marsh & Sinclair, 1989). A sea state below or equal to Beaufort 

3 is required (Marsh & Sinclair, 1989; Bortolotto et al., 2016). Another drawback of visual 
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boat-based surveys is the disturbance it can cause to some great whale species (Würsig et al., 

1998), as the sound made by the engine and propeller is expected to impact some whale species 

(Richardson et al., 1995). This is relevant for the mark-recapture surveys, which require a close 

approach to the animal to allow identification of individual whales (Friday et al., 2000; 

Constantine et al., 2007). The cost of visual ship-based surveys varies widely, depending on 

the type of boat used. An inexpensive boat survey can be about 10,000USD for two weeks 

(Aragones, Jefferson & Marsh, 1997). Boats surveys are often spatially limited, as covering 

large areas proves time-demanding, logistically difficult, and therefore costly (Aragones, 

Jefferson & Marsh, 1997; Fiori et al., 2017; Lennert-Cody et al., 2018), meaning large and 

remote places are challenging to regularly monitor using a boat (Aragones, Jefferson & Marsh, 

1997). As visual boat-based surveys rely on visual observations of the animal, it is more 

complex to estimate whale abundance for species that spend less time at the surface, such as 

deep diving species (e.g. sperm whale; Barlow, 1999). Visual boat-based surveys could benefit 

from being combined with passive acoustic surveys (Barlow & Taylor, 2005). 

1.4.1.2 Passive acoustics 

Passive acoustic surveys conducted from a boat can be useful to assess occurrence, 

estimate trends in relative abundance, and evaluate the broad spatial and temporal distribution 

of some great whale species (McDonald, 2004; Barlow & Taylor, 2005; Heinemann et al., 

2016). Species differentiation is feasible to some extent, as some vocalisations are 

characteristics of a species, such the “28Hz” for the Antarctic blue whale subspecies 

(Balaenoptera musculus intermedia; Rankin, Ljungblad & Clark, 2005); however, sometimes 

vocalisations are similar across some species, preventing species identification (Heinemann et 

al., 2016). Passive acoustics is particularly useful to monitor deep-diving species, which spend 

less time at the surface and are difficult to study using visual surveys, such as sperm whales 

(Gordon et al., 2000; Gannier, Drouot & Goold, 2002; Barlow & Taylor, 2005). For instance, 

a line-transect survey towing hydrophones estimated sperm whale abundance in the eastern 

North Pacific (Barlow & Taylor, 2005). Instead of towed-arrays, drifting sonobuoys can be 

launched from a boat and can be particularly helpful to support visual boat-based surveys in 

acquiring the necessary data (Oleson et al., 2003; McDonald, 2004; Wade et al., 2006; 

Heinemann et al., 2016).  

Some of the disadvantages of visual boat-based surveys do not apply to passive acoustic 

surveys conducted from a boat; including daylight-restriction and weather limitation 
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(McDonald, 2004; Barlow & Taylor, 2005; Heinemann et al., 2016). Passive acoustic surveys 

can monitor large areas, as hydrophones adapted to the low frequency of great whale species 

(except sperm whales) can cover a range of hundreds of kilometres (Heinemann et al., 2016). 

As the technique of passive acoustics does not emit any noise, it is not thought to cause 

disturbances to whales. Furthermore, passive acoustic surveys conducted from a boat do not 

require a close approach to the animal as mark-recapture surveys do, reducing the impact of 

engine noise (McDonald, 2004; Heinemann et al., 2016). 

Passive acoustic surveys conducted from a boat have some limitations. Assessing the 

distance of an acoustic detection can be difficult depending on the set-up used (Branch et al., 

2007; Heinemann et al., 2016). Whales do not always vocalise; therefore, the lack of acoustic 

detection is not necessarily on indication of the absence of whales (Cato et al., 2006). Currently, 

passive acoustic boat-based surveys tend to be used in combination with visual surveys. 

Merging visual and passive acoustic surveys into one platform (here boat) is more cost efficient 

(Heinemann et al., 2016). Similar to visual boat-based surveys, remote regions are difficult to 

survey using passive acoustics deployed from a boat (Aragones, Jefferson & Marsh, 1997). 

1.4.2 Plane 

Planes are solely used for visual surveys of various scales (Aragones, Jefferson & Marsh, 

1997; Mobley, Spitz & Grotefendt, 2001; Herr et al., 2019). Aerial surveys can be focused on 

coastal regions, for example in Península Valdés, Argentina, for southern right whales (Cooke, 

Rowntree & Payne, 2001; Rowntree, Payne & Schell, 2001); or they can cover large offshore 

areas, such as parts of the Mediterranean to monitor fin whales (Panigada et al., 2011, 2017). 

One main advantage is that planes can cover a wider geographic range than visual boat-based 

surveys, for the same amount of time (Aragones, Jefferson & Marsh, 1997). However, more 

animals are likely to be missed from a plane compared to a boat, as the survey speed is faster. 

Similar to boats, planes have been used in multiple places around the globe to survey most 

whale species, excluding sperm whales as they are a deep diving species. From a plane, species 

can be differentiated (Aragones, Jefferson & Marsh, 1997; Mobley, Spitz & Grotefendt, 2001; 

Herr et al., 2019). Sometimes individuals with distinct head and body characteristics can be 

identified too, such as bowhead whales (Rugh, 1990; Mocklin et al., 2012). With the data 

collected during aerial surveys, abundance can be estimated (e.g. Mobley et al., 2001). If aerial 

surveys are repeated seasonally or yearly, trends can be built (e.g. Cooke et al., 2001). Aerial 

surveys dedicated to studying whales are flown at altitudes above 200 m to avoid causing 

disturbance to the whales (Patenaude et al., 2002; Panigada et al., 2017; Rekdal et al., 2015). 
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Regarding disadvantages, aerial surveys are known to be dangerous for human life 

(Hodgson, Kelly & Peel, 2013). Planes are also reliant on low wind conditions with most 

surveys conducted at Beaufort scale 3 or under, as higher wind limits visibility (Donovan & 

Gunnlaugsson, 1989; Marsh & Sinclair, 1989; Aragones, Jefferson & Marsh, 1997; Panigada 

et al., 2011; Rekdal et al., 2015). This weather limitation has a direct impact on the survey cost, 

as during windy periods, the amount of down time increases (Aragones, Jefferson & Marsh, 

1997; Hodgson, Kelly & Peel, 2013; Fiori et al., 2017). These costs and weather challenges are 

often obstacles to monitoring remote places, which partly explains the infrequent plane surveys 

of such places (Aragones, Jefferson & Marsh, 1997; Hodgson, Kelly & Peel, 2013). 

1.4.3 Land station 

Land stations are practical to visually survey certain species, which seasonally migrate 

very close to the coast; such as bowhead whales off Point Barrow (Krogman et al., 1989; 

George et al., 2013), humpback whales off the eastern Australian coast (Brown & Corkeron, 

1995; Noad et al., 2011), and grey whales off the Mexican and US west coasts (Rugh, 1990; 

Pérez-Puig, Heckel & Breiwick, 2017). Land-based surveys can also be very useful to monitor 

whales where their calving grounds are very close to shore, such as southern right whales in 

Saldanha Bay, South Africa (Barendse & Best, 2014), and in the Head of Bight, Australia 

(Burnell & Bryden, 1997; Charlton et al., 2019). Sometimes, these land-based surveys are 

periodically complemented by parallel surveys at sea, in order to calculate the number of 

animals likely to be missed by land-based observations (Bryden, Kirkwood & Slade, 1990; 

Findlay & Best, 1996). Other advantages to land-based surveys, include the absence of 

disturbance to the animals, the potential lower cost, and the capacity to monitor the area of 

interest more than daily (Aragones, Jefferson & Marsh, 1997). For some land-based surveys, 

temporal coverage can be spread across the whole migrating or calving season (e.g. Burnell 

and Bryden, 1997; Noad et al., 2011). 

Concerning disadvantages, visual land-based surveys are spatially limited to collecting 

data in the local vicinity (Evans & Hammond, 2004). Similar to visual boat-based survey, 

weather is limiting, as high wind will reduce the visibility (Aragones, Jefferson & Marsh, 

1997). Most land-based surveys are relatively easy to access (Rugh, 1990; Brown & Corkeron, 

1995; Barendse & Best, 2014; Charlton et al., 2019), making the study of remote regions from 

land challenging. 
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1.4.4 Fixed platforms 

Moorings and deep-sea cables, equipped with hydrophones, are often used to conduct 

passive acoustic monitoring surveys. Both fixed platforms can help assess the occurrence, and 

broad spatial and temporal distribution of great whale species (Mellinger et al., 2007; Sciacca 

et al., 2015; Heinemann et al., 2016; Frouin-Mouy et al., 2017). For instance, moorings off the 

US east coast helped detect the changing distribution of North Atlantic right whales (Davis et 

al., 2017). Deep-sea cables installed off Italy allowed surveying the occurrence and broad 

temporal distribution of fin whales (Sciacca et al., 2015). Fixed passive acoustic detection can 

in some situations be used to estimate density (Mellinger et al., 2007), such as North Pacific 

right whales (Marques et al., 2011).  

Similar to the passive acoustic boat-based surveys, passive acoustic surveys using 

moorings or deep-sea cables offer the advantages to survey during night-time (as well as during 

day-light), under all type of weather conditions, without causing disturbances to whales 

(Mellinger et al., 2007; Heinemann et al., 2016). Fixed passive acoustics surveys are also 

considered to be low cost compared to the other platforms (Mellinger et al., 2007), and present 

the additional advantage to allow surveying of the same area for several weeks, months or years 

(Mellinger et al., 2007; Heinemann et al., 2016). Moorings and deep-sea cables can help survey 

remote regions for the presence of great whales (Mellinger et al., 2007). For instance, moorings 

in the Southern Hemisphere have helped gather valuable data to allow differentiation between 

two blue whale sub-species (Balaenoptera musculus intermedia and B. m. brevicauda; Rankin, 

Ljungblad & Clark, 2005; McDonald, 2006; Širović et al., 2016).  

Current limitations of fixed platforms are similar to those presented in Section 1.4.1.2. for 

acoustic surveys conducted from a boat; including the difficulty to assess the distance of an 

acoustic detection, some vocalisations are not species-specific, and whales do not always 

vocalise (Branch et al., 2007; Heinemann et al., 2016). An additional limitation is the large 

amount of data collected, as fixed acoustics platforms can collect continuously for months. 

Analysing the recordings efficiently requires the development of automated systems detecting 

whale vocalisations (Heinemann et al., 2016). 

1.4.5 Emerging platforms 

1.4.5.1 UAVs 

Two types of unmanned aerial vehicles (UAVs) tend to be employed for marine mammal 

research, rotating or fixed wings (Koski et al., 2009; Fiori et al., 2017). Here, I will focus on 
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fixed wing UAVs, as this platform is currently being developed to survey whale abundance, 

distribution and trends (Koski et al., 2009; Fiori et al., 2017). For instance, Hodgson, Peel & 

Kelly (2017) estimated humpback whale abundance off an island off eastern Australia, using a 

fixed wing UAV. This type of UAV can be remotely controlled from a longer distance than 

rotating wing UAVs, giving the opportunity to reach places further away from the launch base. 

Fixed wing UAVs can provide sufficient spatial resolution to differentiate species (Koski et 

al., 2009; Fiori et al., 2017; Hodgson, Peel & Kelly, 2017). 

Concerning limitations, UAV-based visual surveys are impacted by wind conditions, 

similar to ship-based and aerial surveys (Koski et al., 2009; Hodgson, Peel & Kelly, 2017). 

Fixed wing UAVs are not thought to cause disturbance to whales, even when flown at lower 

altitudes than planes (e.g. 120 m; Koski et al., 2009; Koski, Abgrall & Yazvenko, 2010; Koski 

et al., 2015). Cost of deploying fixed-wing UAVs are currently comparable to manned surveys 

(Hodgson, Peel & Kelly, 2017), except in remote regions where a study by Angliss et al., 

(2018) suggests UAV surveys are more expensive than the already established manned aerial 

surveys. An important limitation to using UAVs are the aviation regulations they need to follow 

(Fiori et al., 2017). For some countries (e.g. Australia, and Canada), UAVs cannot be flown 

beyond line of sight (Koski, Abgrall & Yazvenko, 2010; Hodgson, Kelly & Peel, 2013), 

limiting the range that could potentially be surveyed using such UAVs. In time, both cost and 

regulations might be lowered (Koski, Abgrall & Yazvenko, 2010; Watts, Ambrosia & Hinkley, 

2012). Another limitations of UAVs, is the large amount of data collected, which makes manual 

detection of whales time-consuming, encouraging the need to develop automated detection 

systems (Hodgson, Kelly & Peel, 2013; Seymour et al., 2017). 

1.4.5.2 VHR satellites 

Very high resolution (VHR) satellite imagery has been used for Earth observation for the 

past twenty years and applied to diverse subjects (e.g. bathymetry, disaster management, land 

cover; Stumpf, Holderied & Sinclair, 2003; Voigt et al., 2007; Immitzer, Atzberger & Koukal, 

2012). This technology is now being suggested as an additional platform to conduct visual 

surveys of whales (Abileah, 2002; Fretwell, Staniland & Forcada, 2014; Borowicz et al., 2019). 

VHR satellites offer the possibility to cover large areas (Lennert-Cody et al., 2018). For 

instance, the WolrdView-3 satellite can acquire a single image of 4680 km2 (DigitalGlobe, 

2017). For some VHR satellites, imagery of a same place can be acquired daily, meaning 

remote locations, previously difficult to survey regularly using other platforms, could be 
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surveyed more often (Fretwell et al., 2019). Concerning disturbances to whales, satellites are 

not expected to cause any. As the use of this platform is in its infancy (Abileah, 2002; Platonov, 

Mordvintsev & Rozhnov, 2013; Fretwell, Staniland & Forcada, 2014; Leaper & Fretwell, 2015; 

Borowicz et al., 2019; Fretwell et al., 2019), it is currently not known whether it could be used 

to accurately estimate whale abundance, distribution and trends.  

As with all visual surveys, weather conditions limit the use of VHR satellite imagery to 

study whales (Abileah, 2002; Fretwell, Staniland & Forcada, 2014; Leaper & Fretwell, 2015), 

even more so than boats and planes, as cloud cover obstructs visibility in  VHR satellite 

imagery (Lennert-Cody et al., 2018). It is currently unknown whether species can be 

differentiated in VHR satellite imagery, as all studies have focused on single species location 

(Abileah, 2002; Platonov, Mordvintsev & Rozhnov, 2013; Fretwell, Staniland & Forcada, 

2014; Leaper & Fretwell, 2015). VHR satellite imagery are not freely accessible, as they are 

operated by private companies; although it is estimated to be cheaper than boat and plane 

surveys for remote areas (Seymour et al., 2017; LaRue et al., 2011). The cost of imagery is 

variable, and it rises as the area, spatial and temporal resolutions increase. In some instances, 

it may be free, such as for disaster relief, or provided at a lower cost for research and education 

(e.g. Planet Lab and the discontinued DigitalGlobe Foundation). As VHR satellites can acquire 

imagery over large areas, manually scanning the imagery for the presence of whales is time-

consuming, highlighting the need to develop automated systems to detect whales (Fretwell, 

Staniland & Forcada, 2014; Lennert-Cody et al., 2018). 

With further developments (e.g. species differentiation, automation), VHR satellite 

imagery might prove to be a useful tool to study whales, as it can acquire information at a 

spatial scale that whales use and beyond the scope of many boat-based and aerial surveys. VHR 

satellites might help increase the efficiency of more established platforms, such as boat, as it 

could be used to pre-scout an area for the presence of whales to select the best time and place 

to conduct a boat survey, which is able to acquire more detailed information about individual 

whales.



The study of great whale population recovery 

20 

 

Table 1. 2 Comparison among platforms used to survey whales, based on the type of data collected, equipment used, knowledge acquired, 

advantages and disadvantages. A “” indicates a positive answer, “-” a negative answer, and “?” the possibility that it becomes a positive 

answer in the future. 

 Boat Plane Land Fixed platforms UAV VHR 

satellite 

Data       

Visual sighting       

Binocular    - - - 

Naked eye    - - - 

Digital camera -  - -  - 

Thermal camera -  - -  - 

Optical sensors - - - - -  

Photo ID       

Digital camera   - -  - 

Biopsy sample  - - - - - 

Acoustic detection       

Hydrophone  - -  - - 

Knowledge       

Density      ? 

Relative abundance      ? 

Presence/absence       

Distribution     ? ? 

Habitat       

Feeding      ? 

Calving      ? 

Breeding      ? 

Behaviour       

Foraging      ? 

Socialising      ? 

Travelling 

 

 
 

 
 

 
 

 
 

 
 

? 
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 Boat Plane Land Fixed platforms UAV VHR 

satellite 

       

Advantages       

Differentiate species      ? 

Differentiate individual   - -  - 

Monitor large area (>7000 

km2/day)1 
- - - - -  

Monitor remote places - - -  ?  

High temporal coverage (daily) - - 
2  -  

Disadvantages3       

Disturbance   - -  - 

Weather-dependant    -   

  

                                                 

1 Calculated based on maximum contiguous area collected in a single pass for WorldView-3 satellite 

2 During field seasons 

3 Cost was not included as it is difficult to quantify and it varies widely within each method 
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1.5 Conclusion 

As whale populations are recovering from previous exploitation and continue to face other 

human-made threats, there is a strong conservation-based rationale for developing new 

technology to monitor abundance, distribution and trends (Reilly et al., 2008, 2013). Whale 

population sizes and distributions are traditionally assessed using boat, land, or aerial survey 

platforms (e.g., Donovan and Gunnlaugsson, 1989; Hiby and Hammond, 1989; Buckland et 

al., 2001); although they tend to be limited when it comes to regularly monitoring large and 

remote areas. Since most baleen whales are seasonally migratory (Rugh, Shelden & Schulman-

Janiger, 2001; Mate & Urbán-Ramirez, 2003; Rasmussen et al., 2007; Jefferson et al., 2015), 

vast oceanic areas must often be surveyed to build a good understanding of migratory routes, 

distribution, abundance, and habitat use in different seasonal habitats. Some great whale 

species inhabit remote areas not easily accessed by boat or plane (Nieukirk et al., 2004; 

Mellinger et al., 2007). The challenges of studying large and remote marine areas could 

potentially be assisted by utilising the existing VHR satellites orbiting the Earth (Abileah, 

2002; Fretwell, Staniland & Forcada, 2014; McMahon et al., 2014; LaRue, Stapleton & 

Anderson, 2017). As the use of this platform to survey whales is in its infancy, further 

developments are needed. To comprehend how VHR satellite imagery can be best applied to 

survey whales and how to overcome current limitations, a first requirement is to understand 

the technical properties of VHR satellite imagery and learn from pervious applications to 

wildlife surveys.
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Chapter 2 

VHR satellite imagery: A new platform to 

study great whales 

2.1 Introduction 

Very high resolution (VHR) satellites are part of a constellation of satellites used for Earth 

observation, which commenced in 1957 with the launch of Sputnik-1, the first man-made 

satellite to orbit around the Earth (Figure 2.1). Sputnik-1 used radio signals to send back to 

Earth information about the various layers constituting the Earth’s atmosphere (Anon, 1957). 

Since Sputnik-1 several satellites have been placed in orbit to collect information about Earth, 

among them are some specialised in acquiring imagery. The first satellite to send an image of 

Earth was the Explorer 6 in 1959 (NASA, 2019a). The black and white image produced, 

capturing the north central Pacific (Figure 2.1), was not of good enough quality to derive any 

information about Earth. Nevertheless, it paved the way for further developments on satellite 

imagery. The spatial resolution of satellite imagery improved rapidly for military satellites, 

with the launch of the first satellite of the CORONA satellite programme in 1960. The initial 

spatial resolution of 12 m improved to 3 m with subsequent CORONA satellites. However, the 

imagery was kept confidential and only accessible to the military until the end of the cold war 

in 1989 (Ruffner, 1995). Non-military satellite programmes were also developed, although at 

a slower pace and provided lower spatial resolution. In 1972, the National Aeronautics and 

Space Administration (NASA) of the US established the Landsat program, dedicated to the 

acquisition of satellite imagery of Earth, with the primary aim to monitor changes in Earth’s 

resources (NASA, 2019b). This programme was initiated with the Landsat-1 satellite (80 m 
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spatial resolution) and it is still running with the Landsat-8 satellite (15 m spatial resolution) 

launched in 2013 (Figure 2.1) and Landsat-9 planned for 2020 (NASA, 2019c).  

Since the infancy of the Landsat program, several other satellites dedicated to Earth 

imagery were launched, generally with significant technical improvements. One of the main 

advances is spatial resolution, allowing the detection of smaller features on the Earth surface, 

such as buildings and trees (Ok, Senaras & Yuksel, 2013; Srestasathiern & Rakwatin, 2014). 

Over the past decades the spatial resolution has improved from 80 m in 1972 (Landsat-1; 

USGS, 2019) to less than a meter in 1999, with the launch of VHR satellites (Figure 2.1; Tanaka 

and Sugimura, 2001). Currently the WorldView-3 satellite offers the highest, non-military, 

spatial resolution (i.e. 0.31 m; DigitalGlobe, 2017). The increase in the resolution for 

commercial satellites, such as the WorldView-3 (Figure 2.1), was possible due to changes in 

the American legislation in August 2014, which allowed commercial satellite imagery to have 

a maximum resolution of 25 cm instead of the previously authorised 50 cm.  

The improvement in the spatial resolution of Earth observation satellites with the 

development and launch of VHR satellites, is offering new opportunities for the study of 

wildlife, and particularly for great whales (Fretwell, Staniland & Forcada, 2014; LaRue, 

Stapleton & Anderson, 2017). For the purpose of this thesis, the focus is on the non-military 

satellites, including both commercial and civilian. The aim of this chapter is to demonstrate 

how VHR satellites are more suitable for the study of great whales, when compared with other 

satellites more commonly used in Earth observation. First, I highlight the range of technical 

properties necessary to consider when choosing the most adapted satellite to monitor a specific 

target object. I will also present the main criteria a target should fulfil to be detectable from 

space. Then I review how Earth observation satellites have been used to monitor wildlife, with 

VHR satellites appearing as the preferred option. Finally, I discuss the use of Earth observation 

satellites for great whales, which only comprises VHR satellites.
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Figure 2. 1  A timeline summary of some of the main events in Earth observation that led to the development and launch of VHR satellites, with 

a focus on the changes in the footprint of a single pixel on the ground (filled squares). The launch of the CORONA’s program in 1960 is in a 

dash line as the imagery acquired by this programme was only available to non-military in 1989. 
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2.2 Choosing a suitable satellite to use 

Currently, there are approximately 700 Earth observation satellites in operation (UCS, 

2019). There are also a number of satellites no longer operational, whose archived images 

remain available. Among this diversity of satellites, deciding which one or which combination 

is most useful to answer a specific question, will depend on the characteristics of the satellite(s) 

and the subject of study. 

2.2.1 Satellite characteristics 

Satellites are defined by several characteristics, with accessibility and technical 

specifications being the most important when choosing which satellite imagery to use. Among 

all the technical specifications, only a portion of them will affect how well a feature can be 

seen from space and at what time interval. These technical specifications are: the type of orbit, 

spatial and temporal resolutions, type of sensors and swath width; all of which are further 

discussed below. 

Accessibility to satellite imagery varies whether the provider is military, civilian (e.g. 

Universities), governmental (e.g. NASA and European Space Agency; ESA) or commercial 

(e.g. DigitalGlobe, Earth-i). Military satellites are usually only accessible for military purposes. 

Civilian satellites for Earth observation are few and rarely used outside of the university that 

owns the satellite. They tend to be smaller, experimental or less capable. Commercial and 

governmental satellites are the most abundant and tend to be the satellites most often used in 

research (LaRue, Stapleton & Anderson, 2017; Hollings et al., 2018; UCS, 2019). Some 

governmental providers, such as NASA and ESA, offer free access to some of their imagery 

for research projects. In 2007, NASA and the US Geological Survey gave free access to all 

their Landsat imagery (Woodcock et al., 2008). Whereas commercial satellites require 

payment, with some exception for humanitarian and nature conservation research projects. 

Some commercial providers have systems in place to provide free imagery, either through 

foundations (e.g. the recently discontinued DigitalGlobe Foundation), or by giving a fixed 

amount of km2 (e.g. Planet Lab). 

Various types of resolution are used to describe satellite imagery; including spectral 

(number of sensors), spatial (pixel size on the ground), radiometric (bit-depth of the image) 

and temporal (frequency of image acquisition for a same location). The spectral resolution is 

defined by the range of wavelengths of the electromagnetic spectrum that is covered by the 
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sensors placed on board a satellite. Every satellite has a specific combination of sensors. Each 

sensor is receptive to a certain range of wavelengths (or band) of the electromagnetic spectrum, 

which is a composition of various types of electromagnetic radiations, including radio waves, 

infrared waves and visible light (Rees, 2013). The most common sensors present on board 

Earth observation satellites are RADAR for the radio wave range, multispectral and 

panchromatic in the visible light range, and near, shortwave and thermal infrared sensors for 

the infrared range (Figure 2.2; Dowman et al., 2012; Rees, 2013). Each sensor bring a different 

type of information about objects and Earth surfaces. RADAR sensors are useful to see through 

clouds and darkness. Infrared sensors can detect change otherwise not visible to the human eye. 

For instance, thermal infrared sensors can see the difference of temperature among various 

surface types and objects. Panchromatic, multispectral and hyperspectral sensors acquire 

imagery as it would appear to the human eye, except that a panchromatic sensor gives a 

greyscale image, whereas multispectral and hyperspectral sensors give a colour image 

(Dowman et al., 2012; Rees, 2013). 

The spatial resolution is the ground sample distance, which is the distance between the 

centres of two adjacent pixels on the Earth’s surface, and controls the amount of details visible 

in an imagery. The footprint of a single pixel on the ground varies widely among the different 

types of sensors and, sometimes, within the same type. Among the different kinds of satellites, 

the highest possible spatial resolutions are achieved using panchromatic or multispectral 

sensors, as opposed to RADAR and thermal sensors (Dowman et al., 2012; Rees, 2013). 

However, not all panchromatic or multispectral sensors are designed to give the highest 

possible spatial resolution, as it might not be adapted for some features and the focus of each 

satellite varies. Among the operational satellites, the spatial resolution of a panchromatic sensor 

can be as low as 250 m (e.g. MODIS; NASA, 2019d), or as high as 31 cm (e.g. WorldView-3; 

DigitalGlobe, 2017). The size of the feature of interest determines the appropriate spatial 

resolution. 

As the spatial resolution gets higher, the spatial coverage or swath width of the imagery 

tends to reduce. The swath width is the width of the area on the Earth’s surface collected by a 

satellite at one time to make an image. It can be as wide as 2330 km (e.g. MODIS; NASA, 

2019d) or as narrow as 13.1 km (e.g. WorldView-3; DigitalGlobe, 2017). Depending on the 

targeted feature, a trade-off between the swath width and the spatial resolution needs careful 

consideration. Satellites intended for the survey of wide areas or large features (e.g. clouds) 

prioritise a large swath width compared to a high spatial resolution. The opposite is true if the 

subject of study is as small as a whale.
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Figure 2. 2  Types of sensor installed on board some of the main Earth observation satellites (top), including the first VHR satellite launched in 

space and the VHR satellite with the highest non-military spatial resolution (Figure 2.1). Coupled with the corresponding types of 

electromagnetic radiation (bottom). 
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Various types of orbits can be used by Earth observation satellites, which influences other 

technical specifications such as the spatial and temporal resolution of the imagery (Dowman et 

al., 2012; Rees, 2013). Satellites with a geostationary orbit continuously acquire imagery for 

the same area (i.e. high temporal resolution). These satellites are always at high altitude 

(approximately 35,800 km); hence, the low spatial resolution. Furthermore, satellites with such 

an orbit need to be positioned above the equator, meaning polar regions are not visible from a 

geostationary orbit due to the Earth’s curvature (Dowman et al., 2012; Rees, 2013). Satellites 

with such an orbit are unsuitable to monitor whales within polar regions, which are well-known 

feeding grounds for several species (e.g. Highsmith and Coyle, 1992; Dalla Rosa et al., 2008). 

For most Earth observation surveys (e.g. forest, ice; Goldstein et al., 1993; Steininger, 

2000), satellites with a low Earth orbit tend to be preferred. They orbit at an altitude of between 

350 km and 2,000 km, providing imagery at a higher spatial resolution, which means a smaller 

area of the Earth surface can be covered at any given time. Therefore, to acquire an almost full 

coverage of the Earth it takes more time for low Earth orbit satellites, from one day or more 

(i.e. low temporal resolution). Low Earth orbit satellites have a better coverage of polar regions 

than geostationary satellites, due to their polar or near-polar orbit, allowing an almost full 

coverage of the Earth, which is useful for whale surveys. Among the low Earth orbit satellites, 

several have a sun-synchronous orbit (e.g. Landsat-8, WorldView-3), which means they 

acquire images at the same illumination level for a given season, and the best illumination 

condition to help image interpretation (Dowman et al., 2012; Rees, 2013). As whales tend to 

have seasonal patterns and are found all around the globe, including polar regions (Jefferson et 

al., 2015), and as they are smaller than the features tracked by geostationary satellites, a low-

orbit, sun-synchronous satellite seems best adapted to monitor them. 

2.2.2 Target suitability 

Aware of the various types of satellites orbiting around the Earth and their specificity 

(Dowman et al., 2012; Rees, 2013; UCS, 2019), not every type of surface or object on Earth 

can be studied from space. The target needs to meet some criteria (LaRue, Stapleton & 

Anderson, 2017). It has to contrast with its surroundings. For example, it needs to have a 

different temperature if observed through a thermal infrared sensor, or a different colour if seen 

through panchromatic or multispectral sensors. Alongside being contrasting, the surface or 

object needs to be large enough to be detected, otherwise it will blend with its surroundings 

and not provide enough contrast to discriminate it from its environment. If too small, it will 

share a pixel with other types of surfaces and objects and will not be distinguished, which is 
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called a mixed-pixel. Additionally and particularly for wildlife when using visible light sensors, 

the targeted species needs to spend some significant amount of time in the open, as opposed to 

hidden habitats such as forests (LaRue, Stapleton & Anderson, 2017). 

Concerning whales, their blow has a higher temperature than their surroundings, which a 

thermal infrared sensor could detect (Cuyler, Wiulsrød & ØRitsland, 1992; Zitterbart et al., 

2013). However, no thermal infrared sensor has a high enough spatial resolution yet to detect 

such a feature in satellite imagery. Multispectral or panchromatic sensors appear more suited 

to the study of whales, given the spatial resolution is high enough to confidently detect whales, 

which is more likely if using VHR satellites (Abileah, 2002; Fretwell, Staniland & Forcada, 

2014). 

2.3 Satellite imagery and wildlife surveys 

Following the launch of Landsat-1 in 1972, the idea of monitoring wildlife from space 

began with habitat surveys (Nelson, 1973; Reeves, Cooch & Munro, 1976). Soon after Löffler 

and Margules (1980) demonstrated that such technology could be used to study wildlife in 

more detail, by detecting some hairy-nosed wombat (Lasiorhinus latifrons) colonies and 

mapping their distribution using Landsat-1. The idea to detect colonies of animals was then 

extended to penguins in a study by Schwaller, Benntnghoff & Olson (1984), which focused on 

collecting the spectral signatures of Adélie penguin (Pygoscelis adeliae) guano and plumage. 

The aim was to subsequently use these spectral signatures to detect Adélie penguin colonies 

using Landsat-4 or SPOT satellite imagery. The spatial resolution of the satellites available at 

the time (10 m for SPOT and 30 m for Landsat-4) was not high enough to detect individual 

penguins; therefore, Schwaller, Benntnghoff & Olson (1984) hypothesized that instead the 

colonies of Adélie penguins could be detected by the wide contrasting stain of their guano left 

on the rock. One decade later, the detection of penguins from space was put in practice by 

Guinet et al. (1995), who succeeded in detecting a king penguin (Aptenodytes patagonicus) 

colony using SPOT imagery.  

With the launch of the first VHR satellite, Ikonos-2 in 1999, the potential for satellite 

imagery to monitor individual animals was brought forward by Abileah (2002). This study 

made the first attempt, by trying to detect humpback whales (Megaptera novaeangliae) and 

killer whales (Orcinus orca). Thereafter, several other VHR satellites were launched and the 

number of wildlife surveys from space rose. Although most surveys have been using VHR 

satellites since the study by Abileah (2002), some surveys continued to use medium spatial 
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resolution satellites, such as Landsat-7 ETM+ (i.e. 15 m panchromatic), to monitor seabirds in 

Antarctica (Fretwell & Trathan, 2009; Schwaller, Southwell & Emmerson, 2013; Lynch & 

Schwaller, 2014; Fretwell et al., 2015). The advantage of a medium spatial resolution satellite 

such as Landsat-7 ETM+ compared to VHR satellites, is the free access to the imagery, the 

possibility to cover a wider area and the availability of shortwave infrared bands. Landsat-7 

ETM+ appears to be adapted to the study of various species of seabirds, and particularly 

penguins, due to the large enough stains of their guano on the ice or rocks, which can be 

detected on 15 m resolution imagery (Fretwell & Trathan, 2009; Schwaller, Southwell & 

Emmerson, 2013; Lynch & Schwaller, 2014). However, a wildlife survey from space, which 

needs to count individuals of the target species will call for the use of VHR satellites as 

illustrated in Figure 2.3. The two types of satellites, VHR and medium spatial resolution, can 

also be combined to efficiently survey large areas, while being able to count individual animals. 

For example, Fretwell et al. (2012), used the archived lowered resolution (i.e. 10 m) of three 

VHR satellites (i.e. QuickBird, WorldView-2, Ikonos-2) to select the areas for which to acquire 

the higher spatial resolution imagery.  

VHR satellite imagery tends to be the preferred type of satellite to monitor wildlife (Table 

2.1). Using such satellites, a wide variety of species have been studied, from flamingos 

(Sasamal et al., 2008) to wildebeest (Yang et al., 2014). All the targeted species contrasted 

well with their surroundings. For instance, the white plumage of wandering albatross 

(Diomedea exulans) was discernible from the green of tussock grass (Fretwell, Scofield & 

Phillips, 2017). The targeted animals were also large enough as individuals or were associated 

with large features. They also inhabited an open environment such as the savannah (Yang et 

al., 2014; Xue, Wang & Skidmore, 2017), ice (LaRue et al., 2011, 2014) or meadow (Laliberte 

& Ripple, 2003). More than two thirds of wildlife surveys from space have focused on species 

in polar regions (Table 2.1), highlighting the potential of VHR satellites to survey remote areas 

(LaRue, Stapleton & Anderson, 2017). Among the species surveyed from space, several were 

marine, although most were monitored while the animals were on land. For instance, Weddell 

(Leptonychotes weddellii) and elephant seals (Mirounga leonina) were detected on the ice 

(LaRue et al., 2011; McMahon et al., 2014), and walruses (Odobenus rosmarus) on pale sand 

(Boltunov et al., 2012). 

VHR satellite imagery has been tested for various type of wildlife surveys, from assessing 

where animals live to estimating their abundance. Fretwell and Trathan (2009) used this 

technology to spot new colonies of Emperor penguins (Aptenodytes fosteri). Recently, this 

technology revealed the disappearance of an emperor penguin colony following an earlier 



VHR satellite imagery: A new platform to study great whales 

32 

 

breakup of the fast ice where they had established a colony (Fretwell & Trathan, 2019). The 

first attempt to estimate abundance using satellite imagery was by Barber-Meyer, Kooyman & 

Ponganis (2007) using the QuickBird satellite (0.6 m panchromatic). The abundance estimate 

varied widely, leading the authors to recommend using higher spatial resolution to obtain more 

accurate penguin abundance. Subsequent studies also endeavoured to estimate the abundance 

of other species, including Adélie penguins (Lynch & LaRue, 2014), grey seals (Halichoerus 

grypus; Moxley et al., 2017), and polar bears (Ursus maritimus; LaRue and Stapleton, 2018). 

All these surveys helped further develop the use of satellite imagery to monitor wildlife; 

however, for most species, continuing effort and research is required. 
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Figure 2. 3 Comparison between two emperor penguin (Aptenodytes fosteri) surveys 

(Fretwell & Trathan, 2009; Fretwell et al., 2012) using different spatial resolution, 15 m for 

the Landsat-7 ETM+ imagery and 0.6 m for the QuickBird imagery. 
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Table 2. 1 Chronological review of various visual wildlife surveys conducted around the world. For the imagery type, VHR refers to very high 

spatial resolution and MR to medium spatial resolution satellite. 

Reference Targeted wildlife Satellite 
Imagery 

type 

Panchromatic 

resolution (m) 
Result 

Schwaller, Benntnghoff & 

Olson, 1984 

Adélie penguin  

(Pygoscelis adeliae) 

Landsat-4,  

SPOT 

MR 10-57  Tested feasibility 

to use MR imagery 

to detect penguins 

 Collected spectral 

reflectance of 

plumage and 

guano 

Guinet et al., 1995 King penguin  

(Aptenodytes patagonicus) 

SPOT MR 10  Detected a colony 

 Estimated 

population size 

Abileah, 2002 Humpback whale 

(Megaptera novaeangliae) 

Killer whale  

(Orcinus orca) 

Ikonos-2 VHR 0.82  Detected a 

probable 

humpback whale 

 Detected a killer 

whale in a tank 

Laliberte and Ripple, 2003 Cattle Ikonos-2 VHR 0.82  Counted 

individuals  

Burn and Cody, 2005 Walrus  

(Odobenus rosmarus) 

QuickBird VHR 0.61  Detected haulouts 

 Estimated 

abundance 

Barber-Meyer, Kooyman 

& Ponganis, 2007 

Emperor penguin 

(Aptenodytes forsteri) 

QuickBird VHR 0.61  Estimated 

abundance 
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Reference Targeted wildlife Satellite 
Imagery 

type 

Panchromatic 

resolution (m) 
Result 

Sasamal et al., 2008 Lesser flamingo  

(Phoniconias minoir) 

Greater flamingo 

(Phoenicopterus roseus) 

QuickBird VHR 0.61  Detected 

aggregations 

Fretwell and Trathan, 

2009 

Emperor penguin Landsat-7, 

QuickBird quick-looks 

MR 15  Detected colonies, 

including new ones 

LaRue et al., 2011 Weddell seal 

(Leptonychotes weddellii) 

QuickBird,  

WorldView-1 

VHR 0.5-0.61  Counted 

individuals 

Fretwell et al., 2012 Emperor penguin QuickBird quick-looks,  

WorldView-2 quick-looks,  

Ikonos-2 quick-looks, 

QuickBird,  

WorldView-2,  

Ikonos-2 

MR, 

VHR 

0.61-10  Detected colonies 

 Counted 

individuals 

Boltunov et al., 2012 Walrus Eros-B VHR 0.7  Detected rookeries 

 Counted 

individuals 

Lynch et al., 2012 Chinstrap penguin 

(Pygoscelis antarctica), 

Adélie penguin  

QuickBird,  

WorldView-1, 

WorldView-2,  

VHR 0.41-0.61  Detected colonies 

 Differentiated 

species 
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Reference Targeted wildlife Satellite 
Imagery 

type 

Panchromatic 

resolution (m) 
Result 

Gentoo penguin  

(P. papua),  

Macaroni penguin 

(Eudyptes chrysolophus) 

GeoEye-1  Estimated 

abundance 

Platonov, Mordvintsev & 

Rozhnov, 2013  

 

Polar bear  

(Ursus maritumus) 

Pinnipeds 

Whales 

GeoEye-1 VHR 0.41  Detected tracks 

and probable polar 

bears 

 Detected tracks 

and holes, and a 

probable walrus or 

bearded seal 

 Detected signs of 

whales 

Schwaller, Southwell & 

Emmerson, 2013 

Adélie penguin Landsat-7 MR 15  Detected colonies 

Fretwell, Staniland & 

Forcada, 2014  

Southern right whale 

(Eubalaena australis) 

WorldView-2 VHR 0.46  Counted 

individuals 

Stapleton et al., 2014 Polar bear WorldView-2,  

QuickBird 

VHR 0.46-0.61  Counted 

individuals 

 Estimated 

population size 
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Reference Targeted wildlife Satellite 
Imagery 

type 

Panchromatic 

resolution (m) 
Result 

Lynch and LaRue, 2014 Adélie penguin No specified, likely 

Quickbird 

VHR 0.6  Counted 

individuals 

 Estimated 

abundance 

 Detected colonies 

McMahon et al., 2014 Elephant seal  

(Mirounga leonina) 

GeoEye-1 VHR 0.41  Counted 

individuals 

Yang et al., 2014 Large African mammals GeoEye-1 VHR 0.41  Detected 

individuals 

LaRue et al., 2014 Adélie penguin Not specified, likely 

GeoEye-1 and Quickbird 

VHR 0.6  Estimated breeding 

population size 

Lynch and Schwaller, 

2014 

Adélie penguin Landsat-7 MR 15  Estimated 

abundance 

Waluda et al., 2014 Chinstrap penguin,  

Adélie penguin,   

gentoo penguin  

QuickBird VHR 0.61  Estimated colony 

size and 

distribution 

LaRue et al., 2015 Polar bear WorldView-2,  

QuickBird 

VHR 0.46-0.61  Tested two 

automated 

techniques to 

estimate 
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Reference Targeted wildlife Satellite 
Imagery 

type 

Panchromatic 

resolution (m) 
Result 

abundance and 

distribution 

Leaper and Fretwell, 2015 Blue whales 

(Balaenoptera mysticetus) 

WorldView-2 VHR 0.46  Detected possible 

individuals 

Fretwell et al., 2015 Seabirds Landsat-7 MR 15  Detected colonies 

Witharana and Lynch, 

2016 

Chinstrap penguin,  

Adélie penguin 

QuickBird,  

WorldView-2 

VHR 0.46-0.61  Detected colonies 

Moxley et al., 2017 Grey seal  

(Halichoerus grypus) 

Mix of imagery available 

on Google Earth, might 

include satellite imagery 

Unknown Unknown  Counted 

individuals 

 Estimated 

abundance 

Fretwell, Scofield & 

Phillips, 2017 

Wandering albatross 

(Diomedea exulans), 

Northern royal albatross 

(Diomedea sanfordi) 

WorldView-3 VHR 0.31  Counted 

individuals 

LaRue and Stapleton, 

2018 

Polar bear (Ursus 

maritimus) 

WorldView-3 VHR 0.31  Counted 

individuals 

 Estimated 

abundance 
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Reference Targeted wildlife Satellite 
Imagery 

type 

Panchromatic 

resolution (m) 
Result 

Fretwell and Trathan, 

2019 

Emperor penguin 

(Aptenodytes forsteri) 

WorldView-2, 

WorldView-3 

VHR 0.31-0.46  Estimated 

population size 
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2.4 VHR satellites and great whales 

Great whales might be difficult to detect on non-VHR satellite imagery. They rarely 

aggregate in groups as large as penguins do (Jefferson et al., 2015; Würsig, Thewissen & 

Kovacs, 2018), making medium spatial resolution satellites, such as Landsat-8, unsuitable. 

Although whales are among the largest living animals on Earth (Jefferson et al., 2015; Würsig, 

Thewissen & Kovacs, 2018), detecting one on a Landsat-8 image might be challenging due to 

the lack of detail. As shown in Figure 2.4, a right whale (Eubalaena spp) would be expected to 

cover two pixels on a Landsat-8 image (i.e. 15 m) or a Sentinel-2 image (i.e. 10 m), compared 

to several pixels on a VHR satellite imagery (i.e. <1 m). The number of pixels representing a 

whale influences whether characteristic whale features, such as fluke and flippers, will be 

detected, which is crucial for confident detection and ground truthing. Ground truthing is the 

process by which the identification of an object on a satellite imagery is verified in the field 

(Lillesand & Kiefer, 1979). For free-swimming great whales, no satellite detection has yet been 

matched with a direct field observation due to practical limitations (see Appendix A; Abileah, 

2002; Fretwell, Staniland & Forcada, 2014); therefore, quantitative assessment of whale 

detection in satellite imagery is difficult and usually relies on visual cues. The shape and size 

will give an initial idea whether or not a feature could be a whale, but it might not be sufficient 

to make a confident observation. More detailed and whale-defining characteristics need to be 

observed, which is only possible with VHR satellites (Figure 2.4). 

Great whales are ideal candidates to trial the applicability of VHR satellite imagery to 

marine wildlife at sea for three main reasons. (1) Their large size means they should be 

composed of enough pixels to ensure confident detections. Most species have an adult size 

comprised between 15 and 18 m, with some smaller, such as the pygmy right whale (Caperea 

marginata) adult which can measure up to 6.5 m, and some much larger such as the blue whale 

(Balaenoptera musculus) with the largest ever found measuring 33 m long (Jefferson et al., 

2015; Würsig, Thewissen & Kovacs, 2018). (2) Great whales live in the ocean and spend time 

close to, or at the surface. (3) Most species of great whales are expected to contrast well with 

their environment. Some whales are dark, such as right whales and are expected to be 

contrasting in shallow sandy areas or turbid waters. Other whale species are of lighter 

colouration such as grey (Eschrichtius robustus) and blue whales, which should contrast well 

in almost all marine environments, particularly in dark environments where the seafloor is not 

visible or made of a lighter substrate. 
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Figure 2. 4. Expected representation of an 18 m long right whale detected on low resolution 

satellites (Landsat 7 and 8, and Sentinel-2) compared to VHR satellites. Landast 7 and 8, and 

Sentinel-2 were chosen here, as they are some of the most commonly used satellites for Earth 

observation, in part due to their free access. The blue pixels represent the sea and the grey, 

the whale. Among the grey coloured-pixels, the darker shade indicates the pixel is mostly 

filled with whale, whilst the lighter shade is for pixels with less whale. 

 

Abileah (2002) was the first study attempting to count whales from space. It successfully 

used the Ikonos-2 satellite (0.82 m panchromatic) to detect a killer whale, in its tank at 

SeaWorld, San Diego, US. The identification was possible, as it was known that a killer whale 

was in this tank on that day; however, no fluke or flippers were observed. The study also 

detected shapes off the Hawaiian coast that could have been humpback whales. The uncertainty 

behind the humpback whale detections is due to the lack of field identification and the absence 

of visible whale-characteristic features; although, it could have been expected that fluke and 

flippers would be visible as illustrated in Figure 2.5. The position of the whale might have 

impeded the detection of fluke and/or flippers, or it may be that higher spatial resolution is 

required. A decade later, Platonov, Mordvintsev & Rozhnov (2013) also tried to find whales 

on VHR satellite imagery with a higher spatial resolution (i.e.GeoEye-1; 0.41 m), and only 

succeeded at detecting whale signs, although no imagery of these signs was presented. The first 

confident detection of a great whale species was of southern right whales (Eubalaena glacialis) 

in a WorldView-2 satellite image (i.e. 0.46 m) of Península Valdès, Argentina (Fretwell, 



VHR satellite imagery: A new platform to study great whales 

42 

 

Staniland & Forcada, 2014). This successful detection on WorldView-2 imagery compared to 

Ikonos-2 imagery might be related to the higher spatial resolution offered by WorldView-2, as 

shown in Figure 2.5. A whale will be composed of more pixels in a Worldview-2 image 

increasing the likelihood to detect the more detailed characteristic whale features (e.g. fluke 

and flippers). However, no fluke or flippers were visible on the WorldView-2 imagery of 

Península Valdès. Fretwell, Staniland & Forcada (2014) were able to identify the objects as 

whales based on the size, overall shape, and a priori knowledge that this species inhabited these 

waters at this time of the year. 

Both Abileah, (2002) and Fretwell, Staniland & Forcada (2014) used the satellites that 

offered the best spatial resolution at the time of their survey. Shortly after the Fretwell, 

Staniland & Forcada (2014) study in June 2014, the US government relaxed their legislation 

on the spatial resolution of satellite imagery that could be commercialised, by bringing it to 25 

cm. In August 2014, the WorldView-3 satellite was launched, which was operated by 

DigitalGlobe and has a spatial resolution of 31 cm in the panchromatic band. In terms of pixels 

per surface area, the number has more than doubled, from 4.3 pixels filling 1 m2 in a 46 cm 

resolution image (e.g., WorldView-2, and GeoEye-1 satellites) to 9.4 pixels per m2 for a 31 cm 

resolution image. For whales, it means that characteristic features such as flippers and flukes, 

not easily detected on 46 cm resolution images, can be seen more clearly on 31 cm resolution 

images (Figure 2.5). Based on the morphometric measurements given by Woodward, Winn & 

Fish (2006), the fluke surface area of an average sized right whale takes up about 19 pixels on 

a 46 cm resolution image, whereas on a 31 cm resolution image it is comprised of 

approximately 28 pixels. The ability to detect whale-characteristic features (e.g. fluke) is 

approximately 1.6 times better with WorldView-3 imagery, which might improve the 

confidence in identifying an object as a whale. 

Clement sea conditions are as important as high spatial resolution to ensure confident 

identification of whales on satellite imagery (Abileah, 2002; Fretwell, Staniland & Forcada, 

2014). A high number of white caps, created by strong winds, will render any object below the 

surface invisible. Therefore, a whale will have to break the surface to be detected in satellite 

imagery. Large swell is also expected to limit the capacity to detect whales, and was 

hypothesized to be behind the lack of detection of blue whales off Sri Lanka in a WorldView-

2 imagery acquired in 2014, around the same time that a boat survey was happening, which 

detected blue whales (Leaper & Fretwell, 2015). 
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Figure 2. 5 Timeline showing the improvement in spatial resolution and applications to great 

whales. 

2.5 Conclusion 

Earth observation satellites have rapidly developed over the past 60 years, from the blurred 

first image of the Earth taken from space to the launch of VHR satellites, capturing detailed 

images of the Earth. VHR satellites can access almost any place on Earth and have mostly been 

used to survey wildlife in remote places such as polar regions. Although the first survey to use 

VHR satellite imagery to detect individual animals was for whales, the spatial resolution at the 

time was not high enough to confidently detect whales (Abileah, 2002). Since then the spatial 

resolution has improved, which led to three other attempts to detect whales on satellite imagery 

(Platonov, Mordvintsev & Rozhnov, 2013; Fretwell, Staniland & Forcada, 2014; Leaper & 

Fretwell, 2015). The latest increase in spatial resolution, with the launch of WorldView-3 (0.31 

m), presents a considerable potential to monitor whales and support their conservation, 

particularly in remote locations. Monitoring inaccessible areas are important if we are to 

understand how well great whale populations are recovering from historical commercial 

exploitation and how well they are faring under contemporary threats (e.g. ship strike and 

entanglement). VHR satellite imagery could also offer the opportunity to survey great whales 
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in a non-invasive manner, over areas larger than feasible for traditional survey platforms, with 

the possibility for frequent revisits. 

The use of VHR satellite imagery to survey whales is, however, at an early developmental 

stage and several technical factors need addressing. Current challenges include (1) the ability 

to differentiate among great whale species, (2) developing automatic detection systems, 

transferable to different imagery, species, and location; and (3) understanding the factors that 

influences the detectability of whales in satellite imagery. Differentiating species is crucial for 

the development of VHR satellites as an emerging platform to study whales and facilitate their 

conservation. Accurate and transferable automated systems are necessary to analyse the vast 

expanses of ocean covered by satellite imagery. As light gets attenuated as it travels through 

the water column, whales passed a certain depth will not be distinguishable in VHR satellite 

imagery. This will differ for each species and be influenced by the environmental conditions 

(e.g. turbidity, glint, swell and white caps) and needs to be assessed. Understanding how each 

environmental factor affects the detectability of whales is essential to later estimate 

abundances. 

2.6 Thesis structure 

The general aim of this thesis is to contribute to the furthering of the current understandings 

on how VHR satellite imagery can be used to reliably and efficiently monitor the different great 

whale species over vast areas. Chapters 1 and 2 serve as two introductory chapters. Chapter 1 

gives a background on whale research, highlighting the need for the developments of new 

methods to fill in the knowledge gap, particularly in remote regions. VHR satellite is one of 

the platforms that can reach inaccessible areas and potentially help fill in the gaps. Chapter 2 

is a review of the use of satellite imagery for Earth observation, from its infancy to present day, 

with an emphasis on wildlife surveys, showing VHR satellites might be most suitable for the 

study of whales compared to lower spatial resolution satellites.  

Chapters 3, 4 and 5 are research I conducted. With Chapter 3, I aim to provide insights on 

whether species differentiation may be feasible, which is crucial for whale conservation, by 

describing both visually and spectrally four whale species with distinct body shape, colour, and 

species-specific characteristics. As the detection of whale in Chapter 3 is accomplished through 

manual scanning of the imagery, I intend to propose a transferable method to detect whales 

manually on satellite imagery, as well as another method to assign a confidence category to 

each whale-like object. In Chapter 4, I aim to assess the feasibility of various automated 
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approaches at detecting whales, as accurately as and faster than manual detection used in 

Chapter 3. In Chapter 5, the aim is to explore the possibilities of assessing the maximum depth 

of detection of whales in satellite imagery, as it will help future research on estimating 

abundance using VHR satellite imagery. I investigate the feasibility and reliability of using 

nautical charts. I also test a method to acquire the spectral signature of whales above the sea 

surface, as it is a pre-requisite for two other methods that could help estimate the maximum 

depth of detection of whales.   

Chapter 6 is a concluding chapter. First, I summarise the aims and main findings of 

Chapters 3, 4 and 5. Then, I continue with a discussion on the implications of these findings. 

Finally, I recommend future research to further develop the use of VHR satellite imagery to 

study whales.
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Chapter 3 

Visual and spectral description of four 

great whale species 

3.1 Introduction 

Development of a satellite-based automated whale detection system, requires capturing 

images that clearly allow identification of different whale species, before questions involving 

aspects of population biology can be addressed. Comparative species identification remains 

untested for satellite images, thus, I make the first attempt to characterise the unique spectral 

signature (i.e., the shape of the spectral reflectance curve), and characteristic features of four 

whale species found in different marine habitats. Features such as flukes and flippers help 

differentiate whale species during boat or aerial surveys (Jefferson et al., 2015; Würsig, 

Thewissen & Kovacs, 2018). Such features are expected to be more discernible on 31 cm 

spatial resolution imagery; therefore, in this chapter I used imagery acquired by the 

WorldView-3 satellite.  

This chapter focuses first on identifying the unique visual characteristics and spectral 

signature of the focal whale species as a first step towards species differentiation. Then, I 

developed a transferable method to count whales manually, as well as categorising counts by 

level of confidence. Four highly distinguishable species, in terms of size, body shape and 

colouration, were targeted for the analyses in this chapter (Jefferson et al., 2015; Würsig, 

Thewissen & Kovacs, 2018). These four species are the fin whale (Balaenoptera physalus) in 

the Pelagos Sanctuary (France, Monaco, and Italy), the humpback whale (Megaptera 

novaeangliae) off Maui Nui (Hawaii), the southern right whale (Eubalaena australis) off 
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Península Valdés (Argentina), and the grey whale (Eschrichtius robustus) in Laguna San 

Ignacio (Mexico). Each species has been well studied on either their feeding or breeding 

grounds (Rowntree, Payne & Schell, 2001; Urbán et al., 2003; Herman et al., 2011; Panigada 

et al., 2011; Ponce et al., 2012), where they occur in relatively high abundance, making the 

study of each species using VHR satellite technology feasible. Spectral analyses of each 

species, their surrounding waters, and other non-whale objects (e.g. boats and planes) were 

subsequently conducted to ascertain whether the signatures are unique to each species in 

WorldView-3 images. Results of this survey contribute towards the development of an 

automated detection system that may be able to distinguish whale species and count them from 

space. 

3.2 Method 

3.2.1 Image selection 

WorldView-3 satellite images were collected from four known baleen whale habitats 

(Figure 3.1). Images were acquired from DigitalGlobe, the WorldView-3 imagery provider. 

All images had a spatial resolution of 31 cm for the panchromatic band (i.e., black and white 

image) and 1.24 m for the multispectral bands (i.e., colour image). Four multispectral bands 

were acquired for all locations (i.e., blue, green, red, and near infrared 1 (NIR1); DigitalGlobe 

2017). The choice of species, location and time of acquisition of the satellite images was based 

on the following four prime criteria: (1) morphological differences: the candidate species are 

morphologically distinct from each other and from other great whale species; (2) whale 

abundance: to optimise the likelihood of whales being present at the sea surface in the images, 

images were collected near the known peak in seasonal abundance for each species; (3) sea 

surface conditions: ideal conditions to observe whales on satellite imagery are few or no white 

caps, low glare, and low swell (see Fretwell, Staniland & Forcada, 2014 and Abileah 2002) for 

details about limitations in manual detection of whales in rough sea state on satellite imagery); 

and (4) other megafauna: the image locations and times were chosen so that no other large 

marine animals (e.g., Bryde’s whales, Balaenoptera edeni) of similar size to the studied whales 

(e.g., fin whales) were likely to be present at the time the images were taken. Although changes 

in whale distribution are predicted (Learmonth et al., 2006; Schumann et al., 2013; Silber et 

al., 2017), or have already happened for some species (Ramp et al., 2015), no other marine 

mammals similar in size to the target species have yet been reported to regularly occur during 

the periods that satellite images were collected for this study. 
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Figure 3. 1 Locations of study areas: (1) Maui Nui in the United States of America, (2) 

Laguna San Ignacio in Mexico, (3) Pelagos Sanctuary in the Ligurian Sea, and (4) Península 

Valdés in Argentina. Green shapes in the four subareas represent the extent of the satellite 

imagery acquired and used in this study. 

 

At location 1 (Figure 3.1), one satellite image (570 km2) of the Au’au Channel in Maui 

Nui, Hawaii, taken on 9 January 2015 was acquired from DigitalGlobe archives. This region is 

a well-known humpback whale breeding ground from December to April with peak abundance 

between February and March (Mobley, Spitz & Grotefendt, 2001; Herman et al., 2011; Baird 

et al., 2015). No other marine mammals similar in size to humpback whales are regularly 

reported in Maui Nui during this season. Rarely, blue whales (Balaenoptera musculus), fin 

whales, minke whales (Balaenoptera acutorostrata), sei whales (Balaenoptera borealis), and 

Bryde’s whales have been sighted offshore, north of the main Hawaiian Islands (i.e., outside 

and north of the Au’au Channel; Mobley et al., 2000; Barlow, 2006; Smultea, Jefferson & 

Zoidis, 2010). Although sperm whales (Physeter macrocephalus) have been recorded in the 

region, they tend to stay in deep water away from the main Hawaiian Islands (Mobley et al., 
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2000; Barlow, 2006). Based on OBIS-SEAMAP data (Halpin et al., 2009), the probability of 

observing one of these species within the acquired satellite image was negligible. Therefore, I 

assumed that only humpback whales were present in the analysed satellite image. The Au’au 

Channel is partly enclosed by four islands, and therefore has low swell and provides ideal sea 

surface conditions for satellite imagery analysis.  

At location 2 (Figure 3.1), one satellite image (80 km2) of Laguna San Ignacio, Mexico, 

was actively collected on 20 February 2017, which coincides with the calving season for grey 

whales (Jones & Swartz, 1984; Urbán et al., 2003). Although humpback whales and blue 

whales are encountered off the coast of Baja California during winter, no sightings have been 

reported within Laguna San Ignacio (Urbán & Aguayo, 1987; Steiger et al., 1991; Mate, 

Lagerquist & Calambodikis, 1999; Calambokidis & Barlow, 2004; Bailey et al., 2009). Based 

on OBIS-SEAMAP data (Halpin et al., 2009), the probability of encountering whale species 

other than grey whales was negligible. Therefore, I assumed that only grey whales were present 

in the analysed satellite image. Laguna San Ignacio is a small, enclosed area, where the swell 

was expected to be low.  

At location 3 (Figure 3.1), four satellite images (4,230 km2) were actively collected for a 

region of the Pelagos Sanctuary in the Mediterranean Sea, spanning French, Monégasque, and 

Italian waters. Three were taken on 19 June 2016 and one was acquired on 26 June 2016. In 

the summer, fin whales are known to be present in the deep western offshore water of this 

sanctuary (Forcada, Notarbartolo di Sciara & Fabbri, 1995; Notarbartolo di Sciara et al., 2003; 

Panigada et al., 2011). The choice of location for the images was based on the findings of 

Panigada et al. (2008) who used habitat models to identify an area where fin whale abundance 

was likely to be the highest. In the Pelagos Sanctuary no other large marine animals similar in 

size to the Mediterranean fin whale (i.e., maximum body length of 24 m) have been observed 

with any regularity or in high abundance. Sperm whales (i.e., maximum body length of 18 m) 

are usually found next to steep topographic features such as canyons, some of which are located 

near the northern edge of the studied images (Moulins et al., 2008; Jefferson et al., 2015). 

Based on OBIS-SEAMAP data (Halpin et al., 2009; Lanfredi & Notarbartolo di Sciara, 2011; 

Boisseau, 2014; Lanfredi & Notarbartolo di Sciara, 2014; Frey, 2015; van Canneyt, 2016), 

there was a probability of 87 % that a large whale species encountered in the acquired satellite 

image was a fin whale, and a probability of 13.04 % that it was a sperm whale. The different 

body shape should limit misidentification between a fin whale (i.e., sleek, streamlined) and a 

sperm whale (i.e., log-like; Jefferson et al., 2015). Whale-like objects observed in the images 

of the Pelagos were included in the visual and spectral analysis only if they had a streamlined 
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body shape. In the northwestern Mediterranean Sea there have been rare observations of 

humpback whales (Frantzis et al., 2004; Dhermain et al., 2015) measuring a maximum of 18 

m (Jefferson et al., 2015). Based on OBIS-SEAMAP data, the probability of observing a 

humpback whale within the boundaries on the acquired satellite images was negligible. 

Therefore, I assumed only fin whales were present in the analysed satellite image. Summer sea 

conditions in the northern Mediterranean are characterised by calm sea conditions (Panigada 

et al., 2008). Due to the size and enclosed nature of the Mediterranean basin, the swell was 

expected to be lower than that in the open ocean. 

At location 4 (Figure 3.1), one satellite image (560 km2) taken on 16 October 2014 of 

Golfo Nuevo in Península Valdés, Argentina, was acquired from DigitalGlobe archives. It 

coincides with the calving season for the southern right whales. During the past four decades 

that their population has been monitored, southern right whales inhabit Península Valdés 

between May and December, with peak abundance from mid-August until early October 

(Payne, 1986; Cooke, Rowntree & Sironi, 2015; IWC, 2013; Crespo et al., 2014). Based on 

OBIS-SEAMAP data (Halpin et al., 2009), the probability of encountering any other large 

whale species was null. Although killer whales (Orcinus orca) are the only other large marine 

mammal known to enter this bay, they are much smaller than southern right whales and arrive 

later, around December (Iñiguez, 2001). Consequently, I assumed only southern right whales 

could be observed on the analysed satellite image. Regarding the sea surface conditions 

required for satellite imagery analysis, Golfo Nuevo is sheltered and relatively calm sea 

conditions were expected compared to the open ocean. 

3.2.2 Visual analysis 

One observer, experienced in whale identification at sea, visually identified and manually 

counted all large whale species on each satellite image. Throughout this manuscript, whale 

identification on satellite imagery refers to the classification of an object as a whale. The 

manual counting method involved loading all acquired satellite images into ArcGIS 10.4 ESRI 

2017. To improve whale detectability, pan-sharpened images (i.e., high resolution colour 

images) were created using the ESRI algorithm in ArcGIS 10.4 ESRI 2017. This algorithm 

combined the low resolution multispectral images (i.e., 1.24 m) with the high resolution 

panchromatic images (i.e., 31 cm) to generate high resolution multispectral images (i.e., 31 

cm). Each pan-sharpened image was manually and systematically scanned using a grid system 

at a scale of 1:1,500 m. Detected objects needing more scrutiny were looked at a higher scale 

(e.g., 1:500). To scan an area of 100 km2 took approximately 3h and 20min. 
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Determining if an object was a whale, and accounting for the confidence of the observer 

in the identification of whale-like objects, involved the use of a classification method (see 

Appendix B). The classification was trialled using two additional observers in order to check 

for consistency and identify any classification parameters that vary between observers. A 

random subset of 10 whale-like objects per species was provided to both observers (see 

Appendix B). The classification allowed categorising each whale-like object as “definite,” 

“probable,” “possible.” The proportion of “definite” whales among all counted whales (i.e., 

including “probable” and “possible” individuals) was calculated for each candidate species. 

A selection of whale-like objects classified as “definite” were used to describe obvious 

morphological differences among species when viewed from space. The following anatomy, if 

visible, was measured in ArcGIS 10.4 ESRI 2017: (1) body length (A in Table 3.1), (2) body 

width (B in Table 3.1), (3) flipper length (C in Table 3.1), (4) fluke width (D in Table 3.1). 

Mean and standard deviation were calculated for all measured anatomy, then compared to 

known measurements of large whale species (Jefferson et al. 2015). Characterisation of surface 

and near surface water disturbances associated with each species was also recorded (Table 3.2). 

Boats and planes were also recorded as non-whale objects. 

3.2.3 Spectral image analysis 

One of the motives of this research was also to assess what parameters can be helpful when 

attempting to automate the detection of whales on satellite images. Each pixel of a satellite 

image contains quantifiable information (Rees, 2013), not visible to the human eye. A human 

eye can only see the red, blue, and green wavelengths of the electromagnetic spectrum 

(Nathans, Thomas & Hogness, 1986), whereas sensors on the WorldView-3 satellite can detect 

additional wavelengths of the electromagnetic spectrum (DigitalGlobe, 2017). The sensors of 

the WorldView-3 also assign a value to each of the wavelength ranges it can detect (i.e., each 

multispectral band), which the human eye cannot see. The assigned value is called a DN (for 

digital number), which can be read as the spectral radiance (W.m−2.sr−1.μm−1) if corrected for 

top-of-atmosphere. It is the amount of light reflected by the target for a specific wavelength 

(Rees, 2013). Each pixel from the WorldView-3 satellite images acquired for this study held 

four radiances, one for each of the multispectral bands, or wavelength ranges: blue (450–510 

nm), green (510–580 nm), red (630–690 nm) and NIR1 (770–895 nm; DigitalGlobe, 2017). 

Spectral analysis was performed on each image to characterise each whale species, and to 

investigate if and how they differ from each other, their surrounding environments, and non-

whale objects (e.g., boats and planes). First, I corrected the multispectral image of each location 
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for the top of atmosphere using ENVI 5 software (Harris Geospatial). The top of atmosphere 

correction is a necessary step before analysing the radiances of surfaces and objects on the 

Earth. Without this correction, a satellite image will show the overall radiance value of the 

surfaces and the particles contained in the atmosphere (Rees, 2013). Then, I extracted the four 

radiances for each pixel of whale-like objects, water and non-whale objects from the satellite 

image. 

The radiance of whale-like objects was collected only for “end members”. In remote 

sensing “end members” refers to a group of pure pixels (e.g., pixels filled totally by a single 

material or spectra, in this case with whale only) as opposed to mixed pixels (e.g., pixels filled 

with water and whale; Rees, 2013). In this chapter, the “end members” were chosen among the 

“definite” individuals. The whales showing most of their body length were selected. Following 

this, I identified the pure pixels of every selected “definite” whales by describing every pixel 

of the selected “definite” whales with one, or a combination of the characteristics listed in 

Appendix C. Some pixels were made of both water and submerged whale, or submerged whale 

and non-submerged whale (i.e., mixed pixels). I removed these mixed pixels from the analysis, 

as they could bias the spectral analysis, and only retained the purest “whale pixels” (i.e., only 

submerged whale, or only non-submerged whale).  

The radiance of the surrounding environment of whales (i.e., water) was assessed by 

manually selecting 100 pure pixels of water for each location, in clusters of five pixels. None 

of these pixels contained either white caps, or shallow water (i.e., where the seabed was visible 

and the sea was lighter in colour than the surrounding waters). The same pixel selection method 

was applied to non-whale objects, with a total of 100 pure pixels for boats and 100 pure pixels 

for planes, allowing to measure the radiance of boats and planes separately. 

For the acquisition of the radiance of whale-like objects, surrounding environments, and 

non-whale objects, I used ArcGIS 10.4 ESRI 2017. The radiance was averaged for each whale 

species, and per location, for each type of non-whale object and the surrounding waters. To 

allow for quantitative comparisons to be made between species, between whale-like and non-

whale objects, and between whale-like objects and their surrounding waters, the standard error 

of the mean was also calculated for each pixel set. 
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3.3 Results 

3.3.1 Whale morphology and behaviour 

A total of 211 whale-like objects were observed across the four studied areas, covering 

approximately 5,440 km2 (Table 3.1). Individuals of each of the four species were detected 

within their respective satellite images by manual scanning (Figure 3.2). Most of the 

individuals identified were adults with the exception of grey whale calves (two “definite,” four 

“probable,” and two “possible”) and one “possible” southern right whale calf. In terms of 

confidence in identification of an object as a whale, fin whales had the highest proportion of 

“definite” individuals, followed by grey whales, with humpback and southern right whales 

having the lowest proportion (Table 3.1). Comparison of the classification system between 

observers showed consensus in terms of whale identification when more subjective parameters 

(e.g., body colour) were down weighted (Appendix B). There was no change in definite 

identifications for humpback whales and fin whales between the consensus identification (i.e., 

three observers) and the single observer identification. For grey whales and southern right 

whales, there were 10 % less definite identifications when the consensus identification was 

used, than when a single observer was used (Appendix B). 

The total number of whale-like objects (categorised as “definite”, “probable,” and 

“possible” whales) for fin whales included three individuals that were likely observed twice, 

as three of the four satellite images acquired for the Pelagos Sanctuary were taken on the same 

day with intervals of <30 s. These three whales were observed in the overlap region of these 

images in slightly different locations, suggesting movement. Among the 25 “possible” 

humpback whales, seven were included in this category based solely on the presence of whale 

signs, including flukeprints (Levy et al. 2011), that were not associated with any other whales 

recorded in the image. These seven whale signs were estimated to be too far apart from any 

detected whales to be associated with them, and it is possible that they were associated with 

whales that dived too far below the surface to be visible on the satellite images. 

The length and width measurements of the body were acquired for all the surveyed species. 

However, other body measurements such as flipper length or fluke width could not be measured 

for all individuals. No flukes were observed on any of the humpback whales, nor flippers for 

southern right whales (Table 3.1). 

Some distinct body characteristics known to be unique features for each species were 

observed on some individuals, such as long flippers for the humpback whales; these were 
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observed on five of the counted individuals. White head callosities, a characteristic specific to 

right whales, were positively identified on four of the recorded “definite” southern right whales 

(Table 3.1). 

Along with body features, other evidence of whale presence was observed (Table 3.2). 

Some are related to surface water disturbance: after-breach, flukeprint, wake, and contour (see 

Table 3.2 for a description). There were also other signs associated with near surface 

disturbances: blow and defecation. Flukeprints and contours were observed for each surveyed 

species. Wake and blow were seen for three out of the four species. After-breach splashing was 

only detected for the humpback whale, likewise with defecation for the southern right whale. 

 

 

Figure 3. 2 Pan-sharpened WorldView-3 satellite images of four “definite” grey whales in 

Laguna San Ignacio (top left), a “definite” fin whale in the Pelagos Sanctuary (top right), two 

“definite” humpback whales in Maui Nui (bottom left), and a “definite” southern right whale 

in Península Valdés (bottom right). 
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Table 3. 1 Summary of morphological characteristics per surveyed species. 

Species 

Number of 

“definite” 

whales 

Number of 

“probable” 

whales 

Number of 

“possible” 

whales 

Total 

number of  

whales 

Proportion 

of definite 

whale (%) 

Average body 

measurements (m)2 

Distinctive 

characteristics 

Fin whale 26 3 5 34 76.47  A: 13.49 (n=9; SD=2.92) Streamlined body 

B: 2.56 (n=9; SD=0.47)  

C: 1.94 (n=6; SD=0.23)  

D: 3.68 (n=1; SD=NA)  

Southern right whale 23 12 24(1)1 59 38.98 A: 10.47 (n=6; SD=2.69) White callosities on the 

head B: 3.08 (n=6; SD=0.39) 

C: NA (n=0; SD=NA) 

D: 4.45 (n=1; SD=NA) 

Humpback whale 20 11 25 56 35.71 A: 10.62 (n=5; SD=1.36) Long flippers 

B: 2.94 (n=4; SD=0.43) 

C: 2.39 (n=4; SD=0.53) 

D: NA (n=0; SD=NA) 

Grey whale 27 (2)1 18 (4)1 17 (2)1 62 43.55 A: 12.58 (n=10; SD=0.95) Pale, whitish body 

B: 2.90 (n=9; SD=0.44) 

C: 1.90 (n=3; SD=0.27) 

D: 3.06 (n=8; SD=0.26) 
1Number of calves 

2A: body length; B: body width; C: flipper length; D: fluke width



Visual and spectral description of four great whale species 

56 

 

Table 3. 2 Catalogue of the different surface water disturbances and near surface disturbances associated with the four candidate whale species. 

All images are pan-sharpened. In the images where more than one signs are present, a red circle highlight the sign being referred to. 

Sign Description Fin whale Southern right whale Humpback whale Grey whale 

After-

breach 

Large white area left 

after a whale 

breached, or lobtailed, 

flipper-slapped 
Not observed on the 

studied satellite images 

Not observed on the 

studied satellite images 

 

Not observed on the 

studied satellite images 

Blow Vaporous whitish 

patch next to a whale, 

similar looking to fog 

Not observed on the 

studied satellite images 
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Sign Description Fin whale Southern right whale Humpback whale Grey whale 

Contour White line separating 

the part of the whale 

body that is above and 

below the sea surface 

(e.g., when a whale is 

rolling its back or 

surfacing to breathe) 

    

Flukeprint White circle left after 

whale dove or while 

swimming (Levy et 

al., 2011).  

    

Wake V-shaped white trail 

behind the animal 

   

Not observed on the 

studied satellite images 
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Sign Description Fin whale Southern right whale Humpback whale Grey whale 

Defecation Trail of coloured 

clouds behind animal 

Not observed on the 

studied satellite images 

 

Not observed on the 

studied satellite images 

Not observed on the 

studied satellite images 
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3.3.2 Spectral characteristics of whales 

The purest “whale pixels” that were retained for the spectral analyses were of submerged 

whales, as there were no pure pixels of whales above the sea surface for fin whales, grey 

whales, and humpback whales. There were six pure “whale pixels” of southern right whales 

below the sea surface, seven of humpback whales, 26 of grey whales, and 34 of fin whales. 

The spectral signatures of the four candidate species were overall similar in shape (Figure 3.3). 

Comparatively, grey whales had the highest radiance values (i.e., they were the lightest), 

followed closely by fin whales, then southern right whales and humpback whales, which are 

much darker (Figure 3.3). 

 

Figure 3. 3 Radiance values of the four studied species for four multispectral bands. The 

shaded areas around the dotted lines correspond to the standard error of the mean. 

 

Comparisons of whale with their environment showed two main results: (1) the radiance 

values for grey whales and fin whales distinguished them from the surrounding waters of the 

location where they were studied, as well as the waters of the other study locations (Figure 

3.4); and (2) southern right whales and humpback whales had very similar radiance values 
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relative to the surrounding waters of the location where they were studied, but were distinct 

relative to waters from other locations (Pelagos and San Ignacio; Figure 3.4). Overall none of 

the spectral signatures of the four candidate species differed greatly from the spectral signatures 

of their environment (Figure 3.4). 

 

 

 

Figure 3. 4 Radiance values of each candidate species compared to the radiance values of sea 

water of three of the four study locations. For clarity reasons, the waters off Maui Nui are not 

represented in this figure as their radiance values are fully overlapping with Península Valdés. 

The shaded areas around the dotted lines correspond to the standard error of the mean. 

3.3.3 Non-whale objects 

In all the analysed satellite images, except the one from Península Valdés, non-whale 

objects were observed and clearly discernible from whale-like objects. Boats and planes were 

the only types of non-whale objects that were detected (Figure 3.5). Various types and sizes of 

boats were observed across the three locations (i.e., the Pelagos Sanctuary, Laguna San Ignacio, 

and Maui Nui) such as ferries, fishing boats, cargo and sail boats. Planes, (i.e., passenger and 

smaller aircraft) were detected in the Pelagos Sanctuary and Maui Nui. Among all the non-

whale objects that were observed, the ones of smaller or similar size to whales were confidently 
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identified (and discriminated from whales) due to their recognisable shape and, sometimes, due 

to the presence of other features such as fishing gear (Figure 3.5). 

The spectral analysis of non-whale objects demonstrated differences from whales in 

radiance values that could be used in an automated whale detection system. Boats and planes 

displayed higher radiance values than the grey, fin, and humpback whales (Figure 3.6). The 

spectral signatures of the planes detected in the Pelagos Sanctuary showed a concave-down 

negative slope, compared to the fin whale spectral signature, which was comparatively straight 

(Figure 3.6B). On the satellite image of Maui Nui, the planes exhibited a spectral signature 

similar to the humpback whales except for a slight plateau between the green and red bands 

(Figure 3.6C). In comparison, boats were the only non-whale object detected on the satellite 

image of Laguna San Ignacio (Figure 3.6A). They showed a similar spectral signature to the 

grey whales, but could again be confidently discriminated due to their features. 

 

 

Figure 3. 5 Panchromatic WorldView-3 satellite images of non-whale objects: a fishing boat 

with visible net in Laguna San Ignacio (left) and a small aircraft in Maui Nui (right). 
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Figure 3. 6 Radiance values of grey, fin, and humpback whales compared to the radiance 

values of non-whale objects. (A) In the image of Laguna San Ignacio, boats were the only 

observed, non-whale object. Graph (B) are the results for the Pelagos Sanctuary image and 

(C) for the image of Maui Nui. The shaded areas around the dotted lines correspond to the 

standard error of the mean. 
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3.4 Discussion 

The four study species were detected on WorldView-3 satellite images, which are the first 

whale observations for this satellite system, and the first satellite-based detections of fin and 

grey whales. While earlier work detected right whales and probable humpback whales using 

Worldview-2 and Ikonos-2 satellite imagery, respectively (Abileah, 2002; Fretwell, Staniland 

& Forcada, 2014), the higher spatial resolution of WorldView-3 made it possible to characterise 

each of the four surveyed species, and generate more confident observations. Characterising 

each of these species was also possible due to the careful selection of time and location of 

acquisition of the imagery. Each image was taken when and where only one whale species was 

present, and near their respective peak abundance period.  

Several characteristics helped identify objects as whales, including size, colouration, and 

specific features (e.g., white head callosities, fluke). The size of the observed objects (i.e., 

length and width) was the first indication that an object could be a whale when compared to 

the known body size range (Shirihai & Jarrett, 2006; Jefferson et al., 2015). In this study, grey 

whales were the only species found within their size range; all other species appeared smaller 

than expected. Adult southern right whales and humpback whales were close to the lower limit 

of their documented size range. The average body length of fin whales was below its known 

size range (Shirihai & Jarrett, 2006; Jefferson et al., 2015). This discrepancy in body length 

compared to known size range is likely due to ascending or descending whales positioned 

diagonally to the sea surface. Additionally, flukes were rarely detected in the images of fin 

whales, southern right whales and humpback whales, which would lead to underestimates of 

body length. If there were doubts about the size of a whale-like object, other characteristics 

could be used to help identify whether it was a whale (e.g., white head callosities). For instance, 

sea surface water disturbance such as flukeprints (Levy et al., 2011) were observed for all the 

studied species. Smaller details (i.e., body features) also helped identify the observed objects 

as whales. Fluke and flippers were some of the main body features that could be observed 

among the four candidate species. Species-specific features were also observed and helped 

identify objects as whales, such as white head callosities, which are distinctive of right whales 

for example. These smaller features, as well as body length and shape were, however, not 

equally seen for each species. 

Identifying an object as a whale was more challenging for some species due to specific 

behaviours, which affect their detectability in the water. The “definite” observations were made 

when a whale was positioned parallel to the sea surface, which whales tend to do when 
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traveling. In this position, body features such as fluke, flippers, as well as the general shape of 

the animal were visible. For example, the streamlined body shape could clearly be noticed for 

some fin whales and for grey whales with their more robust body. In contrast, the humpback 

whales were not as confidently identified. Their well-documented acrobatic nature in the 

breeding grounds (Helweg & Herman, 1994; Frankel et al., 1995; Clapham & Mead, 1999) 

hindered identification on the satellite image, as whale-specific characteristics such as body 

shape, flippers, or fluke were indistinct.  

A strong contrast between a whale and its surrounding environments is required to detect 

whales on satellite imagery (LaRue, Stapleton & Anderson, 2017). In comparison to humpback 

and southern right whales, fin and grey whales contrasted more strongly with their surrounding 

waters, with their light body colouration appearing a useful feature assisting identification. 

While Maui humpback whales and Península Valdés right whales did not show strong contrast 

in this study, more confident identifications may be made where they occur in lighter toned 

habitats, areas where the surrounding water is lighter in colour. All species were clearly 

spectrally and visually distinct from non-whale objects (e.g., boats and planes), even though 

sizes were sometimes similar. Boats and planes, the only types of non-whale objects observed 

on the satellite images, had clear specific outlines, different from whales. This dissimilarity 

was also seen in the spectral analysis with the different radiance values.  

Although the results of this chapter demonstrate that different species of large whales can 

be detected and counted using satellite images, manual scanning is time demanding. To reduce 

the time spent manually scanning satellite images, an automated system should be developed. 

The visual and spectral characterisations of the four study species could be used to inform and 

develop automated systems to detect them. Various methods currently exist to automatically 

identify specific objects (e.g., Rees, 2013; Fretwell, Staniland & Forcada, 2014; Maire, Alvarez 

& Hodgson, 2015). A common method used to analyse satellite images is based on a purely 

pixel analysis (i.e., only the spectral characteristics) of a given object. The results from the 

spectral analysis show that such a method is not likely to prove useful, as the four candidate 

species had similar spectral signatures with their habitat. However, other methods, such as an 

object-based image analysis (e.g., Groom et al., 2011; Yang et al., 2014) or a deep learning 

approach (e.g., Maire, Alvarez & Hodgson, 2015), may be more useful because these research 

techniques include the shape and texture of the object in addition to the spectral characteristics. 

The whale characteristics used to identify whale-like objects could be useful, particularly body 

shape and surface or near surface disturbances associated with a whale. 
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While a reliable automated detection method is under development, another way to reduce 

the time required to manually scan satellite images is to implement crowdsourcing projects 

(Supriadi & Prihatmanto, 2016; Rey et al., 2017; LaRue, Stapleton & Anderson, 2017), 

requiring citizen scientists to scan the images and manually count the whales. One example of 

this approach was taken for Weddell seals (Leptonychotes weddellii) on the Tomnod.com 

platform (LaRue et al., 2019). However, for identification of whale signs, experienced marine 

mammal observers may be required, necessitating the careful set up of such a project. To 

maximise the utility of this approach, I recommend the following parameters to be considered 

when developing a satellite imagery based whale study (see Table 3.3 for more details): (1) 

behaviour: e.g., traveling or resting, which means the animal full body length will likely be 

parallel to the surface; (2) colouration relative to surrounding waters: e.g., if observing a whale 

in deep water, lighter colours should be more easily discernible; (3) size: animal above 10 m 

in total length; (4) sea surface: e.g., species found in calm coastal water compared to open 

ocean might be easier to detect due to a potentially lower swell; and (5) co-occurrence of similar 

species, e.g., potential challenge for misidentification of species and potential for a positive 

bias in species-specific counts. 

The constraint of animal size when using VHR satellite images to detect whales must be 

improved for broader applications. Spatial resolution of satellite images has improved since 

Abileah (2002), yet it does not appear to be high enough to detect smaller cetacean species or 

whale calves. In this chapter, two of the images were acquired during calving season, one for 

grey whales in Laguna San Ignacio (Jones & Swartz, 1984; Mate & Urbán-Ramirez, 2003) and 

one for southern right whales in Península Valdés (Crespo et al., 2014; Cooke, Rowntree & 

Sironi, 2015). Therefore, the presence of calves, which have an approximate length of 5 m for 

both species, was expected. However, few calves were observed on the satellite images and 

fewer with high confidence. This is likely explained by their bodies being too small to clearly 

identify major anatomical features. Some of their behaviours, such as riding on the back of 

their mother, would also make it difficult to discern calves on VHR satellite images (Smultea 

et al., 2017)
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Table 3. 3 Recommendation matrix concerning which large whale species might be ideal candidates for VHR satellite surveys based on species 

information from Shirihai and Jarrett (2006), and Jefferson et al. (2015). Note that this matrix does not consider the possibility of co-occurrence 

with similar species, as this aspect varies between localities for each species. 

Criteria 

Bowhead 

(Balaena 

mysticetus) 

Right 

whales 
Grey whale 

Humpback 

whale 
Blue whale Fin whale Sei whale 

Bryde’s 

whale 

Omura’s 

whale 

Minke 

whale 

Sperm 

whale 

Maximum adult 

body length (m) 
20 18 15 18 33 27 20 16.5 12 11 19 

Color (dorsally) Black Black 

Brownish 

grey to light 

grey 

Black or 

dark grey 

Blueish 

grey 

Black or 

dark 

brownish-

grey 

Dark grey 

or brown 
Dark grey Dark grey Dark grey 

Black to 

brownish 

grey 

Dive length 

Commonly 

<20 min (up 

to 40 min) 

Commonly 

10 to 20 

min (up to 

50 minutes) 

Commonly 

3 to 10 min 

(up to 25 

min) 

Commonly 

3 to 15 min 

(up to 40 

minutes) 

Commonly 

5 to 20 min 

(up to 50 

minutes) 

Commonly 

3 to 15 min 

(up to 30 

minutes) 

5 to 20 

minutes 

Commonly 

<2 min (up 

to 20 min) 

Unknown 

Commonly 

3 to 9 min 

(up to 20 

min) 

Commonly 

30 to 45 

minutes (up 

to 2 h) 

General 

behavior(s) close 

to the sea surface 

Calm, 

sometimes 

acrobatic 

Calm, 

sometimes 

acrobatic 

Calm, 

sometimes 

acrobatic 

Acrobatic 

Slow and 

fast 

swimming 

Slow and 

fast 

swimming 

Slow and 

fast 

swimming 

Slow and 

fast 

swimming 

Unknown 

Swimming, 

sometimes 

acrobatic 

Logging 

and 

sometimes 

acrobatic 

Other 

characteristic(s) 

helping detection 

None 

Whitish 

head 

callosities 

None 

Long 

flippers 

(dorsally 

white for 

some 

individuals) 

None None None None None None None 

Recommendation 

level 
2.50 2.60 3.50 2.60 3.50 3.25 3.00 3.00 2.00 2.50 2.25 
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Key:  

For all criteria except “Recommendation level” 

 Ideal (4 points) 

  

 Good (3 points) 

  

 Moderate (2 points) 

  

 Problematic (1 point) 

  

 Unknown or not applicable 

 

 

 

 

 

 

 

 

 

 

 

For “Recommendation level” criteria only (i.e., average of all other 

criteria) 

 3.50-4.00  1.50-1.99 

    

 3.00-3.49  1.00-1.49 

    

 2.50-2.99  0.50-0.99 

    

 2.00-2.49  0.00-0.49 
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As with the traditional survey methods, surface presence is an issue when surveying whale 

populations (Marsh & Sinclair, 1989; Buckland & Turnock, 1992; Buckland et al., 2001). 

Deep-diving species provide future challenges (to growth and density estimates) due to 

relatively lower sightings. Comparative studies between aerial and satellite-based methods are 

needed to assess the utility of satellite imagery for estimating density relative to aerial surveys. 

A better understanding of how deep below the sea surface a whale is likely to be visible on 

satellite images is also required. As suggested by Fretwell, Staniland & Forcada (2014), large 

reflectance panels could be installed underwater in key habitats, to assist with calibrating the 

depth at which whales are visible. Another idea would be to install artificial whale models at 

various depths, similar to what Pollock et al., (2006) and Robbins et al. (2014) did with 

artificial dugong (Dugong dugon) and shark models to estimate the detectability of these 

animals from aircraft. 

Per unit area, VHR satellite imagery has the potential to provide a cheaper and safer means 

of studying wildlife in remote places compared to traditional surveys (LaRue et al., 2011; 

Fretwell, Staniland & Forcada, 2014). The cost of acquiring VHR satellite imagery has reduced 

in the past decade (Fretwell, Staniland & Forcada, 2014; LaRue, Stapleton & Anderson, 2017), 

with discounts available for the non-profit sector, particularly education (LaRue, Stapleton & 

Anderson, 2017). The personnel and analysis time are roughly comparable between VHR 

satellite imagery and traditional surveys, although less personnel are usually required for 

satellite imagery analysis. However, compared to the main cost of most traditional surveys (i.e., 

fuel and charter of the survey platform), satellite imagery can be substantially cheaper, 

particularly for remote areas. A considerable advantage of using satellite imagery is that no 

time-consuming logistics and permitting are involved in this approach. 

3.5 Conclusion 

This chapter is the first survey to address detection and species description (both visually 

and spectrally) of whales with WorldView-3 satellite imagery, suggesting that great whale 

species of various shape, size and colour can be detected on VHR satellite imagery. However, 

some species such as humpback whales and southern right whales were more difficult to detect 

on satellite images, although they are easily identifiable from boat or aerial surveys. This is due 

to either their body colouration being similar to their environment or to their behaviour, which 

can make it difficult to discern body shape from above. The opposite is true for species with 

less acrobatic behaviour at the surface, or lighter body colouration, such as fin and grey whales, 
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which appear more easily discernible on satellite images used in this chapter. VHR satellite 

technology could, therefore, be useful to monitor some whale species, especially over large 

areas of the ocean. Monitoring vast expanses of the ocean will require the use of automated or 

at least semi-automated systems to detect whales. Various automation methods should be 

tested, from pixel-based methods (e.g. unsupervised and supervised classifications) to more 

complex approaches (e.g. object-based image analysis). Based on the findings of this chapter, 

an object-based image analysis is likely to be more appropriate.
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Chapter 4 

Automated systems to detect great whales: 

A case study for southern right whales 

4.1 Introduction 

VHR satellite imagery appears to be a promising tool to survey marine mammals in remote 

locations. However, the analysis of VHR satellite imagery is mostly conducted through manual 

detection of whales (Chapter 3; Fretwell, Staniland & Forcada, 2014), which can be time 

intensive. For instance, the largest, single image the WorldView-3 satellite can acquire is 4,716 

km2 (DigitalGlobe, 2017), which would take weeks to analyse manually (including scanning 

the image and, identifying and classifying whale-objects). For whale conservation, there is a 

need for rapid monitoring, particularly as whale habitats are changing or likely to change at a 

fast rate due to climate change (Learmonth et al., 2006; Schumann et al., 2013; Ramp et al., 

2015; Silber et al., 2017). The time required to analyse large VHR satellite images could be 

potentially reduced by adapting existing automated methods to detecting whales. Various 

automated system approaches exist, such as image-differencing, pixel-based (only the value(s) 

contained in the pixel matter), object-based (pixel value might still matter but the shape and 

texture of the feature are also considered). Among these methods some are relatively simple, 

while others involve artificial intelligence (e.g. machine learning).  

Some automated systems have been trialled for various wildlife surveys, mostly using 

aerial imagery (taken from a manned aircraft or UAV; Strong, Gilmer & Brass, 1991; Hodgson 

et al., 2010; Groom et al., 2011; Maire, Mejias & Hodgson, 2014). The first attempts were 

focused on birds using pixel-based methods (Strong, Gilmer & Brass, 1991; Trathan, 2004). 
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More recently, object-based image analysis (OBIA) has been developed for birds in aerial 

images (Groom et al., 2011, 2013). As VHR satellite imagery has demonstrated potential for 

wildlife surveys, automated systems adapted to this platform were also tested, including image 

differencing (LaRue et al., 2015), supervised classification (i.e. pixel-based; Barber-Meyer, 

Kooyman & Ponganis, 2007), and machine learning (Yang et al., 2014; Xue, Wang & 

Skidmore, 2017). 

Concerning whale monitoring, there are a few reported attempts at detecting whales 

automatically in aerial imagery (Schoonmaker et al., 2008; Podobna et al., 2009, 2010; 

Mahajan & Perkins, 2015; Ahres & Kangaspunta, 2015), as well as one trial using VHR 

satellite imagery (Fretwell, Staniland & Forcada, 2014). A private company, Advanced 

Coherent Technology, developed algorithms used to detect whales automatically in aerial 

images, using an OBIA approach. However, these algorithms are not freely available. Other 

algorithms potentially transferable to detecting whales in VHR satellite imagery include those 

developed for a Kaggle competition, launched by the American National Oceanic and 

Atmosphere Administration, to automatically identify individual North Atlantic right whales 

(Eubalaena glacialis) in aerial images (NOAA Fisheries, 2015). However, they were intended 

to identify individual whales, rather than distinguishing whales from their environment or other 

confounding features. Some of these algorithms used an unsupervised and machine learning 

approach (Mahajan & Perkins, 2015; Ahres & Kangaspunta, 2015). One study tested the 

suitability of automated systems to detect whales in VHR satellite imagery (Fretwell, Staniland 

& Forcada, 2014). It used various pixel-based approaches, including unsupervised and 

supervised classifications, as well as thresholding specific bands. This study recommended that 

future research test OBIA approaches, as they are expected to perform better.    

With this chapter, I sought to test various automated methods, from those requiring the 

least manual input (i.e. unsupervised classification) and processing time, to those needing more 

adjustments (e.g. OBIA) and likely more time to process. I specifically tested various 

supervised and unsupervised classifications, thresholding and OBIA approaches. Machine 

learning was not included, as it required the use of very large labelled datasets of whales (and 

confounding features) observed in VHR satellite imagery, which, at present, does not exist. 

First, I evaluated which automated method performed best to detect whales. Then I assessed 

how accurate and time efficient the best performing automated methods were, compared to 

manual counting. 
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4.2 Methods 

4.2.1 Species and imagery selection 

All automated methods (unsupervised, supervised, threshold and OBIA) tested in this 

chapter were applied to southern right whales (Eubalaena australis), using one VHR satellite 

image. This species was selected to allow comparison with automated systems trialled on the 

same species for VHR satellite imagery (Fretwell, Staniland & Forcada, 2014). The image used 

in this chapter was acquired by the GeoEye-1 satellite on 9th August 2009 (catalogue ID: 

1050410001D94500), which was made freely available to this project by the DigitalGlobe 

Foundation (a Maxar company). The image shows St Sebastian Bay off Witsand, South Africa, 

a sheltered bay and known calving ground for southern right whales (Figure 4.1). Similar to 

imagery studied in Chapter 3, the southern right whale is the only large marine mammal species 

known to inhabit these waters at that time of the year (Elwen & Best, 2004; Mate et al., 2011). 

I also selected this image and this species, as the density of whales was the highest among a set 

of images that I had access to (see Appendix D). This image was also advantageous, as it was 

small enough (35 km2) to enable fast processing, allowing to test several different automated 

methods. 
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Figure 4. 1 Map showing the localisation (black square in bottom left corner) and extent 

(black outline) of the GeoEye-1 imagery used in this chapter, St Sebastian Bay, South Africa. 

4.2.2 Image pre-processing 

For each image acquisition, the GeoEye-1 satellite collects a panchromatic image (0.41 m) 

and a multispectral image (1.65 m). The latter is composed of four bands: blue (450-510 nm), 

green (510-580 nm), red (655-690 nm), and near-infrared 1 (NIR1; 780-920 nm). For the same 

reasons as outlined in Chapter 3, I corrected the panchromatic and multispectral images for the 

top of atmosphere using ENVI 5 software (Harris Geospatial). Then, using the corrected 

images, I pan-sharpened them into one image using the Gram-Schmidt algorithm in ENVI 5 

(Figure 4.2.).  
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Figure 4. 2 Flowchart of the pre-processing of the GeoEye-1 satellite image of St Sebastian 

bay, South Africa. The multispectral image (left) corrected for top of atmosphere is outlined 

by large black dashes, the panchromatic image (right) corrected for top of atmosphere is 

outlined by small black dashes, and the pan-sharpened image is outlined by a full black line. 

4.2.3 Manual detection 

The satellite imagery was manually scanned for the presence of whales using ArcGIS 10.4 

ESRI 2017, and the method developed in Chapter 3. The counting process took approximately 

46 minutes to cover 35 km2 (i.e. one minute and 18 seconds per km2). All objects identified as 

whales were classified under one of the confidence categories: “definite”, “probable”, or 

“possible” (see Chapter 3). 

4.2.4 Accuracy analyses 

The performance of each automated method was estimated using confusion matrices, 

which required the use of validating datasets (Figure 4.3). For all tests, I used the same 

validating dataset for “whales”, built using 30 % of “definite” whales (i.e. not used for the 

training dataset for supervised classification, n=21 whales). The purest pixels among these 21 

whales were selected. The unsupervised and supervised classifications separated the “non-

whale” pixels under three or four classes (i.e. “turbid water”, “less turbid water”, “hang glider” 
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and “white cap”). Therefore, I created a validating dataset for each class composed of 100 

pixels each, except the “hang glider” validating dataset, which contained 2 pixels for the 

multispectral image, and 26 pixels for the panchromatic and pan-sharpened images. The 

thresholding and OBIA methods had one class for the “non-whale” pixels and segments; hence, 

I merged the “non-whale” validating datasets generated for the supervised and unsupervised 

classifications.  

The confusion matrices returned several accuracy metrics useful to evaluate the 

performance of each test to detect whale pixels or segments. The metrics of interest were: 

Kappa coefficient (Cohen, 1960), overall, producer and user accuracies, and errors of omission 

(false negative) and commission (false positive). The Kappa coefficient and overall accuracy 

looked at the classification as a whole, by giving two different measures of the amount of pixels 

from the validating datasets correctly classified. The producer and user accuracies were specific 

to each class. The producer accuracy for the “whale” class was linked to the error of omission 

and reflected the number of pixels from the “whale” validating dataset that were correctly 

classified as “whales”. The user accuracy for the “whale” class was linked to the error of 

commission, and showed the probability that a pixel classified as a “whale” by one of the 

automated methods was also marked as a “whale” pixel in the validating dataset. The producer 

and user accuracy were omitted from the results section, as they were measuring the same thing 

as error of omission (=100 % minus producer accuracy) and error of commission (=100 % 

minus user accuracy). Both errors of omission and commission reflected the percentage of 

pixels misclassified, either “whale” pixels were classified under one of the “non-whale” classes 

(error of omission or false negative), or “non-whale” pixels were identified as “whales” pixels 

(error of commission or false positive).  

4.2.5 Unsupervised classification 

With the unsupervised classification, a certain number of classes were determined and all 

pixels were separated among each class depending on the radiance value(s) contained within 

each pixel (Figure 4.3). After manually scanning the satellite image, there seemed to be five 

classes (i.e. “whales”, “turbid water”, “less turbid water”, “white caps” and “hang glider”). 

Two algorithms hosted by ENVI were tested: isodata and k-means. Each algorithm was tested 

24 times to represent all the combinations between the number of classes (four and five), the 

type of satellite imagery (multispectral, panchromatic and pan-sharpened), and the type of post-

processing (none, smoothing, aggregation, and smoothing and aggregation combined). Post-



Automated systems to detect great whales: A case study for southern right whales 

76 

 

processing was included in the ENVI supervised and unsupervised classification workflows to 

refine the classification results. 

4.2.6 Supervised classification 

Supervised algorithms, similar to unsupervised algorithms, classified each pixel under a 

specific class. In contrast to unsupervised algorithms, supervised algorithms required the 

creation of training datasets for whales and non-whale classes to teach the algorithms which 

pixels were a “whale” pixel and which pixels were not (Figure 4.3). I created a “whale” training 

dataset made of 70 % of “definite” whales (n=50 whales). Among these 70 % of “definite” 

whales, I retained the purest “whale” pixels for each of the 50 selected “definite” whales (i.e. 

at least one pixel per whale). As whales are made of more pixels in the panchromatic and pan-

sharpened images compared to the multispectral image, I created two training datasets: one for 

the panchromatic and pan-sharpened images (n= 765 pixels) and one for the multispectral 

image (n=62 pixels). For the non-whale classes, I also created two training datasets per class. 

For the classes “turbid water”, “less turbid water”, and “white cap” each training dataset was 

made of 230 pure pixels. The class “hang glider” was made of 60 pure pixels for the 

panchromatic and pan-sharpened images, and of five pure pixels for the multispectral image. 

The four supervised classification algorithms included in the classification workflow created 

by ENVI 5 (i.e. maximum likelihood, minimum distance, Mahalanobis distance, spectral angle 

mapper) were tested 24 times each, similar to the unsupervised algorithms. 

4.2.7 Spectral analysis and thresholding 

Thresholding is a pixel-based method, which focuses on the radiance values contained in 

a pixel for either one band (i.e. panchromatic or one of the multispectral bands) or a 

combination of bands. For the band of interest, a wavelength range is determined and each 

pixel that has a radiance value within this range is retained. If a combination of bands is used, 

each band has its own wavelength range. In this chapter, I performed thresholding tests for 

each band separately. Pixels were classified as “whales” if their radiance value for the 

panchromatic band or a specific multispectral band was contained within the wavelength range 

specified for “whales”. For every band, I conducted a spectral analysis to determine the 

wavelength range that encompassed pixels likely to be “whale”. The spectral analysis followed 

the same method as in Chapter 3 using ArcGIS 10.4 ESRI 2017, to extract the radiance value 

for each band and for each pixel of the “whale” and “non-whale” training datasets (“turbid 

water”, “less turbid water”, “white caps”, and “hang glider”) created for the supervised 
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classification. The radiance of “whale” pixels was compared to the radiance of “non-whale” 

pixels, which allowed the selection of a wavelength range that would ensure the classification 

of the majority of “whale” pixels, without including too many “non-whale” pixels. Figure 4.3 

shows a summary of the workflow for the thresholding method. 

4.2.8 Object-based image analysis 

With an OBIA approach, first the image was segmented. Then all the segments that 

followed pre-determined rules were kept. With ENVI 5 “Rule Based Feature Extraction” 

workflow, the creation of objects was a two-step process, where first a segmentation algorithm 

was applied (Edge or Intensity), followed by a merging algorithm (Full Lambda Schedule or 

Fast Lambda; Figure 4.3).  For this study, I chose to segment using the Edge algorithm, as it 

was more suited to features with clear edges, compared to the other algorithm available, 

Intensity algorithm, which is appropriate for digital elevation models where there are subtle 

gradients (Harris Geospatial Solution 2019). With the Edge algorithm I used a scale of 44 

applied on the NIR1 band, to create a high enough number of small segments, which were later 

merged into larger segments using the Full Lambda Schedule algorithm with a scale of 96. The 

merging algorithm, Full Lambda Schedule, visually performed better and allowed to merge 

small segments within larger segments. The Fast Lambda algorithm merged adjacent segments 

that had similar colour and border size (Harris Geospatial Solutions, 2019), which did not 

appear to perform well. These settings were chosen following a visual comparison of various 

combinations of algorithms and scales. These segmentation and merging algorithms could be 

applied to all bands or a specific one. The decision to apply the segmentation algorithm to the 

NIR1 band was based on the thresholding results.  

Once the satellite image had been separated into segments, various rules, categorised under 

three types, were tested for their accuracy at detecting “whale” segments; including spatial 

(area, minor length and major length), spectral (spectral mean and spectral max), and texture 

(variance and mean). I then selected the most accurate rule for each type (spatial, spectral and 

texture), creating two sets of rules. For the first set, all three rules had to be fulfilled by a 

segment (AND test) to be classified as a “whale”. For the alternate set, only one of the three 

rules had to be met (OR test; Figure 4.3). All OBIA tests were performed on the pan-sharpened 

image, which offers the highest spectral and spatial resolutions.
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Figure 4. 3 Flowchart summarising the main steps of the various automated methods trialled in this chapter. The same coding as in Figure 4.2 

was used to differentiate between multispectral, panchromatic and pan-sharpened images. 
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4.2.9 Manual vs. automated methods 

The total counts of whales, obtained for each automated method tested in this chapter, were 

compared to the manual count. To accomplish this, I generated additional confusion matrices 

for each automated test. As the manual count was separated into three confidence categories 

(i.e. “definite”, “probable” and “possible”), I produced three validating datasets (“definite 

whale”, “probable whale” and “possible whale”). The purest pixel for each whale was added 

to its corresponding validating dataset. 

4.3 Results 

4.3.1 Spectral analysis 

Pixels classified as “whale” were most distinguishable from “hang glider” and “white cap” 

pixels across all bands except for NIR1 and panchromatic. However, NIR1 appeared to be the 

only band allowing to distinguish a “whale” pixel from a “turbid water” or “less turbid water” 

pixel, as the radiance of “whale” is higher (19.79-42.53) than those of the “turbid water” 

(12.53-17.78) and “less turbid water” (10.70-14.86). For the blue and green bands, “whale” 

pixels seemed more distinguishable than “turbid water” and “less turbid water” pixels. The 

radiance of “whale” and “non-whale” pixels were all overlapping in the panchromatic band 

(Figure 4.4). 
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Figure 4. 4  Radiance values of “whale” pixels compared to the radiance of “non-whale” 

pixels for the four multispectral bands and the panchromatic band. 

4.3.2 Comparison of automated tests 

A total of 144 automation tests were conducted, representing different combinations 

between the type of algorithm, imagery, post-processing and number of classes. This total 

included 48 unsupervised classifications, 80 supervised classifications, five thresholding tests, 

and 11 OBIA tests (Table 4.1). None of the unsupervised classifications performed well, with 

both Isodata and k-mean producing similar results. The unsupervised classification offering the 

best accuracy metrics was Isodata (and k-mean), for the pan-sharpened image (corrected for 

top of atmosphere), with four classes and no post-processing (Table 4.1, Figures 4.5. and 4.6). 

This test had errors of commission (35.47%) and omission (66.16%) higher than the best 

performing automated test (Table 4.1). The supervised classification using the maximum 

likelihood algorithm, with four classes on the pan-sharpened image and post-processing 

(smoothing and aggregation), was the most accurate method of all automated tests, with an 

error of commission of 0.33 % and an error of omission of 6.71 % (Table 4.1, Figures 4.5. and 

4.6). The application of a threshold on the NIR1 band offered the best classification among all 

thresholding methods; however, the errors of commission (74.03%) and omission (23.08%) 
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were higher than the best performing supervised classification (Table 4.1, Figures 4.5. and 4.6). 

The OBIA, combining the texture, spatial and spectral rule, showed the best results among all 

OBIA tests, with an error of commission (30.86 %) higher than the best performing supervised 

classification and an error of omission (7.45 %) similar to the best performing supervised 

classification (Table 4.1). The texture, spatial and spectral rules of this combination were 

chosen based on OBIA tests with a single rule. Several rules were tested per type (texture, 

spatial and spectral), with the texture mean on NIR (<19.5 nm), major length (<18 m) and 

spectral mean (19.79-42.53 W.m-2.sr-1.μm-1), appearing to give the best accuracy (Table 4.1, 

Figures 4.5. and 4.6). For the texture rules, the threshold values were attributed following a 

visual assessment. Post-processing (smoothing and/or aggregation), which was only applied to 

supervised and unsupervised classifications, did not seem to improve the performance of the 

classification for the multispectral image (Table 4.1). 

The various tests took different amounts of time to be completed. Unsupervised 

classifications took the least amount of time (approximately 40 minutes, including the 

validating dataset creation and running time), as they require less input (Table 4.2). Supervised 

classification took longer (approximately one hour and 40 minutes), as it required the creation 

of a training dataset (one hour) in addition to a validating dataset (30 minutes). The running 

time of supervised classifications was about 10 minutes, which was similar to unsupervised 

classifications. Thresholding and OBIA used results from the spectral analysis, which took 

about 3 hours, making these tests the longest to complete. In addition to the time required for 

the spectral analysis, the time needed to create a validating dataset (30 minutes) and to run the 

test had to be included. Thresholding was faster to run (approximately 10 minutes) compared 

to OBIA (approximately one hour), due to the segmentation. The validating dataset used for 

these two methods was the same as those employed for the supervised and unsupervised 

classifications, which took approximately 30 minutes to create. 

Based on a visual assessement (Figures 4.5 and 4.6) of the tests that performed best for 

each type of automated method (unsupervised, supervised, thresholding and OBIA), it 

appeared that the supervised classification performed better in turbid waters than in less turbid 

waters. This is likely due to the blue and green radiance of  “whale” pixels, being more 

contrasting with “turbid water” pixels than with “less turbid water” pixels (Figure 4.4). The 

unsupervised method classified few “turbid water” pixels as “whale” pixels, in comparison to 

the large proportion of “less turbid water” pixels that were classified as “whale” pixels; 

however, few true “whale” pixels were detected (Figures 4.5 and 4.6). For the best performing 

OBIA test, several “turbid water” segments were classified as “ whale” segments in comparison 
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to fewer errors in regions of less turbid waters. Several of these “turbid water” segments 

misclassified as “whale” appear to form one segment in Figures 4.5 and 4.6, as they are 

adajacent to each other. The thresholding method for NIR1 band seemed to give the same 

performance in turbid and less turbid waters, likely due to the overlap of the radiance of these 

two classes (Figure 4.4). 
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Table 4. 1 Summary of accuracy for each test. MUL refers to the multispectral image, PAN to the panchromatic image, PS to the pan-sharpened 

image, and TOA is to indicate that the satellite image was corrected for top of atmosphere. For the OBIA methods “Sa” indicates a spatial rule, 

“Se” a spectral rule, and “Tx” a texture rule. For all the thresholding tests and the spectral OBIA rules, the radiance values are based on the 

spectral analysis. The best performing tests for each method are in bold. 

Test Image type 

Number 

of 

classes 

Post-

processing 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

Whale 

Commission 

error (%) 

Whale 

Omission 

error (%) 

UNSUPERVISED 

IsoData MUL_TOA 4 None 54.6939 0.3915 83.09 87.91 

IsoData MUL_TOA 4 Smoothing 50.2041 0.3544 96.55 97.8 

IsoData MUL_TOA 4 Aggregation 54.2857 0.4026 84 91.21 

IsoData MUL_TOA 4 
Smoothing & 

aggregation 
51.4286 0.3679 96.15 97.8 

IsoData MUL_TOA 5 None 57.8212 0.4437 91.38 94.51 

IsoData MUL_TOA 5 Smoothing 53.9106 0.3891 97.65 97.8 

IsoData MUL_TOA 5 Aggregation 62.0112 0.4951 83.33 91.21 

IsoData MUL_TOA 5 
Smoothing & 

aggregation 
55.1676 0.4063 97.37 97.8 

IsoData PAN_TOA 4 None 38.4124 0.1948 56.25 80.45 

IsoData PAN_TOA 4 Smoothing 20.073 -0.0104 92.4 96.68 

IsoData PAN_TOA 4 Aggregation 31.9343 0.1657 84.08 95.64 

IsoData PAN_TOA 4 
Smoothing & 

aggregation 
19.3431 -0.0183 94.42 97.56 

IsoData PAN_TOA 5 None 30.9795 0.1636 73.79 93.37 

IsoData PAN_TOA 5 Smoothing 21.1845 0.0409 100 100 

IsoData PAN_TOA 5 Aggregation 32.4981 0.1876 94.34 98.95 
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Test Image type 

Number 

of 

classes 

Post-

processing 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

Whale 

Commission 

error (%) 

Whale 

Omission 

error (%) 

IsoData PAN_TOA 5 
Smoothing & 

aggregation 
21.2604 0.039 100 100 

IsoData PS_TOA 4 None 44.7653 0.2264 35.47 66.16 

IsoData PS_TOA 4 Smoothing 19.3141 -0.018 85 94.51 

IsoData PS_TOA 4 Aggregation 27.4368 0.1283 83.82 96.65 

IsoData PS_TOA 4 
Smoothing & 

aggregation 
17.148 -0.0422 90.08 96.34 

IsoData PS_TOA 5 None 33.6391 0.1958 55.17 88.11 

IsoData PS_TOA 5 Smoothing 19.7248 0.0391 100 100 

IsoData PS_TOA 5 Aggregation 28.1346 0.1357 91.18 98.17 

IsoData PS_TOA 5 
Smoothing & 

aggregation 
19.5719 0.0382 100 100 

k-mean MUL_TOA 4 None 54.6939 0.3915 83.08 87.91 

k-mean MUL_TOA 4 Smoothing 50.2041 0.3544 96.55 97.8 

k-mean MUL_TOA 4 Aggregation 54.2857 0.4026 84 91.21 

k-mean MUL_TOA 4 
Smoothing & 

aggregation 
51.4286 0.3679 96.15 97.8 

k-mean MUL_TOA 5 None 57.8212 0.4437 91.38 94.51 

k-mean MUL_TOA 5 Smoothing 53.9106 0.3891 97.65 97.8 

k-mean MUL_TOA 5 Aggregation 62.0112 0.4951 83.33 91.21 

k-mean MUL_TOA 5 
Smoothing & 

aggregation 
55.1676 0.4063 97.37 97.8 

k-mean PAN_TOA 4 None 38.4124 0.1948 56.25 80.45 

k-mean PAN_TOA 4 Smoothing 20.073 -0.0104 92.4 96.68 

k-mean PAN_TOA 4 Aggregation 31.9343 0.1657 84.08 95.64 
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Test Image type 

Number 

of 

classes 

Post-

processing 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

Whale 

Commission 

error (%) 

Whale 

Omission 

error (%) 

k-mean PAN_TOA 4 
Smoothing & 

aggregation 
19.3431 -0.0183 94.42 97.56 

k-mean PAN_TOA 5 None 30.9795 0.1636 73.79 93.37 

k-mean PAN_TOA 5 Smoothing 21.1845 0.0409 100 100 

k-mean PAN_TOA 5 Aggregation 32.4981 0.1876 94.34 98.95 

k-mean PAN_TOA 5 
Smoothing & 

aggregation 
21.2604 0.039 100 100 

k-mean PS_TOA 4 None 44.7653 0.2264 35.47 66.16 

k-mean PS_TOA 4 Smoothing 19.3141 -0.018 85 94.51 

k-mean PS_TOA 4 Aggregation 27.4368 0.1283 83.82 96.65 

k-mean PS_TOA 4 
Smoothing & 

aggregation 
17.148 -0.0422 90.08 96.34 

k-mean PS_TOA 5 None 33.6391 0.1958 55.17 88.11 

k-mean PS_TOA 5 Smoothing 19.7248 0.0391 100 100 

k-mean PS_TOA 5 Aggregation 28.1346 0.1357 91.18 98.17 

k-mean PS_TOA 5 
Smoothing & 

aggregation 
19.5719 0.0382 100 100 

SUPERVISED 

Maximum likelihood MUL_TOA 4 None 89.7959 0.8369 8.93 43.96 

Maximum likelihood MUL_TOA 4 Smoothing 87.3469 0.7934 0 63.74 

Maximum likelihood MUL_TOA 4 Aggregation 82.2449 0.7027 0 92.31 

Maximum likelihood MUL_TOA 4 
Smoothing & 

aggregation 
82.2449 0.7024 0 91.21 

Maximum likelihood MUL_TOA 5 None 81.0056 0.7376 12.5 53.85 

Maximum likelihood MUL_TOA 5 Smoothing 78.2123 0.6954 0 74.73 
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Test Image type 

Number 

of 

classes 

Post-

processing 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

Whale 

Commission 

error (%) 

Whale 

Omission 

error (%) 

Maximum likelihood MUL_TOA 5 Aggregation 72.905 0.6195 0 93.41 

Maximum likelihood MUL_TOA 5 
Smoothing & 

aggregation 
70.5307 0.5859 0 93.41 

Maximum likelihood PAN_TOA 4 None 50.9124 0.3233 39.87 68.41 

Maximum likelihood PAN_TOA 4 Smoothing 52.5547 0.3591 35.57 71.55 

Maximum likelihood PAN_TOA 4 Aggregation 45.6204 0.2907 52.57 85.81 

Maximum likelihood PAN_TOA 4 
Smoothing & 

aggregation 
50.365 0.3384 38.81 76.61 

Maximum likelihood PAN_TOA 5 None 49.7342 0.3535 42.35 69.11 

Maximum likelihood PAN_TOA 5 Smoothing 53.4548 0.4073 37.02 71.2 

Maximum likelihood PAN_TOA 5 Aggregation 46.3174 0.3296 51.63 84.47 

Maximum likelihood PAN_TOA 5 
Smoothing & 

aggregation 
50.7973 0.3786 40.53 76.44 

Maximum likelihood PS_TOA 4 None 91.5162 0.8575 1.29 6.4 

Maximum likelihood PS_TOA 4 Smoothing 92.7798 0.8792 0.33 6.71 

Maximum likelihood PS_TOA 4 Aggregation 92.9603 0.8822 0.65 7.01 

Maximum likelihood PS_TOA 4 

Smoothing 

& 

aggregation 

93.1408 0.8852 0.33 6.71 

Maximum likelihood PS_TOA 5 None 91.5902 0.8776 2.27 7.93 

Maximum likelihood PS_TOA 5 Smoothing 91.1315 0.8717 1.66 9.76 

Maximum likelihood PS_TOA 5 Aggregation 91.896 0.8825 1.64 8.84 

Maximum likelihood PS_TOA 5 
Smoothing & 

aggregation 
90.8257 0.8674 1.67 10.06 

Minimum distance MUL_TOA 4 None 80.2041 0.6763 0 68.13 

Minimum distance MUL_TOA 4 Smoothing 75.3061 0.5856 0 97.8 
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Test Image type 

Number 

of 

classes 

Post-

processing 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

Whale 

Commission 

error (%) 

Whale 

Omission 

error (%) 

Minimum distance MUL_TOA 4 Aggregation 75.3061 0.5844 0 100 

Minimum distance MUL_TOA 4 
Smoothing & 

aggregation 
74.898 0.5778 0 100 

Minimum distance MUL_TOA 5 None 69.6927 0.5807 0 70.33 

Minimum distance MUL_TOA 5 Smoothing 62.0112 0.4683 0 97.8 

Minimum distance MUL_TOA 5 Aggregation 57.6816 0.4072 0 100 

Minimum distance MUL_TOA 5 
Smoothing & 

aggregation 
57.4022 0.4034 0 100 

Minimum distance PAN_TOA 4 None 48.4489 0.2804 43.18 69.46 

Minimum distance PAN_TOA 4 Smoothing 49.5438 0.3095 40.78 73.65 

Minimum distance PAN_TOA 4 Aggregation 44.7993 0.2615 51.53 83.42 

Minimum distance PAN_TOA 4 
Smoothing & 

aggregation 
46.8978 0.2844 45.79 79.76 

Minimum distance PAN_TOA 5 None 47.6082 0.3247 44.97 69.46 

Minimum distance PAN_TOA 5 Smoothing 50.038 0.3635 40.96 72.08 

Minimum distance PAN_TOA 5 Aggregation 43.9636 0.2965 49.06 81.15 

Minimum distance PAN_TOA 5 
Smoothing & 

aggregation 
46.3933 0.3219 44.12 76.79 

Minimum distance PS_TOA 4 None 59.7473 0.4057 19.6 51.22 

Minimum distance PS_TOA 4 Smoothing 55.2347 0.3687 18.59 61.28 

Minimum distance PS_TOA 4 Aggregation 45.8484 0.2712 31.53 76.83 

Minimum distance PS_TOA 4 
Smoothing & 

aggregation 
47.4729 0.2889 27.59 74.39 

Minimum distance PS_TOA 5 None 61.1621 0.4814 19.6 51.22 

Minimum distance PS_TOA 5 Smoothing 59.633 0.4694 17.24 56.1 

Minimum distance PS_TOA 5 Aggregation 44.4954 0.2982 33.9 76.22 



Automated systems to detect great whales: A case study for southern right whales 

88 

 

Test Image type 

Number 

of 

classes 

Post-

processing 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

Whale 

Commission 

error (%) 

Whale 

Omission 

error (%) 

Minimum distance PS_TOA 5 
Smoothing & 

aggregation 
50.3058 0.3643 23.88 68.9 

Mahalanobis distance MUL_TOA 4 None 78.3673 0.6557 20.37 52.75 

Mahalanobis distance MUL_TOA 4 Smoothing 74.4898 0.5841 32.26 76.92 

Mahalanobis distance MUL_TOA 4 Aggregation 72.0408 0.5343 100 100 

Mahalanobis distance MUL_TOA 4 
Smoothing & 

aggregation 
70.4082 0.5085 100 100 

Mahalanobis distance MUL_TOA 5 None 66.4804 0.5408 18 54.95 

Mahalanobis distance MUL_TOA 5 Smoothing 61.4525 0.4648 26.67 75.82 

Mahalanobis distance MUL_TOA 5 Aggregation 54.7486 0.3661 100 100 

Mahalanobis distance MUL_TOA 5 
Smoothing & 

aggregation 
55.1676 0.3728 66.67 95.6 

Mahalanobis distance PS_TOA 4 None 75.2708 0.6184 0 27.44 

Mahalanobis distance PS_TOA 4 Smoothing 76.7148 0.6366 0 24.7 

Mahalanobis distance PS_TOA 4 Aggregation 77.6173 0.6498 0 23.78 

Mahalanobis distance PS_TOA 4 
Smoothing & 

aggregation 
76.7148 0.6366 0 24.7 

Mahalanobis distance PS_TOA 5 None 70.948 0.598 2.02 26.22 

Mahalanobis distance PS_TOA 5 Smoothing 72.3242 0.6144 1.98 24.39 

Mahalanobis distance PS_TOA 5 Aggregation 72.7829 0.6195 1.96 23.78 

Mahalanobis distance PS_TOA 5 
Smoothing & 

aggregation 
74.159 0.6372 1.92 21.95 

Spectral angle mapper MUL_TOA 4 None 75.3061 0.6088 9.09 56.04 

Spectral angle mapper MUL_TOA 4 Smoothing 71.6327 0.5358 0 80.22 

Spectral angle mapper MUL_TOA 4 Aggregation 68.5714 0.4766 0 100 
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Test Image type 

Number 

of 

classes 

Post-

processing 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

Whale 

Commission 

error (%) 

Whale 

Omission 

error (%) 

Spectral angle mapper MUL_TOA 4 
Smoothing & 

aggregation 
68.5714 0.4766 0 100 

Spectral angle mapper MUL_TOA 5 None 62.8492 0.4965 22.73 62.64 

Spectral angle mapper MUL_TOA 5 Smoothing 56.4246 0.3983 28.57 89.01 

Spectral angle mapper MUL_TOA 5 Aggregation 48.0447 0.2757 0 100 

Spectral angle mapper MUL_TOA 5 
Smoothing & 

aggregation 
49.4413 0.2948 0 100 

Spectral angle mapper PS_TOA 4 None 74.3682 0.6043 0.39 22.26 

Spectral angle mapper PS_TOA 4 Smoothing 73.4657 0.5928 0 24.39 

Spectral angle mapper PS_TOA 4 Aggregation 75.2708 0.6182 0 22.26 

Spectral angle mapper PS_TOA 4 
Smoothing & 

aggregation 
73.2852 0.5905 0 24.7 

Spectral angle mapper PS_TOA 5 None 66.208 0.534 5 24.7 

Spectral angle mapper PS_TOA 5 Smoothing 66.5138 0.5408 5.22 28.05 

Spectral angle mapper PS_TOA 5 Aggregation 67.8899 0.5558 6.9 25.91 

Spectral angle mapper PS_TOA 5 
Smoothing &  

aggregation 
66.3609 0.5387 5.24 28.35 

THRESHOLDING 

Threshold_Blue 121-136 nm MUL_TOA NA None 60.061 0.0384 90.08 50 

Threshold_Green 53-65 nm MUL_TOA NA None 64.6341 0.1214 85.71 30.77 

Threshold_Red 33-45 nm MUL_TOA NA None 85.3659 0.3281 70.37 38.46 

Threshold_NIR1 20-43 nm MUL_TOA NA None 80.7927 0.3061 74.03 23.08 

Threshold_PAN 12-16 nm PAN_TOA NA None 67.1254 0.3425 32.4 33.84 

OBIA 

Area<30 (Sa) PS_TOA NA None 68.7598 0.3745 32.38 26.71 
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Test Image type 

Number 

of 

classes 

Post-

processing 

Overall 

accuracy 

(%) 

Kappa 

coefficient 

Whale 

Commission 

error (%) 

Whale 

Omission 

error (%) 

Area<19 (Sa) PS_TOA NA None 68.4458 0.3685 32.02 28.88 

Minor length<6 (Sa) PS_TOA NA None 67.9749 0.359 32.65 28.88 

Major length<18 (Sa) PS_TOA NA None 68.7598 0.3743 32.87 25.16 

Spectral mean NIR1 19.79-42.53 W.m-

2.sr-1.μm-1 (Se) 
PS_TOA NA None 70.9576 0.4209 20.09 43.17 

Spectral max NIR1<43 W.m-2.sr-1.μm-1 

(Se) 
PS_TOA NA None 47.0958 -0.0497 58.62 88.82 

Texture variance Blue>923 nm (Tx) PS_TOA NA None 68.4458 0.368 33.24 25.16 

Texture mean Red<42 nm (Tx) PS_TOA NA None 31.7111 -0.3605 77.29 85.4 

Texture mean NIR1>19.5 nm (Tx) PS_TOA NA None 74.5683 0.4893 31.65 7.45 

TextureANDspatialANDspectral PS_TOA NA None 75.3532 0.5051 30.86 7.45 

TextureORspatialORspectral PS_TOA NA None 50.7064 0.2527 19.75 60.87 
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Figure 4. 5 Whale detections for each automated method (green), with whales identified 

manually (white boxes). 
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Figure 4. 6 Close-ups of some whale detections for each automated method (green) in turbid 

waters (left) and in less turbid waters (right). White boxes show whales manually detected. 
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4.3.3 Manual vs. automated 

A total of 88 whales were manually detected in the satellite imagery, with 80.7 % of 

“definite”, 8.0 % of “probable” and 11.3 % of “possible” whales. The supervised method that 

produced the best accuracy metrics (Table 4.1) performed better than the other automated 

methods at detecting the whales manually counted (Table 4.2). These other automated  methods 

(i.e. unsupervised, thresholding and OBIA) detected more whales than the manual count and 

supervised classification; however, most detections were misidentifications of “non-whale” 

pixels for “whale” pixels (Table 4.2). The tests also failed at detecting many of the whales 

manually counted (Table 4.2). This discrepancy, for the “definite” whale counts between the 

supervised classification and the other tests, might be because 70 % of the “definite whale” 

validating datasets was made of the same pixels as the “whale” training dataset used for the 

supervised classification. However, the supervised classification still performed better than the 

other tests at detecting the “probable” and “possible” whales, manually counted (Table 4.2). 

 

Table 4. 2 Comparison of whale counts between each method. The numbers in brackets 

reflects the number of whales corresponding to those manually counted. 

Method Definite Probable Possible Total 

Manual counting 71 7 10 88 

Unsupervised  

(Isodata, PS_TOA, 4 classes, no 

post-processing) 
35(33) 64(3) 63(2) 162(38) 

Supervised 

(Maximum likelihood, PS, 4 classes, 

smoothing and aggregation) 
71 (70) 7(6) 5(4) 83(80) 

Thresholding 

(NIR1) 104(47) 60(3) 65(8) 229(58) 

OBIA 

(TextureANDspatialANDspectral) 188(55) 137(4) 138(5) 463(64) 

4.4 Discussion 

4.4.1 Is there one suitable automated method for southern right whales? 

In this chapter, I sought to find out which automated method was best suited to the 

detection of southern right whales in a GeoEye-1 image. Findings from this chapter show that 

the maximum likelihood supervised classification on the pan-sharpened image, performed 
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better than the other methods tested. This includes thresholding of the panchromatic band, 

which was reported to give more accurate results than maximum likelihood in the study by 

Fretwell, Staniland & Forcada (2014). This chapter looked at the same species as studied in 

Fretwell, Staniland & Forcada (2014), but in a different location (Península Valdés, Argentina), 

which might be in part an explanation as to why I found a different automated method to be 

best performing. At the time the imagery was captured, the two locations had different 

environmental conditions. The GeoEye-1 image analysed in this chapter had large sections of 

high turbidity, where the majority of southern right whales were manually detected. In contrast, 

the WorldView-2 satellite image used by Fretwell, Staniland & Forcada (2014) was not 

described as being turbid.  

The various automated systems tested here seemed to perform differently in turbid waters. 

Maximum likelihood appeared to be better at detecting southern right whales in turbid waters, 

but not in less turbid waters. This would imply that another GeoEye-1 image covering St 

Sebastian Bay, South Africa, might require a different automated system to detect whales if the 

turbidity conditions were to change, which is highly likely. Other VHR satellite imagery 

properties fluctuating from one image to the next (e.g. nadir angle, sun illumination), might 

involve retesting of different automated systems to find the most suitable test or at least require 

retraining. The need to retest or retrain automated systems for new imagery, limits the ability 

of such approaches to be less time-consuming than manual counting (Seymour et al., 2017). 

4.4.2 Is automation a better option than manual counting? 

With this chapter, I also attempted to assess how well each automated system, trialled here, 

worked at detecting the whales manually counted, both in terms of accuracy and time. Most of 

the automated methods, with the exception of maximum likelihood, were not as accurate as 

manual counting. A potential explanation might be that observers are better at interpreting 

imagery, as they will be able to recognise signs revealing the presence of whales (such as 

flukeprint, contour and mud trails, Table 3.3). Such signs are usually disturbance of the water 

(Table 3.3), meaning they have the same spectral signatures as water, and would not be 

distinguished from water if using a pixel-based method. Some whale signs, such as a flukeprint, 

have a circular shape, which might be identifiable using OBIA or machine learning. In this 

chapter, I did not attempt to detect these signs and it would be useful to develop automated 

systems that account for them.  

A potential reason why OBIA tests are less accurate than manual counting might be that 

the shape of a whale can change considerably with different behaviours (Jefferson et al., 2015), 
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which would require more training data (representing each behaviour) to teach the algorithm. 

To have enough representations of each behaviour (or shape), such a training dataset might 

necessitate counting most of the whales present in the imagery manually, particularly if the 

density of whales in the image is low, which would be inefficient. In contrast, prior knowledge 

allows human observers to interpret the various shapes of whales, so for a single image manual 

counting appears to be a better option. 

To get a similar accuracy to the manual counts, it took an additional hour for the automated 

method that performed best (maximum likelihood). This shows that once more, counting 

whales manually might currently be a better option to analyse VHR satellite imagery. Although 

this might be true for satellite images covering a small area, such as the one used in this chapter, 

for larger areas (e.g. one WorldView-3 image of 4,716 km2, DigitalGlobe, 2017), using an 

automated system might prove to be more time-efficient. Even in a situation where automation 

takes the same amount of time as manually detecting, or longer, it might prove more suitable 

than manually scanning. Counting whales using automated methods might give the opportunity 

for researchers to devote their time to other tasks, which cannot be performed by a computer, 

such as developing new conservation measures, or finding ways to rigorously estimate the 

errors linked to misidentifying whales (e.g. false negatives and positives). Furthermore, 

computers are not prone to fatigue and do not loose concentration as humans do; therefore, 

counts made by a computer are comparable, whereas counts made by different observers are 

likely to differ (Fretwell, Scofield & Phillips, 2017). 

4.4.3 Transferability of this case study to other species 

The automated methods trialled here were for southern right whales in a turbid 

environment. Maximum likelihood was found to be the best performing method; however, it 

might not be appropriate for other species. Different automated methods might work better at 

detecting different species, similar to how different environmental conditions (e.g. levels of 

turbidity) are likely to influence which automated methods works best. In the satellite image 

analysed in this chapter, southern right whales contrasted well with their surroundings, which 

was mostly turbid waters. The humpback whales (Megaptera novaeangliae) in the WorldView-

3 image of Maui Nui analysed in Chapter 3, did not contrast well with their surroundings, 

meaning a pixel-based method such as maximum likelihood may be less successful. As 

humpback whales in this image were very surface active, trying to detect signs of their presence 

(e.g. flukeprint, after-breach) might be more appropriate, which might be possible using an 

OBIA approach.  
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In some instances, the same automated algorithm might work for different species, 

although they have different radiance, as long as the whales contrast well with their 

surroundings. For example, the maximum likelihood algorithm probably performed best at 

detecting southern right whales in a turbid environment, because the whales contrasted well 

with the turbid waters. Therefore, other whale species that contrast well with their environment 

might be accurately detected using a maximum likelihood algorithm. The fin whales 

(Balaenoptera physalus) observed in the WorldView-3 satellite imagery of the Pelagos 

Sanctuary, in the Mediterranean, contrasted well with their surroundings (Chapter 3), and might 

be detected using a maximum likelihood algorithm, similar to the southern right whales 

observed in the GeoEye-1 image analysed in this chapter. 

As different species are likely to require different automated methods, multispecies 

surveys might need to use a combination of automated systems to detect whales. Based on 

findings from Chapter 3, if fin whales were to be observed in the Maui Nui waters, where 

humpback whales were observed, fin whales would be expected to contrast well with their 

surroundings and might automatically be detected using a maximum likelihood algorithm; 

whereas the less contrasting humpback whales might be better distinguished using an OBIA 

approach. 

4.4.4 Recommendations for future automated tests 

Automation could potentially be improved with further pre-processing steps. In this 

chapter the pre-processing was limited to correcting for the top of atmosphere and pan-

sharpening the satellite image. Additional pre-processing could potentially be conducted, 

similar to Trathan (2004), who automatically detected penguins on aerial imagery using a 

median filter. Pre-processing might not be suitable for every type of image, such as 

multispectral images, because if a feature of interest is too small (a few pixels) it may be 

removed, due to the lower spatial resolution of this type of imagery. This was observed in this 

chapter by a reduction in the accuracy of the same algorithm (e.g. isodata) when post-

processing the multispectral image.  

Four standard automated methods were tested in this chapter (unsupervised and supervised 

classifications, thresholding and OBIA), although others could have been trialled (Hollings et 

al., 2018; Borowicz et al., 2019). I selected these four methods, as they were more likely to be 

applied by marine conservation research groups, including NGOs, which do not usually have 

access to more sophisticated and expensive equipment (e.g. supercomputers) required for more 

advanced automated methods (Aragones, Jefferson & Marsh, 1997). Here I used the ENVI 
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software, as it is known to perform well for satellite imagery analysis and automated detection. 

ENVI offers several automated detection workflows that have been well-developed; however, 

the software is costly and attempts should be made to develop similar automated detection 

workflows for an open source software (e.g. Orfeo toolbox).  

Methods other than the ones tested in this chapter exist and might work better at detecting 

whales in VHR satellite imagery. Some of these methods can combine or augment some of the 

standard methods tested in this chapter. For instance, a study by Yang et al. (2014), used a 

combination of pixel-based (supervised classification) and object-based image analysis, to 

detect large African mammals automatically, in a GeoEye-1 image. Machine learning, not 

tested in this chapter, might work well at detecting whales in satellite imagery. It has previously 

been tested for detecting dugongs (Dugong dugon) in aerial imagery (Maire, Mejias & 

Hodgson, 2014; Maire, Alvarez & Hodgson, 2015), demonstrating the potential for 

applicability to other marine mammals. In the past few years, machine learning methods have 

been increasingly trialled for wildlife surveys using aerial or VHR satellite imagery (e.g. Maire, 

Alvarez & Hodgson, 2015; Hollings et al., 2018; Bowler et al., 2019). Large companies, such 

as Microsoft, are also developing online platforms (AI for Earth) to allow researchers the 

opportunity to test machine learning approaches at detecting their targeted feature (Joppa, 

2017; Microsoft, 2019).  

Machine learning involves teaching a computer what a feature of interest (here whales) 

looks like by giving it multiple examples of the feature. To apply machine learning approaches 

to whales, thousands of chipped satellite images of whales would be required; of different 

species, showing different behaviours, in different locations, under different lighting and 

environmental conditions. No such database currently exists. I made an attempt at initiating the 

creation of such a database (see Appendix D) by labelling whale features as well as potentially 

confounding features (e.g. boats and planes). However, this database needs more samples of 

chipped and labelled VHR satellite images of whales, meaning more satellite images need to 

be analysed. A possible alternative to increase the size of the database would be augmentation, 

which involves using the same image of a whale several times, but altering the rotation angle 

or mirroring the image each time. Another solution, used by Microsoft, is to model animals in 

different ways and situations (Joppa, 2017; Microsoft, 2019). For instance, whales could be 

modelled at different depths in various turbidity levels. Two studies tried using machine 

learning to automatically detect whales on satellite imagery (Borowicz et al., 2019; Guirado et 

al., 2019). The study by Guirado et al. (2019) appears less reliable than the study by Borowicz 

et al. (2019), as the database used was wrongly annotated, discrediting the apparently 
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successful study. Borowicz et al. (2019) built a large enough dataset to trial machine learning 

for the detection of whales in VHR satellite imagery by lowering the spatial resolution of aerial 

images with whales to match the spatial resolution of VHR satellites (i.e. down-scaling). 

The practical aspects of using machine learning to detect whales in a large amount of 

satellite imagery will need to be considered. As satellite imagery, particularly VHR, are 

relatively data heavy files, downloading and processing huge quantities of imagery will require 

the use of more sophisticated computers, such as supercomputers, rather than desktop 

workstations. Cloud-based platforms free to access for research purposes, such as GoogleTM 

Earth Engine, allow the execution of computationally expensive tasks (Lin, Puttonen & 

Hyyppä, 2013; Padarian, Minasny & McBratney, 2015). However, it might not be feasible to 

use cloud-based platforms for VHR satellite imagery, as most are not freely available and the 

company they belong to might not allow uploading of the imagery on such a platform. Another 

solution to analysing large quantities of imagery, involves reducing the amount of data 

analysed by preselecting the imagery of interest; such as imagery with good weather conditions 

to facilitate whale detection, or imagery likely to have whales. Cloud-based platforms owned 

and managed by the satellite imagery provider (e.g. GeoHIVE; Maxar, 2019) can run 

algorithms to retain only the images of potential interest that will be further analysed, without 

owning the data, which should reduce the cost to the end user.  

Methods to automatically detect whales in VHR satellite imagery might not have to be 

fully automated, and could include human input to make the final decision whether an object 

is a whale or not. Such semi-automated methods should aim to develop an algorithm that 

accepts less false negatives (error of omission), which might imply a higher number of false 

positives (error of commission), meaning all potential whale detections will need to be checked 

by experts to determine whether it is a whale or not. 

4.5 Conclusion 

Supervised classification proved to perform well to detect southern right whales in the one 

image analysed in this chapter. However, it was not faster than counting whales manually and 

is not guaranteed to work for another image of the same area. Due to the data volumes and the 

time needed for manual counting, the need for automation remains. Further research on how to 

automate the detection of whales in satellite imagery should focus on machine learning 

approaches. Machine learning appears more promising for automatically detecting whales in 

various environments, than pixel-based and object-based methods. The performance of 
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machine learning approaches depend on large datasets, encouraging further expansion of a 

whale database. As errors of identification will likely continue to occur, ways to estimate errors 

linked to false negatives and positives should be investigated.
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Chapter 5 

Insights into estimating the maximum 

depth of detection 

5.1 Chapter introduction 

Whales can be detected in VHR satellite imagery, as illustrated by the results presented in 

Chapters 3 and 4, and studies by Abileah (2002) and Fretwell, Staniland & Forcada (2014). 

Due to recent increases in the spatial resolution (see Chapter 2), the capacity for sensing large 

whales has improved in the past two decades, from seeing virtually unresolved objects 

(Abileah, 2002) to more detailed objects, with visible whale-defining features, such as flukes 

(see Chapter 3). These technological improvements provide a step towards using VHR satellite 

imagery to census marine mammal populations, as originally suggested by Abileah (2002). 

However, the method is at an early developmental stage, where several technical factors need 

to be addressed. For abundance estimates, knowledge of the maximum depth of detection for 

whales in VHR satellite imagery is essential. 

Accurate estimates of whale abundance trends are crucial for evaluating the efficacy of 

conservation measures implemented to support whale population recovery (Taylor & Dizon, 

1999; Stevick et al., 2003; George et al., 2004; Panigada et al., 2011; Mace et al., 2008; Pace, 

Corkeron & Kraus, 2017). Abundance estimates rely on a priori assessment of biases 

influencing the detectability of whales. The number of whales visible at the surface is often an 

underestimate of the total number of whales present in an area, as a proportion are deep below 

the surface at the time of survey. The difference between the number of whales sighted relative 

to the total number of whales present in an area is known as visibility bias (Marsh & Sinclair, 
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1989), which depends upon the availability and perception biases. The availability bias 

accounts for the whales that are not counted because they are hidden by their environment (e.g. 

too deep below the surface; Marsh and Sinclair, 1989; Laake and Borchers, 2004). This is 

influenced by the speed and type of survey platform, as well as the dive pattern and behavioural 

state of a species (e.g. foraging, breeding, migrating; Barlow, 1999). The perception bias 

accounts for the whales that are not hidden by their environment, but not detected by the 

observer due to environmental conditions (e.g. turbidity, sun glare, swell and white caps) and 

factors related to the species (e.g. body colouration).  

In traditional marine mammal monitoring, only whales at the surface are estimated to be 

visible. Although whales below the surface will be visible during aerial surveys, due to a 

different vantage point to a boat, it is assumed that whales observed below the surface will 

reach the surface by the time the plane flew over (Hiby & Hammond, 1989; Marsh & Sinclair, 

1989; Barlow, 1999; Buckland et al., 2001; Heide-Jørgensen & Acquarone, 2002; Gannier & 

Epinat, 2008; McLellan et al., 2018; Ganley, Brault & Mayo, 2019). VHR satellites have a 

similar vantage point to aerial surveys, and whales can also be observed below the surface 

(Figure 5.1). However, VHR satellites capture a moment in time, meaning whales will only be 

observed once, either at the surface or below, unless overlapping images are captured a few 

seconds apart as observed in Chapter 3. Whales can potentially be observed deeper in VHR 

satellite imagery than during an aerial survey because VHR satellites, such as the WorldView-

2 and -3, have a higher spectral resolution than a human eye or DSLR camera (used during 

aerial surveys). WorldView-2 and -3 have an additional sensor in the far-blue end of the visible 

spectrum (DigitalGlobe, 2013, 2017), allowing objects to be visible deeper in the water column 

(Lee, Olsen & Kruse, 2012). Therefore, understanding of how deep below the sea surface 

whales can be detected and how well they can be distinguished in VHR satellite imagery is 

necessary to accurately estimate the visibility bias for surveys conducted using this technology.  

Once a maximum depth of detection is established, for a certain species (i.e. body 

colouration), in a specific environment (e.g. non-turbid waters with clement sea conditions), 

the perception bias could be estimated. It could then be combined with the availability bias, 

estimated using this maximum depth of detection and the best available known dive pattern 

data for the target species (e.g. from suction cup tag data), to obtain the visibility bias. This 

method could then be applied to other species, under different environmental conditions (e.g. 

turbidity and sea surface roughness). 
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Figure 5. 1 (A) is a WorldView-3 satellite image of Laguna San Ignacio, Baja California Sur, 

Mexico, presented in Chapter 3, showing four grey whales (Eschrichtius robustus). Whales a 

and b on the left are probably at the surface, due to the presence of their blow and the clear 

body outline. Whales c and d on the right are probably below the surface, at undetermined 

depths, due to the hazy outline and the lack of details (such as the absence of a fluke). (B) 

shows what a transversal view of the satellite image might look like, illustrating the 

undetermined depth for whales c and d. 

 

To estimate the maximum depth at which whales can be detected on VHR satellite 

imagery, different approaches exist, including the use of (1) nautical charts, (2) whale replicas 

or (3) bathymetry algorithms developed for VHR satellite imagery.  (1) The bathymetric 

information included in a nautical chart could be overlaid on top of a satellite imagery. This 

would allow to visually assess the maximum depth of detection for the most reflective seafloor 

cover (e.g. white sand), which will help infer an approximate maximum depth of detection for 

whales, assuming the spectral reflectance of whales is known. (2) Whale-replicas created out 

of plywood could be placed at various known depths, as Richard et al. (1994), Pollock et al. 

(2006) and Robbins et al. (2014), did for narwhals, belugas, dugongs, and sharks. However, 

these surveys were realised for animals much smaller than great whales. Due to the logistical 

problems of creating and installing life size whale replicas at sea, adjustments are needed. An 
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alternative would be to place black panels, large enough to fill a whole pixel on a VHR satellite 

image, as suggested by Fretwell, Staniland & Forcada (2014). Estimates of the reflectance or 

radiance of whale integument above the sea surface is required to calibrate the panels. (3) The 

third proposed method could make use of existing algorithms used to estimate the bathymetry 

of coastal seas on VHR satellite imagery. Stumpf, Holderied & Sinclair (2003) developed such 

an algorithm based on changes in the ratio between the amount of blue and green light being 

reflected from the same target (e.g. sand or algae) at different depths. This change in ratio is 

due to the attenuation of light with increasing depth, where blue is the last light being absorbed 

and green the one before last (Wozniak & Dera, 2007). With light attenuation, the colour of a 

specific whale will vary as it goes deeper. Figure 5.1 shows differences in colour among four 

grey whales, with two whales at the surface appearing grey and the other two below the surface 

appearing blue as most other lights were absorbed. The algorithm used in method (3) also 

requires for the reflectance or radiance of whale integument above the sea surface to be known, 

as well as the reflectance below the surface for known depths. 

In this chapter, I first explore the possibility of applying a straightforward method to assess 

the maximum depth of detection of whales in VHR satellite imagery, which involved using 

nautical charts (Section 5.2). As this method was not expected to be as accurate as methods (2) 

and (3), mentioned above, I attempted to investigate the feasibility of using these two methods, 

by focusing on how to acquire the spectral reflectance of whales above the sea surface, which 

is one of the main pre-requirements, for both of these methods. To acquire such data, I 

developed and tested a method applicable to various species, which used thawed whale 

integument (Section 5.3). 

5.2 Nautical charts approach 

The use of nautical charts in association with the optical properties of sea water (i.e. light 

attenuation) can potentially help give an approximate estimation of visibility through the water 

column on VHR satellite imagery of coastal or shallow (<30 m) regions. Underwater visibility 

is assessed in distances, and is usually based on how deep the most reflective object can be 

seen (Duntley, 1952; Jerlow, 1976). In oceanography, a white Secchi disk is usually lowered 

from a boat until it becomes invisible from the surface, due to light attenuation with increasing 

depth. For satellite imagery, lowering a secchi disk is impractical; however, the relative 

visibility could be assessed using the bathymetric information contained in nautical charts and 

the most reflective underwater surface or objects present in a satellite image, such as coral sand 
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(Lubin et al., 2001). This relative visibility could then be used to infer the maximum depth of 

detection of less reflective objects.   

In this section, I assess the feasibility of using nautical charts as a mean to evaluate the 

maximum depth of detection of whales on VHR satellite imagery. (i) First, I evaluate the 

maximum depth of detection of coral sand, through visual analysis of the imagery using the 

bathymetric lines and points of a nautical charts. (ii) Then I assess how reflective are humpback 

whales (Megaptera novaeangliae; detected in the imagery, see Chapter 3) compared to non-

submerged coral sand and the deepest coral sand. Finally, I infer the approximate maximum 

depth of detection of humpback whales on the Maui Nui image, using results from (i) and (ii). 

5.2.1 Methods 

5.2.1.1 Satellite image 

I used a WorldView-3 satellite image of Maui Nui, Hawaii, the same image as in Chapter 

3, as it shows portions of the coast and deeper parts of the oceans, with coral sand visible at 

different depths. Coral sand was used as the reference for the maximum depth visible on the 

satellite image due to its high albedo, i.e. reflects a lot of sunlight back, which translates into 

high radiance (Lubin et al., 2001). The Maui Nui image was also selected, as nautical charts 

are freely available for this area. Humpback whales were observed in this satellite image (see 

Chapter 3), and are expected to have a lower radiance than coral sand due to the dark coloration 

of their body. Due to light attenuation, objects with a higher albedo will be seen deeper in the 

water column than objects with a lower albedo (Duntley, 1952; Jerlow, 1976); therefore, 

humpback whales should not be detected at a lower depth than sand. 

5.2.1.2 Visual analysis 

For the visual analysis, I used the 19347 NOAA Raster Navigational Charts (NOAA 

RNCTM), which covers the full extent of the satellite image, and was freely accessible on 

NOAA Nautical Chart and Chart Viewer (NOAA, 2019a). The bathymetric lines on the chart 

represent the mean lower low water (i.e. low tide). On 9th January 2015 (date of the satellite 

image), the low tide (0.19 m) was at 21h43m UTC (local time 11h43m HST; NOAA, 2019b). 

As the satellite image was taken near the low tide (21h31m UTC), it was assumed that the 

depth reported on the chart was likely to be the same on the satellite image.  

The maximum depth, at which sand was detected on the satellite image, was visually 

estimated using ArcGIS 10.4 ESRI 2017, by overlaying the bathymetric lines and depth points 
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of the 19347 nautical chart on top of the WorldView-3 satellite image of Maui Nui. Prior to 

conducting the visual estimation, the satellite image was pan-sharpened as in Chapter 3. 

5.2.1.3 Spectral analysis 

Radiances of coral sand above the surface, at shallow depth (i.e. below the 3 fathoms 

bathymetric line), and at medium depth (i.e. the deepest sand that could be seen on the satellite 

image), were compared to the radiance of the humpback whale below the surface measured in 

Chapter 3. A fathom is equal to 1.83 m. The same method as Chapter 3 was applied, using the 

satellite image corrected for the top of atmosphere. Each of the three sand categories was 

represented by 100 pure pixels selected randomly. The radiance was measured for all eight 

multispectral bands of the WorldView-3 satellite: coastal (397-454 nm), blue (445-517 nm), 

green (507-586 nm), yellow (580-629 nm), red (626-696 nm), red-edge (698-749 nm), NIR1 

(765-899 nm) and NIR2 (857-1039 nm; DigitalGlobe, 2017). 

5.2.2 Results 

The visual assessment of the satellite image using the bathymetric lines and points showed 

that sand was not visible beyond the 10 fathoms bathymetric line (Figure 5.2). Therefore, the 

sand at medium depth in Figure 5.3 referred to depths near the 10 fathoms bathymetric line 

(Figure 5.2). The spectral analysis confirmed the assumption that the radiance for humpback 

whale below the surface is lower than coral sand, even at medium depth (i.e. its maximum 

depth of detection; Figure 5.3). This was true for the radiance in the coastal, blue, and green 

bands (Figure 5.3).  
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Figure 5. 2 Visual assessment of the maximum depth of detection of sand on a WorldView-3 

satellite image, using nautical charts bathymetric lines and points. The full extent of the 

satellite image is visible on the left. On the right a, b and c are close-up examples showing 

that sand can be seen beyond the 3 fathoms line (approximately 5.5 m) but not beyond the 10 

fathoms line (approximately 18 m). 
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Figure 5. 3 Spectral analysis comparing the radiances (corrected for top of atmosphere) of 

sand at different depths with humpback whales observed in that imagery.  

5.2.3 Discussion 

All humpback whale observations were detected in the deeper part of the imagery where 

the sea floor was not visible. Therefore, the maximum depth of detection of humpback whales 

in the Maui Nui image had to be inferred from the maximum depth of detection of coral sand 

and the spectral analysis. Humpback whales had a lower radiance than the deepest visible coral 

sand, which implies that the maximum depth of detection of humpback whales on the Maui 

Nui image will be at a lower depth than sand. As sand could not be viewed beyond 18 m (i.e. 

10 fathoms), humpback whales will not be detected past this depth. This result diverges from 

Abileah (2002), who estimated a maximum depth of detection for humpback whales in Hawaii 

to be 20 to 25 m, based on simulations using whale targets. This difference might be explained 

by a potential difference in turbidity, as the two studies used different images, taken on different 

days. 

The method described here can only provide an approximate maximum depth of detection, 

and therefore, could only be used to estimate an approximate abundance. Determining the exact 
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depth at which individual whales are visible will not be possible. This method presents a few 

other limitations as it is only transferable to coastal areas, where the turbidity is low, and 

consistent across an image. Another requirement for this method is the need for the substrate 

used as a reference to have a higher reflectivity than the studied whales. Otherwise the 

maximum depth of detection will be underestimated, which would lead to an overestimated 

abundance (Figure 5.4). As this method is limited by the location and environment it can be 

applied to, and given the approximate maximum depth of detection this method can produce, 

alternative methods are required. 

 

 

Figure 5. 4   Assessments of the visibility bias for whale surveys using VHR satellite imagery 

could either be based on counting whales at the surface (left panel) or include whales that are 

visible below the surface (right panel). Whales a-d are the same as in Figure 5.1, and whales 

e-g are hypothetical whales not visible on the VHR satellite imagery of Figure 5.1, that could 

potentially be present. With the surface vs. subsurface approach, whales a and b are counted 

as the detectable whales, although whales c and d are visible too. With the maximum depth of 

detection approach, whales a, b, c and d will be counted as detectable, if the estimated 

maximum depth of detection (DE) is equal to the true depth of detection (DT). If DE is 

underestimated, whale c will be incorporated into the visibility bias but also visually counted 

when scanning the satellite imagery, leading to an overestimated abundance. Overestimating 

DE will give an underestimated abundance, as whale e will not be accounted for in the 

visibility bias, nor the visual count, because it is estimated to be detectable from the surface, 

when actually it is not visible. 
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5.2.4 Conclusion 

The nautical chart method is only useful to estimate the maximum depth of visibility in a 

satellite image when the following pre-requisite are met: the coast is visible and turbidity 

conditions are constant across the area being surveyed. At best, this method can provide an 

approximate estimate of the maximum depth of detection of whales; therefore, its use is not 

recommended when evaluating crucial parameters necessary to accurately estimate whale 

abundance, such as the visibility bias.  

5.3 Spectral signatures of whales above the sea surface 

Two other methods have the potential to help estimate the maximum depth of detection of 

whales on VHR satellite imagery. One method requires the installation of panels (of a similar 

colour to the species of interest) at various known depths (Richard et al., 1994; Pollock et al., 

2006; Fretwell, Staniland & Forcada, 2014). The second method involves the use of algorithms 

developed to estimate the bathymetry of coastal regions in VHR satellite imagery (Lyzenga, 

1978; Stumpf, Holderied & Sinclair, 2003). Both methods demand for the reflectance of whales 

above the surface to be known, which can also be helpful for assessing whether a whale is at 

the surface or subsurface. Currently, the spectral reflectance of live whales above the sea 

surface is unknown, and the published radiances of whales available from satellite imagery are 

from below the surface, due to the lack of sufficient pure pixels of whales, as opposed to 

“mixed” pixels containing whales and water (Chapter 3). 

In remote sensing, spectroradiometers have been successfully used to acquire the spectral 

reflectance of various natural targets, such as penguin guano and vomit (Schwaller, 

Benntnghoff & Olson, 1984; Rees et al., 2017), corals (Lubin et al., 2001), trees (Lin, Puttonen 

& Hyyppä, 2013), lichens (Rees, Tutubalina & Golubeva, 2004) and minerals (Clark et al., 

1990). These are stationary targets, and spectroradiometers need to remain still usually for 

several minutes while acquiring the reflectance. Hence, this method cannot be directly 

transferred to free-swimming whales. The acquisition of the reflectance of one target within an 

individual whale (e.g. a specific area on one whale) is a slow process involving several 

measurements of the target intermitted by measurements of a known reference. This method 

also requires that the spectroradiometer be placed at a specific distance from the target, to 

control the area being measured and ensure that no other surfaces are included. A hand-held 

spectroradiometer would typically need to be 1 m away from the target to measure the spectral 

reflectance of a sufficiently small area of whale integument, while avoiding measuring any part 



Insights into estimating the maximum depth of detection 

110 

 

of the sky and/or the sea. Such close and lengthy approaches to free-swimming whales are not 

feasible for ethical and practical reasons (Scheidat et al., 2004; Isojunno & Miller, 2015; 

Argüelles et al., 2016).  

A potential solution, to measure the reflectance spectra of a whale above the sea surface, 

is to use whale integument samples of good condition that are collected and frozen after fatal 

strandings. An approach that would enable spectroradiometer tests to be conducted up close 

and with no time constraints. In this section, I investigated whether the spectral reflectance of 

thawed whale integument collected at fatal strandings, could be used to estimate the spectral 

reflectance of live whales above the sea surface. First, I assessed whether fresh and frozen 

whale integument have similar reflectance spectra. Then, I verified whether the spectral 

reflectance of thawed samples was unique to each of the species analysed. 

5.3.1 Methods 

5.3.1.1 Apparatus set-up 

Measurements of spectral reflectance of whale integument above the sea surface were 

acquired using the set-up shown in Figure 5.5 (see Appendix E for an explanation as to why 

reflectance was measured here, instead of radiance). All spectra were acquired at high spectral 

and spatial resolution, using a GREEN-Wave spectroradiometer, model VIS-50, (Stellarnet 

Inc, US), which covers a wavelength range of 350 to 1150 nm, with a spectral resolution of 1.6 

nm and a sampling interval of 0.5 nm. The spectroradiometer was securely fixed to a tripod, 

with the sensor pointing perpendicular to the whale integument and positioned at a 

predetermined distance from the target to ensure a known area of whale integument was 

measured. The distance between the sensor and the target was twice the radius of the measured 

surface area of the whale integument, as the sensor has a 30° field of view (see Appendix F). 

The spectroradiometer was connected to a computer, running SpectraWiz® software 

(distributed by Stellarnet Inc., US), to allow for visualisation and acquisition of the spectral 

reflectance. 
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Figure 5. 5  Set-up of the apparatus. (A) shows the set-up for measuring the spectral 

reflectance of the surface of a sample of whale integument, where a) is a whale integument 

sample comprised of epidermis and hypodermis, b) is a sensor, c) is a spectroradiometer, d) 

are attachment points to connect the spectroradiometer to the tripod (e.g. using silver 

adhesive tape), e) is a tripod, f) is a USB cable connecting the spectroradiometer to the 

computer, g) is a computer, and h) is a light source. (B) shows the set-up for measuring the 

spectral reflectance of the waterproof grey card (i). (C) is a picture of the set-up. 
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5.3.1.2 Sample collection and preparation 

To measure the spectral reflectance of live whales, the method had to be adapted due to 

equipment and environmental restrictions. As the set-up had to remain still for approximately 

5 minutes to acquire the spectral reflectance of the target, I initially considered measuring the 

spectral reflectance of live stranded whales; however, such unfortunate events are 

unpredictable, particularly for baleen whales (van der Hoop et al., 2013). Therefore, I focused 

on measuring the spectral reflectance of whale integument samples collected during previous 

strandings, and during the 2018 bowhead (Balaena mysticetus) subsistence fall harvest by 

Iñupiat hunters at Utqiaġkvik (Barrow), Alaska. The samples collected during strandings 

represented seven species: minke (Balaenoptera acutorostrata), fin (B. physalus), sei (B. 

borealis), Bryde’s (B. edenii), humpback, North Atlantic right (Eubalaena glacialis), and 

sperm whales (Physeter macrocephalus). The subsistence harvest samples are from bowhead 

whales. In this section, all samples of whale integument consisted of epidermis (skin) through 

to hypodermis (fat).  

A total of 37 samples of whale integument collected during strandings were frozen at -

20°C at the International Fund for Animal Welfare, University of North Carolina Wilmington, 

and at Woods Hole Oceanographic Institution. All stranded animals were coded 1 to 3 based 

on the Geraci and Lounsbury (2005) classification at the time of sampling. This coding is used 

to evaluate the quality of the whale carcass for research, with code 1 being alive at stranding, 

indicating the freshest and best preserved sample, and 3 being considered of fair quality with 

internal decomposition having started.  

During the bowhead subsistence harvest, the reflectance of seven different portions of 

whale integument was either measured on the whale (i.e. before flensing), or on samples 

collected post-flensing. Flensing refers to the removal of the integument from the whale 

carcass. The Iñupiat community of Utqiaġkvik also granted me permission to freeze one of the 

seven samples at -20°C for three days. This sample had its reflectance measured before and 

after it was frozen and was used as a control to assess the comparability between a spectral 

reflectance measure on a thawed versus fresh whale integument. All frozen samples were 

thawed to pliability before the spectral reflectance was measured. 

5.3.1.3 Spectral reflectance acquisition and pre-processing 

The acquisition of the spectral reflectance for each sample included three measurements 

of the whale integument, coupled with three measurements of a known reference card. For 
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practical reasons, I used a JJC GC-1II waterproof grey card of 254 by 202 mm, manufactured 

by JJC Photography Equipment Co., Ltd., as a reference. To follow agreed spectrometry 

protocols (Lubin et al., 2001; Rees et al., 2017), the grey card was calibrated using a 

‘Spectralon’ white panel (reference SRT#034, on loan from NERC Field Spectroscopy 

Facility). To measure the reflectance of the grey card under the same geometrical and lighting 

conditions as the whale integument, I placed it immediately on top of the whale integument. 

Different light sources were used for different samples; these were directly compared in order 

to establish any impact on the reflectance of the integuments (see Appendix G). Light sources 

included halogen, fluorescent LED, surgical light (STERIS Amsco SQ240), sun light bulb (GE 

Reveal HD+ 45w), and natural light.  

All spectra collected at high spectral resolution were smoothed with a 10 nm moving 

average to remove noise. Prior to smoothing, all spectral reflectance were checked for the 

presence of narrow features that would be lost in the process of smoothing. No such features 

were observed. After smoothing, the spectral reflectance measured under the fluorescent LED 

and the surgical light, continued to have a high amount of noise at wavelengths below 416.25 

nm and above 802.75 nm. Therefore, I only analysed the smoothed, calibrated reflectance 

between 416.25 nm and 802.75 nm for all reflectance spectra. Occasionally, spectral 

measurements looked very different from other replicates, likely due to human error. These 

measurements were removed from subsequent analyses. Another measurement was excluded 

due to poor lighting conditions, specifically sample 18B13-1, which was measured at night, 

with an Allmand night light.  

All spectral reflectance, covering the whole wavelength range available (350-1150 nm) 

was also convolved based on the radiometric response curves of the WorldView-3 sensors. The 

satellite WorldView-3 currently offers the best spatial resolution for detecting whales from 

space; therefore, I aimed to show what the spectral reflectance of each species would be using 

atmospherically corrected WorldView-3 imagery. To convolve the data, I used the calibrated, 

non-smoothed spectral profiles, excluding samples for which there was error in the 

measurements, or poor lighting conditions. The following equation was used to convolve: 

 

𝑅 =
∑ 𝑟𝑖 𝑤𝑖

∑ 𝑤𝑖
 

 

The convolved reflectance for a species is R̅, where for the same wavelength, ri is the 

reflectance of whale integument, and wi is the response curve for a given WorldView-3 sensor 
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(DigitalGlobe, 2016). The WorldView-3 bands investigated here were the panchromatic (450-

800 nm), coastal (397-454 nm), blue (445-517 nm), green (507-586 nm), yellow (580-629 nm), 

red (626-696 nm), red-edge (698-749 nm), near-infrared 1 (765-899 nm), and near-infrared 2 

(857-1039 nm). 

5.3.1.4 Spectral reflectance; influence of the set-up vs. animal 

A bottom-up approach was used to test whether any element of the set-up or variable 

intrinsic to the animal influenced the spectral reflectance. First, I created a distance matrix djk 

of spectral values using the Euclidean distance metric , where xij and xik are the spectral 

reflectance for each wavelength i, for different animals j and k (see equation below).  

 

𝑑𝑗𝑘 = √∑(𝑥𝑖𝑗 − 𝑥𝑖𝑘)
2

𝑖

 

 

For each value in the distance matrix, I used the spectral reflectance averaged by the animal 

(n=32), as several measurements were made for the same animal under the same conditions. 

The only exception was animal 8, which was measured under different types of freshness 

condition (i.e. on the whale, freshly cut out of the whale, and thawed); therefore, animal 8 was 

averaged under each type of freshness condition. Using the distance matrix and the dendextend 

R package (Galili, 2015), I performed hierarchical clustering to test for specific groupings of 

the spectral reflectance by species and sampling method. Different agglomeration methods 

exist to perform hierarchical clustering. All these methods were compared using the Spearman 

correlation test (Figure 5.6), which suggested to use Ward’s minimum variation method 

(ward.D; R Core Team, 2019). To explain the clustering and assess the drivers of variation 

among spectral reflectance of whale integument, I carried out a permutational multivariate 

ANOVA (Adonis in vegan 2.5-5 implemented in R; Oksanen et al., 2019). The variables tested 

were related to either the animal or the experimental set-up and included species, epidermis 

colour, pigmentation, source of light, measurement type, freshness condition and time spent in 

the freezer (detailed in Table 5.1).  The null hypothesis was that each variable (Table 5.1) had 

no effect on the reflectance of whale integument. Consequently, the method evaluated which 

variable(s) related to the set-up or animal could explain the clustering structure. 
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Table 5. 1 Description of the categorical variables used to explain the clustering in Figure 

5.10.  

Variable Related to Categories R2 p 

Species Animal Minke whale, fin whale, sei whale, 

Bryde’s whale, humpback whale, North 

Atlantic right whale, sperm whale, 

bowhead whale 

0.24 0.36 

Epidermis 

colour 

Animal Black, dark grey, black with grey patches, 

black with reed lesions, black-brown, 

black with falling grey pieces of 

integument 

0.23 0.437 

Pigmentation Animal Black, black-brown, grey 0.04 0.25 

Source of 

light 

Set-up Fluorescent-LED, fluorescent-LED with 

UV, halogen, Surgical light, sunlight bulb, 

sun 
0.30 0.055 

Measurement 

type 

Set-up On the whale, freshly cut out of the whale, 

thawed 0.09 0.202 

Condition 

code 

Set-up Freshness of the whale integument at the 

time of collection classified as type 1, 2, or 

3 
0.09 0.277 

Estimated 

freezer time 

Set-up Number of days each sample stayed in a 

freezer at -20°C, fresh samples were 

reported with 0 days 

0.20 0.005 
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Figure 5. 6 Comparison of the different agglomeration methods for hierarchical clustering 

using Spearman correlation. The correlation between the different agglomeration methods is 

illustrated in two different ways, by colouration and through pies. Blue indicate a positive 

correlation and red a negative correlation. The intensity of the colour represents the absolute 

value of the correlation. The darker the blue, the more positive the correlation is. Pies filled 

clockwise indicate a positive correlation and pies filled counter-clockwise indicate a negative 

correlation. The amount of the pie that is filled with colour (blue or red) represent the 

absolute value of the correlation. 

5.3.1.5 Fresh vs. frozen spectral reflectance 

The first objective was to assess whether fresh and frozen whale integuments have similar 

reflectance spectra. For this objective, I compared the spectral reflectance of the bowhead 

integument measured on a fresh sample post-flensing, and again after the same sample had 

been frozen for three days at -20°C and then thawed to pliability. The aim of this comparison 

was to test whether using frozen samples of good condition was a reliable alternative to 

measuring the spectral reflectance of fresh samples. Frozen samples are easier to access, 

making the protocol more easily transferable to other whale species. As I was only able to use 

one sample for the control experiment, I also compared the mean spectral reflectance of 

samples that were fresh (i.e. spent no time in a freezer) to those that spent a ‘short’, ‘medium’, 

and ‘long’ times in a freezer at -20°C. Five animals represented the “fresh” category. The three 

other categories were determined by ordering the whale integument samples from shortest to 
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longest time spent in a freezer, and subsequently by separating the samples into three categories 

of equal percentile (i.e. nine animals per category). The short frozen-duration category was 

represented by samples that had spent between 3 to 473 days in a freezer, the medium duration 

samples were stored between 481 to 4159 days, and the long period samples stored between 

4411 and 7689 days. Spectral reflectance (calibrated, smoothed and averaged per animal) in 

each category was then averaged. The above-mentioned ANOVA tested whether the variable 

“estimated freezer time” (Table 5.1) significantly explained part of the clustering. 

5.3.1.6 Spectral reflectance per species 

Different species of whales have different epidermis colouration (Jefferson et al., 2015). 

As different colours have different reflectance (Rees, 2013), I aimed to test whether the spectral 

reflectance of thawed samples was unique to each whale species (second objective). To address 

this, I averaged separately the low (convolved) and high spectral resolution spectral reflectance 

per species, for thawed samples only. The above-mentioned ANOVA was used to assess 

whether the clustering of the spectral reflectance was driven by the variable “species” (Table 

5.1). 

5.3.2 Results 

5.3.2.1 ANOVA: which factors influenced variation in spectral reflectance? 

The permutational multivariate ANOVA performed here, showed that the clustering of the 

spectral reflectance was influenced by the set-up, particularly the time a sample spent in a 

freezer. Time spent in a freezer was the only variable to significantly (p<0.05) explain the 

variation observed among the spectral reflectance averaged per animal (Table 5.1); and 

therefore the clustering. The type of light was slightly above the threshold to be considered 

significant (p=0.055). 

5.3.2.2 Do fresh and frozen whale integuments have similar spectral reflectance? 

The controlled experiment, with the bowhead sample that had its reflectance measured 

when fresh and thawed, showed that freezing the integument darkens it across nearly all 

wavelengths, i.e. it becomes less reflective (Figure 5.7). Although this represents only one 

sample, the same observation was made when comparing the average spectral reflectance of 

samples having spent different times in a freezer (Figure 5.8). This effect could be seen when 

looking at the spectral reflectance estimates averaged over two clusters (Figure 5.9), plotted 
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out in Figure 5.10. The two distinct clusters yielded by hierarchical clustering had an average 

of 278 days ± 305 days (cluster 1) and 2657 days ± 2499 days (cluster 2) spent in a freezer 

(Figure 5.9 and 5.10). This clustering was most strongly explained by time spent in the freezer 

(Table 5.1).  

 

  

Figure 5. 7 Spectral reflectance of a bowhead whale integument sample measured while the 

sample was fresh, before storing it in a freezer at -20°C (grey line); and spectral reflectance 

of the same bowhead whale integument sample measured when the integument was thawed 

to pliability, following three days in a freezer at -20°C (black line). The wavelength range for 

each of the eight colour sensors of the Worldview-3 satellite (DigitalGlobe, 2017) are 

represented by the coloured bars. 
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Figure 5. 8 Averaged spectral reflectance for fresh (dotted line) samples and those that spent 

a short (small dash line), medium (large dash line) and long time (full line) in a freezer at -

20°C. 

 

 

Figure 5. 9 Averaged spectral reflectance for whale skins as separated into cluster 1 (grey 

dashed line) and cluster 2 (black line) by Ward’s minimum variance method. 
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Figure 5. 10 Hierarchical clustering analysis (with Ward’s minimum variance method, 

ward.D) of the spectral reflectance of the integument of various whale species showing two 

clusters. Each animal is identified at the species level and coloured per category of time spent 

in a freezer at -20°C, from light blue (short length of time, 3 to 473 days) to dark blue (long 

length of time, 4411 to 7689 days). The shape and colour of the nodes indicate the colour of 

the epidermis, as seen by a human eye. 

5.3.2.3 Do whale species have unique spectral reflectance? 

The clustering analysis (Figure 5.10) did not show grouping by species nor by epidermis 

colour, which was also observed when comparing the average spectral reflectance for each 
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species (Figure 5.11). All species had a low, flat reflectance throughout most of the measured 

wavelength range (approximately 416.25-700 nm), except for a slight increase beyond the red 

wavelength (Figure 5.11). The noise observed on Figure 5.11 at the lowest and highest 

wavelengths in the spectrum was due to the type of artificial light used. As mentioned in the 

methods, fluorescent (with or without UV) and surgical lights had a more constrained 

wavelength range. Table 5.2 shows the spectral reflectance averaged per species and convolved 

using the WorldView-3 satellite radiometric response curves. 

 

 

Figure 5. 11 (A) Spectral reflectance of whale integument averaged per species, for thawed 

samples only, with grey bands showing the wavelength range excluded from the cluster 

analysis. The blue (i), green (ii) and red (iii) vertical lines show the specific reflectance used 

in (B) to illustrate the variation among species for three specific wavelengths ((i): 481.25 nm; 

(ii): 546.25 nm; (iii): 661.25 nm). Each wavelength represents the median of the range for the 

WorldView-3 satellite bands: blue, green and red.
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Table 5. 2  Convolved spectral reflectance averaged (± SD) per species for each WorldView-3 optical sensors. N is the number of integument 

samples and n is the number reflectance measurements. 

Species PAN Coastal Blue Green Yellow Red Red-edge NIR1 NIR2 

Minke whale (N= 7, n=7) 0.052 

(± 0.028) 

0.119 

(± 0.130) 

0.046 

(± 0.026) 

0.044 

(± 0.024) 

0.045 

(± 0.025) 

0.049 

(± 0.027) 

0.059 

(± 0.032) 

0.112 

(± 0.256) 

-0.198 

(± 1.545) 

Fin whale (N=6, n=28) 0.029 

(± 0.008) 

0.030 

(± 0.010) 

0.027 

(± 0.008) 

0.024 

(± 0.007) 

0.025 

(± 0.007) 

0.025 

(± 0.007) 

0.033 

(± 0.008) 

0.058 

(± 0.013) 

0.127 

(± 0.028) 

Bryde’s whale (N=1, n=3) 0.035 

(± 0.005) 

0.040 

(± 0.010) 

0.035 

(± 0.007) 

0.031 

(± 0.006) 

0.032 

(± 0.005) 

0.032 

(± 0.005) 

0.037 

(± 0.005) 

0.056 

(± 0.004) 

0.113 

(± 0.001) 

Sei whale (N=1, n=3) 0.015 

(± 0.002) 

0.019 

(± 0.002) 

0.014 

(± 0.002) 

0.011 

(± 0.002) 

0.012 

(± 0.002) 

0.012 

(± 0.001) 

0.016 

(± 0.002) 

0.031 

(± 0.003) 

0.073 

(± 0.003) 

Humpback whale (N=7, 

n=7) 

0.043 

(± 0.014) 

0.071 

(± 0.041) 

0.037 

(± 0.015) 

0.034 

(± 0.014) 

0.036 

(± 0.014) 

0.039 

(± 0.014) 

0.049 

(± 0.015) 

0.186 

(± 0.214) 

0.299 

(± 0.262) 

North Atlantic right whale 

(N=9, n=18) 

0.032 

(± 0.013) 

0.029 

(± 0.013) 

0.025 

(± 0.012) 

0.024 

(± 0.012) 

0.026 

(± 0.012) 

0.028 

(± 0.012) 

0.038 

(± 0.014) 

-0.128 

(± 0.833) 

0.128 

(± 0.053) 

Bowhead (N=2, n=4) 0.056 

(± 0.006) 

0.048 

(± 0.012) 

0.046 

(± 0.010) 

0.043 

(± 0.009) 

0.046 

(± 0.008) 

0.050 

(± 0.005) 

0.065 

(± 0.003) 

0.104 

(± 0.004) 

0.203 

(± 0.012) 

Sperm whale (N=6, n=37) 0.036 

(± 0.011) 

0.035 

(± 0.015) 

0.031 

(± 0.012) 

0.028 

(± 0.010) 

0.030 

(± 0.010) 

0.032 

(± 0.011) 

0.040 

(± 0.011) 

0.069 

(± 0.016) 

0.148 

(± 0.032) 
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5.3.3 Discussion 

In section 5.3, I sought to assess whether measuring the spectral reflectance of thawed 

whale integument could be a useful alternative to measuring the spectral reflectance of live 

whales. Accurate species-specific reflectance values are necessary to reliably discriminate 

species when searching for whales on satellite imagery, and they also provide an important first 

step towards assessing the visibility of whales at different depths underwater. Results of this 

chapter led to two interesting biological outcomes: (i) whale integument darkened the longer it 

stayed in a freezer, and (ii) spectral reflectance of thawed samples showed no difference among 

species, potentially due to (i) above. Here I discuss the implications of these findings and 

suggest other approaches targeting live whales, which could help to fill this important data gap 

in future.  

5.3.3.1 Fresh and frozen whale integuments: different spectral reflectance 

The longer a whale integument remains in a freezer the darker it becomes, until a certain 

point where it cannot go darker. Therefore, when measuring the reflectance of live whale 

integument, fresh integument samples are more appropriate than frozen samples. However, the 

reflectance of fresh samples might not be comparable to the reflectance of live whales either. 

Although I did not have live whales to verify this, studies on human integument suggested a 

smoothing of the spectral reflectance soon after death (Brunsting & Sheard, 1929; 

Angelopoulou, 1999). Similar to the findings of this chapter, these studies reported a relatively 

horizontal spectral reflectance with a slight increase in reflectance in the red region of the 

visible spectrum (approximately between 620 nm and 750 nm). The smoothing of the human 

integument reflectance after death was mostly explained by the loss of oxygen, which detaches 

from haemoglobin after death (Brunsting & Sheard, 1929; Angelopoulou, 1999). As whale 

integument also contains haemoglobin (Tawara, 1950; Corda et al., 2003), it is plausible that a 

same whale integument has a different reflectance before and after death. 

The darkening of the integument, reported in Section 5.3, might be due to freezing, which 

causes desiccation and minor changes in the volatile lipids in the epidermis. Freezer burns have 

been reported for human integument and are revealed by a darkening of the integument (Burge 

et al., 1986). For whales these cold burns might also be manifested by a darkening, similar to 

the effect of prolonged exposure to sunlight. As documented by Martinez-Levasseur et al. 

(2011), whales can become sunburned when exposed to the sun for extended periods, which 
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darken their epidermis. Stranded whales are particularly prone to sunburn (McLellan et al., 

2004), which might also explain the darkness of the spectral signatures observed among 

samples obtained from strandings. Measuring the spectral reflectance of dead whales to help 

characterise the spectral reflectance of live whales is therefore not recommended based on the 

observed darkening of the integument.  

5.3.3.2 Different whale species: similar spectral reflectance 

The aim of Section 5.3 was to establish whether different species had different spectral 

signatures, enlarging on initial results presented in Chapter 3. If different species have different 

spectral signatures, this can enable better species discrimination on satellite imagery. The 

capacity to discriminate species, at least to a similar degree as traditional surveys, is necessary 

if satellite imagery is to become a useful alternate method for surveying whales in remote and 

poorly studied places. In Section 5.3, multiple species had similar reflectance of their 

integument, which is opposite of what was anticipated, based on the knowledge that different 

species have different epidermis colouration (Jefferson et al., 2015) and that different colours 

should have different reflectance (Rees, 2013). Furthermore, differences among species were 

found in the spectral analyses of live whales in VHR satellite imagery (Chapter 3), and in aerial 

imagery (Abileah, 2002). However, the absence of differences among species, observed in this 

section, could be explained by the observed darkening of the integument after death and also 

possibly due to sunburn.  

Although no difference was found among species, the findings of this chapter presents the 

first attempt to establish a catalogue of the spectral reflectance values per species. The creation 

of such a catalogue is necessary to further develop the use of VHR satellite imagery for 

monitoring whales; therefore, I introduce it here as a baseline for future improvements. 

Additional advances should endeavour to measure the reflectance spectra of live whales above 

the sea surface, to generate a more accurate catalogue. 

5.3.3.3 Towards a spectral reflectance database for whales 

Findings from Section 5.3 represents a first effort towards reliable measurements of 

spectral signatures for different whale species. Here I have established that reflectance 

collected from whales post-mortem is not likely to be a good proxy for live whale reflectance, 

perhaps due to changes in the oxygen flow across the skin. Continued use of VHR satellite 

images to gather reflectance of whales above the sea surface is likely to represent an important 
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source of data for characterising spectral signatures in future. However, full validation of the 

signature for each species is likely to take a long time to achieve, because of the small data 

yields in terms of whales identified per image, and the time and cost of image acquisition and 

processing. 

In order to gather such data more rapidly, two adapted set-ups are proposed. The first (set-

up A; Figure 5.12) consists of mounting a hyperspectral camera on a small aircraft or an 

unmanned aerial vehicle (UAV), and flying it over whales in known aggregation grounds. 

Several studies have used data from imaging equipment mounted on planes or UAVs and flown 

them over marine mammals at sea (Hodgson, Peel & Kelly, 2017; Boyd et al., 2019; Chabot, 

Stapleton & Francis, 2019). Hyperspectral cameras do not provide spectral reflectance as 

detailed as those acquired from a spectroradiometer, in terms of spatial and spectral resolution. 

However, they are sufficiently detailed to be transformed into reflectance usable by all current 

VHR satellites. Hyperspectral cameras fixed on a UAV or aircraft will require more equipment 

than the set-up tried in Section 5.3. For instance, lenses helping to control the field of view of 

hyperspectral cameras will need to be fitted on the hyperspectral cameras, to ensure only the 

reflectance of a portion of the whale that is above the sea surface is measured.  

Another option to measure the reflectance of whales above the surface would be to acquire 

the reflectance of live-stranded whales using a similar spectroradiometer to the one used in 

Section 5.3 (set-up B in Figure 5.12). Marine mammal stranding networks could be trained in 

how to measure the reflectance of whale integument. However, in live strandings, the welfare 

of the animal must be the priority, which might make it logistically difficult to collect the 

spectral reflectance. Additionally, live stranded whales might not be ideal candidates as they 

are also known to sometimes suffer from sunburn (McLellan et al., 2004), which tends to lead 

to a darkening of the integument (Martinez-Levasseur et al., 2011). 
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Figure 5. 12 Proposed set-ups to collect spectral reflectance of live whales above the sea 

surface. Set-up A is for a free swimming whale (i) using a hyperspectral camera attached to a 

UAV (j), or a small aircraft (k). Set-up B is for a live stranded whale using a 

spectroradiometer with, a) transverse plane view of a stranded whale; b) sensor; c) 

spectroradiometer; d) fixing point (e.g. silver adhesive tape); e) tripod; f) USB cable 

connecting the spectroradiometer to the computer; g) computer; h) dry surface to locate the 

computer. 

5.3.3.4 Implications for abundance estimates 

The homogeneity of spectral reflectance among species observed in this section, suggest 

that species-based abundance estimates using spectral information alone is not possible. With 

species being generally the main entity used for whale conservation (CMS, 1979; CITES, 1983; 

IUCN, 2016; IWC, 2018a), it is important to find ways to differentiate between species on 

VHR satellite imagery. Spectral reflectance of live whales acquired using the suggested set-up 

in Figure 5.12 might be helpful in differentiating species. 

The darkening of whale integument after death is expected to modify the maximum depth 

of detection, which would falsify the calculations of crucial parameters part of abundance 

estimates, such as the visibility bias (Marsh & Sinclair, 1989). As explained in Section 5.1 and 

as illustrated in Figure 5.4, the maximum depth of detection influences the visibility bias. The 

maximum depth of detection will change depending on the contrast between a species and its 

surrounding; therefore, using the darkened reflectance of a certain species will change this 

contrast. The contrast between a submerged object and its surroundings reduces with increasing 

depth (Duntley, 1952; Jerlow, 1976). Black objects at sea do not contrast as well as white 
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objects (excluding in shallow sandy waters) and become invisible at shallower depth than do 

white ones. Hence, in oceanography a white secchi disk is generally used to measure the depth 

instead of a black and white secchi disk (Preisendorfer, 1986; Aas, Høkedal & Sørensen, 2014). 

Therefore, a whale with a dark epidermis should become invisible at a shallower depth than a 

paler whale. Using the whale reflectance collected in Section 5.3, which seem darker than in 

situ, will likely lead to an underestimation of the maximum depth of detection. As shown in 

Figure 5. 4, an underestimated maximum depth of detection means some visible whales will 

be deemed invisible because they are below the estimated maximum depth of detection. These 

whales will be accounted for twice when correcting for the visibility bias, leading to an 

overestimation of whale abundance.  

Environmental conditions (e.g. turbidity) will also affect the maximum depth of detection. 

Increased turbidity will reduce the visibility of submerged objects. Studies focusing on 

estimating the bathymetry of coastal environments are accounting for turbidity using 

algorithms that could be applied to the calculation of the maximum depth of detection of whales 

(Stumpf, Holderied & Sinclair, 2003). Although turbidity reduces the visibility of submerged 

objects, it might improve the detection of certain whale species, such as those with a dark body 

colouration (e.g. bowhead and right whales), due to an enhanced contrast between a whale and 

its surroundings.  

In light of the aforementioned, a priori knowledge of the maximum depth of detection 

might not be necessary to estimate whale abundance using satellite imagery. Some aerial 

surveys use the cue-counting method to estimate the abundance of whales, where only whale 

signs are counted, such as blow and flukeprints. Results from Chapter 3 showed that flukeprints 

and blows could be detected on the highest resolution satellite imagery (i.e. WolrdView-3, 31 

cm spatial resolution), indicating the possibility of adapting the cue-counting method to 

satellite imagery. However, this method does not allow species differentiation, rendering it 

unsuitable for multi-species surveys. Ultimately, different methods might be most appropriate 

for different species. For instance, cue-counting from a plane is most effective for minke 

whales (Borchers et al., 2009) and mark-recapture surveys from a boat appear useful to 

estimate humpback whale abundance (Fleming & Jackson, 2011). Therefore, to build trends 

and support whale conservation, a standardised method using VHR satellite imagery should be 

implemented, at least for the same species and location. 
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5.3.4 Conclusion 

The spectral reflectance of fresh whale integument is different from the reflectance of 

thawed whale integument (stored at -20°C). The main reason seems to be the observed 

darkening of the integument, as it spends an increasing amount of time in a freezer. This 

darkening might be initiated soon after death. Due to this observed darkening, all species 

showed similar reflectance, which was unexpected based on observations made by Abileah  

(2002) and results from Chapter 3. Therefore, I do not recommend using dead whale skin as an 

alternative to measuring the reflectance of live whales, due to the observed darkening. Two 

adjusted set-ups were recommended to collect the reflectance of live whales above the sea 

surface. One suggested set-up involves the installation of a hyperspectral camera on board a 

plane or unmanned aerial vehicle, and to fly it over whales. The other is to acquire the 

reflectance of live stranded whales, where the stranding response teams could be trained to 

measure the reflectance using a spectroradiometer. However, the primary focus should always 

remain on the welfare of the animals. Once more accurate reflectance measurements for 

different live whale species have been collected, they can be used to estimate the maximum 

depth of detection, which is necessary to calculate the visibility bias to ultimately produce 

abundance estimates using VHR satellite imagery, as well as aerial surveys using manned 

aircrafts or UAVs. 

5.4 Chapter conclusion 

Knowing the maximum depth of detection is necessary to estimate the visibility bias for a 

specific species and a certain environment, which is a crucial component of abundance 

estimates. Different methods exist to assess this maximum depth of detection, from using 

nautical charts (Section 5.2) to installing large panels at sea (see Appendix H for an attempt to 

lower a whale integument at different depths) or using bathymetric algorithms. The latter two 

require a priori knowledge of the reflectance of whale above the sea surface (Section 5.3), as 

well as at different depths for the later method.  

For coastal areas, using nautical charts might be useful to estimate an approximate depth 

of the most reflective surface type on the seafloor (Section 5.2). The maximum depth of 

detection of whales can be inferred based on a comparison of the reflectance of the highly 

reflective surface and the reflectance of the whale. For a more detailed maximum depth of 

detection of whales, other methods can be employed, such as installing panels on the seafloor 

or using bathymetric algorithms. To acquire the spectral reflectance of whales necessary for 
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these two methods, using samples of whale integument collected after strandings or during 

subsistence harvest are not suitable (Section 5.3).  

A more feasible and transferable method would be to measure the reflectance of whale 

above the sea surface by flying UAVs or aircrafts (mounted with a hyperspectral camera) over 

whales at sea. Then, these reflectance should be employed to calibrate panels that would be 

installed at various depths below the surface. The calibration would have to be done for each 

whale species of interest, as epidermis (top layer of integument; Jefferson et al., 2015; Würsig, 

Thewissen & Kovacs, 2018) colouration varies between species, which is likely to influence 

the reflectance, the contrast between a species and its surroundings, and ultimately the 

maximum depth of detection. Turbidity, which will lower visibility, should also be taken into 

consideration by repeating such an experiment during varying turbidity conditions.  
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Chapter 6 

Conclusion and future work 

With this thesis, I aimed to contribute to the development of an emerging method to 

monitor great whales, which relies on the use of non-military VHR satellite imagery. Such a 

method would have the advantage of being non-invasive and more cost effective for remote 

areas, where data are missing and needed for whale conservation. However, this technique is 

in its infancy, and several factors need to be addressed to make it as reliable and accurate as 

traditional methods. Abileah (2002) initiated the work on using VHR satellite imagery to 

census whales, although this study was only partially successful at detecting humpback whales 

(Megaptera novaeangliae) due to limitations in the spatial resolution of imagery available at 

the time. A decade later, the spatial resolution of VHR satellites improved, allowing Fretwell, 

Staniland & Forcada (2014) to successfully count southern right whales (Eubalaena glacialis). 

Following these two pioneering studies and with the availability of higher spatial resolution 

imagery, I chose to help further develop this method by focusing on three aspects: 1) visual 

and spectral description of four great whale species (Chapter 3); 2) automated systems to detect 

whales, with a case study on southern right whales (Chapter 4); and 3) by investigating ways 

to assess the maximum depth of detection (Chapter 5). 

6.1 Research aim 1: Visual and spectral description of four great 

whale species 

6.1.1 Aims 

In Chapter 3, I focused on extending the use of VHR satellite imagery to four great whale 

species, in an attempt to describe them visually and spectrally, in order to support further work 
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on species differentiation. The four species included two species that had been targeted in 

previous VHR satellite studies (i.e. humpback whale and southern right whale; Abileah, 2002; 

Fretwell, Staniland & Forcada, 2014) and two species (fin whale, Balaenoptera physalus, and 

grey whale, Eschrichtius robustus) for which this was the first use of the technology. These 

four species represented different body shapes and colourations, some having unique features, 

such as white head callosities for southern right whales and long flippers for humpback whales.  

As the first aspect of spectral and visual description required the detection of whales in the 

imagery, I used this opportunity to design a transferable and more consistent method to 

manually detect whales in VHR satellite imagery. Among all the counted potential whales, 

some were more obvious than others; therefore, I conceived a protocol to assign a confidence 

category (i.e. “definite”, “probable”, and “possible”) to each potential whale, based on 

standardised criteria shared between species (e.g. presence of fluke) or criteria unique to each 

species (e.g. presence of white head callosities). This allowed for replicability among all whales 

from the same imagery, and comparison between imageries. With research aim 1, I used the 

highest spatial resolution available of VHR satellites (i.e. 31 cm from WorldView-3) to 

increase the likelihood of detecting characteristic-whale features (e.g. fluke and flippers), as no 

such features were detected on 46 cm resolution imagery (WorldView-2; Fretwell, Staniland 

& Forcada, 2014). 

6.1.2 Main findings 

All four species were successfully detected in VHR satellite imagery, including the first 

known detection of fin and grey whales. Due to the higher spatial resolution provided by the 

WorldView-3 satellite, I was able to detect the fluke and flippers of some of the whales, which 

increased the confidence for these observations. Behaviour, and contrast between the body 

colouration of the whale and its surroundings seemed to be the main factors influencing the 

likelihood of detection. Acrobatic behaviours, emblematic of humpback whales, made it 

difficult to discern a whale shape or distinctive features. Behaviours, where the body was 

parallel to the sea surface (e.g. travelling) favoured the detection of flippers, fluke and the 

overall shape of the body, generally supporting “definite” observations.  

Based on the spectral analysis, humpback and southern right whales did not contrast as 

well with their surroundings as fin and grey whales did. However, it is possible that if southern 

right and humpback whales were observed in environments different from the one they were 

observed in this chapter (i.e. with different water colour); they could be more easily detected. 

The spectral analysis showed that humpback and southern right whales would contrast better 
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in environments with similar radiance to the ones measured for the Pelagos Sanctuary (France, 

Monaco and Italy) and Laguna San Ignacio (Mexico).  

The spectral analysis to compare the spectral signatures of the four candidate species 

would ideally have been based on pure pixels of whales above the sea surface, to exclude the 

effect of seawater. However, some species had no pure pixels of whales above the sea surface, 

but all species had pure pixels of whale slightly below the surface. Therefore, pure pixels of 

whales below the sea surface were used to compare the radiance among species. I observed no 

differences in the spectral signatures among the four species. All species reflected more light 

in the shorter wavelengths (blue band), reducing as the wavelength increased. Noticeable 

differences among species were observed when comparing the radiance in the blue and green 

bands. Grey whales were the most reflective, closely followed by fin whales. Southern right 

whales and humpback whales had lower radiances. Based on the results of the visual and 

spectral assessments, I built a recommendation table indicating which species might be easier 

to study in VHR satellite imagery. 

6.2 Research aim 2: Automated systems to detect great whales: A 

case study for southern right whales 

6.2.1 Aims 

As Chapter 3 relied on the manual detection of whales, which was time-consuming, I 

attempted to reduce the time spent scanning the imagery for the presence of whales by testing 

different automated approaches. Several methods exist to find features automatically in satellite 

imagery, from those requiring less training to those needing more. Some methods (e.g. machine 

learning) required more training data than I had access to and could not be tested. I focused on 

trialling pixel-and object-based methods, including unsupervised (less training required) and 

supervised classifications, thresholding, and OBIA (more training required). With research aim 

2, I also intended to compare how accurate and faster all these automated methods were 

compared to manual counting whales. 

For this research aim, I chose to work on a GeoEye-1 image (41 cm resolution) of St 

Sebastian bay in South Africa for three principal reasons. The first motive was the high density 

of whales contained in the imagery, the highest among all the imagery available to me 

(Appendix D). The second motive was the relatively small area covered by the imagery, which 

meant each automated test could be processed faster, allowing to test more methods. Thirdly, 
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only southern right whales were present in the imagery, allowing a comparison with the study 

by Fretwell, Staniland & Forcada (2014), which trialled some similar automated systems on 

southern right whales, in a different location (Península Valdés, Argentina) using different 

satellite imagery (WorldView-2). 

6.2.2 Main findings 

The automated method that performed best for the selected GeoEye-1 imagery was a 

supervised classification, using the maximum likelihood algorithm on pan-sharpened imagery. 

This result differs from the Fretwell, Staniland & Forcada (2014) study, which found that 

thresholding the panchromatic or coastal bands worked best. With the GeoEye-1 imagery, I 

was not able to try thresholding the coastal band, as this satellite does not have such a sensor.  

A potential explanation for the difference between the findings of Chapter 4 and Fretwell, 

Staniland & Forcada (2014) could be the difference in turbidity between the two images, as 

most whales in Chapter 4 were detected in turbid waters compared to the whales counted by 

Fretwell, Staniland & Forcada (2014). This result highlights the potential need to retest a series 

of different automated methods for each new imagery, even for the same location, as turbidity 

will change over time. This would make automated systems less time-efficient than expected 

(Seymour et al., 2017). Furthermore, the comparison between the automated methods tested in 

Chapter 4 and the manual count, showed that detecting whales manually on a VHR satellite 

imagery was more accurate and rapid than automatic detections. 

6.3 Research aim 3:  Insights into estimating the maximum depth 

of detection 

6.3.1 Aims 

Findings from Chapter 3 indicated that whales could be detected below the surface in VHR 

satellite imagery. Knowing how well and at what depth whales can be detected will be 

important for future work using VHR satellite imagery to estimate whale abundance. Visibility 

bias is an important component of abundance estimates and is required to understand how the 

visibility of whales changes in relation to the depth.  

In Chapter 5, the aim was to investigate the feasibility of different methods to estimate the 

maximum depth of detection of whales in VHR satellite imagery. First, I explored the 

possibility of using the bathymetric information contained in nautical charts. The idea was to 
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overlap the bathymetric information on top of a satellite imagery to deduce the maximum depth 

of visibility in the imagery, using the most reflective seafloor cover present (e.g. coral sand). 

Then, by comparing the radiance of the most reflective cover to whale radiance, a maximum 

depth of detection was inferred for whales. This was trialled for the WorldView-3 image of 

Maui Nui (US) used in Chapter 3, where humpback whales were detected and coral sand with 

a high albedo was present. 

Two other potential methods could involve either placing whale replicas or large panels at 

various depths, or using algorithms developed for bathymetry surveys using VHR satellite 

imagery. For calibration purposes, both methods demanded that the reflectance of whales 

without the influence of seawater was known. As no such reflectance measurement existed yet 

and acquiring them from satellite imagery proved difficult in Chapter 3, I tried another 

approach, which involved using a spectroradiometer to measure such reflectance. The hand-

held spectroradiometer used in this chapter provided a higher spatial and spectral resolution 

than VHR satellite imagery. Due to the time-constraints associated with the spectroradiometer 

and the requirement for a close-approach to the target, it would have been unethical and 

unpractical to measure the reflectance of whales above the sea surface on free-swimming 

whales. Therefore, I decided to measure the spectral reflectance of samples of whale 

integument (epidermis and hypodermis) collected from stranded whales, for different species, 

soon after death and kept frozen. I was also given the opportunity to measure the reflectance 

of fresher and non-frozen samples during the 2018 bowhead (Balaena mysticetus) subsistence 

fall harvest by Iñupiat hunters at Utqiaġkvik (Barrow), Alaska. Given this method had never 

been tested before, I assessed whether such samples could be used as an alternative to 

measuring the spectral reflectance of live whales without the effect of seawater. With this 

collection of spectral reflectance, I was also able to further test whether each species had a 

unique reflectance spectra, as observed in Chapter 3. 

6.3.2 Main findings 

Nautical charts of Maui Nui (US) were helpful in giving an approximate estimate of the 

maximum depth of detection for humpback whales (observed in the WorldView-3 image 

analysed in Chapter 3). However, this method is limited to imagery containing coastal areas, 

where the seafloor is visible. The most reflective seafloor cover (e.g. coral sand) observed was 

used as a reference to infer the visibility in the imagery, and ultimately the maximum depth of 

detection of whales. With this experiment, it was determined that humpback whales could be 

detected to a maximum of 18 m, as coral sand was discernible up to that depth and the radiance 
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of coral sand was higher than humpback whale radiance, meaning humpback whale radiance 

would be attenuated by seawater before the radiance of coral sand. 

With the second experiment, the reflectance of eight great whale species was measured 

using a spectroradiometer. These species included: minke (Balaenoptera acutorostrata), fin, 

sei (Balaenoptera borealis), Bryde’s (Balaenoptera edenii), humpback, North Atlantic right 

(Eubalaena glacialis), bowhead and sperm whales (Physeter macrocephalus). This experiment 

provided interesting outcomes on the changes of the reflectance of whale integument soon 

after-death, and the longer a sample had been kept in a freezer. The reflectance of the 

integument of all species darkened soon after death. Therefore, this reflectance was not useable 

to calibrate the depth estimation for methods using large panels or bathymetry algorithms. This 

darkening observed across all targeted species might explain the absence of difference among 

species. 

6.4 Implications of thesis findings 

Species with different body colouration, shape and size can be detected in VHR satellite 

imagery, demonstrating the potential to extend the use of this technology to other species, not 

studied here. This method might be better adapted to some species compared with others, 

similar to traditional visual surveys conducted from a boat or a plane. For example deep-diving 

species (e.g. sperm whales) might be difficult to observe in VHR satellite imagery, as they 

spend the majority of their time deep under the sea surface. In this instance, acoustic surveys 

remain the best approach (Barlow, 1999). Species prone to acrobatic behaviours might also be 

difficult to study using VHR satellite imagery, as it will hinder the identification of 

characteristic-whale features, as well as the overall body shape, necessary for “definite” 

observations. However, such species (e.g. humpback whale) might be less acrobatic in their 

calving grounds, offering the possibility to study them. Calving grounds also offer the 

advantage of being usually sheltered areas (Elwen & Best, 2004), which should facilitate 

detection in VHR satellite imagery (Chapter 3). 

 The observed differences in the radiance between the four species studied in Chapter 3 

(fin, grey, humpback and southern right whales) means differentiating species could potentially 

be achieved. However, these radiances were measured under different conditions.  The 

radiances acquired for each species in Chapter 3 were from below the surface and from four 

different WorldView-3 images, each with a different illumination, and water turbidity, which 
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are likely to influence the radiance. Spectral signature of whales above the sea surface are 

necessary.  

Counting whales manually in VHR satellite imagery appeared to be more accurate and 

rapid than automated methods trialled in Chapter 4. The automated systems tested in this thesis 

would require time for adjusting each method to each species and environment, compared to 

manual counting, which is transferable from one imagery to the next. If automated approaches 

could realise short preparation times, they could prove more useful than manual counting, even 

if the processing time remained long. As this would allow scientists to allocate their time to 

components of their research that cannot be performed by a computer, such as developing ways 

to estimate errors linked to false negative and false positive whale detections. Furthermore, 

automated systems can provide more consistency than human counters, especially if different 

counters are used.  

Estimating the maximum depth of detection of whales in VHR satellite imagery is not a 

straightforward process. For imagery of coastal regions, using nautical charts might offer an 

approximate maximum depth of visibility. However, with this method only an approximate 

depth of detection of whales can be inferred, following a spectral analysis that compares the 

radiance of the whale to the radiance of the surface used to estimate the maximum depth of 

visibility. Other options to estimate the maximum depth of detection of whales require several 

steps, including the acquisition of whale reflectance above the surface and at various depths. 

The reflectance of a whale integument measured post-mortem is likely to have a different 

reflectance than a live whale (Chapter 5), which would falsify the estimation of maximum 

depth of detection. Therefore, it would be more accurate to place large panels at various depths 

that are calibrated to the reflectance of the species of interests (measured on free-swimming 

animals, above the sea surface). 

6.5 Future work 

VHR satellite imagery continues to show potential for the study of great whales; however, 

further research is essential. Key future developments for this non-invasive method should 

focus on (1) species differentiation (including acquisition of spectral reflectance above the sea 

surface); (2) improving the efficiency of the scanning of the imagery, either through machine 

learning approaches or via crowdsourcing; and (3) learning how to reduce the effect of 

environmental factors (e.g. swell and glint) to ameliorate the detectability of whales in VHR 
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satellite imagery, or how to account for the masking effect of some of these environmental 

conditions (e.g. white caps and turbidity).  

All whale detections made in this thesis and other studies (Abileah, 2002; Fretwell, 

Staniland & Forcada, 2014) focused on locations where only one species was assumed to be 

present at a time. However, in some locations different species share the same waters. For 

instance, humpback, blue, fin, minke and North Atlantic right whales converge in the Gulf of 

St Lawrence (Canada) in the summer to feed (Kingsley & Reeves, 1998). In such regions, being 

able to differentiate among whale species in VHR satellite imagery is fundamental. Species 

differentiation will depend on the visibility of sufficient details. Characteristics such as 

differences in body colouration (i.e. different radiance), general body shape (e.g. streamlined 

or rotund), and the presence of unique characteristics (e.g. white head callosities), might be the 

type of details helpful to differentiate species in VHR satellite imagery, though this would need 

to be tested.  

As different whale species seem to have different radiances (Chapter 3), future research 

on species differentiation should centre on acquiring the spectral signature of whales above the 

sea surface, by either using the adjusted set-ups proposed in Chapter 5 or by attempting to 

continue measuring this reflectance on VHR satellite imagery. The latter option is however 

more uncertain (Chapter 3). Reflectance measurements should be acquired above the sea 

surface, as water will influence the value. This is due to the attenuation of some radiance faster 

than others as depth increases, or due to increasing levels of turbidity. Gathering reflectance of 

whales above the sea surface will also be useful for continuing work on the depth assessment. 

 Machine learning approaches, such as deep learning, could improve the efficiency of 

scanning VHR satellite imagery for the presence of whales, and would likely be transferable 

between different imagery and for different species. However, the success of such methods 

depends on the existence of a large database, compiling examples of whales in VHR satellite 

imagery, correctly labelled, in addition to confounding features. A good database consists of 

various images of whales representing different species, with different behaviours, under 

various lighting conditions, off nadir angles and different turbidity levels. Currently no such 

database exists and it will take time to build. Therefore, manual detection of whales should 

continue to contribute to building such a database. Appendix D shows a first attempt at creating 

a database of examples of different species of whales and confounding features in VHR satellite 

imagery. The alternative to using examples of whales in VHR satellite imagery is to use 

examples of whales in aerial images, provided that the aerial images are down-scaled to match 

the spatial resolution of VHR satellite imagery (Borowicz et al., 2019). If whales in such a 
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database were correctly assigned a species, machine learning approaches could also be useful 

for species differentiation. 

To build a whale database efficiently, crowdsourcing might be a solution (see Appendix 

I). Citizen scientists could be offered to help detect potential whales in VHR satellite imagery. 

Then whale experts could label the whales found by the citizen scientists, by giving a level of 

confidence and species, for example. Various platforms exist to propose crowdsourcing 

projects. The online platform Tomnod, now replaced by GeoHIVE (Maxar, 2019), has been 

used to facilitate crowdsourcing projects; including counting Weddell seals (Leptonychotes 

weddellii) on VHR satellite imagery (LaRue et al., 2019). Alternative platforms exists, 

including DotDotGoose (Ersts, 2019) developed by the Center for Biodiversity and 

Conservation (US) and VGG Image Annotator (VIA; Abhishek and Zisserman, 2019) 

developed by the Visual Geometry Group (UK), which are both free to use. One of these 

platforms could be used to set-up a crowdsourcing project to count whales in VHR satellite 

imagery.  

Environmental conditions influence the detectability of whales on VHR satellite imagery; 

therefore, ways to reduce these impacts or account for them should be investigated. Turbidity 

and/or the presence of white caps due to strong winds tend to hide any features below the sea 

surface. Although turbidity masks the presence of whales below the surface, it appears to 

enhance the detectability of species at the surface with a darker body colouration, as it improves 

the contrast (Chapter 4). White caps, however, hide the presence of whales below the surface 

and do not seem to improve the detectability at the surface, making imagery covered by white 

caps unsuitable to study whales. Hence, the development of algorithms able to select imagery 

or portions of imagery with few or no white caps would be beneficial to speed up the processing 

time of automatic whale detection analyses. Other environmental conditions, such as glint and 

swell, could potentially be reduced or eliminated to ameliorate the detectability of whales. 

Various de-glinting algorithms exist (Kay, Hedley & Lavender, 2009). The algorithm 

developed by Hochberg, Andréfouët & Tyler (2003) seemed to be preferred over the other de-

glinting algorithms. No algorithm removing the effect of the swell in panchromatic or 

multispectral VHR satellite imagery seems to exist. Research on swell in satellite imagery 

appears to be currently limited to synthetic aperture RADAR satellites (Collard, Ardhuin & 

Chapron, 2005; Johnsen & Collard, 2009).  

Once whales can reliably and efficiently be detected and differentiated to the species level 

on VHR satellite imagery, effort should focus on how methods using this platform could be 

used to estimate whale densities and abundance. Testing the efficacy of VHR satellite imagery 
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for measuring population density and whale abundance, will be achieved through comparisons 

of sightings data from the VHR satellite imagery approach with data collected from traditional 

survey methods. Although direct comparisons of counts between VHR satellite imagery and 

plane or boat-based surveys are difficult. 

6.6 Concluding remarks 

VHR satellite imagery has the potential to be a new tool for whale monitoring and 

conservation. It can be particularly helpful to fill existing knowledge gaps for remote areas, as 

it can reach places logistically inaccessible to traditional monitoring methods. With this thesis, 

it appears that, although time-consuming, scanning VHR satellite imagery manually is 

currently a more accurate and transferable method to count whales than the automated methods 

trialled. Machine learning approaches have the potential to become as accurate and transferable 

as manual counting, and might help differentiate species. However, further work is needed on 

this; including the building of a sufficiently large database to successfully train such automated 

methods, which requires the manual counting of whales on VHR satellite imagery. 

Downstream, this technique has the potential to be used to measure whale densities and 

abundance, and to assess how they change through time, following a thorough review of how 

satellite imagery analysis compares with traditional surveys for making such measurements.
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Appendix A: Ground truthing whale 

satellite detections using tracking data 

A.1. Introduction 

In remote sensing, ground truthing is a necessary step. It involves identifying features on 

the ground to use as reference in the satellite imagery. It is usually accomplished by going in 

the field before or after the acquisition of the satellite image, where GPS points are collected 

for the various types of surfaces and objects that will likely be detectable on the imagery. 

However, this method is only applicable to non-moving targets such as trees, buildings, and 

crops. For moving targets, such as whales, other methods to ground truth need to be developed. 

Here, I assess the feasibility of using tracking data collected via satellite tags to validate whale 

detections in satellite imagery.  

A.2. Method 

The satellite image detections of whales assessed here are those counted on the 

WorldView-3 satellite image of Península Valdés, Argentina, taken on 16th October 2014 (see 

Chapter 3 for more details). The tracking data were collected by Zerbini et al. (2016), on the 

same day the satellite image was acquired, 16th October 2014. Zerbini et al. (2016) used 

Wildlife Computers’ location-only (SPOT5) satellite tags. The tracking data consist of several 

points for two individual southern right whales (Eubalaena australis) that were equipped with 

a satellite tag. The points for the satellite whale detections and the tracking data were plotted 

on a map using ArcGIS 10.4 ESRI 2017. 

A.3. Results and discussion 

None of the whales equipped with a tracking device (i.e. satellite tag) occurred within the 

extent of the satellite image (Figure A.1). The closest tagged whale was 25 km from a whale 

detected in the satellite image (Figure A.1). Even though tracking data had been recorded near 

a satellite image detection of a whale, it might not have been the same whale, as the GPS fitted 

on the tag had an error of a few meters to several kilometres (Zerbini et al., 2016). Therefore, 
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using tracking data might be difficult to ground truth whale detection in satellite imagery. A 

survey on counting albatrosses in satellite imagery found a similar conclusion, where the GPS 

position collected with a hand held device provided insufficient detail to allow ground truthing 

(Fretwell, Scofield & Phillips, 2017).  

  

 

Figure A. 1 Southern right whale observations in Península Valdés on 16th October 2014 with 

the extent of the satellite image shown by the photography/image. Satellite detections are the 

yellow-filled disk, and the tracking data for the two whales equipped with satellite tag are the 

blue-filled triangles. 

 

As the tracking data shared by Alex Zerbini were not initially collected to ground truth 

whale detections on satellite imagery, it was not necessary to reduce the positional error. Future 
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studies attempting to ground truth whale observations in satellite imagery using tracking data, 

could reduce the positional error, by using the same method employed for self-driving cars, 

which have a positional error of a few centimetres. The GPS inside self-driving cars is 

calibrated with another GPS point located on land, where three satellites are available to 

provide a precise location, which allows for correction. However, using tags calibrated using 

this method might be onerous. Given tags equipped with such a GPS have never been used for 

the study of whales, the most appropriate method to ground truth, remains comparison with 

field counts and to study well known areas.
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Appendix B: Classification method and 

validation 

1. Classification method 

1.1. Checked if each of the parameters (Table B.1) were observed (2 points), maybe 

observed (1 point) or not observed (0 point) 

1.2. Gave a score to each whale (Table B.2)  

1.3. Assigned a category based on the classification score (Table B.2) 

2. Validation of classification method 

2.1. One observer (observer A) created the classification method and two additional 

observers (observers B and C) were given random subsets of ten whale-like objects 

per species. 

2.2. Observers A, B and C checked whether each parameter (Table B.1) was observed 

(2 points), maybe observed (1 point), or not observed (0 point) 

2.3. All observers repeated step 2.2. three times to account for training. 

2.4. For each parameter, a consensus was established between all observers for the third 

classification. The consensus was compared to the third classification of observer 

A (considered prime as created the classification). From the comparison, some 

parameters were identified as consistent (>75 % of consensus) and other as varying 

(≤75 %, Table B.3). 

2.5. The score of the consensus classification and the score of the third classification of 

observer A were compared (Table B.4).
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Table B. 1 List of parameters to identify whale-like objects on satellite images based on Jefferson et al. (2015) and Woodward, Winn & Fish 

(2006). The minimum values for “body length range” corresponds to size of calves. The maximum values for “body length range” corresponds to 

the maximum length of an adult. 

Parameter Species Observed Maybe observed Not observed 

Body length range (A) Grey whale 

(Eschrichtius 

robustus) 

 

4.6 m ≤ A≤ 15 m  If blurry edges and 

difficult to give exact 

measurements, and 

seem close to range 

given in “Observed” 

column 

A < 4.6 m; or A > 15 m 

Southern right whale 

(Eubalaena australis) 

 

4 m ≤ A≤ 17 m A < 4 m; or A > 17 m 

Humpback whale 

(Megaptera 

novaeangliae) 

 

4 m ≤ A≤ 18 m  A < 4 m; or A > 18 m 

Fin whale 

(Balaenoptera 

physalus) 

 

6 m ≤ A≤ 27 m  A < 6 m; or A > 27 m 

Body width range (B) Grey whale B ≤ 2.18 m If blurry edges and 

difficult to give exact 

measurements, and 

seem close to range 

given in “Observed” 

column 

B > 2.18 m 

Southern right whale B ≤ 3.3 m B > 3.3 m 

Humpback whale B ≤ 3.21 m B > 3.21 m 

Fin whale B ≤ 3.9 m B > 3.9 m 

Body shape Grey whale If full body visible: robust, ellipsoid; if 

full body not visible: ellipsoid; if only 

If unclear If the shape is clearly 

different from what is 
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Parameter Species Observed Maybe observed Not observed 

head: circular (e.g., when spy-hopping) or 

triangular with rounded angle 

stated in the 

“Observed” column 

Southern right whale If full body visible: stocky, ellipsoid; if 

full body not visible: ellipsoid; if only 

head: circular (e.g., when spy-hopping) or 

triangular with rounded angle 

Humpback whale If full body visible: stocky, ellipsoid; if 

full body not visible: ellipsoid; if only 

head: circular (e.g., when spy-hopping) or 

triangular with rounded angle 

Fin whale If full body visible: streamlined, ellipsoid; 

if full body not visible: ellipsoid; if only 

head: triangular with rounded angle 

Body Color Grey whale Dorsally: brownish grey to light grey; 

Ventrally: brownish grey to light grey 

Unsure if correct color 

as animal might be too 

deep below the sea 

surface 

None of the color 

mentioned under the 

“Observed” column 

Southern right whale Dorsally: black, white patches can be 

present; 

Ventrally: black, white patches can be 

present 

Humpback whale Dorsally: black, or dark grey; 

Ventrally: white 

Fin whale Dorsally: black, or dark brownish-grey; 

Ventrally: white 
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Parameter Species Observed Maybe observed Not observed 

Flukeprint Same for all species Presence of one or more clear white circle. 

See Table 3.2 for a description. 

Unsure if there is a 

circle or not 

No white circle 

Blow Same for all species Present. See Table 3.2 for a description. Unclear None 

Contour Same for all species Present. See Table 3.2 for a description. Unclear None 

Wake Same for all species Present. See Table 3.2 for a description. Unclear None 

After-breach Same for all species Present. See Table 3.2 for a description. Unclear None 

Defecation Same for all species Present. See Table 3.2 for a description. Unclear None 

Other surface or near 

surface water 

disturbances 

Same for all species Presence of other form of white waters 

that do not seem to be white caps 

Unclear None  

Fluke Grey whale Average width: 3 m Unclear Not visible 

Southern right whale Average width: 5.3 m 

Humpback whale Average width: 4.6 m 

Fin whale Average width: 4 m 

Flipper Grey whale Broad, paddle-shaped; average length of 

2.1 m 

Unclear Not visible 

Southern right whale Fan or paddle-shaped; average length of 

2.6 m 
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Parameter Species Observed Maybe observed Not observed 

Humpback whale Extremely long, average length of 4.2 m 

Fin whale Long tapered 

Movement Fin whale  When a whale-like object was observed in 

the overlap region of two different 

images, in slightly different locations, 

suggesting movement 

Unclear If not observed 

Head callosities  Southern right whale White patches on the top and sides of the 

head 

Unclear None  
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Table B. 2 Classification score equation and categorization for the studied species: grey whale, southern right whale, humpback whale and fin 

whale. Some classification parameters (Table B.1) were down-weighted, if there was less than 75 % consensus. Other parameters, characteristic 

of whales (i.e., flukeprint, fluke and flipper), where up-weighted only if more than 75 % consensus was reached. For fin whales, the flukeprint 

parameter had to be down-weighted, as it reached less than 75 % consensus (Table B.3).  

Species Classification score (CS) equation Categorization 

Grey whale 
CSgw = (((flukeprint + fluke + flipper)*2) + (body length range + body 

shape + blow + contour + wake + after-breach + defecation + other 

surface or near surface disturbances) + ((body width range + body 

color)*0.5)) 

Definite: CSgw > 6.5 

Probable: 4.0 < CSgw ≤ 6.5 

Possible: CSgw ≤ 4.0 

Southern right whale CSsrw = (((flukeprint + fluke + flipper)*2) + (body length range + body 

width range + body shape + blow + wake + after-breach + defecation) 

+ ((body color + contour + other surface or near surface water 

disturbances + head callosities)*0.5)) 

Definite: CSsrw > 7.5 

Probable: 5.5 < CSsrw ≤ 7.5 

Possible: CSsrw ≤ 5.5 

Humpback whale CShw = (((flukeprint + fluke + flipper)*2) + (body length range + body 

width range + body shape + blow + contour + wake + after-breach + 

defecation + other surface or near surface water disturbances) + (body 

color*0.5)) 

Definite: CShw >8.0 

Probable: 6.0 < CShw ≤ 8.0 

Possible: CShw ≤ 6.0 

Fin whale CSfw = (((fluke + flipper)*2) + (body length range + body width range 

+ body shape + body color + blow + contour + wake + after-breach + 

defecation + other surface or near surface water disturbances + 

movement) + (flukeprint*0.5)) 

Definite: CSfw > 7.5 

Probable: 5.0 < CSfw ≤ 7.5 

Possible: CSfw ≤ 5.0 
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Table B. 3 Percentage of consensus reached for each parameter listed in Table B.1 per species.  
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Grey whale 90 60 80 50 90 100 90 100 100 100 90 90 100 NA NA 

Southern right whale 80 100 80 70 100 100 70 100 100 100 50 100 100 NA 60 

Humpback whale 100 100 100 50 90 100 80 90 80 100 80 100 80 NA NA 

Fin whale 100 100 100 80 60 80 90 100 100 100 90 90 90 100 NA 
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Table B. 4 Results of the classification score and categorization comparison between the three observers, including the consensus for the 

categorization. 

  Classification score Categorization 

  Observer B Observer C Observer A Observer B Observer C Observer A Consensus 

Grey whale 

  
13 10.5 13 Definite Definite Definite Definite 

13 13 12 Definite Definite Definite Definite 

14 8 9.5 Definite Definite Definite Definite 

6.5 5.5 7.5 Probable Probable Definite Probable 

7 5 9 Definite Probable Definite Definite 

9.5 6.5 7.5 Definite Probable Definite Definite 

9.5 6 7.5 Definite Probable Definite Definite 

5 1 5 Probable Possible Probable Probable 

5.5 1.5 6.5 Probable Possible Probable Probable 

3 1.5 3 Possible Possible Possible Possible 

Southern right whale 

  

12 11.5 11.5 Definite Definite Definite Definite 

9.5 6 10 Definite Probable Definite Definite 

10 6.5 8.5 Definite Probable Definite Definite 

11.5 6 8 Definite Probable Definite Definite 

12 5 5.5 Definite Possible Possible Possible 

6 4.5 8 Probable Possible Definite None 

9 5 4.5 Definite Possible Possible Possible 

11 4.5 5 Definite Possible Possible Possible 

6 6.5 4.5 Probable Probable Possible Probable 

12 9 7.5 Definite Definite Definite Definite 

Humpback whale 

  
8.5 4 9 Definite Possible Definite Definite 

11 6.5 5 Definite Probable Possible None 

12 8.5 13 Definite Definite Definite Definite 
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  Classification score Categorization 

  Observer B Observer C Observer A Observer B Observer C Observer A Consensus 

9.5 6.5 8 Definite Probable Probable Probable 

7.5 6.5 8 Probable Probable Probable Probable 

13.5 8.5 11 Definite Definite Definite Definite 

3.5 0.5 6 Possible Possible Possible Possible 

6 5 4 Possible Possible Possible Possible 

6 4 4 Possible Possible Possible Possible 

5 4 4 Possible Possible Possible Possible 

Fin whale 10 7 8.5 Definite Probable Definite Definite 

11 8 14 Definite Definite Definite Definite 

9 5 8 Definite Possible Definite Definite 

9 7 12 Definite Probable Definite Definite 

11 8 10.5 Definite Definite Definite Definite 

12 9 14 Definite Definite Definite Definite 

11 10 12.5 Definite Definite Definite Definite 

14 10 11.5 Definite Definite Definite Definite 

14 11 13 Definite Definite Definite Definite 

14 13 15 Definite Definite Definite Definite 



 

185 

 

Appendix C: List of pixel descriptions for 

whales 

List of pixel descriptions for whales 

Table C. 1 List of pixel descriptions for whales 

Pixel Description Comments 

Water No whale, including below the surface 

White water  Surf zone, similar to white caps created 

by the whale, e.g., when it swims at the 

surface  

Whale below the surface  

Whale above the surface  

Possible white flipper For humpback whale (Megaptera 

novaeangliae) only 

Definite white flipper For humpback whale only 

Possible dark flipper For humpback whale only 

Definite dark flipper For humpback whale only 

Possible flipper  For fin (Balaenoptera physalus), 

southern right  (Eubalaena australis) 

and grey whales (Eschrichtius robustus) 

Definite flipper  For fin, southern right and grey whales 

Possible white head callosities For southern right whale only 

Definite white head callosities For southern right whale only 

Possible fluke  

Definite fluke  

Blow  

Other definite whale  

Other probable whale  

Other possible whale  

Uncertain  
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Appendix D: Whale database 

D.1. Introduction 

Machine learning could be one of the ways to automate the detection of whales in satellite 

imagery. In machine learning an algorithm learns how to identify features from seeing the same 

feature over, and over again, in different situations. For example, concerning whales, the 

algorithm needs to be trained to detect different species, in different types of environment 

(more or less turbid), under different light conditions, and exhibiting different behaviours (e.g. 

foraging, travelling, breaching); therefore, the more training samples that are available, the 

more accurate the algorithm will be.  

At the time of writing, there is no database containing enough whale samples to train an 

algorithm. Therefore, the aim of this appendix is to initiate the creation of such a database, by 

(i) detecting whale-objects manually on satellite imagery, (ii) classifying them as either 

“definite”, “probable” or “possible” as in Chapter 3; (iii) creating boxes around each whale-

object. 

D.2. Methods 

D.2.1. Detecting whales 

Nine satellite images were manually scanned for the presence of whales (Table D.1), 

following the same method as in Chapter 3. All whale objects were classified using the method 

in Chapter 3. The whale-objects of Peninsula Valdes 2012 are those found by Fretwell, 

Staniland & Forcada (2014). All these point were classified as “definite”, “probable”, or 

“possible” whale using the classification of Chapter 3. For the WorldView-3 imagery of 

Laguna San Ignacio, two images were made available. One of these images was scanned in 

Chapter 3 and was a spatial subset of the second image. As both images were captured on the 

same day and at the same time, the same whales were observed in the overlap region of the two 

images; therefore, it is shown as one image in Table D.1. For the second image, which was 

accessed later and covered a wider geographic range, only the additional portion of the imagery 

was scanned for the presence of whales and other features such as boats.
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Table D. 1 Characteristics of the satellite imagery scanned for the presence of whales. 

Satellite Catalogue ID Date Max 

Ground 

Sample 

Distance 

Bands Location Target species 

QuickBird-2 1010010005232700 12/08/2006 0.65 m 4xMULs 

PAN 

Auckland Islands, 

New Zealand 

Southern right whale 

(Eubalaena 

glacialis) 

GeoEye-1 1050410001D94500 08/09/2009 0.44 m 4xMULs 

PAN 

Witsand,  

South Africa 

Southern right whale 

WorldView-2 103001000D6D1000 27/08/2011 0.48 m 8xMULs 

PAN 

Auckland Islands, 

New Zealand 

Southern right whale 

WorldView-2 103001001C8C0300 19/09/2012 0.56 m  Peninsula Valdes, 

Argentina 

Southern right whale 

WorldView-3 10400100032A3700 16/10/2014 0.37 m 8xMULs 

PAN 

Peninsula Valdes, 

Argentina 

Southern right whale 

WorldView-3 1040010006C2B700 09/01/2015 0.36 m 8xMULs 

PAN 

Maui Nui,  

US 

Humpback whale 

(Megaptera 

novaeangliae) 

WorldView-3 104001001E19F000; 

104001001E7B8900; 

104001001E020000; 

104001001D325700; 

19/06/2016 

26/06/2016 

0.33 m 

0.37 m 

0.39 m 

0.34 m 

8xMULs 

PAN 

Pelagos,  

Ligurian Sea 

Fin whale 

(Balaenoptera 

physalus) 

WorldView-2 103001005CBC0A00 23/09/2016 0.55 m 8xMULs 

PAN 

Peninsula Valdes, 

Argentina 

Southern right whale 

WorldView-3 104001002959ED00 20/02/2017 0.39 m 8xMULs 

4xMULs 

PAN 

Laguna San Ignacio,  

Mexico 

Grey whale 

(Eschrichtius 

robustus) 
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D.2.2. Creating boxes 

Boxes were created around each whale-object using ArcGIS 10.4 ESRI 2017. Each whale-

object had two boxes, one delimiting the PAN pixels and one for the MUL pixels, because the 

MUL and PAN pixels do not superimpose. To each box, information was added in an attribute 

table about the whale-object and imagery. Information collected about the whale-object 

included: the criteria used to classify whales as “definite, “probable”, or “possible (i.e. body 

length, body width, body shape, body colour, flukeprint, blow, contour, wake, afterbreach, 

defecation, other disturbance, fluke, flipper, head callosities and mudtrail), classification score, 

certainty (i.e. “definite”, “probable”, or “possible”), most likely species, potential other species. 

For each box, I also recorded information about the imagery analysed: the location, latitude 

and longitude, imagery ID, imagery date, type of satellite, spatial resolution, number of 

multispectral bands. The size of each boxes was also specified in terms of pixels. Non-whale 

objects were also recorded and boxes were created for them, as they could be used to train the 

algorithm on what is not a whale.   

D.3. Results 

A total of 634 whale-objects were detected in the imagery. Slightly more than a third were 

classified as “definite” (Table D.2). Some imagery had a higher proportion of definite, such as 

the Witsand and Pelagos imagery (Figure D.1). Both the Auckland Islands images had a low 

proportion of “definite” whale objects (Figure D.1). Boats, planes and a hang glider were also 

detected in some of the imagery (Table D.2).
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Table D. 2 Summary of the number of whale-objects and non whale-objects counted in the imagery. 

Location and year 
“Definite” 

whale 

“Probable” 

whale 

“Possible” 

whale 

Total 

number 

of 

whales 

“Definite” 

boats 

“Possible” 

boats 

Hang 

glider 
Planes Comment 

Auckland 2006 6 28 35 69 0 0 0 0 
 

Witsand 2009 71 7 11 89 0 0 1 0 
 

Auckland 2011 1 7 26 34 0 0 0 0 
 

Valdes 2012 15 32 37 84     did not look for boats 

Valdes 2014 23 12 24 59 0 0 0 0 
 

Maui 2015 20 11 25 56 28 4 0 2 
 

Pelagos 2016 26 3 5 34 6 0 0 3 
 

Valdes 2016 32 26 71 129 3 0 0 0 
 

Ignacio 2017 (4 MUL bands) 27 18 17 62 45 0 0 0 
 

Ignacio 2017 (8 MUL bands) 7 10 1 18 28 0 0 0 
 

Total 228 154 252 634 110 4 1 5 
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Figure D. 1 Proportion of whale-objects per certainty categories for each satellite image. 

D.4. Discussion 

The database of whale-objects and non whale-objects built here, will be useful for the 

development and testing of automated systems. Although, at the time of writing, the database 

created here is the largest one, more whale-detections are likely needed to train efficient whale 

detection algorithms. In the machine learning field, a large learning sample size is usually 

needed, particularly for features as complex as whales. Whales will not always have 

homogeneous shape or colour, depending on how deep below the surface they are. Different 

behaviours will also results in detecting different shapes and colour (e.g. whale bellies are 

usually paler than their back; Jefferson et al., 2015). In this study the 236 detections of 

“definite” whales cover different species; with each species being defined as a different feature. 

Ideally, a database with a larger learning sample size of “definite” whale detection per species 

would exist. This work is a first step towards the creation of such a database.   
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Appendix E: Radiance vs. reflectance 

When conducting spectral analyses, two measures tend to be used, either radiance or 

reflectance. Radiance includes the effect of the target surface, as well as the influence of the 

light source, and the composition of the atmosphere (e.g. gases and aerosols; Dowman et al., 

2012). When analysing satellite imagery, radiance measures were obtained after a top-of-

atmosphere correction was applied to it. The reflectance is only influenced by the target 

surface. To obtain the reflectance of a target surface in satellite imagery, further atmospheric 

corrections are required (Dowman et al., 2012). However, some of these further atmospheric 

corrections can lead to erroneous reflectance as the atmospheric composition for a specific 

place at a specific time is not always known. The reflectance measures is preferred when using 

a spectroradiometer, as the influence of the light source and composition of the atmosphere can 

be more easily removed using a reference surface (usually a “Spectralon”). For the spectral 

analyses conducted in Chapters 3 and 4, and Section 5.2 of Chapter 5, I focused on the radiance 

as I used satellite imagery. For the spectral analysis in Chapter 5 Section 5.3, I used a 

spectroradiometer, which allowed me to measure the reflectance of the target surface.
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Appendix F: Field of view test 

I verified whether the field of view advertised on StellarNet.Inc for the GREEN-Wave 

spectroradiometer was correct, i.e. 30°. 

F.1. Methods 

Using trigonometry, the field of view of a sensor can be calculated. This requires 

knowledge of the maximum size of the target surface area that can be measured and the distance 

between the sensor of the spectroradiometer and the target (assuming the sensor is pointing 

perpendicular to the target). As I did not know the maximum size of the target surface area that 

could be measured, I tested this by acquiring the radiometer unit of varying diameter disks of 

white printing paper, at a given wavelength (583 nm). These disks were centred below the 

sensor and against a contrasting dark background (Figure F.1). Once I observed no change in 

the radiometer unit as the size of the disk increased, it meant I had determined the maximum 

size of the target surface area that could be measured.  

 

 

Figure F. 1 Set-up to measure the radiometer unit value, (a) being the spectroradiometer, (b) 

the sensor, (c) one of the white printing paper disk, (d) a contrasting, dark background. 
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To decide what sizes of disk to create, I first calculated what the maximum size of the 

target surface area would be, if the sensor had a field of view of 30° and was positioned 30 cm 

away from the target (Figure F.2). Below are the calculations:  

tan(15) = opposite side/adjacent side 

tan(15) = a / 30 

a = tan(15) x 30  

a = 8.03 cm 

c = a x 2  

c = 8.03 x 2  

c = 16.06 cm 

 

Figure F. 2 Assessment of the maximum surface area to be measured (c), if the 

spectroradiometer has a field of view of 30° and is positioned 30 cm away from the target.  

 

Knowing that the spectroradiometer will measure the reflectance for an area of 

approximately 16 cm radius (see calculations above), when the sensor is positioned 30 cm away 

from the target, I created eight disks around 16 cm. The diameter of these disks was then 

converted into angular diameters as the distance between the sensor and the disk are known, 

using the following equation: 
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𝜃 = (2 ∗ arctan((𝑑 2⁄ ) 𝑃⁄ )) 

where d is the diameter of the disk in centimetre and P is the distance between the sensor 

and the disk. The angular diameter for the eight disks is as follow: 20.6°(10.9 cm), 24.3°(12.9 

cm), 27.0 (14.4 cm), 28.8 (15.4 cm), 29.7 (15.9 cm), 30.6 (16.4 cm), 31.5 (16.9 cm), 33.2 (17.9 

cm), 35.0 (18.9 cm).  

The smaller disk was the first one to be centred 30 cm below the sensor, followed by the 

next smallest disk and so on. As the radiometer unit slightly oscillated for each disk, the 

minimum and maximum value was measured for the 583 nm wavelength. This was repeated 

twice to get three maximum and three minimum radiometer unit values for each disk. All 

measurements were done indoors under the same lighting conditions. 

F.2. Results and Discussion 

All measurements of the disks with a radius greater than 15.9 cm showed similar 

radiometer unit values at 583 nm (Figure F.3). With the disk of 15.9 cm radius (i.e. 29.7°), the 

spectroradiometer captures the reflectance of a cone with a base of approximately 30° radius 

(Figure F.3). This means that the GREEN-Wave spectroradiometer, I used, had a field of view 

of 30°. 

 

 

Figure F. 3 Minimum and maximum radiometer unit at wavelength 583 nm for the area being 

measured by the GREEN-Wave spectrometer, when the sensor was positioned 

perpendicularly and 30 cm away from the target. The experiment was repeated three times 

(i.e. Min/Max1, Min/Max2 and Min/Max3). 
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Appendix G: Light source comparison 

G.1. Introduction 

In Chapter 5, different types of light were used to collect the spectral reflectance of whale 

integument. The analysis showed that some light sources were not ideal to measure the 

reflectance, as they covered a smaller range of the visible spectrum than other types of light 

source. Due to accessibility, the same light source was not always available. Using data 

collected during this experiment, I aimed to compare the different reflectance of each light and 

use it to provide recommendations on which light source should be prioritised when acquiring 

spectral reflectance. 

The reflectance in Chapter 5 were collected to further develop the use of very-high-

resolution satellite imagery to monitor great whale species. Currently the non-military satellite 

with the highest spatial resolution is the WorldView-3 (31 cm). Therefore, I was primarily 

interested in the reflectance of whale integument for the wavelength range covered by the 

sensors of the WorldView-3, i.e. from 397 nm to 1039 nm. The wavelengths beyond 696 nm 

(i.e. red sensor) are not as useful as they quickly get absorbed by seawater; therefore not 

suitable to detect whales below the surface, where whales spend most of their time. 

G.2. Methods 

The spectral reflectance of a JJC GC-1II waterproof grey card were collected using a 

GREEN-Wave spectroradiometer as part of the study reported in Section 5.3.1.3., which 

provides additional details on the acquisition of such reflectance. Grey card reflectance was 

acquired as a reference for measuring the reflectance of whale integument. As six different 

light sources were used in Section 5.3.1.3, I decided to randomly select three grey card 

reflectance per type of light source. The six light sources were: fluorescent, fluorescent 

combined with UV, surgical light, sunlight bulb, halogen and the Sun. All reflectance were 

normalised by using the following equation: 

𝐴𝜆 =
𝑎𝜆 − 𝑚𝑖𝑛 𝜆 

𝑚𝑎𝑥 𝜆 − 𝑚𝑖𝑛 𝜆
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Where 𝐴𝜆 is the normalised reflectance at a given wavelength, (𝑎𝜆) is the non-normalised 

reflectance for this wavelength, 𝑚𝑎𝑥 𝜆 is the maximum reflectance value, and 𝑚𝑖𝑛 𝜆 the 

minimum reflectance value measured among all reflectance across all wavelengths. 

G.3. Results and Discussion 

As observed in Chapter 5, the fluorescent light with or without UV and the surgical light 

cover a smaller wavelength range than the other light sources (i.e. approximately 400-700 nm). 

As expected, the UV light when added to the fluorescent extended the wavelength range by 

encompassing more shorter wavelengths, although it did not cover a portion of the spectrum 

just below 400 nm. The surgical light covers more of the longer wavelengths, compared to 

fluorescent, up to approximately 840 nm (Figure G.1).  

Halogen, sunlight bulb and the Sun appear to cover approximately the same range of 

wavelength, from 400 nm to 900 nm. Halogen covered additional longer wavelengths, up to 

approximately 1020 nm. The sunlight bulb also covered some additional longer wavelengths, 

up to 1000 nm. The sun covered some shorter wavelengths, up to about 350 nm and absorbed 

some of the other wavelengths (e.g. near 760 nm). When considering the range covered by the 

Worldview-3 sensors, Halogen light appear as the best option among the six types of light 

sources studied here, as it covers the wider wavelength range, with no/few absorptions (Figure 

G.1).  

To address the questions of Chapter 5, fluorescent (with and without UV) and surgical 

light remained useful as they covered most of the visible spectrum range that VHR satellites, 

such as WorldView-3 covers (i.e. coastal, blue, green, yellow and red covering 400-692 nm). 

Although infrared gets absorbed by seawater and is not useful for whales below the surface, it 

might be best to use halogen, or the Sun to cover a wider wavelength range, particularly as 

satellite sensors get better at covering the infrared region. This will be helpful for whales that 

break the surface.  
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Figure G. 1 Reflectance of a JJC GC-1II waterproof grey card per light type. For each light 

type, the reflectance of three samples is shown. 

 

Ideally, a light source with a constant reflectance across all wavelengths of the visible 

spectrum would be selected. However, such a light source does not exist. The Sun is generally 

the favoured light source, although its reflectance varies depending on the composition of the 

atmosphere which absorbs some wavelengths before they reach the target feature on the Earth 

surface (Tanaka, Matsuo & Yuzuriha, 2010). Water, oxygen and carbon dioxide are the main 

atmospheric components altering the Sun’s spectrum. Reflectance of an object can alternatively 

be measured indoor, under controlled lighting, using substitute light sources.
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Appendix H: Reflectance of a whale 

integument sample at different depths 

H.1. Introduction 

Some algorithms allow the estimation of the depth of specific surfaces in VHR satellite 

imagery (Lyzenga, 1978; Stumpf, Holderied & Sinclair, 2003). All these algorithms require a 

priori knowledge, for example about the area and the surface type. An important piece of 

information required by all these algorithms is the reflectance of the targeted surface at depth 

0 m, as well as the reflectance of this surface at different depths. Lubin et al. (2001) measured 

the reflectance of corals and algae at different depths to see how it changed with increasing 

depth, as light gets attenuated. Stumpf, Holderied & Sinclair (2003) used these data to create 

an algorithm, which infers the depth of specific surfaces (i.e. algae and coral). This algorithm 

is based on the changes in the blue to green bands ratio as depth increases, and requires 

knowledge about the reflectance of the target at depth 0 m and at various depths.  

The algorithm developed by Stumpf, Holderied & Sinclair (2003) can be transferred to 

other types of surfaces or objects, such as whales. However, the reflectance or radiance of 

whale skin above the sea surface and at various depths is currently unknown. The radiance of 

four different whale species measured in Chapter 3, are for whales below the surface. However, 

these radiances are not useful for the Stumpf, Holderied & Sinclair (2003) algorithm, as the 

depth is unknown for these whale radiances. Therefore, I developed an experiment to obtain 

such data. The aim of this section is to describe this experiment, test its applicability and 

propose modifications. 

H.2. Methods 

H.2.1. Set-up 

The reflectance of one sample of whale integument was lowered at various depths into a 

box filled with seawater, as shown in Figure H.1. I ensured the box was the least reflective 

possible by choosing a black one, and confirmed it was not translucent, by flashing a light torch 
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on one side and visually assessing whether the light was visible on the other side. The light 

could not be seen on the other side. The spectroradiometer used in Section 5.3. was the same 

used in this experiment. The seawater was collected near the research station, off the beach. 

The water was initially turbid due to sediment in suspension; therefore, I let the water settle in 

a box, and later siphoned the clear water into the black box. The sample of whale integument 

was a fresh sample of bowhead whale collected during the 2018 bowhead (Balaena mysticetus) 

subsistence fall harvest by Iñupiat hunters at Utqiaġkvik (Barrow), Alaska. Because the 

integument sample measured 10x10 cm and knowing the field of view of the spectrometer is 

30°, the spectroradiometer could be placed 30 cm away from the sample. Therefore, I planned 

to measure the reflectance at depth 0 cm, 0.2 cm, 2 cm, 5 cm, 10 cm, 15 cm, 20 cm and 25 cm. 

I did not plan to measure at depth 30 cm, as the sensor of the non-waterproof spectroradiometer 

would be touching the surface of the water, which had to be avoided.  

H.2.2. Spectral analysis 

The spectral analysis, including pre-processing was similar to part of the method in Section 

5.3.1.3. I measured the spectral reflectance of the whale integument three times for each depth, 

intermitted by measurement of the grey card. The three reflectance measurments for each depth 

were averaged to give one reflectance per depth. Each reflectance was measured between 350 

and 1150 nm and was calibrated to the “spectralon”. As all calibrated reflectance were noisy 

and showed no narrow features, they were smoothed at 10 nm. Then, they were convolved 

based on the radiometric response curves of the sensors of the satellite with the highest spatial 

resolution, the WorldView-3. These convolved reflectance were of particular interest to 

calculate the blue to green ratio required for the algorithm developed by Stumpf, Holderied & 

Sinclair (2003).  

H.3. Results 

Due to practical difficulties, I was not able to measure the reflectance of the whale 

integument deeper than 5 cm, this included measurements at three different depths in addition 

to a measurement at the surface. Within these 5 cm, few changes in reflectance were observed, 

except for longer wavelengths beyond the red-edge (Figure H.2). The reflectance in the near-

infrared (i.e. NIR1 and NIR2) rapidly decline (Figure H.2). The reflectance above the surface 

is more reflective than the three reflectance below the surface (Figure H.2), however the blue 

to green ratio did not change as the skin was lowered into the water (Table H.1). 
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Figure H. 1 (A) shows the set-up for measuring the spectral reflectance of the surface of a 

sample of whale integument (a) at various depths below the sea surface inside a box (i) filled 

with clear sea water (j). The sample of whale integument is placed on a clamp (d) that can be 

lowered at the desired depth. This clamp is fixed to a measuring stick (e) maintained straight 

with a piece of duct tape (b) to counter the pull effect of the sample of whale integument. At 

its base the measuring stick is also fixed to a piece of wood (g) held down with a weight (f). 

The spectroradiometer (c) is fixed to a tripod and connected to a computer via a USB cable. 

A light source (h) is oriented to face the sample of whale integument. (B) is a picture of the 

set-up. 
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Figure H. 2 Convolved reflectance for a sample of bowhead whale integument lowered at 

different depths, up to 5 cm. The wavelengths are expressed as bands from the WorldView-3 

satellite. 

 

Table H. 1 Blue to green ratio as the sample of whale integument was lowered below the 

surface. The blue and green reflectance are expressed as natural logarithm. 

Depth 0 cm 0.2 cm 2 cm 5 cm 

Ln(Blue)/Ln(Green) 0.985 0.981 0.959 0.982 

 

H.4. Discussion 

The experiment attempted here, to measure the spectral signature of a whale at different 

depths, did not show an increase in the blue to green ratio as suggested by Stumpf, Holderied 

& Sinclair (2003). No changes in the ratio were observed because the sample of whale 

integument could not be lowered past 5 cm, as beyond this depth the reflectance being 

measured would have been of the black box and the whale integument. A depth of 5 cm might 

be too shallow to observe any changes in the blue to green ratio, as the green light might not 

be affected by absorption from seawater at such depths. Blue and green are the least absorbed 
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wavelengths as light travels through the water column, with blue being the least absorbed of 

all the wavelengths (Duntley, 1952; Jerlow, 1976). Wavelength beyond the red are the first to 

be absorbed which explains the rapid decline of the reflectance for the WorldView-3 bands 

NIR1 and NIR2. As no change in the blue to green ratio were observed, the algorithm 

developed by Stumpf, Holderied & Sinclair (2003) could not be applied. I considered using 

another band ratio, such as blue to NIR1 (or NIR2), however it would only be useful to assess 

the depth of whales up to a few meters, as such a ratio would not change past a few meters due 

to infra-red wavelengths (i.e. NIR1 and NIR2) being fully absorbed past a few meters (Duntley, 

1952; Jerlow, 1976). As whales can likely be detected deeper due to the coastal, blue and green 

bands being absorbed at deeper depth, a ratio using these bands is necessary. 

The depth limitation was due to the size of the skin not being large enough and the size of 

the box. The experiment could be replicated in a pool or at sea, although at sea the whale 

integument might attract wildlife that would feed on it. Using a larger sample of whale 

integument, such as 1 m2, might be difficult to obtain, as during strandings smaller samples are 

usually collected because larger samples would not fit in a cooler used to transport samples to 

a freezer. From subsistence harvest such samples are usually not collected either. Furthermore, 

a 1 m2 sample would not allow measurement of the reflectance of the whale integument past a 

depth of 2 m, if using the same spectroradiometer as used here (non-waterproof with a 30° field 

of view). A spetroradiometer adapted for underwater measurement could be used, similar to 

Lubin et al. (2001), although the problem of attracting wildlife and potentially losing the 

sample remain. As mentioned in Section 5.3.it is not recommended to use integument samples 

of dead whales due to the observed darkening of the skin, as it will not be representative of live 

whales. Therefore, it might be more practical to measure the reflectance of live whales above 

the sea surface, using the adapted set-up mentioned in Section 5.3 (Figure 5.12.). Then panels 

calibrated to the reflectance of whales above the surface can be placed at different depths. The 

reflectance could either be measured using a similar spectroradiometer and protocol to Lubin 

et al. (2001), or by acquiring satellite imagery, assuming the panels are large enough to be 

detected. Ideally, such data would be collected for all species of great whales and under 

different turbidity conditions, to build a reference catalogue to support the monitoring of 

whales from satellite imagery.
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Appendix I: Feasibility test for 

crowdsourcing 

I.1. Introduction 

Whales can be counted on VHR satellite imagery by manually scanning, although it is 

time-demanding (see Chapter 3). In Chapter 4, I attempted to develop a reliable automated (or 

semi-automated) system, but further work is required. Until an automated system is developed, 

manual scanning remain the main option to count whales on satellite imagery. This process 

could potentially be hastened through the recruitment of multiple counters surveyed the 

imagery. Therefore, citizen scientists could help rapidly survey large areas of the ocean to count 

whales.  

Several crowdsourcing projects already exist for various subject of study. Citizen scientists 

have helped count lunar craters (Gugliucci et al., 2014), drawn maps to support disaster 

response team (Goodchild & Glennon, 2010), and helped monitor the health of penguins 

(penguinwatch.org, Jones et al., 2018). Regarding monitoring wildlife on satellite imagery, 

crowdsourcing has been used to count seals from space (tomnod.com, LaRue et al., 2019), 

indicating that it could also be applied to whales. This supplemental work presented here, 

aimed to assess the feasibility of a crowdsourcing project to count whales from space. 

I.2. Methods 

On 9th April 2019, a global community of polar educators and scientists part of Polar 

Educators International gathered in Cambridge. During this event, I led a workshop on counting 

whales from space, where the participants were (i) trained on how to analyse satellite imagery 

for the presence of whales, and (ii) given the opportunity to scan satellite imagery to detect 

whales. Following a brief training of what clues to look for (e.g. size, shape, colour and water 

surface disturbance characteristic of whales) when analysing satellite imagery to count whales, 

participants were separated in six groups of two to three participants.  

All groups were given the same satellite imagery to scan, which was a portion of the San 

Ignacio image scanned in Chapter 3. The area they were given to survey covered 5 km2 (i.e. 
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approximately 6.25 % of the size of the full imagery). It was split in 30 polygons of equal size, 

randomly selected among the deep channels, where there was sufficient depth to potentially 

detect whales. Some polygons had whales and some did not. Weather conditions (i.e. the 

presence of white caps) also varied among the polygons. Each polygon was printed in colour 

on A4 paper, which meant the imagery was scanned at a scale of 1:1500. Before printing the 

polygons, I pre-processed the satellite imagery to give the most ideal visual conditions for 

scanning (i.e. pan-sharpened and stretched in the same way as in Chapter 3). 

Each group was given three different colour pens to circle “boats”, “maybe whales”, and 

“whales”. Their counts were then compared to those in Chapter 3, with “Maybe whales” 

referring to the “probable” and “possible" whales, and “whales” referring to the definite whales 

of Chapter 3. When comparing the two counts, “whales”, “maybe whales” and “boats” detected 

in Chapter 3 but missed in this activity, were also recorded, alongside “whales”, “maybe 

whales” and “boats” mistaken for white caps. For comparing the two counts, the counts for all 

groups were first averaged. Then the average count for all groups was divided by the count 

from Chapter 3 and multiplied by a 100 to get the proportion of correctly classified “whales”, 

“maybe whales”, and “boats”.  

I.3. Results 

When comparing the averaged count of all groups to the count of Chapter 3, “boats” were 

mostly correctly classified (Figure I.1). There was one instance, where a white cap was 

classified as a boat. Boats were never mistaken for a “whale” or “maybe whale” (Figures I.1 

and I.2).  

Using the all group average, less than half of the “whales” were appropriately classified 

(Figure I.1), as in group six approximately 40 % of the “whales” identified by all groups were 

white caps. There was also about 10 % of the “whale” classified as “maybe whale” (Figure 

I.1).  The high proportion of white caps identified as “whale” is due to group 6; therefore, when 

removing group 6 counts from the average, almost two thirds of the “whales” were correctly 

classified, with approximately 3 % of “whales” being white caps (Figure I.2).  

The classification of “maybe whales” when using the averaged count for all groups was 

correct less than a third of the time (Figure I.1). The proportion of correctly identified “maybe 

whales” slightly improved when excluding group 6 from the average count (Figure I.2), which 

mistook several white caps for “maybe whales”.  
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Figure I. 1 Averaged proportion for all groups of “whales, “maybe whales and “boats” 

correctly identified and misidentified. 

 

Figure I. 2 Averaged proportion for all groups (excluding group 6) of “whales, “maybe 

whales and “boats” correctly identified and misidentified. 
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I.4. Discussion 

The results from the workshop on counting whales from space, shows that boats will not 

be mistaken for whales and vice versa. More “whales” will be correctly classified than “maybe 

whales”, highlighting how reduced amount of detail of a whale-object will reduce its likeliness 

of detection, which will be problematic to get reliable results from a crowdsourcing project 

based on counting whales on satellite imagery. The training should be improved to maximise 

the likeliness of detection. One caveat to report, is the quality of the imagery on printing paper. 

Whale counts extracted from Chapter 3 were obtained by looking at a computer screen, which 

might improve the ability to detect. 

 


