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Abstract Large geomagnetic storms are a known space weather hazard to power transmission networks
due to the effects of geomagnetically induced currents (GICs). However, research in this area has been
hampered by a lack of GIC observations. Previous studies have noted that New Zealand is unusually
fortunate in having a comparatively dense, high quality, set of GIC measurements, spanning >60
transformers in >20 substations. However, due to operational reasons these observations are clustered in the
mid and lower South Island. In this paper we analyze space weather‐induced GIC impact patterns over
the entire country by using a different set of sensors that monitor levels of harmonic distortion, with even
and odd harmonics measured separately. GICs lead to half cycle transformer saturation and is one of the few
ways in which even harmonics are produced in a well‐run power transmission network. We make use of
harmonic distortion measurements at 377 circuit breakers made at 126 separate locations. Focusing on the
intense geomagnetic storm activity during 6–9 September 2017, we show how the even harmonic distortion
observations provide a useful new picture of GIC‐stressed transformers. These observations demonstrate
how GIC effects can be monitored by using even harmonic distortion in locations where no GIC
measurements are present (e.g., the most of the North Island). We understand that harmonic distortion
measurements are fairly common in electrical networks and could provide a new tool for space
weather researchers.

1. Introduction

There is a rising global recognition of space weather as a hazard to our deeply technologically connected
society. An example is the recent report from UN Committee on the Peaceful Uses of Outer Space (United
Nations, 2017). They noted that “The largest potential socioeconomic impacts arise from space weather dri-
ven geomagnetically induced currents in electrical power networks.”An extreme storm is likely to produce a
collapse of the electrical power grid with damage to the infrastructure and loss of service (e.g., Baker
et al., 2008; JASON, 2011; Oughton et al., 2017). Reliable electricity supply is the lifeblood of any modern
nation. The cost of damage to network components is small compared to the knock‐on consequences of elec-
trical outages to essential services, businesses, and households. It should be noted that geomagnetically
induced currents (GICs) are one of a wide range of space weather impacts which occur during extreme
storms, some of which could be described as “extraordinary” (Knipp et al., 2016; Knipp et al., 2018; Love
& Coïsson, 2016).

There are multiple ways by which geomagnetically induced currents can adversely affect electrical power
infrastructure through physical damage or disruption to supply (e.g., Boteler, 2015; Samuelsson, 2013).
One of the ways to disruption comes from the production of harmonic distortion to the alternating current
(AC) waveform generated by saturated transformers. The GIC, being quasi‐direct current (DC), produces
half‐cycle saturation in transformers with consequent excessive heating of the transformers and increased
audible noise. In addition, saturated transformers dissipate large quantities of power. These in turn cause
voltage dips, changes in power flow, possible system frequency shifts, and incorrect operation of protective
relays (EPRI, 1983).
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The most commonly invoked example of GIC effects is the blackout of March 1989 (Béland & Small, 2004;
Bolduc, 2002; Guillon et al., 2016), when the Hydro‐Québec's (TransÉnergie) electric transmission system
collapsed in 92 s. Protective relays were tripped, the grid collapsed (Guillon et al., 2016), and about 9 million
people were left without electricity (Bolduc, 2002). The cause was the geomagnetic disturbance (GMD)
which occurred in the North American sector on 13 March 1989 at 2:44 a.m. eastern standard time
(7:44 UT). In roughly 1.5 min, the Hydro‐Québec's electric transmission system went from stable operation
to total collapse, with the tripping of static VAR compensators, power oscillation, voltage collapse, and the
separation of parts of the transmission system (see the detailed description in Béland & Small, 2004; Guillon
et al., 2016; and the recent report on the space weather causes of this event, Boteler, 2019). The 7:44 UTGMD
was caused by a magnetospheric substorm causing surface level magnetic fields to change rapidly. This
GMD came after the commencement of a sudden storm (1:30 UT) which did not produce significant power
network effects, as well as two subsequent substorms (3 and 6 UT), the second of which created GIC strong
enough to cause voltage fluctuations. In the case of the 6 UT substorm Hydro‐Québec system operators had
sufficient time to undertake switching, allowing for network voltage control (Guillon et al., 2016). This was
not possible during the third, even more intense 7:44 UT substorm. This substorm‐induced GIC saturated
many power transformers, which in turn drew more reactive power and also became strong sources of har-
monics. The extra reactive power could have been supplied by static VAR compensators (SVCs) units located
in the network to regulate the grid voltage. However, the available SVCs tripped off due to the high harmonic
currents, with seven large SVCs lost in 1 min, triggering the system collapse. It is clear that
GIC‐produced‐harmonic distortion was the primary cause of the Hydro‐Québec blackout in 1989
(Guillon et al., 2016).

In the aftermath of the March 1989 blackout, Hydro‐Québec introduced multiple monitoring systems to
assist the system operators. These include real‐time monitoring and control center reporting of voltage har-
monics at nine substations, real‐timemonitoring and control center reporting of even harmonic distortion at
four substations, and offline monitoring of voltage and current harmonics plus DC GIC observations at five
substations (Guillon et al., 2016).

New Zealand is one of the few countries that has already experienced direct transformer damage from a large
geomagnetic storm. On 6 November 2001 at 14:53 alarms from monitors across the South Island were
received by the network operator, Transpower New Zealand Ltd. Simultaneously a static VAR compensator
at Christchurch city tripped along with a transformer feeding Dunedin city. The transformer at
Dunedin/Halfway Bush (HWB T4) failed within 1 min of the storm start (Béland & Small, 2004; Mac
Manus et al., 2017; Marshall et al., 2012). In recent years this has stimulated a focus on space weather
impacts on the New Zealand electrical network, exploiting the significant quantity of DC GIC observations
available in parts of that country (Mac Manus et al., 2017). Those observations are available in the system
operations control room, and operational procedures have been developed to try to mitigate GIC impact dur-
ing a GMD (Transpower, 2015).

The extensive New Zealand GIC data set has been used to show that the rate of change of the H‐component
(H′) of the local magnetic field is the best correlated driver of observed GIC magnitude but not for every
storm in every location (Mac Manus et al., 2017). Investigations of likely extreme GIC magnitude within
New Zealand estimated a peak GIC that could occur in a 100 year return period at a particular transformer
near Christchurch as ~155–605 A (Rodger et al., 2017). A different approach based onmagnetic field transfer
functions found similarly large peakGICmagnitude atmultiple NewZealand locations (Ingham et al., 2017).
However, Divett et al. (2018) modeling responses to a given GIC event for different transformers at the same
substation found variations of up to a factor of 9, depending on the electrical connections.

In New Zealand the majority of the DC observations are clustered in the middle and southern part of the
South Island, for operational reasons (as outlined in section 3). Due to the shape and geographic orientation
of New Zealand, there is a strong tendency for electric fields to orient northeast‐southwest (Divett
et al., 2017), parallel to the main structure of the country along which many main transmission lines run.
This contributes to a high potential for GIC over most of the country and especially the South Island
(Divett et al., 2017).

Most recently, a unique set of observations fromHalfway Bush, New Zealand, was used to examine the beha-
vior of harmonic distortion during a series of GMD from 7–8 September 2017 (Clilverd et al., 2018). This
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study combined local and nearby magnetic field variation observations, GIC measurements, and harmonic
distortion observations made both at low time resolution by Transpower and very high time resolution using
a co‐located VLF wideband radio receiver. These measurements showed increases in even‐order harmonics
once GIC levels measured at the monitored transformers at the Halfway Bush substation exceeded 15 A, in
one case for >30 min. In contrast, no evidence of harmonic production was found during the much shorter
periods of impulsive magnetic field changes generated from solar wind shocks, even though they produced
very large peak GIC (~35 A) for a short duration. This suggests the transformer was less “stressed” than for
long lasting but smaller averaged magnitude GIC levels (Clilverd et al., 2018).

As noted above, harmonic distortion observations provide a different way to look at the space weather
impact on power transmission networks. It is common for space weather researchers to use modeling
approaches to investigate GIC across networks. However, typically these modeling efforts rely on significant
assumptions, and their validation may be based on limited GIC observations. A different approach, there-
fore, is to look for evidence of stressed transformers using network wide harmonic observations. Until
now there have been limited simultaneous harmonic distortion experimental observations and GIC mea-
surements presented in the literature. One reason for this may be that most countries have limited GICmea-
surements available to link to the harmonic distortion observations. Another reason is that network
operators in some nations may be unwilling to release one or both of these data sets to researchers. New
Zealand is unusually well positioned to investigate the occurrence of GIC in a midlatitude country as there
are comparatively large quantities of measurements available to our space weather research team. In this
study we build on the earlier work of Clilverd et al. (2018) and primarily focus on the GMDs which occurred
during 7–8 September 2017. While that study concentrated in and around the Halfway Bush substation in
Dunedin, we make use of the larger GIC data set which primarily covers the mid and lower South Island.
We complement those observations with harmonic distortion measurements which span both North and
South Islands. The harmonic distortion observations provide new insights into the occurrence of GIC lead-
ing to transformer saturation.

2. Asymmetric Saturation and Even Harmonic Production

As noted above, harmonic distortion played a central role in the Hydro‐Québec blackout. It is an important
precursor to supply disruption and/or transformer damage and is now actively monitored in Hydro‐Québec
due to the space weather hazard. It is instructive to consider howGIC causes asymmetric saturation and har-
monic production. In addition to the text below, we direct the interested reader to EPRI (2014) and Arrillaga
and Watson (2003).

When a transformer is subjected to higher than rated AC voltage or lower than rated frequency, the mag-
netic flux during the peak parts of the sinusoidal cycle may exceed the capabilities of the transformer core
and cause it to go into saturation. With AC over‐excitation, the magnetic flux peaks exceed both the positive
and negative saturation thresholds, resulting in both positive and negative “spikes” of exciting current. This
produces only odd‐order harmonic components and is called symmetric saturation. While not desirable, this
sort of saturation leading to odd harmonics is a standard consideration for electrical engineers. Power engi-
neers typically design systems to avoid the production and impact of odd‐order harmonics.

In contrast, the transformer core flux will have an offset if there is a DC component in one of the transformer
windings. In this case the transformer core saturates in only one direction, such that the exciting current
spike appears only once per cycle for only one polarity. This type of saturation is termed asymmetric satura-
tion or “half‐cycle” saturation. As should be clear, GIC provides the DC offset described above, and such GIC
is a source of asymmetric transformer saturation. It is important to note that because of the asymmetric nat-
ure of the current spikes, half‐cycle saturation results in even‐ and odd‐order harmonic components (e.g.,
Boteler et al., 1989; Walling & Khan, 1991). It is common in electrical engineering papers on GIC to mention
the existence of both even and odd harmonics in this situation but without commenting on how unusual
even‐order harmonic production is in a typical electrical transmission network. We believe this is because
the importance is obvious to the power engineering readers of these papers but is likely less so to space
weather researchers. We hence emphasize that GIC leading to asymmetric transformer saturation is one
of the few ways to produce even harmonics, and as such even‐order harmonic measurements should be a
very valuable route to study space weather impacts on power networks.
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3. Experimental Data Sets
3.1. New Zealand GIC Observations

A detailed description of the New Zealand GIC measurements in the South Island has been previously
reported (Mac Manus et al., 2017). The following section is a brief summary, and the reader is directed to
the earlier study for a more complete explanation.

Transpower New Zealand Limited has measured DC currents in multiple South Island transformers using
Hall effect current transducers (Liaisons Electroniques‐Mécaniques (LEM) model LT 500 or LT 505, with
about half of each in use, and a mix of ‐S and ‐T subtypes for both model cases). The primary purpose for
the DC observations is monitoring stray currents when the high‐voltage DC link between the South and
North Islands operates in single wire earth return mode or with unbalanced currents on the conductors.
This type of operation is common for the New Zealand HVDC link. For our purposes the LEM‐provided
DCmeasurements need to be corrected to remove the stray currents as described byMacManus et al. (2017),
leaving only GIC. During GMD the typical LEM sampling rate is one measurement every 4 s.

Recently, we have become aware that the archived DC current data set is in fact slightly larger than was
described in Mac Manus et al. (2017), and hence, we update the overview details in the current study. The
locations of the substations with the original monitoring equipment are shown as yellow stars in the left
panel of Figure 1. Table 1 indicates how the number of transformers and substations monitored has varied
with time. Over the years the DC monitoring has expanded from 13 substations and 36 transformers
(November 2001) to 22 substations and 60 transformers (from November 2018), with the later part of that
growth being in the lower South Island with a space weather focus. Different colored stars show the new sub-
stations monitored in the left hand panel of Figure 1. Note from Table 1 that the number of transformers
monitored has both increased and decreased through new DC monitoring deployments and

Figure 1. Left hand panel: map of the South Island of New Zealand showing the Transpower New Zealand electrical transmission network, updating Figure 1 from
MacManus et al. (2017), reflecting new information from Transpower New Zealand Ltd. Stars show the location of substations containing the LEMDCmonitoring
equipment, the data from which can be corrected to produce GIC measurements. Substations without DC monitoring equipment are shown by the small blue
squares. Right hand panel: locations of the even‐THD observations used in the current study. A total of 126 substations provide even‐THDmeasurements, covering
the entire Transpower electricity transmission network.
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decommissionings/faults and peaked in early 2015. Obviously the number
of operational DCmonitors has recently shrunk. Following the new space
weather activity Transpower is currently looking to repair all faulty DC
monitors and install new monitors into at least one additional substation
in the near future.

The GIC‐sensing DC monitors provide real‐time observations to the net-
work operator control rooms. At this time they are the primary indicator
through which the operators would invoke a GIC mitigation strategy
(Transpower, 2015) aimed at decreasing the total current into each trans-
former by removing redundant transmission lines from operation. At this
time the protocol is focused only on the lower South Island. However,
there is evidence that GMDmay produce significant GIC further equator-
wards, where no DCmonitors are located. For example the GIC modeling
reported by Divett et al. (2018) showed that significant GIC is expected to
occur at the top of the South Island.

3.2. New Zealand Harmonic Distortion Observations

The earlier Halfway Bush case study into the 7–8 September 2017 GMD
used total harmonic distortion (THD) measurements made of the voltage
at circuit breaker CB532 inside the Halfway Bush substation in Dunedin.
In the current study we expand the analysis to examine all voltage input
harmonic distortion observations made across New Zealand in the same
time period. Harmonic distortion observations are made at every substa-
tion in New Zealand using Schneider PowerLogic ION8800 meters, which
provide harmonic reporting up to the 63rd harmonic on both voltage and
current inputs. The meters are capable of providing total, even‐order, and
odd‐order harmonic recording. In Transpower's case the summed total,
even‐order, and odd‐order harmonic distortion percentages are archived
from each meter on each of the three phases with a 10‐min time resolu-
tion. Note that the time stamp for the 10‐min resolution THD observations
is for the end of the window; in subsequent snapshot maps we will specify
both the start and stop times of this window for clarity. In the current
study we focus only on the percentage distortion of the sum of all
even‐order harmonics monitored on the circuit breaker voltage input,
which we term the even‐THD.

During the GMD of 7–8 September 2017 harmonic monitoring was under-
taken at 133 substations (84 in the North Island and 49 in the South Island), with metering on a total of 391
individual circuit breakers (257 in the North Island and 134 in the South Island). Unfortunately, in some
locations the data quality is not good, and we have to remove the data for a small number of circuit breakers
(~3.5%) from our analysis. After this removal we have available even‐THD from 126 substations (79 in the
North Island and 47 in the South Island), including 377 circuit breakers (245 in the North Island and 132
in the South Island). The distribution of available even‐THDmeasurements is shown in the right hand panel
of Figure 1; this figure demonstrates that the even‐THD observations cover all the Transpower primary
transmission network (a nation‐wide grid map is available from Transpower, 2019). A number of locations
of interest which are discussed later in this text are shown in red in the right hand panel of Figure 1.

At this time the harmonic distortion observations are not fed to the network operators in real time; the mea-
surements are archived and are available for post‐event analysis.

It is important to note that voltage harmonic distortion observed at a given monitoring location may not be
locally generated. A saturated transformer will produce current harmonics which can be measured as vol-
tage harmonics at a connected but separate substation. In contrast, current harmonic distortion provides a
direct indication as to where the harmonics are originating from. As such, current harmonic distortion mea-
surements should provide space weather researchers with a more direct indication of the location of stressed

Table 1
Change With Time in the Number of South Island Transformers
and Substations for Which DC Monitoring Systems Were Operating
at Locations Shown in Figure 1

Date
Total transformers

monitored
Total substations

monitored

Nov 2001 36 13
Mar 2002 37 13
Sep 2002 38 13
Jan 2005 39 13
Apr 2005 41 13
Sep 2008 42 13
Feb 2009 43 14
Mar 2009 45 14
Apr 2009 46 14
Jul 2010 47 14
Sep 2010 46 14
Aug 2011 45 14
Nov 2011 47 15
Dec 2011 48 15
Oct 2012 53 18
Nov 2012 52 18
Dec 2012 54 19
Feb 2013 63 21
Mar 2013 62 21
May 2013 63 21
Aug 2013 64 21
Jan 2014 65 21
Jun 2015 66 21
Jan 2017 65 21
Feb 2017 64 21
Apr 2017 63 21
Jun 2017 62 21
Oct 2017 60 21
Dec 2017 58 20
Jan 2018 59 20
Feb 2018 58 20
Jun 2018 60 21
Nov 2018 60 22

Note. This is an update to Table 1 fromMacManus et al. (2017), reflecting
new information from Transpower New Zealand Ltd.
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transformers. Unfortunately, the Transpower harmonic distortion observations from the current input do
not discriminate between even and odd, providing only the sum of both. As shown in Clilverd et al. (2018),
while even harmonics are directly related to transformer saturation, odd harmonic occurrence is less clear.
We have found the combination of both, that is, the total of both even and odd harmonic distortion, does not
respond in a useful way during space weather events. Thus, in this study we limit ourselves to the use of the
even order voltage harmonic distortion observations, that is, even‐THD. Researchers who can access even
order current harmonic distortion measurements should be able to investigate this directly, hopefully lead-
ing to additional insight. We hope to be able to undertake such studies through dedicated future campaigns.

3.3. New Zealand Magnetometer Observations

Building on the earlier New Zealand GIC studies, and in particular Clilverd et al. (2018), we make use of
magnetic field observations from multiple locations. The locations of the magnetometers are shown in the
maps where the data is used (in particular Figures 4–8). The magnetometers are the following:

1. The Eyrewell (EYR) magnetometer operated by GNS Science, New Zealand, which is part of
INTERMAGNET (http://www.intermagnet.org/). A detailed description of the construction of EYR
1‐min averages of the horizontal component of the magnetic field is given in Mac Manus et al. (2017).

2. Magnetometers at Middlemarch and Te Wharau operated by Osaka Electro‐Communication University,
Japan, forming the CRUX array (Obana et al., 2015). The TeWharau andMiddlemarch variometers mea-
sure magnetic field on a fixed orientation determined at the time of installation. This is aligned so that the
primary axis is pointing toward magnetic north (h), secondary axis is pointing toward magnetic east (e),
and the tertiary axis vertically down (Z). To convert from this heZ coordinate system to HDZ we have
used the 2015v2 World Magnetic Model (Chulliat et al., 2019) as a baseline for the conversion.

3. A magnetometer at Swampy Summit near Dunedin. This instrument has been described by Clilverd
et al. (2018).

At this time none of the magnetometer observations are fed to the system operations control rooms. The
Swampy Summit magnetometer is available in near real time, and discussions have taken place around pro-
viding the EYR magnetic data to the control rooms in near‐real time, as well as archiving the magnetic field
data inside the main Transpower monitoring data set.

4. Summary of 7–8 September 2017 GMD

The time period from 4–11 September 2017 interval included a number of different space weather forcing
events that produced impacts on ground‐ and space‐based instrumentation. Space weather published a spe-
cial issue on this event (available from https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/
(ISSN)1542‐7390.SW‐SEPT2017), which provides a large amount of background on the activity and impacts.
The event period included X‐class solar flares, a coronal mass ejection, high speed solar wind streams, a solar
proton event, and a ground level event. The impacts included HF radio blackouts which disrupted emer-
gency communication, Global Navigation Satellite Systems signal interferences, plasma bubble occurrence,
and enhanced GIC. For the current study we focus on the geomagnetic storms of 7–8 September 2017, the
same time period examined by Clilverd et al. (2018). The upper panel of Figure 2 shows the magnitude of
the rate of change of the horizontal magnetic field (|H′|) observed by the EYR magnetometer. Following
Clilverd et al. (2018), we highlight four distinct peaks in the EYR |H′| observations, as labeled red dashed
lines in this panel. These four are at the following times: (1) 23:48 UT on 6 September 2017, (2) 08:56 UT
on 7 September 2017, (3) 23:02 UT on 7 September 2017, and (4) 12:50 UT on 8 September 2017. The four
events correspond to (1) sudden commencement due to the arrival of a shock in the solar wind, (2) a small
substorm, (3) second sudden commencement solar wind shock arrival, and (4) storm period with strong
negative deviation of the interplanetary magnetic field (IMF) component Bz.

In this study we focus primarily on the period at, and following, Event 3 (22:00 UT on 7 September to
03:30 UT on 8 September 2017) and Event 4 (12:00 to 13:00 UT on 8 September 2017). We choose to focus
on these time periods as they include disturbed H′ and were associated with GIC and even‐THD at the
Halfway Bush substation in Dunedin (Clilverd et al., 2018). In the present study we will examine the wider
pattern in THD across New Zealand during these events, but first we remind the reader of the most salient
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Figure 2. Upper panel: magnitude of the rate of change of the horizontal component (|H′|) of the magnetic field observed
by the EYRmagnetometer during the 6–9 September 2017 series of GMD. Four time periods are marked by red lines, based
on the times of four distinct peaks in the magnitude of the rate of change of the H‐component of the EYR data, as
discussed in the text. Middle panel: detailed examination of the EYR |H′| for the time period around Event 3. Lower panel:
as the middle panel, but for the Event 4 time period.
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results of the earlier study for these periods and the Halfway Bush, Dunedin, case study from Clilverd
and coauthors.

Clilverd et al. (2018) reported that the Sudden Commencement at 23:02 UT on 7 September 2017 produced a
short‐lived peak in GIC at Halfway Bush transformer number 4 (HWB T4), reaching ~34 A but lasting only a
few minutes. This short peak was not linked to harmonic distortion seen in the high time resolution wide-
band VLF data, or the Transpower‐provided even‐THD 10‐min resolution measurements. We term this time
period Event 3a. Clilverd et al. (2018) also report that from 01:00 to 02:00 UT the GIC measured at HWB T4
shows enhanced GIC, exceeding >15 A for about 5 min at about 01:45 UT (see Figure 5 of that study). We
term this time period Event 3b and havemarked it in Figure 2 (middle panel). We note it was associated with
clear and long‐lasting increases in harmonic distortion, despite being much lower total GIC magnitude than
Event 3a. This event is likely to be associated with sudden changes in solar wind pressure caused by rapid
density variations and was described as a substorm by Dimmock et al. (2019).

In our study we also focus on Event 4, which was driven by severe geomagnetic storming linked to strongly
negative IMF Bz and high solar wind speeds, a large substorm enhancing currents locally, and the arrival of
the CME ejecta enhancingmagnetospheric currents globally (Dimmock et al., 2019). During this event HWB
transformer T4 experienced long lasting GIC, with >15 A occurring for ~30 min and peaking at ~49 A
(Clilverd et al., 2018, Figure 5), and associated harmonic distortion (Clilverd et al., 2018, Figures 6, 8, and
9). The EYR |H′| is shown in the lower panel of Figure 2.

5. Even‐THD Observations
5.1. Halfway Bush Substation

As noted above, the Halfway Bush substation is located in the city of Dunedin, the location of which is
marked in Figure 1. This substation has five different circuit breakers which have harmonic distortion moni-
tors: CB0232, CB0292, CB0532, CB2542, and CB2582. The top panel of Figure 3 shows the Halfway Bush sin-
gle line diagram with the voltage connections for the HWB substation. In this panel 3 of the five circuit
breakers are marked. CB292 and CB232 are connected to the same 33 kV bus, and so only the first of these
are plotted. CB2582 and CB2542 are also on the same bus, so again, only one is plotted. The lower four panels
of this figure show the percentage even‐THD for each these circuit breakers, as labeled, as well as the com-
bination of all the observations from the substation combined (i.e., all five monitored circuit breakers). As
expected, the time variation for the measurements at CB292 and CB232 are essentially identical, as is also
the case for CB2582 and CB2542. Because of this the measurements from the extra CB232 and CB2542 are
not plotted. The red vertical lines in the lower four panels of Figure 3 correspond to the |H′| peaks shown
in the upper panel of Figure 2.

Each of the even‐THD panels include the three separate phases (A, B, and C), and the mean of all three
phases for that circuit breaker, the latter in black. The time behavior of the even‐THD is very similar across
the five circuit breakers, although not identical. Circuit breakers CB0232 and CB0292, located on the left
hand side of the electrical line diagram, display more variability than seen for the other three circuit break-
ers, found on the right hand side of the electrical line diagram, with extra spikes not seen in the other three
CB panels. It is also clear that the first two circuit breakers mentioned respond at the times of the magnetic
field changes we have termed Events 1, 3, and 4, while the later three only respond to Events 3 and 4. Finally
the magnitude of the even‐THD response for the first two circuit breakers is noticeably smaller than the last
three; in the case of CB0232 and CB0292 the peak even‐THD, which is associated with event period 4, is
~0.45%, whereas for CB0532, CB2542, and CB2582 the peak value is ~0.9%.

It is likely the nature of the transformers in the Halfway Bush substation, plus their electrical connections,
can explain the approximate factor of two seen in THD magnitude between the two sets of circuit breakers.
At the Halfway Bush substation, GIC will impact only T4 and T6. These two transformers have star con-
nected high‐voltage windings which allow GIC to flow from the electrical earth into the windings. The other
transformers present have delta connected high‐voltage windings and star connected low‐voltage windings.
Delta connections do not have an earth connection so GIC cannot flow. Observational experience has shown
that we can ignore GIC impacts from transformers earthed on the low‐voltage side (e.g., NERC, 2013), such
as these. This is because low‐voltage networks have relatively high resistances and short lengths compared to
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the high‐voltage transmission lines meaning less GIC, and finally that low‐voltage windings have fewer
turns so a given GIC causes less flux in the transformer. In Halfway Bush one can see from the upper
panel of Figure 3 that CB0532 is on the 110 kV bus directly connected to T6. One can expect this circuit

Figure 3. Upper panel: a single line diagram of the Halfway Bush (HWB) substation electrical connections. The red boxes mark HWB T4, and the locations of the
five circuit breakers (CB) which have even total harmonic distortion (THD) measurements (see text for more details). Lower panels: even‐THD observations
at each CB, as labeled, recording separately the three phases and the mean of all phases. The lower right hand panel shows the combined mean of all 15 obser-
vations, representing the time‐varying summary even‐THD for the HWB substation.
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breaker to be more affected than CB0292, as the THDwill need to propagate to them through T5, which will
produce attenuation. This could explain why CB2582 has higher levels than CB0292. The former of these will
get harmonics from the 110 kV bus while the latter will get harmonics from the 220 kV bus. In addition there
are two transformers linking the 110 kV bus to the 33 kV bus and only one transformer linking the 220 kV
bus to the 33 kV bus.

The lower right hand panel of Figure 3 shows the combined mean of all 15 observations, that is, the mean of
the three phases at each of the five circuit breakers, combined into a single time‐varying mean. We will take
this to represent the time‐varying summary even‐THD value for the HWB substation and follow the same
practice for each substation with THD observations we have available. We undertake this combination to
bring the New Zealand‐wide even‐THD data set down to manageable proportions, from 1,026 values at each
10‐min interval (i.e., three phases and 342 circuit breakers) down to 126, one for each substation.

5.2. New Zealand‐Wide THD Observations

We now examine the New Zealand‐wide variation in even‐THD observations using the large, and spatially
comprehensive THD data set. We focus in particular on event periods 3 and 4, as they were earlier shown to
have significant even‐THD levels in Dunedin. We contrast the THD observations with those from the New
Zealand GIC data set. In order to produce a “like with like” comparison, we average the GIC measurements
to 10‐min time resolution, as the format of the THD observations. Where there is more than one GIC mea-
surement in a substation (i.e., from multiple monitored transformers), our GIC‐THD comparison maps will
present the mean of all the GIC measurements in that substation, following the THD approach
outlined above.

For this paper, we have produced a series of snapshot figures for different times of interest. These are sup-
ported by a movie available in the supporting information.
5.2.1. Quiet Time Example
We start by considering a quiet time period, to show the appearance for background conditions. This is
shown in Figure 4 and is for the 10‐min window from 21:50–22:00 UT on 7 September 2017; that is 1 hr
before the time of the second sudden commencement. This is not a totally quiet period but is only very

Figure 4. A comparison of the GIC and THD observations for 21:50–22:00 UT on 7 September 2017. This time is selected
as a fairly quiet reference as it is only weakly disturbed. Left panel: indications of the 10‐min average GICmagnitude at the
locations where these observations exist (red crosses). Right panel: indication of the even‐THD disturbance levels
at the same time. The magnetometer sites are marked by magenta boxes, with bars at 174.2°E showing the value of |H′| at
each of these sites.
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weakly disturbed, with the EYR‐observed |H′| ranging from 0 to 2 nT/min at 1‐min resolution. When aver-
aged over 10min, as the GIC and THD data are in Figure 4, the |H′| value at EYR is 0.9 nT/min. The left hand
panel shows a map of the GIC observation magnitudes, with a red cross showing the location of the available
GIC measurements. A blue ring around each cross would show the magnitude of the average GIC at each
substation for this time period. Only the two Dunedin substations, Halfway Bush and South Dunedin, show
any indication of non‐negligible GICmagnitudes in this plot, with 1.4 and 1 A, respectively. Previous studies
have shown that the Dunedin substations have considerably higher GIC thanmany other New Zealand loca-
tions (Rodger et al., 2017), consistent with the small but just‐observable GIC for this very weakly disturbed
time period.

The right hand map in Figure 4 shows the even‐THD percentage at the same time period. Due to the large
number of THD‐locations (126 monitored sites) we do not show a cross for each location in this map. The
values shown are very small; the largest, at Hokitika on the West Coast of the South Island, is 0.07%, and
only five sites have values above 0.05%. The mean value across the country is 0.01%. Also shown in
Figure 4 are the locations of the four magnetometer sites, shown by magenta squares, with the location
named on the far left of each location. To the left of the magnetometer locations, near 174.1°E is a graphical
indication of the absolute H′ value at each of the magnetometer sites as shown by horizontal purple bars.

We do not suggest Figure 4 is particularly insightful in itself. We have included it both to present the format
for the THD‐GIC maps we will show below and also to provide the reader with a comparison between quiet
conditions and the highly disturbed periods which follow.
5.2.2. Event 3a
We now consider Event 3a, the second sudden commencement shown in Figure 2. This large but
short‐lived |H′|GMD was triggered by a solar wind shock seen at L1 at 22.38 UT that then arrived at
Earth at 23:02 UT. The GIC‐THD comparison for this time period is shown in Figure 5. The two upper
panels report the peak 4 s resolution GIC magnitudes that occur during the H′ peak. We express this
through both a geospatial map and also a bar chart, to better demonstrate the GIC values and their spatial
variation. The same format has earlier been used for GMD on 6 November 2001 (Mac Manus et al., 2017,
Figure 5), and 2 October 2013 (Mac Manus et al., 2017, Figure 7). In the upper two panels a green cross
indicates a transformer for which no GIC data are currently available, but for which GIC data have been
present for some time periods previously. For the right hand panel the letter “N” indicates transformers
with installed Neutral Earthing Resistors.

The upper two panels of the plot show the different GIC magnitudes between different transformers in the
same substation and between different substations. In this case the differences between transformers in the
same substation are not as dramatic as reported by Divett et al. (2018), as many of the transformers reported
in that study as having large modeled GIC did not have operational GIC logging for the 7–8 September 2017
series of GMD. The largest GIC is seen at the Dunedin transformers at Halfway Bush, the nearby South
Dunedin, and also Invercargill at the bottom of the South Island.

The lower two panels of Figure 5 present the 10‐min average per substation GIC magnitude, as well as that
for even‐THD percentage, both shown in the same format as Figure 4. While the peak GIC magnitudes are
large at the second sudden commencement time period, as seen in the upper panels, plots of the GIC (not
shown) show that they are fairly short‐lived. When averaged over 10 min the high GIC peaks at Halfway
Bush and South Dunedin have values of only ~6–7 A across the time window 23:00–23:10 UT. The only other
location in the lower left hand panel which appears to show signs of significant GIC in this time window is
Roxburgh, inland from Dunedin. This substation has one transformer monitored, which experiences a peak
GIC of ~9 A during the sudden commencement. However, shortly after this there is a large data gap for this
location including the decrease in GIC to much smaller levels, artificially boosting the mean value for the
GIC data which does exist inside this 10‐min period. The mean for all locations of the GIC observed across
the 10‐min period is 1.4 A.

The lower right hand panel shows the even‐THD voltage harmonic distortion. This panel presents THD data
for the same time period as was shown for GIC in the lower left hand panel. The THD panel also shows a
graphical indication of magnetometer |H′| values for each magnetometer location through the use of hori-
zontal purple bars as in Figure 4. For the sudden impulse these values are fairly large, despite being averaged
over 10 min. For this sudden impulse time window the variation in |H′| across the magnetometers is small,
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ranging from 9.9 nT/min at Swampy (near Dunedin) to 6.6 nT/min at Te Wharau in the lower North Island.
The largest even‐THD observed is 0.21% at Black Point substation, shown on the figure. The mean value
across the country is ~0.03%, that is, only three times the quiet time mean value, suggesting low levels of
GIC‐stressed transformers in this 10‐min time period. It is clear from Figure 5 that the sudden impulse
may produce significant GIC for short time periods, but it is not sufficiently sustained to produce
significant transformer saturation in the New Zealand electrical network.
5.2.3. Event 3b
We now contrast the GIC and THD response for Event 3b in Figure 6. For THD observations we therefore
focus on the 10‐min time period from 1:40–1:50 UT. The upper panels show the spatial variation in the

Figure 5. Observations during Event 3a, the arrival of the second sudden commencement solar wind shock arrival. The upper two panels show how the peak 4 s
resolution GIC magnitudes vary between transformers during the shock arrival. The lower two panels are a comparison of the 10‐min resolution GIC and THD
observations, in the same format as Figure 4.
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high time resolution peak GIC values for all transformers where GIC are monitored, in the same format and
axes ranges as Figure 5. A simple comparison between the upper right panels of Figures 5 and 6 shows that
the peak GIC measured are two to three times smaller for Event 3b than the sudden commencement of
Event 3a.

However, Event 3b had long‐lasting high GIC levels at Halfway Bush; the same time signature is seen in the
majority of other substations with GIC monitoring. Because of that, more locations with clear GIC
increases are seen in the lower left panel of Figure 6 when compared with the same panel of Figure 5.
The largest average 10‐min GIC magnitude is again seen in Dunedin at Halfway Bush (15.3 A), with the
second highest in South Dunedin substation (11.3 A). The next largest average magnitude is seen in
Invercargill (4.3 A), at the bottom of the South Island. For the 21 substations with active GIC monitors,

Figure 6. Observations during Event 3b, 2.5 hr after the second sudden commencement solar wind shock arrival. All four panels are in the same format as Figure 5,
but for the differing time period, as labeled.
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the average GIC in this time period is 2.5 A, that is, the 10‐min average values for Event 3b are a factor of
1.75 larger than for Event 3a.

The lower right panel of Figure 6 provides an indication of the 10‐min average |H′| values from the magnet-
ometers for Event 3b. These span from Swampy andMiddlemarch (~10 nT/min), Eyrewell (5.3 nT/min), and
Te Wharau (3.7 nT/min). This period has more latitudinal variation than seen in Event 3a.

The differences between the lower left panels of Figure 5 (Event 3a) and Figure 6 (Event 3b) are clear but not
particularly dramatic. However, there is a much more significant difference between the even‐THDmaps in
the lower right panels. Larger THD values, for Event 3b compared with 3a, are seen throughout the South
Island, as well as in the North Island, albeit at less significant levels. The largest even‐THD percentage value
is again seen at Black Point substation but is now twice that seen earlier (0.4% cf. 0.21%). Significant
even‐THD is seen in Dunedin, around Christchurch, and also on theWest Coast of the South Island, stretch-
ing through the Tasman district. There is also a small but clear increase in multiple locations in Taranaki in
the North Island. The mean even‐THD across the country is slightly more than two and a half times larger
than for Event 3a. We now see that this condition was not unique to that substation but was widely true
across the country. However, it is not true at all substations, likely due to the complex local variations in geo-
electric field and the specific electrical network. Another factor is the differing nature of the transformers in
different substations, which will saturate under differing conditions. For example, single‐phase bank trans-
formers are more susceptible than three‐phase units (NERC, 2013). The latter will produce much lower har-
monics for a given DC neutral current input.
5.2.4. Event 4
Finally, we consider Event 4. During this event there were GIC of >15 A occurring for ~30 min and peaking
at ~49 A. The GIC and THD data are shown in Figure 7, in the same format as we used in Figures 5 and 6.
This event has the highest peak GIC relative to Events 3a and 3b for most but not all transformers. The high-
est GIC magnitudes are seen in Dunedin, at the two DC monitored transformers in Halfway Bush (peaking
at ~49 and ~44 A) and at South Dunedin (39 A). Peak GIC magnitudes above 10 A are also seen for transfor-
mers in Invercargill and Clyde. Previous studies have identified very high currents in Islington transformer
number 6 (e.g., Divett et al., 2018; Mac Manus et al., 2017; Rodger et al., 2017). This is not seen for our ana-
lysis as the DC monitor for this transformer was not operational throughout the storm period.

As GIC magnitudes were significantly high for long time periods, we would expect the 10‐min averaged GIC
magnitude to be large. This is confirmed by the lower left panel of Figure 7, showing the average GIC mag-
nitudes for each substation from 12:40–12:50 UT. For that time period the 10‐min average GIC was mea-
sured as 21.5 A at Halfway Bush, 16.0 at South Dunedin, 6.6 A at Clyde, and 5.5 A at Invercargill.
Noticeable GIC magnitudes are also present at multiple other locations, at least where DC monitors are
deployed at one or more transformers in that substation. The mean GIC value is 4.1 A, a factor of 2.86 higher
than Event 3a (Figure 5) and 1.62 higher than the mean for Event 3b (Figure 6). The high GIC magnitudes
are associated with high average |H′| values, as can be seen in the lower right panel of Figure 7. The largest
average |H′| values are seen in the lower South Island at Swampy (30.6 nT/min), with lower but still signifi-
cant |H′| values at Eyrewell (12.3 nT/min), and Te Wharau (7.9 nT/min).

The lower right panel of Figure 7 indicates that the even‐THD distortion at 12:40–12:50 UT might be
described as striking, particularly when compared with the quiet period (Figure 4) and Event 3a
(Figure 5). The mean even‐THD percentage is 0.134%, 1.9 the level of Event 3b and five times that for
Event 3a. The highest mean THD levels are seen in Dunedin substations (Halfway Bush with 0.73% and
South Dunedin with 0.6%), but only slightly lower THD levels slightly south of Dunedin in Balclutha substa-
tion (0.54%), and at Black Point substation (0.5%). As one would expect, areas with significant GIC are asso-
ciated with significant values of even‐THD. However, there are also multiple large regions where large THD
are seen to occur where no GIC measurements are available. The occurrence of the large THD at those sub-
stations shows that there must have been significant GIC, in addition to the substations where GICmeasure-
ments were located. This is common from Christchurch northwards, but also in the West Coast/Tasman
region in the northern part of the South Island, and in the northern parts of Taranaki in the North Island.
In the latter case five of the six Taranaki substations show THD levels >0.2% in this time window, including
New Plymouth (0.28%), Carrington Street (0.27%), Motunui (0.25%), Huirangi (0.24%), and Stratford (0.21%).
Only Hawera substation (0.14%), on the southern edge of the Taranaki region and seen by the smaller ring in

10.1029/2019SW002387Space Weather

RODGER ET AL. 14 of 20



Figure 7 (lower right panel), is below this somewhat arbitrary cutoff. There are also multiple examples of
even‐THD increases in the main North Island cities of Auckland and Wellington.

The levels of even‐THD shown in the lower right panel of Figure 7 are the largest seen during the storming
period. However, we note that this 10‐min period is not the only time around Event 4 which includes signif-
icant even‐THD seen widely across the New Zealand network. Noticeable even‐THD is seen starting from
the 10‐min period beginning at 12:10 UT, and lasting to the 10‐min period which ends at 12:50 UT. For
the period from 12:20–12:30 UT the levels are much like 12:40–12:50 UT (shown in Figure 7), while the
12:30–12:40 UT THD levels are slightly decreased. In contrast, the even harmonic distortion levels from
12:50 UT are very low, implying most transformer saturation issues have ended. We have provided a

Figure 7. Observations during Event 4, 13.5 hr after the second sudden commencement solar wind shock arrival. All four panels are in the same format as Figure 5,
but for the differing time period, as labeled. Note the presence of clear THD increases in the North Island.
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movie of the even‐THD maps from 22:00 on 7 September 2017 to 15:00 on 8 September 2017, shown in the
same format as the lower panels of Figure 7, which is available in the supporting information.
5.2.5. Overview Comments
It is worth contrasting the observed even‐THD levels with international THD guidelines. For example the
IEEE steady‐state upper THD recommendation is 1.5% for >161 kV (IEEE Std 519‐2014, 2014), the
International Electrotechnical Commission (IEC) IEC 61000‐3‐6 recommendation is 3% (McGranaghan &
Beaulieu, 2006), or the New Zealand power quality guideline of 1.9% for high‐voltage systems
(EEA, 2013). Clearly, none of the even‐THD levels we report are hazardous. However, we have demon-
strated the presence of saturated transformers at multiple locations across the South Island, as well as in
Taranaki in the North Island. Despite this being a comparatively small space weather disturbance, and
not reaching the level of a major GMD, both Events 3b and 4 include widespread evidence of transformers
operating with a degree of half cycle saturation. The difference between the lower two panels of Figures 6
and 7 also emphasizes the difference in the response one might conclude about the space weather risk from
the GICmeasurements and the THDmeasurements. This is particularly noticeable when the even‐THD dis-
turbances include multiple substations in the Taranaki region of the North Island. Up to this point
Transpower tended to view the space weather hazard as a lower South Island issue, with little consideration
of the North Island. The observations of clear even‐THD enhancements in Taranaki, implying saturated
transformers during this comparatively small GMD, have provoked much interest in Transpower; they have
requested modeling attention be extended to the North Island and also are investigating installation of new
DC monitors for transformers in the North Island.

A feel for the harmonic amplitudes' decay with distance from their source transformers can be found from
the relative sizes of the half cycle saturation enhanced, percent‐distortion circles in maps like those in
Figures 4–8 and in the supporting information. Of course, on some occasions circles up to 100 km or so away
from the largest circle are almost large, likely because the GIC‐produced half cycle saturation is enhanced
over the wide region. However, for other active periods the sizes of the circles can be seen to decrease quite
rapidly with distance from an apparent source transformer, that is, within several tens of km of the most
enhanced circle. This implies that, on these occasions, not only did the GIC‐produced half cycle saturation
not occur over a smaller spatial region but also that, generally, the observed harmonics decayed quite rapidly
along the network power lines within distances of just several tens of km.

6. Implications for Non‐New Zealand Locations

Section 5 implies that transformer saturation can occur for moderate GMD from the lowest part of New
Zealand's South Island (the Tiwai substation located south of the city of Invercargill), equatorwards to at
least the northern part of the Taranaki region (near the city of New Plymouth). We assume that global loca-
tions within these geomagnetic latitude ranges might possibly have high enough GIC to produce transfor-
mer saturation and harmonic production, that is, what occurs in New Zealand might happen elsewhere
on Earth. We wish to consider how these locations correspond to other parts of the world and use the
International Geomagnetic Reference Field (IGRF), 12th Generation, revised in 2014 (Thébault et al., 2015).
We use the online geomagnetic coordinate calculator provided by the British Geological Survey (http://
www.geomag.bgs.ac.uk/data_service/models_compass/coord_calc.html).

Our most poleward THD‐observing location was the Tiwai substation (46.59°S, 168.39°E). For epoch 2017.0
this geographical location has a quasi‐dipole latitude of−53.92° and a quasi‐dipole longitude of 254.64°. This
is geomagnetically equivalent to Aberdeen (Scotland; geographic: 57.15°N, 2.09°E, geomagnetic
quasi‐dipole: 53.93°, 81.54°) in Europe, and roughly equivalent to Vancouver (Canada; geographic:
49.28°N, 123.12°E, geomagnetic quasi‐dipole: 54.19°, 299.22°) in North America and Magadan (Russia; geo-
graphic: 59.56°N, 150.83°E, geomagnetic quasi‐dipole: 53.70°, 221.13°) in Eastern Asia. We note, however,
that the choice of the poleward limit for New Zealand is defined by the southernmost edge of the New
Zealand electrical transmission network. As such it is very likely that theoretical transformer locations
further poleward of the Tiwai substation could well have experienced transformer saturation during this
storm period in regions where networks extend to more poleward locations.

The equatorward edge is therefore likely to be more interesting to the international community. We take the
lower latitude edge to be represented by the substation in the city of New Plymouth (39.06°S, 174.08°E). For
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epoch 2017.0 this geographical location has a quasi‐dipole latitude of−45.02° and a quasi‐dipole longitude of
257.16°. In contrast Luxembourg City (Luxembourg; geographic: 49.61°N, 6.13°E, geomagnetic quasi‐dipole:
45.01°, 82.88°) in Europe is magnetically equivalent to New Plymouth, as is the North American city of
Memphis (USA [Tennessee]; geographic: 35.15°N, 90.05°W, geomagnetic quasi‐dipole: 45.11°, 342.28°), or
Charlotte (USA [North Carolina]; geographic: 35.23°N, 80.84°W, geomagnetic quasi‐dipole: 45.13°,
354.93°), or the East Asian city of Darkhan (Mongolia; geographic: 49.46°N, 105.97°W, geomagnetic
quasi‐dipole: 45.09°, 180.25°).

We caution, however, that the situation is clearly not as simple as simple geomagnetic latitude dependence,
with the GIC magnitude depending strongly on the local ground conductivity structure (especially given the
island nature of New Zealand, surrounded by deep conductive ocean), electrical network parameters and
earthing setup, as well as the level of geomagnetic forcing. Only the geomagnetic forcing is likely to scale
somewhat with geomagnetic latitude (e.g., Shinbori et al., 2012). Nonetheless we suggest the geomagnetic
latitude of Taranaki is unusually equatorward to see evidence of GIC‐produced transformer saturation for
a storm which had maximum disturbance levels at ~12 UT on 8 September 2017 of Dst = −75,
AE = 1,335, and Kp = 8+, that is, significantly disturbed but hardly extreme. It is also worth noting that
GIC‐linked transformer damage has been reported in South Africa at both Matimba Power Station
(23.67°S, 27.44°E) and Lethabo Power Station (26.74°S, 27.98°E) (Gaunt & Coetzee, 2007). These locations
correspond to geomagnetic quasi‐dipole coordinates of Matimba (−25.04°, 96.01°) and Lethabo (−28.15°,
95.92°), which are ~20° equatorwards of New Plymouth.

Figure 8. GIC and even‐THD observations during the St Patrick's Day 2015 GMD (17 March 2015). In order the panels show (upper left) magnitude of the EYR
horizontal component rate of change of the (|H′|), (upper right) GIC magnitude measured at Halfway Bush (HWB) transformer number 4, (lower left) map of
even‐THD increases in the same format as seen in Figures 4–7, but now for 9:50–10:00 UT on 17 March 2015, and (lower right) as the previous panel but for
13:20–13:30 UT.
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7. September 2015: St Patrick's Day Storm THD

In the current study we have concentrated on the 7–8 September 2017 GMD interval, due to the existing lit-
erature indicating it is an interesting time interval to examine the variation of even‐THD in New Zealand. As
with any case‐study interval, one might caution that we have considered only one storm, and questions arise
as to the general applicability of the results. To test these concerns, we redid the THD analysis for the St
Patrick's Day 2015 GMD of 17 March 2015.

Some summary plots for this GMD are shown in Figure 8. The top left panel presents the EYRmagnetometer
|H′| across the storm period, in both 1‐ and 10‐min resolutions. The top right hand panel shows the magni-
tude of GIC measured at Halfway Bush transformer number 4. Based on this panel we have selected two
time periods of interest, where the 10‐min averaged GIC magnitude was significant: 09:50–10:00 UT, as well
as the more significant 13:20–13:30 UT. We term these times St Pat's Events 1 and 2, respectively, and mark
them in the two upper panels of Figure 8. The lower two panels of the figure show the spatial variation in
substorm average even‐THD across New Zealand for these two time periods. While the patterns are not iden-
tical, there are similarities with the September 2017 events, with significant even‐THD levels in the lower
South Island, near Christchurch and the upper South Island in West Coast/Tasman, and some level of
even‐THD enhancement in the North Island. In the latter case while the Taranaki enhancements are not
as pronounced, for St Pat's Event 1 even‐THD enhancements are seen in two separate substations in the city
of Hastings in the Hawke's Bay, located on the eastern edge of the North Island across from Taranaki; this
location has a similar latitude to New Plymouth. We suggest this simple analysis confirms that there are dif-
ferences in spatial response from storm to storm, but there are also wider similarities, indicative of consistent
GIC “hot spots” (caused by the network configuration) and subsequent transformer saturation between dif-
ferent GMD events.

8. Summary and Discussion

There are multiple pathways by which GIC can adversely affect electrical power infrastructure through phy-
sical damage or disruption to supply during GMD. One of the pathways to disruption comes from the pro-
duction of harmonic distortion to the AC waveform generated by half‐cycle saturation of transformers.
This is one of the few ways to produce even order harmonics (rather than odd harmonics).

Until now there has been limited simultaneous harmonic distortion experimental observations and GIC
measurements presented in the literature. One reason for this may be that most countries have limited
GIC measurements available to link to the harmonic distortion observations. However, New Zealand is
unusually well positioned to investigate the occurrence of GIC in a midlatitude country as there are
comparatively large quantities of measurements available, including GIC in multiple locations and
country‐wide THD.

In this study we have examined even order harmonic distortion observations from the entire New Zealand
network during the 7–8 September 2017 storm period. The analysis shows that even‐THD enhancements
occur where there are significant GIC magnitudes which last over long time periods. However, these obser-
vations also demonstrate how GIC effects can be seen through even harmonic distortion in locations where
no GICmeasurements are present (e.g., the upper South Island or the majority of the North Island). We have
also examined a GMD from 17 March 2015, to test if there is some consistency between different geomag-
netic storms. Our comparison suggests that while there is certainly variation in GIC and THD spatial varia-
tion from storm to storm, there are also gross similarities. Having identified substations on the northern part
of Taranaki as a rough equatorward edge of the significant New Zealand‐observed even‐THD
enhancements, we have noted this location corresponds to Luxembourg City in Europe or Memphis in
North America.

We understand that harmonic distortion measurements are fairly common in electrical networks, much
more so than DCmeasurements. DCmeasurements can also be inaccurate due to drift (corrected in our case
through the removal of the HVDC stray currents following Mac Manus et al., 2017). We suggest that further
analysis of such data sets could allow a valuable new approach for the international space weather research
community, if the commercial providers are willing to release those measurements.
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