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Abstract 26 

This study presents a water mass analysis along the JC150 section in the subtropical North Atlantic, 27 

based on hydrographic and nutrient data, by combining an extended optimum multiparameter 28 

analysis (eOMPA) with a Lagrangian particle tracking experiment (LPTE). This combination, 29 

which was proposed for the first time, aided in better constraining the eOMPA end-member choice 30 

and providing information about their trajectories. It also enabled tracing the water mass origins 31 

in surface layers, which cannot be achieved with an eOMPA. The surface layers were occupied by 32 

a shallow type of Eastern South Atlantic Central Water (ESACW) with traces of the Amazon 33 

plume in the west. Western North Atlantic Central Water dominates from 100–500 m, while the 34 

13 °C-ESACW contribution occurs marginally deeper (500–900 m). At approximately 700 m, 35 

Antarctic Intermediate Water (AAIW) dominates the west of the Mid-Atlantic Ridge (MAR), 36 

while Mediterranean Water dominates the east with a small but non-negligible contribution down 37 

to 3500 m. Below AAIW, Upper Circumpolar Deep Water is observed throughout the section 38 

(900–1250 m). Labrador Sea Water (LSW) is found centered at 1500 m, where the LPTE 39 

highlights an eastern LSW route from the eastern North Atlantic to the eastern subtropical Atlantic, 40 

which was not previously reported. North East Atlantic Deep Water (encompassing a contribution 41 

of Iceland-Scotland Overflow Water) is centered at ~2500 m, while North West Atlantic Bottom 42 

Water (NWABW, encompassing a contribution of Denmark Strait Overflow Water) is principally 43 

localized in the west of the MAR in the range of 3500–5000 m. NWABW is also present in 44 

significant proportions (> 25 %) in the east of the MAR, suggesting a crossing of the MAR possibly 45 

through the Kane fracture zone. This feature has not been investigated so far. Finally, Antarctic 46 

Bottom Water is present in deep waters throughout the section, mainly in the west of the MAR. 47 
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Source waters have been characterized from GEOTRACES sections, which enables estimations of 48 

trace elements and isotope transport within water masses in the subtropical North Atlantic. 49 

 50 

1 Introduction 51 

Oceanic water masses store and transport considerable amounts of energy, water and 52 

chemical elements in the earth’s surface. These water masses impact the atmosphere through 53 

interactions at the air/sea interface. Water mass analysis, which consist in studying the formation, 54 

spreading, and mixing of water masses, is therefore essential to understand the role of oceans in 55 

climate processes. The methods used for water mass analysis have evolved from classical 56 

descriptions of oceanic circulation based on hydrographic properties to the determination of water 57 

mass formation regions, transport pathways, and mixing length scales from numerical models and 58 

novel tracer data (Tomczak, 1999). An example of such development is the introduction of the 59 

optimum multiparameter analysis (OMPA, Tomczak, 1981). This method enables estimating the 60 

contributions of different water masses defined in specific locations (end-members) to a measured 61 

ocean section based on a range of hydrographic parameters. This method demonstrates a 62 

significant amount of improvement compared to previous methods and has been widely used 63 

(Álvarez et al., 2014; García-Ibáñez et al., 2018; Jenkins et al., 2015; Pardo et al., 2012; Peters et 64 

al., 2018). However, the results of OMPA are strongly dependent on the choice of water mass end-65 

members that possibly impact the ocean section, and OMPA cannot provide any information 66 

related to surface layers. Moreover, a water mass analysis conducted only with OMPA does not 67 

provide direct information on the water mass pathways between their formation region and the 68 

measured section. Therefore, the water mass analysis proposed in this study combines, for the first 69 

time to the best of our knowledge, an extended OMPA with a Lagrangian particle tracking 70 
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experiment (LPTE) to better constrain the end-members and provide information on water mass 71 

pathways. LPTEs are widely used in recent times to investigate several aspects of ocean sciences, 72 

such as oceanic circulation (eg. Spence et al., 2014) or biogeochemistry (eg. Cetina-Heredia et al., 73 

2016). 74 

The present water mass analysis was conducted for the JC150 “Zinc, Iron and Phosphorus co-75 

Limitation” GEOTRACES process study (GApr08). This cruise departed Point-à-Pitre, 76 

Guadeloupe on June 27, 2017 and arrived at Santa Cruz, Tenerife on August 12, 2017. The transect 77 

is located at the southern end of the North Atlantic Subtropical gyre (Fig. 1) on both sides of the 78 

Mid-Atlantic Ridge (MAR, ~ 22 °N, ~ 58–31 °W). The JC150 section was specifically studied to 79 

understand how a low phosphate environment could lead to zinc-phosphorus and iron-phosphorus 80 

co-limitation on nitrogen fixation (Browning et al., 2017; Mahaffey et al., 2014; Moore et al., 81 

2009; Snow et al., 2015; Wu et al., 2000). In this context, the trace metals iron, zinc and aluminum, 82 

were measured. The aim of the present water mass analysis is two-fold. Firstly, it aims to provide 83 

a detailed understanding of the contribution and distributions of the water masses that exist along 84 

the zonal section as well as new constraints in water mass circulation in the subtropical North 85 

Atlantic that might be of general interest. Secondly, it aims to provide the tools to efficiently 86 

combine this hydrodynamic knowledge with the biogeochemical knowledge from the 87 

GEOTRACES program. To achieve this objective, all the OMPA end-members were chosen from 88 

GEOTRACES cruises with available zinc, iron, and aluminum concentrations. This enables the 89 

estimation of transport and mixing of these elements. Such a choice is a first to the best of our 90 

knowledge, and it is now possible thanks to the great extent of the GEOTRACES program.  91 

This study presents the hydrographic properties measured during JC150, including potential 92 

temperature, salinity, and the concentration of oxygen and nutrients (, S, O2, NO3
-, PO4

3-, and 93 



 

 5 

Si(OH)4) along with a water mass analysis based on an OMPA and a LPTE.  94 

 95 

Fig. 1. Map of the JC150 cruise (red dots); locations where the end-members are defined (blue 96 

dots - GA02, orange dot - 2010 GA03, and green dot - GA10), and track of the 2011 GA03 cruise 97 

(orange dashed line). Refer to Table. 1 for water mass acronyms.  98 

 99 

2 Materials and Methods 100 

2.1 Hydrography and nutrients 101 

The samples for nutrients, oxygen, and salinity analyses were collected using 24, 10 L trace metal 102 

clean Teflon-coated OTE (ocean test equipment) bottles with external springs, mounted on a 103 
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titanium rosette and deployed on a Kevlar-coated conducting wire. A SeaBird 911plus CTD 104 

recorded the temperature, conductivity, and pressure at 24 Hz with an accuracy of  0,001 °C,  105 

0,0003 S/m, and  0,015 %, respectively. An SBE43 oxygen sensor measured the dissolved oxygen 106 

concentration. Standard SeaBird processing routines were used to extract the raw data. The effect 107 

of thermal inertia on the conductivity was removed, and a correction was applied for deep oxygen 108 

hysteresis (https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/jc150.pdf). 109 

After rosette recovery, the OTE bottles were transferred into a class 1000 clean air shipboard 110 

laboratory for sampling. The samples for dissolved oxygen and salinity analyses were collected to 111 

calibrate the CTD sensors. For the measurements of dissolved oxygen, triplicate samples from 12 112 

depths were fixed immediately and analyzed within 48 h of collection. The samples were analyzed 113 

with an automated titrator (Metrohm titrando Titrator). A platinum electrode was used for the 114 

potentiometric analysis of Winkler titration. The salinity samples were collected at 6 depths on 115 

each cast and analyzed using Guildline’s Autosal 8400B. The salinity and oxygen sensors were 116 

then calibrated using bottle derived salinity and bottle derived oxygen, which resulted in linear 117 

regressions for salinity (calibrated salinity = CTD salinity * 1.0012 - 0.0439) and oxygen 118 

(calibrated oxygen (mol kg-1) = CTD oxygen * 0.9768 + 5.3398). The salinity and oxygen data 119 

used in this study were the sensor calibrated data obtained with an accuracy of 0,0001 for salinity 120 

and 0,5 mol kg-1 for oxygen. With measurements of calibrated oxygen, salinity, and potential 121 

temperature, we calculated the apparent oxygen utilization (AOU) (AOU (mol kg-1) = saturated 122 

oxygen (mol kg-1) - calibrated oxygen (mol kg-1)). For the AOU calculation, we employed a 123 

script, which is originally part of the oceanography toolbox v1.4 compiled by R. Pawlowicz and 124 

now available on the MBARI website (https://www.mbari.org/products/research-software/matlab-125 

scripts-oceanographic-calculations/). 126 

https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/jc150.pdf)
https://www.mbari.org/products/research-software/matlab-scripts-oceanographic-calculations/
https://www.mbari.org/products/research-software/matlab-scripts-oceanographic-calculations/
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The samples for nutrient analyses were collected unfiltered into acid-cleaned 60 mL HDPE 127 

Nalgene bottles from each OTE bottle. Immediately after collection, they were analyzed through 128 

colorimetric procedures (Woodward and Rees, 2001) using clean handling GO-SHIP protocols 129 

(Hydes et al., 2010). The micromolar nutrient concentrations were measured using a segmented 130 

flow colorimetric auto-analyzer: the PML 5-channel (nitrate, nitrite, phosphate, silicic acid, and 131 

ammonium) Bran and Luebbe AAIII system. The instrument was calibrated with nutrient stock 132 

standards, and the accuracy was determined using Certified Nutrient Reference Materials (batches 133 

CA and BU) obtained from KANSO Technos, Japan. The nano-molar nitrate, nitrite, and 134 

phosphate concentrations were analyzed through the segmented flow colorimetric technique that 135 

improved the analytical detection limits by using a two-meter liquid waveguide as the analytical 136 

flow cell. The same colorimetric method as for the micromolar system was used for analyzing 137 

nitrate and nitrite, while the method described in (Zhang & Chi, 2002) was used for analyzing 138 

phosphate. The nutrient data presented in this study were measured with an uncertainty of 2%. 139 

 140 

2.2 An extended optimum multiparameter analysis (eOMPA) 141 

An eOMPA was used to resolve the water mass structure along the JC150 section (Mackas et al., 142 

1987; Poole & Tomczak, 1999; Tomczak, 1981; Tomczak & Large, 1989). This analysis assumes 143 

that the waters sampled along a section result from the mixing of several well-defined water 144 

masses, called the source water types or end-members. The degree of mixing and the contribution 145 

of each end-member is solved using an optimization procedure. Mathematically, an OMPA is an 146 

optimal solution to a linear system of mixing equations with the contribution of end-members as 147 

variables and the conservative hydrographic properties as the parameters of the system. This model 148 

optimizes, for each data point (sample), the end-member parameter contributions to reproduce the 149 
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observational data. The OMPA is performed as an overdetermined system using non-negative least 150 

square optimization.  151 

In OMPA, the hydrographic properties are used as parameters in the equation system. In this study, 152 

the available parameters are as follows: potential temperature (), salinity (S), concentration of 153 

dissolved oxygen (O2), phosphate (PO4
3-), nitrate (NO3

-), and silicic acid (Si(OH)4), and mass 154 

conservation (the sum of all contributions must be equal to unity). A classical OMPA resolves the 155 

system assuming that all those parameters are conservative, i.e., they have no sources or sinks in 156 

the ocean interior. This assumption was not acceptable for O2, NO3
-, and PO4

3- in our case, as the 157 

end-members were defined at the Atlantic basin-wide scale and thus highly susceptible to organic 158 

matter remineralization. To consider these biogeochemical processes, we realized an eOMPA for 159 

this study. Most eOMPA studies use the quasi-conservative N* and P* parameters (García-Ibáñez 160 

et al., 2018; Jenkins et al., 2015). We preferred to adopt the parameters PO and NO defined in 161 

Broecker (1974) using the following equations, because unlike P* and N*, PO and NO do not 162 

require any assumption about initial gas equilibrium at the air/sea interface. Other recent studies 163 

have also made this choice (Álvarez et al., 2014; Peters et al., 2018). 164 

PO = [O2] + RO2/P * [ PO4
3-],     (1) 165 

NO = [O2] + RO2/N * [ NO3
-],    (2) 166 

where RO2/P and RO2/N are Redfield ratios that estimate the number of O2 moles consumed for one 167 

mole of PO4
3- and NO3

- released during the process of organic matter remineralization, 168 

respectively (Anderson & Sarmiento, 1994). In this manner, and under the assumption that the 169 

Redfield ratios RO2/P and RO2/N are accurate, remineralization has no impact on PO and NO. 170 

However, it is important to note that the Redfield ratios are spatiotemporally variable and have 171 
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been revised since their original definition. Therefore, we qualified PO and NO as quasi-172 

conservative. In this study, we defined RO2/P = 155 and RO2/N = 9.69, in the range of Anderson 173 

(1995), and similar to the values used by Peters et al. (2018). 174 

These definitions combine the three non-conservative parameters O2, PO4
3-, and NO3

- into two 175 

quasi-conservative parameters PO and NO. Transforming three parameters into two reduces the 176 

rank of the mixing equation system by one and thereby the number of end-members that can be 177 

considered. 178 

The conservative character of the Si(OH)4 parameter is also questionable. At depth, the biogenic 179 

particulate matter degradation releases Si(OH)4. Unlike PO4
3- and NO3

-, the Si(OH)4 parameter 180 

cannot be corrected using the Redfield ratio, as it is not linked to organic matter remineralization, 181 

but to biogenic opal dissolution. In the Atlantic, the magnitude of the Si(OH)4 excess from opal 182 

dissolution has been estimated to represent only 5% of the difference between the Si(OH)4 183 

concentrations of the northern and southern end-members. Therefore, the opal dissolution effect 184 

on water mass properties is insignificant compared to the effect of water mass mixing at the basin 185 

scale (Broecker et al., 1991). Thus, the Si(OH)4 concentration was considered as a conservative 186 

parameter in this study. 187 

The parameters considered to resolve the eOMPA in this work were as follows: , S, PO, NO, 188 

Si(OH)4, and mass conservation. This led to the following system of mixing equations applied at 189 

each sample point with (n) end-members: 190 

X11+ X22+.....+ Xnn = sample + ,        (3) 191 

X1S1+ X2S2+.....+ XnSn = Ssample + S,        (4) 192 

X1PO1+ X2PO2+.....+ XnPOn = POsample + PO ,      (5) 193 
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X1NO1+ X2NO2+.....+ XnNOn = NOsample + NO,             (6) 194 

X1 Si(OH)4,1+ X2 Si(OH)4,2+.....+ Xn Si(OH)4,n = Si(OH)4,sample + Si(OH)4,  (7) 195 

X1+X2+.....+ Xn= 1 + x,        (8) 196 

Xi≥0,            (9) 197 

       198 

where the variables X1–Xn (n = each end-member) denote the contribution of the end-members, 199 

and , S, PO, NO, Si(OH)4, and x are the residuals, i.e., the difference between the calculated and 200 

observed values. The eOMPA was performed using the OMPA V2.0 MATLAB package 201 

developed by Johannes Karstensen and Matthias Tomczak (https://omp.geomar.de). 202 

 203 

As the OMPA should be performed as an overdetermined system, the number of end-members 204 

must be strictly lower than that of available parameters. A total of six parameters were considered 205 

in this study; however, over five end-members probably contributed to the water masses found 206 

along the JC150 section. To solve this problem, we first tried to increase the number of parameters 207 

used. However, no other conservative (or quasi-conservative) tracer was available in the JC150 208 

cruise. We considered adding the potential vorticity as a quasi-conservative tracer. However, the 209 

profiles were observed to be excessively noisy, and despite many filtration attempts, we could not 210 

deduce an approach to obtain benefits from the use of this parameter in the eOMPA calculation. 211 

Therefore, we did not include this parameter. Another way to include over five end-members is to 212 

divide the water column into several layers, because some end-members impact only certain depth 213 

layers. The zonal section was therefore divided into three density layers with the following 214 

isopycnals: 26.50 kg m-3–27.30 kg m-3 (thermocline layer), 27.30 kg m-3–27.75 kg m-3 215 

(intermediate layer) and > 27.75 kg m-3 (deep layer). These density layers broadly corresponded 216 

https://omp.geomar.de/
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to depths of 300–700 m (thermocline layer), 700–1500 m (intermediate layer), and 1500 m to 217 

seafloor (deep layer). An eOMPA was then applied independently to each of these layers. Waters 218 

above ~300 m were excluded from the eOMPA for two reasons: firstly, the hydrographic 219 

parameters, including  and S were non-conservative in the mixed layer (mean annual maximum 220 

~120 m at 22°N, http://mixedlayer.ucsd.edu, Holte et al., 2017); secondly, these waters were 221 

warmer and saltier than any well-defined end-member in the literature (Fig. 2). To precisely define 222 

the boundaries between the density layers (thermocline, intermediate, and deep layers), the 223 

samples located close to the layer boundaries were executed in both the overlying and underlying 224 

eOMPAs (both thermocline and intermediate eOMPAs and both intermediate and deep eOMPAs). 225 

The boundaries of the density layers were chosen where the smallest residuals were obtained. This 226 

procedure was performed, similar to those reported by Kim et al. (2013) and Peters et al. (2018). 227 

With the availability of six parameters, five end-members can be considered in each layer. We 228 

carefully selected them through an in-depth literature review, comparison of the JC150 229 

hydrographic section properties with those of the end-member candidates, and interpretation of the 230 

LPTE results (see section 3.2). In this study, the end-member characteristics were all selected from 231 

GEOTRACES cruises in the core of the water masses and with intervals of variations established 232 

by comparison with nearby data areas (refer to Table. 1). These intervals are specific to each of 233 

the properties of each end-members and reflect the natural variability of end-member 234 

characteristics (temporal, spatial). Perturbation analyses are presented below. 235 

 236 

The eOMPA parameters were weighted according to their signal to noise ratios (measurement 237 

accuracy compared to the range of variation among end-members) and conservative character 238 

(conservative or quasi-conservative). In most studies, this led to assigning higher weights to , S, 239 
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and mass conservation than NO3
-, PO4

3- (or NO, PO), and Si(OH)4 . The mass conservation usually 240 

receives the same weighting as the parameter with the highest weight (Poole & Tomczak, 1999; 241 

Tomczak & Large, 1989).  242 

In this work, different weightings were tested, starting from a uniform value for all parameters to 243 

16 times higher weighting for , S, and mass conservation than PO, NO, and Si(OH)4. The 244 

minimum residuals were obtained for the following weightings: 24 for , 24 for S, 2 for PO, 2 for 245 

NO, 2 for Si(OH)4, and 24 for mass conservation. To compare the residuals of different parameters 246 

(for instance,  and S), we expressed these residuals as percentages of the parameter ranges over 247 

the entire layer (Fig. S4). 248 

To validate the reliability and robustness of the eOMPA results obtained in this study, a series of 249 

perturbation tests (Monte Carlo analysis) were realized. These tests allowed to estimate the extent 250 

to which the eOMPA results could be affected by the variability of 1) the end-member 251 

characteristics, 2) JC150 data (including the Redfield ratio used to calculate NO and PO), and 3) 252 

the chosen weights. For each test, 100 runs were performed in each eOMPA layer. For each run, 253 

perturbations were applied to targeted parameters (end-members, JC150 data, or weights) using 254 

normal probability density functions with standard deviations scaled to the uncertainty (or 255 

variability) attributed to each parameter. For the first test, uncertainties were the end-member 256 

property definition intervals, which reflected the possible variation in the end-member 257 

characteristics (reported in Table. 1). For the second test, the JC150 data uncertainties were used, 258 

i.e., the sensor uncertainties (0,001 for , 0,0001 for S, and 0,5 mol Kg-1 for O2) and the nutrient 259 

measurement uncertainties (2% for PO4
3-, NO3

-, and Si(OH)4). For this test, the Redfield ratios 260 

used to define NO and PO were also modified within a 10% range (155 +/- 15 for RO2/P, 9,69 +/- 261 
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1 for RO2/N), which was consistent with reported Redfield ratio variability (Anderson, 1995; 262 

Anderson & Sarmiento, 1994). For the third test, the weights were modified within the range of 263 

24 +/- 5 for  and S and 2 +/- 0,7 for PO, NO, and Si(OH)4. 1000 perturbations were also performed 264 

for the first two tests, and the results obtained (not shown here) were very similar to those obtained 265 

with 100 perturbations.  266 

267 

Table. 1. End-member definitions (values  uncertainties) from GEOTRACES cruises (refer to 268 

the GA03 special issue, Boyle et al., 2015; GA02 papers, Middag et al., 2015; and Rijkenberg et 269 

al., 2014). Each end-member is included into one or more of the three extended optimum 270 

multiparameter analysis (eOMPA) layers - T: Thermocline, I: Intermediate, and D: Deep. To 271 

facilitate the future use of this eOMPA for biogeochemical studies, trace elements and some 272 

isotope data are available for each end-member on the GEOTRACES Intermediate Data Product 273 

2017 (IDP 2017 v2, Schlitzer et al., 2018). 274 

2.3 LPTE 275 

To improve the proposed water mass analysis, LPTEs were conducted to complement the eOMPA 276 

(i) to aid in identifying the origin of the water masses sampled along JC150 (and thereby contribute 277 

Acronym Name Ɵ
(°C)

S O2
(µmol Kg-1)

[PO4
3-] 

(µmol Kg-1)
[NO3

-] 
(µmol Kg-1)

Si
(µmol Kg-1)

‘PO’
(µmol Kg-1)

‘NO’
(µmol Kg-1)

Data sources eOMPA
layer

WNACW West North Atlantic Central Water 17.94 ± 0.1 36.545 ± 0.02 202.30 ± 11 0.13 ± 0.04 3.10 ± 1.2 1.40 ± 0.6 222 ± 16 232 ± 16 GA02 station 18, 22/05/2010, 
33.433°N, 58.05°W, 251m

T

ESACW East South Atlantic Central Water 12.20 ± 0.2 35.117 ± 0.15 205.20 ± 1 0.80 ± 0.04 11.89 ± 2 5.01 ± 1 330 ± 3 320 ± 28 GA10 station 3, 29/12/2011, 
36.348°S, 13.140°E, 497m

T&I

MW Mediterranean Water 10.13 ± 0.4 35.920 ± 0.1 178.10 ± 8 1.06 ± 0.01 16.67 ± 0.2 10.43 ± 0.5 342 ± 3 340 ± 3 GA03 station 3, 19/10/2010, 
35.201°N, 16°W, 986m

T&I&D

AAIW Antartic Intermediate Water 3.89 ± 0.3 34.290 ± 0.05 218.30 ± 10 2.05 ± 0.12 30.29 ± 1.5 28.08 ± 8 536 ± 8 512 ± 6 GA02 station 9, 14/03/2011, 
32.089°S, 37.459°W, 1001m

T&I

UCDW Upper Circumpolar Deep Water 2.84 ± 0.03 34.576 ± 0.08 186.90 ± 5 2.18 ± 0.05 31.93 ± 0.7 54.78 ± 1.7 525 ± 16 496 ± 10 GA02 station 9, 14/03/2011, 
32.089°S, 37.459°W, 1501m

T&I

LSW Labrador Sea Water 3.76 ± 0.15 34.896 ± 0.04 272.30 ± 6 1.09 ± 0.05 16.70 ± 0.3 9.40 ± 0.8 441 ± 3 434 ± 64 GA02 station 9, 09/05/2010, 
51.821°N, 45.732°W, 996m

I&D

NEADW North East Atlantic Deep Water 2.66 ± 0.09 34.917 ±
0.003

273.20 ± 5 1.08 ± 0.02 16.40 ± 0.2 14.00 ± 1.9 441 ± 2 432 ± 3 GA02 station 9, 09/05/2010, 
51.821°N, 45.732°W, 2512m

D

NWABW North West Atlantic Bottom Water 1.63 ± 0.02 34.896 ± 0.09 290.50 ± 0.2 0.98 ± 0.01 14.70 ± 0.1 11.20 ± 0.1 442 ± 0.6 433 ± 0.8 GA02 station 9, 09/05/2010, 
51.821°N, 45.732°W, 4041m

D

AABW Antartic Bottom Water 0.04 ± 0.06 34.680 ± 0.01 217.40 ± 1.9 2.26 ± 0.07 32.72 ± 0.7 122.80 ± 4.5 568 ± 9 534 ± 4 GA02 station 13, 20/03/2011, 
17.017°S, 30.599°W, 4889m

D
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to the eOMPA end-member choices) and (ii) to provide information about water mass trajectories 278 

between their formation areas and the JC150 section, which cannot be achieved by a sole OMPA. 279 

The LPTE experiments were conducted in the velocity field of an eddy-resolving Ocean General 280 

Circulation Model. Through the seeding of numerous ‘virtual’ particles around a point and time of 281 

interest (i.e., latitude, longitude, depth, and time), the LPTE can track the particles’ location 282 

through reverse time by updating the particles’ position after each time step of the model. This 283 

method enables us to identify the particles’ origin over timescales from tens to hundreds of years 284 

and reconstruct the trajectories of these particles from the position of origin to the point of interest. 285 

As the particles deployed are all marginally offset in space and time relative to the exact sampling 286 

position, they generate an ensemble of backward trajectories and origins that can assist in 287 

identifying likely water masses constituting the sampled seawater. The model and experiments 288 

used in this study are described below.  289 

The velocity fields of the Operational Mercator global ocean analysis and forecast system 290 

(http://marine.copernicus.eu) were used in this study. This system uses the Ocean General 291 

Circulation Model from the Nucleus for European Modelling of the Ocean (NEMO) framework 292 

(Madec & the NEMO team, 2008) with a horizontal resolution of 1/12° and 50 vertical layers. The 293 

thickness of each vertical layer increases with depth from 1 m at the surface to 450 m at the bottom 294 

(5500 m depth). Partial steps were used for the bottom grid cell of the water column to better 295 

represent the bottom topography within the model. The model topography was generated with the 296 

bathymetric databases ETOPO2 (Amante & Eakins, 2009) and GEBCO8 (Becker et al., 2009) for 297 

open ocean and continental shelves, respectively. For further details on the model product and the 298 

validity of its velocity fields, the reader can refer to Lellouche et al. (2018a) and Lellouche et al. 299 

http://marine.copernicus.eu/
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(2018b). The velocity fields are available as daily and monthly mean values from 26 December 300 

2006 to present. 301 

 302 

The Lagrangian experiments were conducted for each sample obtained from the seven stations 303 

(total of 302 samples) occupied during the 40-day JC150 cruise (Fig. 1) using the Lagrangian 304 

particle tracking tool ARIANE (Blanke & Raynaud, 1997). 305 

As currents are faster in the upper ocean (defined here as the top 800 m), and capturing their 306 

behavior requires a finer time resolution, different experimental configurations were defined for 307 

each sample based on its sampling depth. Firstly, for depths shallower than 800 m, we employed 308 

daily mean velocity fields to track the deployed particles, whereas for depths deeper than 800 m, 309 

we used monthly mean values. Secondly, the particles were advected backward in time for varied 310 

periods depending on the depth: up to 10 years for the upper ocean samples and up to 300 years 311 

for the deep ocean ones.  312 

In all cases, an ensemble of particles (or particle clouds) was uniformly distributed around the 313 

sampling location and repeatedly deployed across a period that was centered on the sampling time. 314 

This ensemble was organized as a vertical cylinder, made of equally spaced disks of particles 315 

spaced at 1/12° resolution radially.  316 

The height of the cylinder, number of disks inside each cylinder, and the number of repeated 317 

releases around the sampling time varied between the samples taken within the upper or deep 318 

ocean. For example, for the upper ocean, we used a cylinder with a height of 10 m and radius of 319 

¼° and 12-hourly release of particles within a five-day window (nine releases). More details about 320 



 

 16 

this experimental setup are provided in S1, while several examples of particle trajectory ensembles 321 

for different depths and advection times are shown in Figure S2. 322 

 323 

3  Water mass analysis: results and discussion 324 

The hydrographic properties measured during JC150, , S, AOU, and concentrations of O2, PO4
3-325 

, NO3
-, and Si(OH)4, are presented in this study for the first time. They are shown as 326 

property/property plots in Figure 2, and as section in Figure 3. 327 

The discussion is organized in three parts. Firstly, the surface waters shallower than 200–300 m 328 

(where an eOMPA cannot be performed, because water properties are constantly changing due to 329 

ocean-atmosphere exchange) are discussed using satellite data and LPTE results. Secondly, the 330 

end-member choice for the three eOMPA layers is extensively discussed using a thorough 331 

literature review, meticulous comparison of the JC150 hydrographic section properties with those 332 

of the end-member candidates, and the LPTE results. Finally, the results of the eOMPA are 333 

presented (end-members contributions) and discussed. 334 

The LPTE results are presented in Figure 4. It is beyond the scope of this study to present the 335 

LPTE results across all stations and depths. Therefore, for discussion, we selected results at 336 

specific depths and from stations 1 and 7, representing the westernmost and easternmost stations, 337 

respectively. Finally, the results from the eOMPA are presented in Figure 5. 338 
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 339 

Fig. 2. Potential temperature versus salinity with isopycnals (gray lines) and a zoom on water 340 

colder than 10 °C, in which the red triangle highlights the impact of Mediterranean Water (MW) 341 

in the deep layer (A), silicic acid versus salinity (B), PO versus salinity (C), and NO versus salinity 342 

(D) for the JC150 data (color diamonds) and GEOTRACES end-members (black diamonds). PO 343 

and NO definitions are provided in section 2.2. 344 
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Fig. 3. Observed section of potential temperature (A), salinity (B), dissolved oxygen (C), apparent 346 

oxygen utilization (AOU, D), and concentrations of nitrate (E), phosphate (F), and silicic acid (G) 347 

from the JC150 cruise. The upper figures show zooms on the upper 1000 m, while the lower figures 348 

show the full depth range. Data points are represented by black dots. 349 

 350 

 351 
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Fig. 4. Particle counts per 2° x 2° grid cells computed by the Lagrangian particle tracking 354 

experiment (LPTE), indicating particle origins and particles’ most-used pathways to attain the 355 

sampling locations. Results are presented for two JC150 stations (westernmost station 1, 22 °N, 356 

58 °W, left panels and easternmost station 7, 22 °N, 31 °W, right panels) and different depths. 357 

Particles are advected backward in time with an advection time varying with depth. Arrows 358 

highlight the main particle paths obtained from the LPTE results and literature general knowledge. 359 

The following currents and location are presented in the figures: Gulf Stream (GS), Azores Current 360 

(AC), Canary Current (CC), North Equatorial Current (NEC), South Equatorial Current (SEC), 361 

North Brazil Current (NBC), Equatorial Undercurrent (EUC), North Equatorial Countercurrent 362 

(NECC), Mauritania Current (MC), Deep Western Boundary Current (DWBC) and Guinea Dome 363 

(GD). Refer to Fig. S2 for corresponding raw trajectories.  364 

 365 

3.1 Surface waters 366 

At the western edge of the section, a near surface tongue of low salinity water (36.3–37) is 367 

observed shallower than 27 m at stations 1 and 2 (Fig. 3b). Using a surface satellite salinity map 368 

(SMOS, July 2017, Fig. S3), this feature can clearly be attributed to Amazon River plume. This is 369 

supported by the LPTE results that show the particle trajectories from near the Amazon River 370 

mouth reaching the west of the zonal section (at depths of 15 m and 100 m, as shown in Figs. 4a 371 

and 4c, respectively). This feature is constrained to the very surface and does not impact the 372 

eOMPA results discussed below. 373 

Two well-defined central water masses dominate the tropical Atlantic thermocline layer: the North 374 

Atlantic Central Water (NACW) and the South Atlantic Central Water (SACW). The sampled 375 



 

 23 

section extends along 22 °N, 58–31 °W, while the transition from NACW into SACW occurs at 376 

approximately 15 °N at the Cape Verde Frontal Zone (Fieux, 2010; Tomczak & Godfrey, 1994). 377 

Therefore, the impact of NACW and SACW on the sampled waters was investigated.  378 

 379 

SACW encompasses two main water masses, including the Western SACW (WSACW) and the 380 

Eastern SACW (ESACW) (Poole & Tomczak, 1999). WSACW is formed in the confluence zone 381 

of Brazil and Malvinas Currents (Fieux, 2010) and recirculates within the southern subtropical 382 

gyre. Therefore, it is mostly restricted to the western South Atlantic Ocean (Fieux, 2010; Tomczak 383 

& Godfrey, 1994). In contrast, ESACW mainly comprises Indian Central Water transferred into 384 

the Atlantic Ocean through Agulhas Current rings and is known to cross the Atlantic basin several 385 

times during its northwards transit (Fieux, 2010; Tomczak & Godfrey, 1994; Tsuchiya, 1986). Our 386 

LPTE trajectories are in good agreement with the current understanding of the ESACW northward 387 

transit (Figs. 4a–4d): ESACW is transported northwestwards from the Cape Basin to the equator 388 

through the southern branch of the South Equatorial Current and North Brazil Current. Here, the 389 

trajectories show a portion of ESACW continuing northward toward the western stations (Figs. 4a 390 

and 4c), while a portion retroflects eastward toward the Guinea Dome within components of the 391 

equatorial current system (Figs. 4a–4d).  392 

In addition to what has been previously described, the LPTE suggested that this shallow ESACW 393 

reached the JC150 zonal section from the Guinea Dome by two trajectories: a portion flows 394 

northwards within the Mauritania Current to the easternmost stations (Figs. 4b and 4d), while 395 

another portion crosses the Atlantic basin westward once more and then flows northward to join 396 

the westernmost stations (Figs. 4a and 4c).  397 
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NACW also comprises several waters masses. More than half of its volume comprises subtropical 398 

mode water (Tomczak & Godfrey, 1994). The principal North Atlantic’s subtropical mode water 399 

is the Western NACW (WNACW, Talley et al., 2011), also called ‘18 C water’. WNACW is 400 

formed in the Sargasso Sea and identified by a permanent thermostat between 300 and 500 m at 401 

approximately 17–18 °C (Fieux, 2010; Tomczak & Godfrey, 1994).  402 

Between 100 and 300 m, the LPTE analysis shows waters following the North Atlantic 403 

anticyclonic subtropical gyre circulation, i.e., waters originate from the Gulf of Mexico and the 404 

Caribbean Sea, flow through the Sargasso Sea and the Gulf Stream and then the Azores and Canary 405 

currents, and finally the North Equatorial Current flowing westward redistributes these waters 406 

from the eastern to the western JC150 stations. In addition, the LPTE trajectories show a direct 407 

transfer from the Gulf Stream to the sampled stations (Figs. 4c–4f). These trajectories correspond 408 

very well to the circulation pattern of WNACW. This suggests that this 100 to 300 m depth layer, 409 

below the layer mainly occupied by ESACW, is dominated by WNACW.  410 

 411 

In summary, above ~300 m, the salinity data from JC150, SMOS, and LPTE show an Amazon 412 

influence in the west of the section, which is restricted to the near-surface. The LPTE results 413 

highlight the dominant influence of a shallow variety of ESACW in the upper 100 m and an 414 

increasing WNACW impact below 100 m. 415 

 416 

3.2 Analysis of end-members for thermocline, intermediate, and deep eOMPA layers 417 

This section discusses the end-member choice for the thermocline (main thermocline from 300–418 

700 m), intermediate (700–1500 m) and deep eOMPA layers (1500 m to seafloor). 419 
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All end-members of the present eOMPA were selected from GEOTRACES cruises, where 420 

numerous parameters, including trace elements and isotopes, are available to facilitate further use 421 

of this eOMPA results (these locations are not necessarily in the water mass formation regions).  422 

 423 

3.2.1 Thermocline waters 424 

The two central waters discussed above (ESACW and WNACW) are also present below 300 m. 425 

WNACW is the only water mass that can account for the warm, salty, and low PO and NO 426 

concentration waters found in the thermocline layer (Fig. 2). In addition to supporting the presence 427 

of WNACW in surface waters (section 3.1), the LPTE analysis supports the large contribution of 428 

WNACW to the thermocline layer (Figs. 4e–4h) with particles following the anticyclonic North 429 

Atlantic Subtropical gyre circulation between 300–600 m (refer to WNACW circulation details in 430 

section 3.1). Although the surface gyre circulation pattern appears weaker by 800 m (Figs. 4i and 431 

4j), WNACW is ultimately an important end-member to be included in the thermocline layer. We 432 

used , S, concentrations of O2, PO4
3-, NO3

-, and Si(OH)4 data from the GEOTRACES GA02 433 

cruise station 18 at ~250 m to define WNACW (Fig. 1). These end-member hydrographic and 434 

nutrient values are in agreement with those reported in literature (Hinrichsen & Tomczak, 1993; 435 

Talley et al., 2011, cf. Table.1 for detailed properties). As stated earlier (section 3.1), WNACW is 436 

the main type of NACW. Other types of NACW, such as the Madeira Mode Water or the East 437 

NACW, exist (Harvey, 1982; Talley et al., 2011; Tomczak & Godfrey, 1994). However, the 438 

Madeira Mode Water presents a formation rate and volume, which are much lower than those of 439 

WNACW. The East NACW is considered in this study as partly included in the Mediterranean 440 

Water (MW) definition (refer below, Carracedo et al., 2016; Talley et al., 2011). Therefore, 441 
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Madeira Mode Water and East NACW were not included as an end-member in the present 442 

eOMPA. 443 

A type of ESACW, namely the 13 °C-ESACW, is an important contributor to the thermocline of 444 

the Atlantic Ocean (Tomczak & Godfrey, 1994; Tsuchiya, 1986). 13 °C-ESACW is needed to 445 

account for the warm, low salinity, and low PO, NO, and Si(OH)4 waters in the thermocline layer, 446 

as well as the warm, low salinity, and low PO and NO waters in the intermediate layer (Fig. 2). 447 

Even though the LPTE results do not show a dominance of ESACW trajectories below 300 m 448 

along the JC150 zonal section (WNACW dominates at 300–800 m), they still show a non-449 

negligible influence from south Atlantic origin waters to depths of 800 m (Figs. 4i and 4j) and 450 

1000 m (data not shown). Therefore, 13 °C-ESACW was chosen as an end-member to be 451 

considered in both thermocline and intermediate layers. We used , S, concentrations of O2, PO4
3-452 

, NO3
-, and Si(OH)4 data from the GEOTRACES GA10 cruise station 3 at ~500 m to define 13 453 

°C-ESACW (Fig. 1). These end-member hydrographic and nutrient values are in agreement with 454 

those reported in literature (Poole & Tomczak, 1999, refer to Table. 1 for detailed properties).  455 

As stated earlier (section 3.1), the other major SACW, which is WSACW, is restricted to the 456 

southwest Atlantic (south of 30 °S, Fieux, 2010; Tomczak & Godfrey, 1994). This restriction was 457 

underlined by a previous OMPA study, in which almost no contribution of WSACW was observed 458 

at 22 °N (Poole & Tomczak, 1999). The LPTE results support these conclusions, as they show no 459 

significant particles originating from the West South Atlantic, south of 30 °S, at the thermocline 460 

depths (Figs. 4e–4h). Therefore, WSACW was not included in the thermocline eOMPA. Note that 461 

the Guinea Dome Water was not explicitly included as an end-member in the present eOMPA; 462 

however, it was implicitly included, as it could be considered as ESACW significantly modified 463 

by the remineralization processes (Stramma & Schott, 1999). 464 
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 465 

 466 

3.2.2 Intermediate waters 467 

At intermediate depths (~700–1500 m), the hydrographic atlases clearly show a high salinity layer, 468 

which is attributed to the MW (World Ocean Atlas 2018, Fieux, 2010). MW is formed by the 469 

mixing of the Mediterranean Outflow water, entering the Atlantic through the Gibraltar Strait, with 470 

the subsurface and intermediate waters of the northeast Atlantic ( Baringer, 1997; Carracedo et al., 471 

2016). MW extends northward to the Iceland-Scotland Ridge and westward to the Gulf Stream 472 

(core at ~1000 m, Fieux, 2010), thereby presenting an important contribution to intermediate 473 

depths across the North Atlantic. However, high salinity MW is not visible along the JC150 section 474 

(Fig. 3b). This is because, at ~20 °N, the MW salinity maximum is located at the same depth as 475 

low salinity Antarctic Intermediate Water (AAIW), where mixing reduces the salinity (Fieux, 476 

2010; Talley et al., 2011). AAIW is the densest and less salty of the subantarctic mode water. 477 

Formed along the subantarctic and mostly in the southeast Pacific, AAIW enters into the Atlantic 478 

Ocean mainly via the Drake Passage and the Malvinas Current (Pacific type of AAIW) and 479 

expands northward (Fieux, 2010 and references therein; Talley, 1996; Tomczak & Godfrey, 1994). 480 

This northward expansion of low salinity AAIW is traced as far as 20 °N between 800–1000 m 481 

(Fieux, 2010; Hinrichsen & Tomczak, 1993; Talley et al., 2011). This observation possibly 482 

explains the lower salinity (< 35) centered at ~1000 m, mainly observed in the west of the MAR 483 

during the JC150 cruise (Fig. 3b). Nevertheless, the -S diagram (Fig. 2a) shows that MW is the 484 

only intermediate water mass that can explain the cold and saline waters in the thermocline layer 485 

and the saltiest waters in both intermediate and deep layers (as previously suggested by Reid, 486 

1979).  487 
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Furthermore, a strong O2 minimum (O2 < 150 µmol kg-1), which is coincident with a layer of high 488 

AOU (AOU > 125 mol kg-1), is visible across the entire JC150 zonal section centered at ~800 m 489 

(Figs. 3c and 3d). This O2 minimum is also nearly coincident with a layer of maximum NO3
- and 490 

PO4
3- concentrations centered at ~900 m (> 25 µmol kg-1 and > 1.5 µmol kg-1, respectively, Figs. 491 

3e and 3f, respectively) and relatively high Si(OH)4 concentration (> 20 µmol kg-1, ~1000 m, Fig. 492 

3g). All these properties reflect the remineralization processes known to characterize the Upper 493 

Circumpolar Deep Water (UCDW) originating from the Southern Ocean and flowing northward 494 

into the Atlantic just below AAIW (Broecker et al., 1985). In the tropics, AAIW joins vertically 495 

with UCDW (Talley et al., 2011; Tsuchiya et al., 1994). The resulting AAIW/UCDW complex, 496 

traceable by high nutrients rather than low salinity, moves northward into the Gulf Stream system 497 

and North Atlantic Current as far as 60 °N just south of Iceland (Talley et al., 2011; Tsuchiya, 498 

1989; Tsuchiya et al., 1994). This is consistent with the low O2, high NO3
-, PO4

3-, and Si(OH)4 499 

layers described above along the JC150 section. In addition, inclusion of AAIW and UCDW are 500 

necessary to explain the coldest and highest PO and NO values in both thermocline and 501 

intermediate layers (Fig. 2). UCDW is also specifically needed to explain the highest Si(OH)4 502 

values of the intermediate layer. 503 

Although, the LPTE results did not aid us in clearly confirming (nor reject) the contributions of 504 

MW, AAIW, and UCDW along the JC150 section, the above discussion is sufficient to conclude 505 

that MW was an essential end-member to include in the three eOMPA layers, while AAIW and 506 

UCDW were essential end-members in the thermocline and intermediate layers. We used , S, 507 

concentrations of O2, PO4
3-, NO3

-, and Si(OH)4 data from GEOTRACES GA03 cruise station 3 at 508 

~1000 m to define MW and GEOTRACES GA02 cruise station 9 at ~1000 m to define AAIW and 509 

those at ~1500 m to define UCDW (Fig. 1). These end-member properties were in agreement with 510 
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those reported in literature (Talley et al., 2011; Tsuchiya et al., 1994, refer to Table. 1 for detailed 511 

properties). 512 

3.2.3 Deep and bottom waters 513 

In the west of the section, high O2, and relatively low NO3
- and PO4

3- waters are observed from 514 

~1500–4500 m (Figs. 3c, 3e, and 3f). This feature progressively decreases eastwards, but is still 515 

visible east of the MAR. It is well established that these distributions are associated with low 516 

nutrients and recently ventilated waters from the North Atlantic, mainly leading to the formation 517 

of North Atlantic Deep Water: Labrador Sea Water (LSW), North East Atlantic Deep Water 518 

(NEADW), and North West Atlantic Bottom Water (NWABW) (Swift, 1984; Talley et al., 2011).  519 

LSW is formed in the Labrador Sea by winter convection leading to a homogenous water mass 520 

from the surface to a depth of 1500–2000 m depending on the winter severity (Fieux, 2010; Lazier 521 

et al., 2002). From the Labrador Sea, LSW is transported in three main directions, including 522 

northward in the Irminger Sea, eastward crossing the MAR, and southward within the Deep 523 

Western Boundary Current (DWBC, Fieux, 2010; Talley & McCartney, 1982). At 1500 m, the 524 

LPTE results show two main flows that transport LSW to the JC150 section (Figs. 4k and 4l): west 525 

of the MAR from the Labrador basin within the DWBC, and east of the MAR from the Iceland 526 

basin. The first path within the DWBC has been well documented (Fieux, 2010; Talley et al., 2011; 527 

Talley & McCartney, 1982). The presence of LSW in the eastern North Atlantic (the eastern 528 

subpolar gyre, Iceland Basin, and the Rockall Trough) has also been well documented (Talley et 529 

al., 2011). However, we could not find previous works presenting an evidence of the second LSW 530 

pathway, east of the MAR and below 40 °N, from the eastern North Atlantic to the eastern tropical 531 

Atlantic. 532 

 533 
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Below the LSW layer, NEADW is formed by the mixing of dense Iceland-Scotland Overflow 534 

Water (ISOW) with southern origin Lower Deep Water (modified Antarctic Bottom Water), 535 

entrained LSW, and subpolar mode water (Lacan & Jeandel, 2005; McCartney, 1992; Read, 2001). 536 

NEADW flows in the recirculation cells in the western and eastern parts of the Subpolar North 537 

Atlantic Gyre, which are connected to each other through the Charlie-Gibbs Fracture Zone (van 538 

Aken, 2007; Fieux, 2010; McCartney & Talley, 1984; Read, 2001; Swift, 1984; Talley et al., 539 

2011). This water mass is known to be transported southward within the DWBC and east of the 540 

MAR (Fieux, 2010). The LPTE results (at 2500 m, Figs. 4m and 4n) confirm both pathways. 541 

NWABW is the densest water found near the bottom of the northwest Atlantic (Swift, 1984). It 542 

originates from the dense, cold, and ventilated Denmark Strait Overflow Water (DSOW) which, 543 

descending over the East Greenland continental slope to the bottom of the North Atlantic Subpolar 544 

gyre, mixes with Irminger water, LSW, and ISOW (Fieux, 2010). Contrary to LSW and NEADW, 545 

NWABW is too deep to cross the MAR and is therefore restricted to the western basin of the North 546 

Atlantic Subpolar Gyre. From there, NWABW flows equatorward within the DWBC along the 547 

western margin of the North Atlantic (Fieux, 2010). At 3000 m (data not shown) and 4000 m (Figs. 548 

4o and 4p), the LPTE results confirm the NWABW transport from the Labrador Sea in the DWBC. 549 

The above discussion confirms that LSW, NEADW, and NWABW, which are the main 550 

contributors along with the MW to the North Atlantic Deep Water, should be considered as end-551 

members for the JC150 section. The contribution of LSW is specifically required to explain the 552 

cold and slightly saline waters of the intermediate layer as well as the warm and low salinity waters 553 

of the deep layer (Fig. 2). Therefore, LSW was included in both intermediate and deep layers. 554 

LSW, NEADW, and NWABW are needed to explain the Si(OH)4, PO, and NO values at low 555 

salinity of the deep layer (Figs. 2b–2d). Therefore, NEADW and NWABW were included in the 556 
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deep layer. We used , S, concentrations of O2, PO4
3-, NO3

-, and Si(OH)4 data from the 557 

GEOTRACES GA02 cruise station 9 at ~1000 m to define LSW, ~2500 m to define NEADW, and 558 

~4000 m to define NWABW (Fig. 1). These chosen end-member properties are in agreement with 559 

those reported in literature (van Aken, 2007, refer to Table. 1 for detailed properties; Fieux, 2010). 560 

A marked increase in the Si(OH)4 concentration is observed in the range of 2500 m to the bottom, 561 

which attains a maximum value (> 60 µmol kg-1) in the west of the MAR. This feature reflects the 562 

influence of Antarctic Bottom Water (AABW) originating from the Weddell Sea with a Si(OH)4 563 

maximum that can be traced to the North Atlantic (Word Ocean Atlas 2018). Its characteristics 564 

and northward expansion are influenced by its mixing with overlying water masses and the 565 

complex topography (van Aken, 2007; McCartney, 1992; Talley et al., 2011). AABW is the only 566 

water mass that can explain the coldest waters as well as the highest Si(OH)4, NO, and PO waters 567 

of the deep layer (Fig. 2). The presence of this water mass in the deep layer is indisputable and 568 

was therefore included. We used , S, concentrations of O2, PO4
3-, NO3

-, and Si(OH)4 data from 569 

the GEOTRACES GA02 cruise station 13 at ~4900 m to define AABW (Fig. 1). These chosen 570 

end-member properties are in agreement with those reported in literature (van Aken, 2007; 571 

McCartney, 1992; Talley et al., 2011). 572 

In summary, the eOMPA thermocline layer includes WNACW, 13 °C-ESACW, AAIW, UCDW, 573 

and MW. The eOMPA intermediate layer includes 13 °C-ESACW, AAIW, UCDW, MW, and 574 

LSW. The eOMPA deep layer includes MW, LSW, NEADW, NWABW, and AABW. These end-575 

member properties are summarized in Table. 1. 576 

 577 
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3.3 eOMPA 578 

The eOMPA MATLAB routine was executed with the section data, end-members, weightings, and 579 

the Redfield ratios determined earlier. The results from the eOMPA are presented in Figure 5 as 580 

sections of end-member contributions. These results are discussed in detail in this section. 581 

 582 
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 583 



 

 34 

Fig. 5. Contributions (%) of the different end-members to the JC150 section according to the 584 

extended optimum multiparameter analysis (eOMPA) of West North Atlantic Central Water 585 

(WNACW) (A), 13°C- East South Atlantic Central Water (ESACW) (B), Antarctic Intermediate 586 

Water (AAIW) (C), Mediterranean Water (MW) (D), Upper Circumpolar Deep Water (UCDW) 587 

(E), Labrador Sea Water (LSW) (F), North East Atlantic Deep Water (NEADW) (G), North West 588 

Atlantic Bottom Water (NWABW) (H), and Antarctic Bottom Water (AABW) (I). Sampling 589 

points and eOMPA layer boundaries are represented by black dots and horizontal black dashed 590 

lines, respectively. 591 

3.3.1 Residuals and perturbation tests 592 

The validity of the eOMPA results is discussed in this section. Firstly, to verify that the eOMPA 593 

reproduces the observed values well, the residuals were closely observed. This aided in 594 

determining whether the end-members were accurately selected. Secondly, to evaluate whether the 595 

eOMPA results were robust, we discuss the results of the perturbation analysis. This aids in 596 

quantifying the sensitivity of the results to our initial choices. 597 

The residuals are presented as sections in Figure S4. The residual values are similar for the three 598 

eOMPA layers and their average values are as follows: ~0% for , < 1% for S, < 7% for PO, < 9% 599 

for NO, < 5% for Si, and ~0% for mass conservation. These average values include one outlier at 600 

1500 m (over 199 samples, station 5). Except for this sample, that does not change the features of 601 

the results, the low residue values indicate that the eOMPA well reproduces the observed values. 602 

This a posteriori validates the initial choices about the end-members and Redfield ratios. 603 

The results of the three perturbation tests (end-member characteristics, JC150 section data, and 604 

parameters weights) enable us to assign an uncertainty/variability (two standard deviation) to each 605 
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water mass contribution (the section mean values of these uncertainties are reported in Table. S5 606 

and presented on sections in Figs. S6, S7, and S8). Overall, the perturbation of both the end-607 

members’ properties and the JC150 data result in uncertainties/variabilities of approximately 8% 608 

each on average on the water mass percentage results (mean standard deviation over the three 609 

eOMPA layers, 2 SD, %). The perturbation of the weights attributed to the eOMPA properties 610 

only perturbs the water mass percentage results up to 2% (mean standard deviation over the three 611 

eOMPA layers, 2SD, %). Overall, these perturbation analyses show that the main results of the 612 

OMPA are robust, i.e., the water mass spatial distribution and their main characteristics (such as 613 

dominant water masses) remain unchanged. 614 

3.3.2 Thermocline waters 615 

WNACW strongly dominates the thermocline layer (Fig. 5a) with a contribution exceeding 90% 616 

at ~300 m. This contribution quickly decreases with depth and declines to 50% between 400–500 617 

m and under 10% at the depth of ~700 m. The presence of WNACW extends marginally deeper 618 

in the west of the section (~100 m deeper than in the east), which is consistent with a stronger 619 

WNACW penetration closer to its formation area in the Sargasso Sea (Fieux, 2010; Tomczak & 620 

Godfrey, 1994). The dominance of WNACW in this layer was expected based on the two previous 621 

basin scale eOMPA studies conducted in the Atlantic Ocean thermocline (Poole & Tomczak, 622 

1999) and along the GA03 2011 GEOTRACES section (Jenkins et al., 2015) located close to the 623 

JC150 section (refer to Fig. 1). Both studies obtained large NACW contributions at depths above 624 

600/800 m and the latitude of JC150. The dominance of WNACW in the thermocline layer is also 625 

consistent with the LPTE results, indicating that the density of particles coming from the North 626 

Atlantic Subtropical Gyre is dominant in the range of 300–600 m (Figs. 4e–4h). 627 
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Below the WNACW, a core of 13 °C-ESACW is found across the section with contributions higher 628 

than ~30 % in the range of 500–800 m, which attains the maximum at ~600 m depth (35%, Fig. 629 

5b). This result remarkably agrees with a previous eOMPA that estimates a contribution of ~25% 630 

at 22 °N:25 °W in the range 400–800 m (Poole & Tomczak, 1999). Below 850 m, the 13 °C-631 

ESACW contribution decreases with depth to under 10 % at ~1250 m. No previous eOMPA study 632 

included 13 °C-ESACW as an end-member deeper than 800 m in the Atlantic. However, no other 633 

water mass could explain the warm, low salinity, and low PO and NO waters observed in the 634 

intermediate layer of the JC150 section (Fig. 3).  635 

3.3.3 Intermediate waters 636 

AAIW is present at depths of 550–1100 m, thereby contributing to both thermocline and 637 

intermediate layers. Its contribution is higher west of the MAR, where it attains a maximum at 638 

~700 m (> 30%) (Fig. 5c). UCDW is present over a similar depth range of 700–1500 m just below 639 

the AAIW and attains a maximum (> 25 %) at ~1000 m depth. The presence of AAIW and, just 640 

below, UCDW in the subtropical Atlantic is consistent with what was reported in previous 641 

hydrodynamic studies (Talley et al., 2011; Tsuchiya, 1989; Tsuchiya et al., 1994). This is also 642 

supported by two other OMPA studies reporting an AAIW contribution at ~750–900 m 643 

immediately above UCDW (Álvarez et al., 2014; Jenkins et al., 2015). 644 

The MW contribution exceeds 25% in the depth range of 500–1000 m across the section with a 645 

maximum contribution (> 40 %) centered at ~700 m depth (Fig. 5d). The MW contribution is 646 

higher and deeper in the east of the MAR (> 20 % at 1500 m) than in the west of the MAR (> 20 647 

% at ~1000 m), suggesting a westward expansion of this water mass, which is consistent with the 648 

MW propagation in the North Atlantic (Fieux, 2010). The MW contribution results are also 649 
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comparable with the GA03 OMPA study (Jenkins et al., 2015), according to which the MW 650 

contribution extended westward across the MAR at approximately 500–1000 m depth. However, 651 

our MW contributions are larger than those reported in other OMPA analyses (Bashmachnikov et 652 

al., 2015; Louarn & Morin, 2011). This might be explained by the fact that our MW end-member 653 

was defined further away from the Strait of Gibraltar and included a contribution of subsurface 654 

and intermediate waters of the Northeast Atlantic (refer to section 3.2.2). The MW maximum 655 

contribution is in the same depth range as that of AAIW; however, MW is more pronounced in the 656 

east, whereas AAIW is more pronounced in the west. This is consistent with the mixing of MW 657 

with AAIW at approximately 20 °N (Fieux, 2010; Talley et al., 2011). In the deep eOMPA layer, 658 

the MW contribution is under 10% deeper than 2300 m and under 5% deeper than 3500 m. This is 659 

consistent with the GA03 OMPA study that reported an MW contribution of ~10% in the range of 660 

2000–3600 m (Jenkins et al., 2015). Though this contribution in our deep layer eOMPA is low, it 661 

is not zero. It is absolutely necessary to account for the deep layer saltiest waters (refer to the red 662 

triangle in Fig. 2a), which is in agreement with initial findings of Reid et al. (1979). 663 

3.3.4 Deep waters 664 

LSW is included in both intermediate and deep eOMPA layers. This water mass is present across 665 

the section and exceeds a contribution of over 20% in the depth range of 900–2000 m. Its 666 

contribution exceeds 50% in the depth range of 1250–1750 m and attains a maximum (> 70 %) at 667 

~1500 m depth (Fig. 5f). This is consistent with the GA01 (Subpolar Gyre) eOMPA study, that 668 

found LSW centered at 1500 m in the Iceland and west European Basins (García-Ibáñez et al., 669 

2018). It is also consistent with the GA03 OMPA study that found the Upper LSW centered at 670 

1500 m across the MAR (Jenkins et al., 2015).  671 
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The NEADW contribution exceeds 30% from ~2000 m to the bottom across the section (Fig. 5g). 672 

Its maximum (>70 %) is attained at ~2500 m. The NEADW contribution is under 40% at a depth 673 

of over 4000 m and in the west of the MAR, while the contribution in the east of the MAR is over 674 

40% down to the bottom. This is consistent with the LPTE results and previous studies that suggest 675 

that the NEADW contribution is achieved not only from the DWBC, but also directly from the 676 

eastern part of the Subpolar North Atlantic Gyre east of the MAR (van Aken, 2007; Fieux, 2010; 677 

McCartney, 1992; Read, 2001; Talley et al., 2011). 678 

Below the NEADW, NWABW appears from 3000 m (> 10 %) to the bottom and attains its 679 

maximum (> 45 %) at approximately 4000–4500 m at the section’s western end (Fig. 5h). This 680 

maximum seems to expand eastward to the MAR. East of the MAR, the NWABW contribution 681 

exceeds 25% from 4000 m to the bottom. Four data points located shallower than 2500 m present 682 

an unrealistic high NWABW contribution of over 19% and are clear outliers (Station 1 1750 m, 683 

2000 m, and 2251 m and Station 4 1750 m), as a previous work has reported that this water mass 684 

is absent at such shallow depths (García-Ibáñez et al., 2018). The lack of continuity between the 685 

calculated NWABW core (observed here at 4000–4500 m) and these points is also an argument 686 

for excluding these four data points. These four outliers should correspond to a predominance of 687 

LSW and NEADW. LSW, NEADW, and NWABW have very close properties (almost 688 

undistinguishable in terms of S, PO, NO, and Si(OH)4 and temperature differences in the order of 689 

1 °C, refer to Fig. 2). These similitudes explain that the deep eOMPA did not accurately distinguish 690 

the three end-members for these four outliers. However, for the other 84 data points of the deep 691 

layer (88 data points in total), the eOMPA appropriately distinguished between LSW, NEADW, 692 

and NWABW and provided results, which are consistent with the literature (notably LSW above 693 

NEADW above NWABW, Lacan & Jeandel, 2005; Swift, 1984). The maximum NWABW 694 
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contribution in the west is consistent with what was reported in previous studies on NWABW 695 

flowing equatorward from the Labrador basin with DWBC along the western margin of the North 696 

Atlantic (Fieux, 2010). However, the significant NWABW contribution east of the MAR (up to ~ 697 

20%) is unexpected or at least unreported so far. This water mass, which is formed in the Labrador 698 

and Irminger Basins, is too dense to cross the MAR through the Charlie-Gibbs Fracture Zone and 699 

was therefore never observed east of the MAR in the North Atlantic Subpolar Gyre. Flowing 700 

southward from there, the first passage sufficiently deep for the NWABW to cross the MAR is the 701 

Kane fracture zone, which is localized at 24 °N (just north of the JC150 section at 22 °N, Fig. 1) 702 

with a sill depth of ~4350 m (Morozov et al., 2017). The next passage that is sufficiently deep is 703 

the Vema Fracture Zone with a sill depth of ~5000 m; however, it is located much further south 704 

(10–11 °N, Kastens et al., 1998). Therefore, our results suggest that NWABW enters the eastern 705 

Atlantic through the Kane fracture zone. This eastern trajectory is confirmed by the LPTE results, 706 

which indicates particles originating directly from the eastern part of the Subpolar North Atlantic 707 

Gyre east of the MAR at 4000 m (Fig. 4p). We could not find any previous study describing this 708 

aspect.  709 

Note that our results about the localization of NEADW above NWABW contradicts with those of 710 

the GA03 OMPA, which found DSOW (that significantly contributes to the formation of 711 

NWABW) lying above ISOW (that significantly contributes to the formation of NEADW) 712 

(Jenkins et al., 2015). Our results confirm that NWABW (including DSOW) lies below NEADW 713 

(including ISOW) in the subtropical North Atlantic. In addition, our results are consistent in terms 714 

of the densities of NWABW and DSOW being higher than those of NEADW and ISOW, 715 

respectively. It is generally consistent with the current understanding of deep water mass dynamics 716 

in the North Atlantic as well (Fieux, 2010; Lacan & Jeandel, 2005; Middag et al., 2015; Swift, 717 
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1984).  718 

Deeper than 3000 m, the AABW contribution exceeds 15% across the section. West of the MAR, 719 

AABW attains its maximum contribution (> 35%) from 5000 m to the bottom. East of the MAR, 720 

the AABW contribution stays relatively high (> 20%) at a depth of over 3500 m. This AABW 721 

contribution to bottom waters of the section and across the MAR is consistent with the findings 722 

reported in previous studies, which describe AABW as the densest water in the majority of the 723 

Atlantic, moving northward from its formation zone and crossing the MAR at 11 °N through the 724 

Vema fracture zone (van Aken, 2007; McCartney, 1992; Talley et al., 2011). This AABW 725 

contribution is also consistent with the GA03 OMPA study, in which a contribution of AABW is 726 

observed across the MAR in the deepest parts of both the western and eastern basins (Jenkins et 727 

al., 2015). 728 

 729 

4 Conclusions 730 

Based on i) the hydrographic data (, S, concentrations of O2, NO3
-, PO4

3-, and Si(OH)4), ii) an 731 

eOMPA, and iii) an LPTE conducted in an eddy-resolving ocean circulation model, a water mass 732 

analysis has been presented for the 2017 JC150 GEOTRACES process study (GApr08) in the 733 

subtropical North Atlantic along 22 °N.  734 

This is the first time to the best of our knowledge that a water mass analysis combined an eOMPA 735 

with an LPTE. This approach demonstrated several advantages: 736 

- In addition to a thorough literature review and a meticulous analysis of the hydrographic data, 737 

the LPTE helped select the eOMPA end-members. This is important, because the eOMPA results 738 

are very sensitive to end-member choice. This meticulous end-member’s choice enabled the 739 
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eOMPA to reproduce the observations (small residuals) and provide results, which were in good 740 

agreement with the current knowledge (notably other Atlantic OMPA studies). 741 

- LPTE provided information about water mass trajectories between their formation areas and the 742 

studied location, which could not be achieved with a sole eOMPA. 743 

- Finally, LPTE was effective in tracing water mass origins in surface layers, where an eOMPA 744 

could not be performed due to the non-conservative hydrographic parameters. 745 

The following conclusions were drawn from our study. The upper 100 m is occupied by a shallow 746 

type of ESACW with impacts of the Amazon River plume in the west of the section. The WNACW 747 

contribution dominates the upper part of the transect (mainly between 100–500 m) with a 748 

contribution exceeding 90% at approximately 300 m. The 13 °C-ESACW contribution appears 749 

marginally deeper with a contribution exceeding 40% at approximately 600 m depth. The AAIW 750 

presents a maximum contribution of over 30% in the west of the MAR at ~700 m. At 751 

approximately the same depth, MW, whose high salinity signal is lost because of mixing with 752 

AAIW, attains its maximum contribution of over 40% in the east of the MAR. We found that 753 

MW’s contribution, although in small quantities (in the order of 5%), is required down to 3500 m. 754 

Just below AAIW, the UCDW maximum contribution of over 25% is observed at ~1000 m depth. 755 

The LSW contribution is present in the depth of 900–2000 m with a maximum of over 70% at 756 

~1500 m depth all across the section. Unpredictably, at this depth, we found through the LPTE 757 

that the LSW present in the eastern North Atlantic flows southward to the eastern subtropical 758 

Atlantic. We could not find previous works presenting this evidence below 40 °N. Below LSW, 759 

the NEADW contribution, which includes the ISOW contribution, exceeds 70% at approximately 760 

2500 m all across the section. Below NEADW, the NWABW maximum contribution of over 45% 761 

is attained at ~4500 m west of the MAR. The NWABW contribution is also found in the east of 762 
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the MAR in significant proportions (> 25 %). Crossing of the MAR by this water mass has not 763 

been investigated so far. As this water is too dense to cross the MAR in the Subpolar Gyre (through 764 

the Charlie-Gibbs Fracture Zone), we suggest that it crosses the MAR through the Kane fracture 765 

zone (sill depth of 4350 m) at ~24 °N. The occurrence of NWABW (including DSOW) below 766 

NEADW (including ISOW) is consistent with the current knowledge about these water masses 767 

and notably their densities. This contradicts a recent OMPA result obtained in a nearby area, where 768 

ISOW was found below DSOW (GA03, Jenkins et al., 2015). The deeper water mass contributing 769 

to our section is AABW with a maximum contribution of over 35% deeper than 5000 m in the 770 

west of the MAR.  771 

These results will be useful to interpret the biogeochemical datasets from the subtropical North 772 

Atlantic, notably those with respect to trace elements and isotope distributions (which can be 773 

facilitated by the end-member choices at GEOTRACES stations).  774 
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