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Abstract The open magnetic flux content of the magnetosphere varies during substorms as a result of
dayside and nightside reconnection. The open flux can be calculated from the area of the polar cap,
delineated by the open‐closed field line boundary (OCB). This study presents a superposed epoch analysis of
the location of the OCB and the change in the magnetic flux content in individual nightside MLT sectors
during substorm growth, expansion, and recovery phases. Far ultraviolet (FUV) observations from the
IMAGE satellite are used to derive a proxy of the OCB location. In the hour prior to substorm onset, the total
nightside flux content increases by up to 0.12 GWb on average, resulting in an equatorward expansion of the
OCB. Following substorm onset, the OCB contracts toward the pole as the open magnetic flux content
decreases by up to 0.14 GWb on average, but the rate of decrease of the total nightside open flux content
differs by 5–66% between the three IMAGE far ultraviolet instruments. The OCB does not contract poleward
uniformly in all nightside magnetic local time (MLT) sectors after substorm onset. Close to the substorm
onset MLT sector, the OCB contracts immediately following substorm onset; however, the OCB in more
dawnward and duskward MLT sectors continues to expand equatorward for up to 120 minutes after
substorm onset. Despite the continued increase in flux in these sectors after substorm onset, the total
nightside flux content decreases immediately at substorm onset, indicating that the nightside reconnection
rate exceeds the dayside rate following substorm onset.

Plain Language Summary Earth's magnetic field shields us from the steady stream of particles
originating from the Sun, which carry the Sun's magnetic field. At Earth, the solar magnetic field can break
open our magnetic field and allow energy to build up inside Earth's magnetic field. This energy can be
explosively released during substorms. The auroral oval is a ring of aurora around the magnetic poles which
varies in size, shape, and brightness during substorms. As energy is building in the magnetic field, the
auroral oval expands. As the energy is released, it contracts. Using satellite images of the auroral oval, we
show that prior to substorm onset, the nightside auroral oval expands toward the equator. At substorm
onset, the auroral oval also rapidly moves poleward. The poleward motion initially occurs in a localized
region as the rest of the nightside oval continues to expand. The poleward motion then spreads eastward
and westward around the entire nightside oval over the following 20–120 minutes. Our results show that
although most of the auroral oval continues to expand equatorward after substorm onset, the total area of
the auroral oval decreases resulting in an overall net decrease in the energy stored in the Earth's
magnetic field.

1. Introduction

The Dungey (1961) Cycle describes the interaction between the Earth's magnetosphere and the interplane-
tary magnetic field (IMF) frozen into the solar wind. In a simplified case where the IMF has a strongly south-
ward orientation, magnetic reconnection at the dayside magnetopause leads to the opening of closed
magnetic field lines of Earth's magnetosphere. The foot points of the open magnetic field lines are in the
polar cap, the region encircled by the auroral oval. The open magnetic field lines convect through the lobes
to the nightside magnetosphere, and their footpoints cross the polar cap. Magnetic reconnection in the mag-
netotail acts to close open magnetic field lines. The newly closed magnetic field lines convect sunward,
restoring the structure of the dayside magnetosphere. The open flux content of the polar caps, FPC, varies

©2020. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

RESEARCH ARTICLE
10.1029/2019JA027369

Key Points:
• We perform a statistical analysis of

open flux content in the nightside
ionosphere during substorms

• At substorm onset, the open flux
decreases overall and in the
substorm onset sector but increases
in the dusk and dawn sectors

• The estimated rate of closure of the
total nightside open flux content
differs by up to 66% between the
three IMAGE FUV instruments

Supporting Information:
• Supporting Information S1

Correspondence to:
M. K. Mooney,
m.mooney.16@ucl.ac.uk

Citation:
Mooney, M. K., Forsyth, C., Rae, I. J.,
Chisham, G., Coxon, J. C., Marsh, M. S.,
et al. (2020). Examining local time
variations in the gains and losses of
open magnetic flux during substorms.
Journal of Geophysical Research: Space
Physics, 125, e2019JA027369. https://
doi.org/10.1029/2019JA027369

Received 7 MAR 2019
Accepted 25 FEB 2020
Accepted article online 28 FEB 2020

MOONEY ET AL. 1 of 19

https://orcid.org/0000-0001-8892-3675
https://orcid.org/0000-0002-0026-8395
https://orcid.org/0000-0002-2637-4786
https://orcid.org/0000-0003-1151-5934
https://orcid.org/0000-0002-0166-6854
https://orcid.org/0000-0003-2765-0874
https://orcid.org/0000-0001-6387-6876
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0003-1822-8620
https://doi.org/10.1029/2019JA027369
https://doi.org/10.1029/2019JA027369
http://dx.doi.org/10.1029/2019JA027369
http://dx.doi.org/10.1029/2019JA027369
http://dx.doi.org/10.1029/2019JA027369
mailto:m.mooney.16@ucl.ac.uk
https://doi.org/10.1029/2019JA027369
https://doi.org/10.1029/2019JA027369
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2019JA027369&domain=pdf&date_stamp=2020-04-16


due to the relative rates of dayside and nightside reconnection (Cowley & Lockwood, 1992; Milan et al., 2007;
Siscoe & Huang, 1985; Walach et al., 2017):

dFPC tð Þ
dt

¼ ΦD tð Þ−ΦN tð Þ; (1)

whereФD andФN are the rates of dayside and nightside reconnection, respectively, calculated from the elec-
trostatic potential integrated over the X‐line reconnection region.

The edge of the polar cap is defined as the open‐closed field line boundary (OCB), and the area of the polar
cap indicates the open flux content of the magnetosphere. The location of the OCB is closely associated with,
although not directly equivalent to, the poleward edge of the auroral oval (Baker et al., 2000; Hubert
et al., 2006; Kauristie et al., 1999; Rae et al., 2004). By comparing auroral observations and in situ observa-
tions of the precipitating particles, local‐time dependent corrections to the auroral boundary can be deter-
mined to provide the location of the OCB from auroral measurements (Boakes et al., 2008; Carbary
et al., 2003; Longden et al., 2010). As the open flux content of the magnetosphere increases in response to
dayside reconnection with southward oriented IMF, magnetic flux is distributed around the polar cap by
excited plasma flows (Cowley & Lockwood, 1992), and the auroral oval and OCB expand toward the equator.
Similarly, a decrease in the open flux content from enhanced magnetotail reconnection leads to a reduction
in the polar cap area, and the OCB contracts toward the pole. The changing size of the polar cap in response
to reconnection is known as the expanding and contracting polar cap (ECPC) paradigm, proposed by Cowley
and Lockwood (1992).

Substorms are a dynamic magnetospheric process which result in rapid changes in openmagnetic flux; thus,
the ECPC paradigm is a key concept in their understanding. Substorms have three distinct phases: growth,
expansion, and recovery (Akasofu, 1964; McPherron, 1970), and have a duration on the order of 3 hours on
average (Tanskanen, 2009). The substorm growth phase has an average duration of 40 minutes to over an
hour (Coumans et al., 2007). The substorm expansion phase period is typically 20–30 minutes (Chu
et al., 2015 ; Forsyth et al., 2015; Gjerloev et al., 2007), and the recovery phase lasts 30–40minutes on average,
as determined from ground magnetometer data (Chu et al., 2015; Forsyth et al., 2015).

During the growth phase, it is generally considered that the rate of dayside reconnection dominates over the
rate of nightside reconnection. As a consequence, the openmagnetic flux accumulates in themagnetosphere,
which results in an increase in the polar cap area and an equatorwardmotion of theOCBs (Boakes et al., 2011;
Milan et al., 2008). During the expansion and recovery phases, nightside reconnection generally becomes
dominant, closing open flux and causing the polar cap area to shrink. However, as shown by equation 1,
the change in the polar cap is determined by the relative rates of reconnection at the dayside and nightside;
thus, open fluxmay continue to accumulate in themagnetosphere during the substorm expansion and recov-
ery phases if dayside reconnection is ongoing at a faster rate than nightside reconnection (Clausen et al., 2013;
Coumans et al., 2007; Coxon et al., 2014; Kallio et al., 2000; Milan, Hutchinson, et al., 2009).

The beginning of the substorm expansion phase is termed “substorm onset” and can be identified by a sud-
den brightening in one of the equatorward arcs in nightside auroral oval (Akasofu, 1964). Early observations
of auroral substormsmade by Akasofu (1964) observed the bright onset auroral arc moving poleward rapidly
after substorm onset, forming the auroral bulge in the substorm onset location. The auroral bulge expands
westward, forming the westward traveling surge, eastward and poleward following substorm onset
(Gjerloev et al., 2007). The westward and eastward expansions are initially fast at substorm onset but
decrease during the substorm expansion phase (Gjerloev et al., 2007). The westward expansion of the auroral
bulge has been observed to initially advance with a speed of 8 km/s (Craven et al., 1989) and gradually slows
to 1 km/s as it expands (Craven et al., 1989). During the recovery phase, although the open flux content is
expected to continue to decrease to a quiescent level, the morphology of the auroral oval can change from
that observed in the expansion phase, with the morning sector aurora brightening during the recovery
phase, while the evening sector aurora continues to decay (Opgenoorth et al., 1994).

Auroral substorms have been observed by satellites in polar orbits with distant apogees, allowing them to
spend prolonged periods of time imaging the polar cap regions and auroral emission in both visible and ultra-
violet (UV) wavebands, for example, Polar and IMAGE. UV images of the auroral oval obtained by IMAGE

10.1029/2019JA027369Journal of Geophysical Research: Space Physics

MOONEY ET AL. 2 of 19



have been used by Frey et al. (2004) and Frey andMende (2007) to compile a list of substorm onsets, identified
by the brightening of the nightside auroral oval which has led to both case and statistical studies of substorms
(e.g., Coumans et al., 2007; Milan, Grocott, et al., 2009; Milan, Hutchinson, et al., 2009; Milan et al., 2010;
Walach et al., 2017). Satellite observations have also been used in conjunction with radar data, such as
SuperDARN and EISCAT, to infer the rates of dayside and nightside reconnection (Chisham et al., 2008;
Hubert et al., 2006, 2010, 2017). In addition, many studies have used the poleward edge of the auroral oval
from UV images as a proxy for the OCB location to estimate the open flux content of the polar caps
(Boakes et al., 2008, 2009; Coumans et al., 2007; Hubert et al., 2006; Longden et al., 2010; Milan, Grocott,
et al., 2009, Milan, Hutchinson, et al., 2009).

A superposed epoch analysis of UV auroral intensity during substorms by Milan, Hutchinson, et al. (2009)
found that the latitude of the maximum intensity continues to move equatorward after substorm onset, par-
ticularly in the dawn and dusk regions of the auroral oval, while in the midnight sector, the location of the
maximum intensity moves toward the pole immediately at substorm onset. Given that the auroral oval is
linked to the polar cap, these results suggest that the movement of the OCB varies with local time.
Clausen et al. (2012) showed that the location of the Region 1 (R1) Birkeland current system could also be
used as a proxy for the OCB. By calculating the area of a circle fitted to the latitude of the R1 current in each
local time sector, Clausen et al. (2013) and Coxon et al. (2014) presented two superposed epoch analyses of
substorms using the R1 OCB proxy location to observe changes in the open magnetic flux content of the
northern hemisphere polar cap during substorms. The results from these studies indicated that the open flux
content continues to increase for up to 15–20 minutes after substorm onset, particularly in the dusk sector
(Clausen et al., 2013). Clausen et al. (2013) and Coxon et al. (2014) suggested that the results were indicative
of dayside reconnection continuing to dominate over nightside reconnection in the first 15–20 minutes after
substorm onset in certain sectors. Similarly, a statistical analysis of 55 substorms by Coumans et al. (2007)
found that on average, the open flux content remained constant or continued to increase within the first
20 minutes of substorm onset.

The findings presented in these studies are somewhat unexpected in the context of the standard substorm
model that describes nightside reconnection immediately dominating over dayside reconnection at sub-
storm onset to reduce the open flux content of the polar cap and thus causing the OCB to contract poleward
immediately at substorm onset. The present study aims to look more closely at the expansion and contrac-
tion of the OCB in individual nightside magnetic local time (MLT) sectors, as well as the global motion of
the nightside OCB, during the substorm growth and expansion phases in order to reconcile the recent find-
ings with the substorm model. In this work, a superposed epoch analysis was performed on the OCB loca-
tions calculated from the poleward auroral boundary by Longden et al. (2010) during substorm periods
identified by Frey et al. (2004). Section 2 provides a brief overview of the calculation of the OCB locations
derived from IMAGE far UV (FUV) data and the superposed epoch analysis; section 3 presents the results
obtained for mid‐sized substorms occurring with onset latitudes between 64 – 66°; and section 4 discusses
the main findings of the study.

2. Data and Method
2.1. IMAGE Data

The IMAGE satellite, in operation between 2000 and 2005, was in a precessing polar orbit with a perigee of
1,000 km and an apogee of 44,000 km (~7 Earth radii) (Mende, Heetderks, Frey, Lampton, Geller, Abiad,
et al., 2000). Over the first 2 years of nominal operations between 2000 and 2002, the orbital apogee was situ-
ated over the northern hemisphere. During this period, the satellite was in an optimal position to capture
images of the northern polar cap and auroral oval. The satellite captured FUV images of the Earth with three
onboard cameras. The wideband imaging camera (WIC) was sensitive to emission in the 140–190 nm wave-
length range dominated by the N2‐Lyman‐Birge‐Hopfield band system (Mende, Heetderks, Frey,
Lampton, Geller, Habraken, et al., 2000) while two narrower passband spectral imaging cameras, SI12 and
SI13, centered on 121.8 and 135.6 nm, respectively (Mende, Heetderks, Frey, Stock, et al., 2000). The SI12
passband detected the Doppler‐shifted Lyman‐α emission due to the proton aurora while rejecting the geo-
coronal Lyman‐α and the nearby intense emission of Nitrogen at 120 nm. The SI13 camera was sensitive

10.1029/2019JA027369Journal of Geophysical Research: Space Physics

MOONEY ET AL. 3 of 19



to 135.6 nm oxygen emission, mostly associated with electron precipitation (Mende, Heetderks, Frey, Stock,
et al., 2000). Observation images were taken by each FUV instrument approximately every 2 minutes actu-
ated by the spin period of the IMAGE satellite (Burch, 2000).

2.2. OCB Location Identification From IMAGE FUV Data

The poleward auroral boundary has long been taken as a proxy for the OCB. For a small number of events,
Milan et al. (2003) found excellent correspondence between the location of the poleward auroral boundary
from individual FUV observations and the OCB location determined from DMSP particle precipitation
measurements. The location of the auroral boundary relative to particle precipitation boundaries, which
are taken to be the “true” open‐closed field‐line boundary, has been calculated, and thus, global auroral
images can be used to calculate the amount of open flux in the magnetosphere (Boakes et al., 2008;
Carbary et al., 2003; Longden et al., 2010). Longden et al. (2010) determined the location of the poleward
auroral luminosity boundary (PALB) from the IMAGE FUV data and then determined the statistical offset
between this boundary and the OCB location determined from particle precipitation measurements from
DMSP to provide a correction factor from which the OCB location can be calculated. Poleward boundaries
were derived for each of the three FUV instruments onboard IMAGE by dividing images of the northern
polar cap into 24 MLT sectors and creating a latitudinal intensity profile of the UV emission for each sector.
Each intensity profile was fitted with two model functions: a single Gaussian modeling a continuous aur-
oral oval with no bifurcation or splitting or a double Gaussian which better models a bifurcated auroral
oval. The goodness of fit of the two model functions was evaluated in each MLT sector using the reduced
χ2 statistic. If the single Gaussian model function provides a better fit, the PALB is identified as the pole-
ward full width half maximum of the Gaussian peak. If the double Gaussian model function is a better
fit, the PALB is identified to be at the poleward full width half maximum of the most poleward Gaussian
peak. The method follows a similar approach to the techniques of Carbary et al. (2003) and Boakes
et al. (2008), which both fitted single Gaussian functions to the luminosity profiles, and the method of
Mende et al. (2003), which used a double Gaussian profile to account for bifurcation or splitting of the aur-
oral oval. Fitting both Gaussian functions allows for automation without prior knowledge of the level of
bifurcation, or splitting, in the auroral oval in different MLT sectors (Longden et al., 2010).

Statistical studies have shown that the true location of the OCB determined from precipitating particle
fluxes measured by low‐Earth orbiting spacecraft can be offset from the auroral boundary by several
degrees (Boakes et al., 2008; Carbary et al., 2003; Kauristie et al., 1999). These precipitating particle
fluxes are usually only available four times per spacecraft orbit and provide a local determination of
the OCB location. In contrast, auroral imagers such as the FUV cameras provide a global snapshot of
the location of the aurora, thus the poleward boundary of the UV oval provides a useful global proxy
for the OCB. Boakes et al. (2008) characterized the difference between the DMSP particle precipitation
data and the UV poleward auroral oval boundary for each of the IMAGE FUV instrument data sets
(WIC, SI12, and SI13) in each MLT sector. Longden et al. (2010) extended the work of Boakes
et al. (2008) to determine the correction factors in each MLT and for each of the FUV cameras for their
poleward auroral boundaries. Similarly to Boakes et al. (2008), Longden et al. (2010) found that for all
FUV data sets, the PALBs near noon and midnight were found to lie poleward of the OCB location
determined from DMSP particle precipitation measurements. In the dawn sectors, SI12 PALBs were also
found to lie poleward of the particle precipitation OCB, while the WIC and SI13 PALBs required little
correction in this region. In the dusk sectors, the SI12 PALBs were located slightly equatorward, while
the SI13 and WIC PALBs were poleward of the OCB location determined from DMSP particle precipita-
tion measurements. We direct the interested reader to the full description of the method and example
figures illustrating the proxy OCB location compared to the auroral FUV emission published in
Longden et al. (2010). In the present study, we use the proxy OCB locations from Longden et al. (2010)
with the average corrections applied in our superposed epoch analysis.

The Longden et al. (2010) method is most successful in locating the OCB in nightside MLT sectors compared
to the daysideMLT sectors, possibly due to dayglow effects or because the dayside auroral oval is thinner and
dimmer than the nightside. As such, we limit our analysis to the nightside MLT sectors. This is discussed
further in section 3.1.
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2.3. Superposed Epoch Analysis

Milan, Grocott, et al. (2009) performed a superposed epoch analysis of substorm auroral brightness for a list
of substorms identified in the IMAGE FUV data by Frey et al. (2004). In that study, Milan, Grocott,
et al. (2009) subdivided the substorms into five categories based on their onset latitude, Λonset:

1. Λonset < 62°.
2. 62° ≥ Λonset < 64°.
3. 64° ≥ Λonset < 66°.
4. 66° ≥ Λonset < 68°.
5. Λonset ≥ 68°.

Using these onset latitude categories, Milan, Grocott, et al. (2009) found that lower onset latitude substorms
resulted in larger expansions of the auroral oval in themidnightMLT sector. In order to ensure our statistical
results are not unduly influenced by these larger events and to aid comparisons with other studies, we simi-
larly subdivide our analysis by substorm onset latitude. Milan, Grocott, et al. (2009) showed the distribution
of substorm onset MLT and onset latitude from substorms identified in the Frey et al. (2004) list between
May 2000 and April 2002. The analysis performed by Milan, Grocott, et al. (2009) indicated that the majority
of substorm onsets occurred in the premidnight MLT sectors between MLT 21 and MLT 00 and had onset
latitudes between 66° and 68°. We find no significant difference in the substorm onset MLT distributions
in each substorm onset latitude category.

We carried out a superposed epoch analysis of the OCB latitude fromWIC, SI12, and SI13 keyed to substorm
onset covering the hour prior to substorm onset and 2 hours after substorm onset. Given that substorm onset
does not always occur in the sameMLT sector, variations in the OCB are examined inMLT sectors relative to
the onset MLT, effectively rotating each OCB so that the substorm onset MLTs were colocated (e.g., Coxon
et al., 2017; Provan et al., 2004). As we are particularly interested in the poleward contraction of the OCB
after substorm onset in each MLT sector, this rotation acts to minimize the spreading of the results of the
superposed epoch analysis over a range of MLT sectors.

Due to the spin of the spacecraft, there is an interval of just over 2 minutes between the images collected by
the IMAGE FUV instruments and hence between the OCB identifications. Prior to the superposed epoch
analysis, we linearly interpolated the time series of OCB latitudes in each MLT to a regular 2 minute
cadence. In the superposed epoch analysis, we do not require the proxy OCB location to be identified in
all MLT sectors at all times.

Our analysis showed distinctly different results for the highest latitude substorms (greater than 68°). Further
investigation of these showed that Longden et al. (2010) technique was occasionally fitting the PALB to
bright, low‐latitude artifacts in the FUV data, particularly data from the SI12 camera, prior to substorm onset
when the auroral oval was dimmer. This effect was limited to the high‐latitude category; hence, we present
results for substorms with onsets latitudes up to 68° only.

3. Results

In the following, we show the results of the superposed epoch analysis of the OCB location for substorms
with onset latitudes between 64° and 66°. This group of substorms contains 581 substorms and is in the mid-
dle of the substorm onset latitude categories in this study and as such contains the “midsized” substorms.
Morphologically, the results of this substorm onset latitude category are generally representative of the other
substorm onset latitude categories.

The superposed epoch analysis of the OCB location was performed on each data set obtained from the three
FUV instruments onboard IMAGE (WIC, SI12, and SI13). We present the results of each instrument sepa-
rately for comparison. For completeness, similar figures to those shown in Figures 1 and 2 for all substorm
onset latitude categories are presented in the supporting information. Figures similar to those shown in
Figures 3 and 5 using the SI12 and SI13 data sets are also presented in the supporting information.

3.1. Successful Boundary Identifications in Each MLT Sector

In the list of substorm onsets identified by Frey et al. (2004), 581 substorms were observed to brighten at a
latitude between 64° and 66°. If there was a data gap of 10 minutes or more in the hour before or 2 hours
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Figure 1. Plots showing the number of successfully fitted OCB locations in each MLT sector at each time step during the 3 hours superposed epoch analysis. The
color bar shows five discrete levels to highlight times andMLT sectors which contain a particularly high or low number of successful OCB identifications. The steps
with less than 50 data points, indicated in white, have been excluded from the analysis. Panels (a)–(c) show the number of successfully determined OCB locations
from SI12, WIC, and SI13 data, respectively.

Figure 2. The results of the superposed epoch analysis of the OCB location from SI12, WIC, and SI13 ((a)–(c) respectively). The panels show the difference between
the OCB location in each MLT sector with its location at substorm onset and with respect to time for substorms with onset latitudes between 64° and 66°.
Red indicates that the OCB is located poleward of its location at onset; blue indicates the OCB is located equatorward of its location at onset. Gray indicates when
there were less than 50 successfully identified OCB locations. The black dots and crosses indicate the time at which the OCB reaches its most equatorward location
in each MLT sector. Two lines of best fit are calculated using the dawnward and duskward data points marked with crosses. The slopes of these two lines are
displayed in the legend in each panel. The slopes of the lines of best fit for all substorm onset latitudes are provided in Table 1.
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Figure 3. The results of the superposed epoch analysis usingWIC data for substorms with onset latitudes in the ranges (a)
66–68°, (b) 64–66°, (c) 62–64°, and (d) <62°, presented as per Figure 2.
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following onset, the event was not included in the superposed epoch analysis. In the superposed epoch ana-
lysis, 451 substorms were included in the SI13 data, 469 in the WIC data, and 449 in the SI12 data. The OCB
location did not have to be identified in all MLT sectors to be included in the analysis.

Figure 1 shows the number of successful OCB identifications in each MLT sector for the hour before and 2
hours following substorm onset for substorms with onset latitudes between 64° and 66°. The results are
shown for each of the three FUV instruments, SI12 in Figure 1a, WIC in Figure 1b, and SI13 in Figure 1c.
In Figures 1–3, the substorm onset MLT sector is defined to be MLT = 0, negative MLT sectors are duskward
of the substorm onset MLT sector, and positive MLT sectors are dawnward of the substorm onset sector. On
the y axis, time is defined from substorm onset at t = 0.

Figure 1 shows that successful boundary identifications varied with imager and with time. The highest num-
ber of successful boundary identifications in the WIC data at any 2 minute time interval is around 180, com-
pared to more than 300 and 350 for SI13 and SI12, respectively. The numbers of the successful identifications
in the WIC and SI13 data were relatively symmetric about the onset MLT, with at least 50 identifications in
each MLT sector between −8 and +8 for WIC and between −6 and +6 for SI13. In contrast, there were more
boundary identifications duskward of the onset sector for SI12, with at least 50 identifications in each MLT
sector between −8 and +6. Despite the lower overall numbers of successfully fitted OCB locations from the
WIC data compared to the SI12 and SI13 data, the number of successfully fitted OCB identifications in the
WIC data is higher across a wider range of MLT sectors than in the spectral imaging data, particularly in
the dawnward sectors. SI12 and SI13 both show higher numbers of boundary identifications in the onset sec-
tor and close to the onset time, with at least 250 identifications within −10 to +50 minutes of onset.

The higher number of successfully fitted boundaries for the spectral imaging cameras around substorm
onset coincides with the rapid brightening of the auroral oval around the onset MLT sector at substorm onset
and into the expansion phase. When the auroral oval is brighter compared to the background emission, the
poleward edge of the auroral oval and hence the OCB location may be more easily identified by the techni-
que derived by Longden et al. (2010). The higher number of successfully fitted boundaries near the substorm
onset MLT sector prior to substorm onset may indicate preexisting auroral emission in the onset sector, as
previously observed by Milan et al. (2010).

The successful identification of the OCB in eachMLT sector varies for each FUV instrument. In all instruments,
the boundaries are more successfully fitted in the nightside MLT sectors between MLT −6 and MLT +6 with far
fewer (less than 50) fitted in the dayside MLT sectors. One reason for this is that the auroral emission in dayside
MLT sectors is generally dimmer than that of the nightside MLT sectors, especially following substorm onset,
making it more difficult to fit Gaussian functions to the latitudinal intensity profiles of the dayside sectors.
Furthermore, models generally show the auroral oval to be thinner on the dayside (e.g., Carbary, 2005;
Holzworth & Meng, 1975), which may make a Gaussian fit more challenging. Given the low number of fits
on the dayside, we focus our analysis on the nightside MLT sectors between MLT −6 and MLT +6.

3.2. Superposed Epoch Analysis of the OCB Location in Nightside MLT Sectors During Substorms

Figure 2 shows the results of the superposed epoch analysis of the OCB location in the nightsideMLT sectors
over a 3 hours period covering 1 hours prior to substorm onset and 2 hours after substorm onset. Substorm
onset is defined at t = 0. The panels in Figure 2 show the results from (a) SI12, (b) WIC, and (c) SI13. The
panels in Figure 2 have been limited to show only the MLT sectors which contain 50 or more successfully
fitted boundary identifications in each time step, as previously discussed in section 3.1. Gray time steps indi-
cate where there are less than 50 successful boundary identifications. In each MLT sector, the latitude of the
OCB in that sector at substorm onset has been subtracted from each time step to obtain the difference in the
boundary location compared to at onset. Blue indicates the boundary was located at a lower latitude (equa-
torward) with respect to the latitude at substorm onset, and red indicates that the boundary was at a higher
latitude (poleward) than at substorm onset. White indicates that there was almost no change in the latitude
of the boundary compared to substorm onset. The black dots and crosses in Figure 2 indicate the time at
which the OCB reaches its most equatorward location in each MLT sector, that is, the time after which
the OCB contracted poleward. This will be discussed in more detail in section 3.3.

The results from all three instruments show that the OCB was located poleward of its location at sub-
storm onset prior to substorm onset, as shown by the red shading in each cell. This shows that polar
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cap was expanding and the OCB moved equatorward in all nightside MLT sectors in the hour prior to
substorm onset, as expected to occur due to the accumulation of open flux during the substorm growth
phase. At substorm onset, the OCB in the MLT sectors around the onset sector immediately began to
contract poleward as shown by the change in color from white to red. In the WIC data, rapid poleward
contraction of the OCB following onset occurs most quickly in the substorm onset sector, while the SI12
boundaries show a shift in the most rapid contraction toward dusk and the SI13 boundaries show a
shift in the most rapid contraction toward dawn. The immediate poleward contraction of the OCB at
substorm onset near the substorm onset MLT sector is indicative of open flux leaving these sectors,
most likely due to the closure of flux around the onset MLT sector following substorm onset.

The MLT sectors further from the onset sector, both duskward and dawnward, show an extended period of
continued equatorward motion of the OCB after substorm onset. This continued equatorward motion is
indicated by the extended white and blue regions of the figure after t = 0. The OCBs determined from all
three imagers continued to expand equatorward for up to around 20 minutes after substorm onset in MLT
−6 sector and for 20–40minutes after substorm onset in theMLT+6 sector. The OCBs in themore duskward
and dawnward sectors remained equatorward of their location at onset for some time but contracted pole-
ward within an hour of substorm onset.

3.3. Rate of the Apparent Motion of the OCB Poleward Contraction

Similar to Figure 2, Figure 3 shows the change in the latitude of the OCB for onsets at latitudes (a) 66–68°, (b)
64–66°, (c) 62–64° and (d) <62°. For brevity and clarity, only the results from WIC are presented. As the
results from SI12 and SI13 are morphologically similar (as per Figure 2), similar figures from SI12 and
SI13 are provided in the supporting information. The results from all substorm onset latitude categories
show similar behavior to the 64–66° onset latitude category as shown in Figure 2, with an equatorward
expansion of the OCB prior to substorm onset which continues away from the onset MLT until ~30 minutes
after onset, while the OCB in MLT sectors close to the onset sector rapidly contracted poleward. For the
highest latitude onsets, the OCB in the sectors close to the onset sector reached its most equatorward posi-
tion prior to substorm onset. Furthermore, the OCB does not expand as much prior to onset for these events.
A smaller expansion of the OCB prior to substorm onset is consistent with higher onset latitude substorms
accumulating less open flux before substorm onset and hence being associated with smaller substorms
(Milan, Grocott, et al., 2009). In addition, some of the brightenings in the higher latitude substorm onset
categories identified by Frey et al. (2004) may be poleward boundary intensifications (De la Beaujardiére
et al., 1994) or pseudobreakups rather than substorms that do not necessarily have an increase in open flux
prior to the observed brightening.

In Figures 2 and 3, the time of themost equatorward location of the OCB in eachMLT sector is indicated by a
black cross or dot. For all onset latitude categories, the OCB reaches its most equatorward latitude within
30 minutes of substorm onset in the majority of MLT sectors with the OCB in MLT sectors further from
the substorm onset MLT contracting poleward at increasingly later times. This shows an apparent duskward
and dawnward motion or expansion of the region of contracting OCB. Linear regression was used to fit this
motion toward dusk and dawn. The data points included in the analysis were varied by including or exclud-
ing the three data points from either end, that is, around the substorm onset sector and the far dusk and
dawn MLT sectors. The statistical R2 value indicating the goodness of fit of the line was used to determine
the line of best fit. In Figures 2 and 3, the crosses show the data points used to provide the best fit lines given
in the figures. The results of the linear regression analysis are presented in Table 1. The slopes presented in
Table 1 are from the line of best fit analysis, and the average gradients across all the FUV data sets for each
substorm onset latitude category are also shown.

In Table 1, the R2 values are higher than 0.5 with the exception of the dawnward gradients from WIC and
generally higher than 0.7. These high R2 values indicate that fitting a linear gradient is a reasonable assump-
tion and generally provides a good fit to the data across all substorm onset latitude categories. In the mean
gradients averaged across all three IMAGE FUV data sets, the apparent dawnward motion is slightly slower
(~|0.2|MLT hours/minutes) than the duskwardmotion (~|0.3|MLT hours/minutes) corresponding to a speed
of approximately 1.1 km/s at 65°. This may be indicative of the westward traveling surge; however, we note
that the difference of 0.1 MLT hours/minutes is comparable to the level of uncertainty in our analysis.
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There are some differences in the gradients derived from the three instrument data sets. In general, the gra-
dients derived from the WIC data are similar in both the dawnward and duskward directions and are con-
sistent across all substorm onset categories. The dawnward gradients derived from the SI12 data and the
duskward gradients derived from the SI13 data tend to be more varied, across the substorm onset latitude
categories. The largest gradients in the duskward direction tend to be found in the SI13 data, particularly
in the lowest onset latitude substorm categories of less than 62°. The largest gradients in the dawnward
direction are found in the lower onset latitude categories in the SI12 data (less than 62°) and in the WIC
data (62–64°).

3.4. Nightside Flux Content

The open flux content on the nightside is calculated by using the OCB location to determine the approximate
area of each MLT sector and then multiplying this by the magnetic field threading through that sector. The
summation of the flux from each MLT sector then provides an estimate of the nightside flux content. Here,
we calculate the flux from the −6 to +6 MLT sectors for all three FUV instruments. Figure 4 shows the
results of a superposed epoch analysis of the total nightside flux content during the hour prior to and after
substorm onset for all instrument data, at all onset latitudes.

For substorms at all latitudes, the average nightside flux content increases prior to substorm onset, consistent
with the accumulation of open flux content during the substorm growth phase, and decreases immediately
after onset, indicating that nightside reconnection becomes dominant over dayside reconnection at substorm
onset. This is observed across all FUV imagers. The continued decrease in the total nightsideflux content dur-
ing the hour after substorm onset suggests that the flux content continues to decrease even after the end of
substorm expansion phase, typically 20–30 minutes after onset, and into the recovery phase.

While the overall trends in open flux are similar for each imager and all onset latitudes, there are subtle dif-
ferences in the flux profiles. The nightside flux fromWIC is ~0.05 GWb lower than that calculated from SI12
and SI13, which are approximately equal for all but the lowest onset events (Figure 4d). This corresponds to a
percentage difference of 7–10% of the nightside open flux content at onset and shows no apparent depen-
dence on onset latitude. The flux profile fromWIC for the lowest latitude events shows a plateau in the total
nightside flux content for 10 minutes after substorm onset. This result is not replicated in the results of any
other substorm onset category or in the SI12 or SI13 data for the same substorm onset latitude category.
The SI13 data shows a slightly sharper peak at substorm onset compared to the WIC and SI12 profiles in
the low to mid substorm onset latitude categories.

By linearly fitting the rate of change in the total nightside flux content during the 30minutes before and after
substorm onset, we have determined the net difference in the dayside and nightside reconnection rates in
terms of a difference in reconnection voltage (Table 2). The change in flux content during both the periods
before and after onset is greatest for the lowest latitude events and decreases with onset latitude, in keeping
with previous results (e.g., Milan, Grocott, et al., 2009). The rates of change of flux are 1.7–3.4 times greater
for the substorms with onsets of less than 62° compared to onsets in the 66–68° range. Similarly, the loss of
open flux occurs more quickly than the increase in flux prior to onset. For the highest onset latitude events,

Table 1
The Dawnward and Duskward Expansion of Flux Closure

Onset
latitude
(°)

Dawnward Duskward

SI12 WIC SI13 SI12 WIC SI13

Gradient
(MLT
hours/
min-
utes) R2

Gradient
(MLT
hours/
minutes) R2

Gradient
(MLT
hours/
minutes) R2

Mean
gradient

(MLT hour-
s/

minutes)

Gradient
(MLT
hours/
min-
utes) R2

Gradient
(MLT
hours/
min-
utes) R2

Gradient
(MLT
hours/
min-
utes) R2

Mean
gradient
(MLT
hours/
min-
utes)

66–68 0.4 0.56 0.20 0.73 0.00 0.54 0.1 −0.10 0.86 −0.20 0.98 −0.10 0.97 −0.1
64–66 0.1 0.73 0.10 0.94 0.20 0.77 0.1 −0.20 0.88 −0.20 0.97 −0.50 0.69 −0.3
62–64 0.3 0.87 0.40 0.43 0.20 0.84 0.3 −0.20 0.93 −0.20 0.94 −0.10 0.82 −0.2
<62 0.1 0.97 0.20 0.44 0.20 0.89 0.2 −0.70 0.53 −0.20 0.95 −0.70 0.94 −0.5
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Figure 4. Results of superposed epoch analysis of the total nightside flux content calculated between MLT sectors −6 and MLT +6 for each of the three FUV
instruments in the 1 hours before and after substorm onset. WIC data are shown in pink, SI12 data are shown in purple, and SI13 data are shown in blue.
(a) shows the total nightside flux content for the highest substorm onset latitude category with the substorm onset latitudes decreasing in (b)–(d).
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flux is closed 1.3–2.1 times faster than it was opened, whereas for the lowest latitude events, flux is only
closed 1.0–1.2 times faster than it was opened.

During both the substorm growth and expansion phases, in all substorm onset latitude categories, the rate of
change of flux estimated from the SI12 data is consistently the smallest out of the three FUV data sets. In the
growth phase, when the balance between dayside and nightside reconnection is dominated by dayside recon-
nection, the rate of increase of flux estimated from theWIC data is largest for all substorm onset latitude cate-
gories, except the lowest onset latitude category (less than 62°) where the SI13 data show the largest rate of
increase in the flux content. In the substorm expansion phase, when nightside reconnection dominates,
the WIC data show the largest rate of decrease in the total nightside flux content during the 30 minutes after
substorm onset for all substorm onset categories, except less than 62° and 66–68°. During the 30 minutes fol-
lowing substorm onset, the percentage difference in the total nightside flux closure estimated from the three
FUV instruments is between 5% and 66%. The largest percentage difference is between the WIC and SI13
instruments for substorms with onset latitudes of less than 62°.

Figure 5 shows the contribution to the total nightside flux content fromWIC for five representativeMLT sec-
tors during the hour before and after substorm onset. The flux contribution from the substorm onset MLT
sector (MLT 0) is shown in solid black, a preonset sector (MLT −3) in solid blue, a dusk sector (MLT −6)
in dashed blue, a postonset sector (MLT +3) in solid red, and a dawn sector (MLT +6) in dashed red.

Since the auroral oval is not centered on the magnetic pole, the OCB is generally more equatorward on the
nightside than at dusk and dawn. As such, our MLT 0 sector contains the largest contribution to the total
nightside flux content, approximately 10% for all substorm onset latitude categories. The preonset and post-
onset MLT sectors (MLT −3 and MLT +3, respectively) contribute approximately equal amounts of flux to
the total nightside flux content throughout the 2 hours period encompassing onset, each containing ~8%
of the total nightside flux content at substorm onset. The dawn and dusk MLT sectors (MLT +6 and MLT
−6) contain the smallest amount of flux in the nightside MLT sectors, each contributing approximately 5–
6% to the total nightside flux content, in all substorm onset latitude categories. At substorm onset, the open
flux in the onset MLT sector shows an immediate and abrupt change from increasing flux to decreasing flux
for onsets at all latitudes and then continues to gradually decrease throughout the hour after substorm onset.
One hour after substorm onset, the flux content of the onset MLT sector is slightly lower compared to the
flux content 1 hours prior to substorm onset. The open flux in the preonset and postonset (MLT −3 and
MLT +3) sectors changes more gradually, plateauing at substorm onset. The flux content in these sectors
is observed to start to decrease within 10–20 minutes of substorm onset in keeping with the continued equa-
torward expansion of the OCB in Figures 2 and 3. In the dawn and dusk sectors (MLT+6 andMLT−6), there
is a much smaller change in the flux content over the 2 hours period; however, the flux content of these MLT
sectors is observed to increase prior to substorm onset and continue to increase for up to 10–30 minutes after
onset. Approximately 30–40 minutes after substorm onset, a slight decrease in the flux content is observed in
these MLT sectors for the lower substorm onset latitudes in Panels c–d. In the highest substorm onset lati-
tudes shown in Panels a and b, the flux content of these MLT sectors remains approximately constant during
the 40–60 minutes after substorm onset, with no significant change in flux observed.

For onsets above 62°, the preonset and postonset MLT sectors (MLT −3 and MLT +3) and the dawn and
dusk sectors (MLT+6 andMLT−6) contain equal amounts of flux throughout the 2 hours period. In the low-
est substorm onset latitude category, the flux content of the preonset and dusk MLT sectors is significantly

Table 2
– Estimated Net Difference Between Dayside and Nightside Reconnection Rates

Substorm
onset
latitude
(°)

Growth phase (kV) Expansion phase (kV)

SI12 SI13 WIC SI12 SI13 WIC

66–68 8.0 12.2 15.1 −16.6 −21.3 −19.3
64–66 12.5 18.8 21.0 −20.4 −25.7 −29.4
62–64 21.4 22.3 29.0 −23.8 −27.6 −29.3
<62 27.3 33.7 31.0 −30.3 −38.8 −32.0
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higher than the flux content of the corresponding postonset and dawn MLT sectors. In the highest substorm
onset latitude category, the opposite is observed in that the flux content of the postonset sectors is marginally
higher than that of the preonset MLT sectors. This suggests a dawn/dusk asymmetry in the opening and
closure of flux in the highest and lowest substorm onset latitude categories, despite our analysis
accounting for dawn/dusk asymmetries by aligning all substorms by substorm onset MLT sector.

Figure 5. Superposed epoch analysis results of the open flux calculated fromWIC from five 1 hoursMLT sectors including
the substorm onset MLT sector (MLT 0), a preonset MLT sector (MLT−3), a postonset MLT sector (MLT +3), and a dawn
(MLT +6) and dusk MLT sector (MLT −6). For clarity, we only show a selection of MLT sectors. The highest
substorm onset latitude of 66–68° is shown in (a), with substorm onset latitude decreasing in panels (b)–(d), to the lowest
onset latitude category of less than 62° in (d).
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As per the above, similar results can be found from the SI12 and SI13 imagers. For completeness, plots of the
fluxes in selected MLT sectors from these imagers are provided in the supporting information.

4. Discussion

We have examined the movement of the OCB, based on auroral boundary observations, with respect to sub-
storm onset time and with respect to the substorm onset MLT sector and the effect this has on the calculation
of open magnetic flux in the polar cap. A superposed epoch analysis of the OCB latitude showed the OCB does
not contract poleward in all local time sectors immediately after substorm onset but continues to expand equa-
torward for 20–40minutes after onset at 6 hours of local time away from the onset MLT sector, with the region
of contracting OCB expanding dawnward and duskward at 0.2–0.3 MLT/minutes. Despite this continued
equatorward expansion in some sectors, the total open flux in the nightside of the polar cap begins to decrease
at substorm onset, dominated by the change in OCB location close to the onset MLT sector.

4.1. Suitability of Using the Proxy OCB Determined From Global FUV Auroral Images

In this study, we have used the OCB calculated by Longden et al. (2010) from the PALB derived from global
FUV images of the auroral oval from the IMAGE satellite. In each MLT sector, a latitudinal correction is
applied to the PALBs derived from Longden et al. (2010). The latitudinal corrections account for the average
offset between PALBs derived from auroral FUV images and the location of the OCB inferred from particle
precipitation measurements, which provide a more accurate proxy of the OCB location (Boakes et al., 2008;
Carbary et al., 2003; Longden et al., 2010). In the noon and midnight sectors, all PALBs were found to lie
poleward of the particle precipitation boundary. The advantage of using the PALBs from global auroral
image data as an OCB proxy is that the OCB is defined in all MLT sectors around the auroral oval. While
particle precipitation measurements from satellites such as DMSP provide the most accurate determination
of the OCB location, these measurements are spatially and temporally limited. A superposed epoch analysis
of the OCB location during substorms, such as presented in this work, would not be possible without using
the corrected PALBs as a proxy for the OCB.

Our results show that there are subtle differences between the OCBs calculated from the WIC, SI12, and
SI13 imagers on IMAGE. Overall, the open flux from SI12 and SI13 are similar, while the open flux
from WIC is ~10% smaller, despite the corrections applied to the PALBs. This may be the result of
the different resolution of the three imagers: For SI12 and SI13, each pixel covered a minimum of
0.94° when looking straight down at the Earth's surface, while each WIC pixel covered a minimum
of 0.48°, with this difference in resolution increasing away from the nadir. Note that a 10% difference
in flux can be accounted for by approximately a 5% difference in the latitude of the OCB. Comparing
the nightside open flux content estimated from each of the three instruments provides an assessment
of the uncertainty in the open flux calculation. Alternatively, these results may indicate that the correc-
tions to the PALB have some dependence on geomagnetic activity that is not currently accounted for. It
is unclear from the results of our study which of the OCB identifications from each of the three FUV
instruments provide the closest boundary identification to the true OCB location or whether the bound-
aries from any of the instruments consistently over or under estimates the total flux content of the polar
cap. The consistently lower estimation of the total nightside flux content from the WIC data is relevant
for future upcoming missions, such as SMILE. The SMILE mission will host an UV instrument (UVI)
onboard to monitor the northern hemisphere aurora (SMILE Team, 2015). The proposed UVI will have
a wide passband sensitive to Lyman‐Birge‐Hopfield emission which is similar to the passband of the
WIC instrument of 140–190 nm. We caution that future estimations of the polar cap flux content using
data from the SMILE UVI may slightly underestimate or overestimate the total flux content of the polar
cap and, by extension, the net difference in dayside and nightside reconnection rates.

4.2. Expansion of the Contracting OCB Region Toward the Dawn and Dusk Sectors

The formation of an “auroral bulge” and its rapid duskward expansion in a “westward traveling surge”were
some of the first reported features of the auroral phenomenology of substorms (Akasofu, 1964), with the
westward traveling surge moving at speeds of up to 0.4–2.2 km/s (Craven et al., 1989; Marklund et al.,
1998 and Gjerloev et al., 2007). Gjerloev et al. (2007) also found that, on average, the eastward propagation
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of the auroral bulge toward the dawn was marginally faster than toward dusk. More recently, using data
from the WIC and SI12 instruments on IMAGE, Walach et al. (2017) found that the brightening of the elec-
tron auroral oval expanded toward the dawn and dusk sectors 10–40 minutes after substorm onset, during
the substorm expansion phase, covering 12 hours of MLT. In contrast, by applying directed network analysis
to ground magnetometer data, Orr et al. (2019) found that magnetic perturbations associated with substorm
activity and loosely linked to the auroral bulge expanded westward toward the dusk MLT sectors after sub-
storm onset before expanding dawnward at a later time. We found that the average rate of expansion of the
region of contracting OCB toward the dawn and dusk directions was |0.2| and |0.3| MLT/minutes, respec-
tively, corresponding to approximately 1.1 km/s at 65° latitude, in agreement with these earlier studies of
the expansion of the auroral brightness and westward and eastward moving surges.

Cowley and Lockwood (1992) argued that a localized decrease in the open flux content of the polar cap from
nightside reconnection would form a bulge in the OCB that would eventually be redistributed around the
polar cap by excited plasma flows. The plasma flows direct the closed flux away from the midnight MLT sec-
tor, where nightside reconnection is occurring downtail, toward the dawn and dusk sectors. Our results are
in keeping with this ECPC framework, showing that the nightside OCB does not contract poleward uni-
formly in response to the sudden onset of unbalanced nightside reconnection at substorm onset, but rather,
there is a localized contraction which spreads duskward and dawnward. Furthermore, the OCB away from
the substorm onset sector continues to move equatorward until the contracting “bulge” expands into those
sectors. Overall, in the lower substorm onset latitude categories, the OCB in MLT sectors away from the
onset MLT sector continues to expand further toward the equator for longer after substorm onset compared
to higher onset latitude substorms. The overall ionospheric convection is enhanced for all substorms to some
degree, but there is a localized reduction in the ionospheric return flow in the auroral region close to sub-
storm onset (Provan et al., 2004). Grocott et al. (2009) found that the localized reduction in the flow is more
pronounced in low onset latitude substorms (less than 64°) but is less apparent for higher latitude onsets.
Combining the results of Grocott et al. (2009) to the continued expansion of the OCB presented here suggests
that the reduced ionospheric flows result in a slower redistribution of the flux which is closed as a result of
the onset of nightside reconnection at substorm onset, as also suggested by Milan, Hutchinson, et al. (2009).
This results in a slower expansion of the poleward contracting region of the OCB during lower onset latitude
substorms, particularly in the dawn MLT sector and dusk MLT sectors further from the substorm
onset sector.

4.3. Variations in the Total Nightside Flux Content

Using the OCB location to estimate the total nightside flux content calculated over 12 MLT sectors, we have
shown that, on average, the total nightside flux content increases before and decreases immediately after
substorm onsets identified by Frey et al. (2004) consistent with dayside reconnection being dominant before
onset and nightside reconnection being dominant after onset. These results were consistent across each of
the IMAGE FUV instruments and across all substorm onset latitude categories. However, the exact timing
of substorm onset and hence the ordering of events with respect to onset remain a contentious issue within
substorm research. Frey et al. (2004) identified onsets as local brightenings that spread azimuthally in local
time for at least 20 minutes. These have an inherent timing uncertainty of ±2 minutes due to observational
cadence of the FUV imagers. In addition, small‐scale auroral brightenings known as auroral beads (e.g.,
Kalmoni et al., 2015, 2017) and exponential growth in ultralow frequency wave activity (e.g., Rae et al.,
2010), which are reported as the first signatures of substorm activity, can be seen 6–10 minutes before the
large‐scale auroral enhancements reported by Frey et al. (2004) (Murphy et al., 2009). As such, our results
show that, on average, nightside reconnection becomes dominant, and there is a net closure of flux following
the large‐scale brightening of the aurora; however, other physical processes associated with substorm activ-
ity may occur before this.

The total nightside flux content at substorm onset ranged from approximately 0.40 – 0.60 GWb for high
to low substorm onset latitudes, respectively. Previous studies have shown the total open flux content at
substorm onset to be between 0.53 and 1.01 GWb (Boakes et al., 2011; Coumans et al., 2007; Hubert
et al., 2006, 2017); thus, our nightside flux makes up between 60% and 80% of the total flux. This is
a natural consequence of the offset of the center of the auroral oval from the magnetic pole, with the
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OCB in the midnight sector typically approximately 6–12° further from the pole than in the noon sector
(Carbary, 2005; Holzworth & Meng, 1975). Over the hour before onset, the nightside flux increased by
0.05–0.135 GWb or 10–22% of the flux at onset. Boakes et al. (2011) reported that the total flux
increased over 5 hours before onset by 22% relative to the flux at the start of the interval. From their
figures, we estimate that, over an hour before onset, the total open flux increased by 0.1 GWb or
15% of the flux at onset. Correcting for the fact that our observations are of the nightside only but that
the majority of the auroral oval is on the nightside, this implies that the majority of the variation in the
location of the OCB during the hour before and after substorm onset is on the nightside.

The rate of change of flux estimated from the three FUV instrument data sets during the growth and
expansion phases showed slightly different results. The rate of change of flux estimated from the SI12
data was consistently smaller than the rates estimated from the WIC and SI13 data during both the
growth and expansion phases for all substorm onset latitude categories. In general, the rate of change
of flux estimated from the WIC data during both the growth and expansion phases were the largest
for all substorm onset latitude categories except lowest onset latitude (less than 62°) category where
the rates estimated from the SI13 data were largest for both the growth and expansion phases.
Although our analysis is based on the Frey et al. (2004) onset list, the data selection criteria mean that
the analysis of the WIC, SI12, and SI13 derived OCBs used different numbers of events (Figure 1). We
repeated this analysis using only a subset of substorms for which there were successful OCB locations
derived from all three FUV instruments but found that this had no impact on the presented results.

Examining the contribution to the total nightside flux content of five individual nightsideMLT sectors (onset
MLT 0, preonset MLT −3, postonset MLT +3, dawn MLT +6, and dusk MLT −6) showed that the substorm
onset MLT sector consistently contained the highest flux content throughout the 2 hours period and
decreased sharply at substorm onset, while the postonset and preonset MLT sectors had a more rounded
peak in the flux profile. The dawn sector flux profiles were observed to plateau or continue to increase in
the hour after substorm onset. We also observed a dawn‐dusk asymmetry in the opening and closure of flux
during the highest and lowest substorm onset latitude categories. In the lowest substorm onset latitude cate-
gory (less than 62°), the flux contribution from the duskward MLT sectors was significantly higher than the
dawnwardMLT sectors, while in the highest latitude substorm onset category (66–68°), the flux contribution
from the dawnward sector MLT +3 was marginally larger than the contribution from the duskward sector
MLT −3 prior to substorm onset.

The continued equatorward motion of the OCB after substorm has previously been observed in the R1
and R2 currents (Clausen et al., 2012, 2013; Coxon et al., 2014; Milan, Hutchinson, et al., 2009) and also
in the continued stretching of the plasma sheet in the dawn and dusk sectors after substorm onset
(Ohtani et al., 1991). From these studies, it has been suggested that the total open flux content con-
tinues to increase after substorm onset (Clausen et al., 2012, 2013; Coumans et al., 2007; Coxon
et al., 2014). Clausen et al. (2012, 2013) and Coxon et al. (2014) use the R1 Birkeland current as a proxy
for the OCB location and found that an oval fitted to the boundary of the R1 current (and by proxy, the
OCB) continued to expand equatorward for up to 15–20 minutes after substorm onset before contracting
poleward. Clausen et al. (2013) showed that the continued expansion in the OCB after substorm onset is
particularly notable in the dawn sectors, which is in agreement with the results presented in this study.
They suggested that the continued expansion after substorm onset may be due to dayside reconnection
initially dominating over nightside reconnection in the dawn and dusk sectors after substorm onset.
Coxon et al. (2018) observed a 20 minute plateau in the magnetic energy density of the magnetotail
lobes around substorm onset. The authors suggested that this may be due to a 15 minutes uncertainty
in the timing of the substorm onset which may also provide an alternative explanation for the delayed
poleward contraction of the OCB observed by Coxon et al. (2014). Our results show that the OCB con-
tinues to move equatorward after onset in those MLT sectors far from the onset sector and may indicate
a movement of open flux propagating toward dawn and dusk sectors before the closure of flux from
nightside reconnection propagates round from the substorm onset sector. The contraction of the OCB
close to the onset sector is greater than the continued expansion, and thus, there is a net decrease in
open flux after substorm onset. The apparent discrepancy between our results, showing a net closure
of flux after onset, and the results of Clausen et al. (2012, 2013) and Coxon et al. (2014), showing a
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continued increase in open flux after onset, may explained by dayside reconnection continuing to add
more flux than is removed by nightside reconnection immediately after substorm onset, as has been
suggested by these studies. It may be that it is not until a later time after substorm onset when the clo-
sure of flux as a result of nightside reconnection spreads toward dawnward and duskward MLT sectors
that the flux closure begins to dominate and the total flux content decreases. In this study, we have only
been able to study the change in the flux content of the nightside MLT sectors during substorms and
infer the rates of nightside reconnection, but we have been unable to include the changes in the flux
content of the dayside MLT sectors or reconnection rates.

An alternative explanation is that as most local times show a slight equatorward motion of the OCB after
substorm onset, the oval‐fitting method used by Clausen et al. (2012, 2013) and Coxon et al. (2014) fits to this
equatorward motion, suggesting a continued increase in the open flux content but the localized contraction
of the OCB in the substorm onset sectors is larger than the ongoing expansion, resulting in a net decrease in
flux. In both cases, the distorted shape of the OCB is key to understanding the changes in open flux
during substorms.

5. Conclusions

During substorms, the OCB in all nightsideMLT sectors is observed to expand toward the equator during the
growth phase indicative of open magnetic flux accumulating in the polar cap. At substorm onset, the OCB in
MLT sectors around the substorm onset sector immediately contracts poleward, while the OCB in MLT sec-
tors in the dawn and dusk regions continues to expand toward the equator. After substorm onset, the pole-
ward contraction of the OCB appears to propagate away from the substorm onset sectors round toward the
dawn and dusk regions. This results in the OCB in MLT sectors furthest from the onset sector continuing to
expand toward the equator for longer after substorm onset. The apparent motion of the flux closure away
from the substorm onset MLT sectors was found to be slightly faster in the duskward direction, indicating
that the OCB in the dusk sectors begins to contract poleward slightly earlier while the OCB in the dawn sec-
tors continues to expand equatorward.

After substorm onset and into the expansion phase, the magnetic flux content of the dusk and dawn sectors
(MLT −6 and MLT +6) continues to increase, as indicated by the continued equatorward expansion.
However, the total nightside flux content decreases immediately at substorm onset. The decrease in the flux
content of the onset MLT sector is shown to dominate the overall decrease in the total nightside flux content,
despite the continued increase in the flux content observed in the far dusk and dawn sectors.

The total nightside flux content estimated from each of the three FUV instrument data sets differed by up to
10% at substorm onset. The WIC data set consistently estimated the lowest nightside flux content at sub-
storm onset compared to the SI12 and SI13 data sets. The lower nightside flux content estimated from
WIC data is relevant for scientific analysis of the polar cap flux content from future missions which will host
a wideband UV instrument similar to WIC, such as the upcoming SMILE mission.
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