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Abstract: A critical driver of the ocean carbon cycle is the downward flux of sinking organic 
particles, which acts to lower the atmospheric CO2 concentration. This downward flux is reduced 
by over 70% in the mesopelagic zone (100-1000 m), but this loss cannot be fully accounted for 
by current measurements. For decades, it has been hypothesized that the missing loss could be 
explained by the fragmentation of large aggregates into small particles, although data to test this 15 
hypothesis have been lacking. Here, using robotic observations, we quantified total mesopelagic 
fragmentation during 34 high-flux events across multiple ocean regions and found that 
fragmentation accounted for 49±22% of the observed flux loss. Therefore, fragmentation may be 
the most important process controlling the sequestration of sinking organic carbon. 

One Sentence Summary: Robotic measurements show that a previously unquantified process – 20 
particle fragmentation – exerts a major control on ocean CO2 storage.  

Main Text: Large organic particles (>100 µm) sinking through the ocean’s mesopelagic zone 
(100-1000 m) play a critical role in regulating the global carbon cycle. These particles are part of 
the “biological carbon pump”, which transfers an estimated 5-12 Pg C per year (1–3) from the 
sunlit ocean and sequesters 15-30% of this carbon for centuries to millennia in the deep ocean 25 
(4–6). The organic carbon that is sequestered directly impacts atmospheric CO2 concentrations 
(7). Sinking organic carbon is also a primary source of energy for ocean ecosystems in and 
below the mesopelagic zone and essential to the ecosystem services they provide (8, 9).  

Despite its fundamental importance, we still lack a quantitative, mechanistic 
understanding of key parts of the biological carbon pump. In particular, we poorly understand the 30 
subsurface loss processes that determine the depth at which sinking organic carbon is 
remineralized to CO2. This depth affects, in turn, long-term atmospheric CO2 sequestration (7). 
Measurements of sinking particle flux at different depths via underwater sediment traps, 
radioactive particle tracers, and underwater cameras indicate that on average approximately 70-
85% of sinking carbon flux is lost in the mesopelagic (4–6). However, direct consumption of 35 
fast-sinking particles, either by attached bacteria (10–12) or by zooplankton (13) appears to 
explain less than half of this observed flux attenuation. The remaining ≥50% of the observed 
mesopelagic flux attenuation might be explained by the fragmentation into smaller, slower-
sinking particles (12). This would be consistent with the observed seasonal buildup of small 
particles in the mesopelagic zone (14) and metabolic activities of free-living bacteria that 40 
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consume such particles (13). Fragmentation rates have been estimated more directly, in both the 
laboratory and the upper ocean, from changes in particle size and attributed to several 
mechanisms. Microbial degradation has been shown to fragment marine particles in the 
laboratory (15, 16), marine particle fragmentation by zooplankton feeding has been observed 
both in the laboratory (17) and in the upper ocean (18), and fragmentation due to ocean 5 
turbulence has been proposed to explain patterns of particle size in the mixed layer (19, 20). In 
the mesopelagic zone, however, similar studies have not been practical. As a consequence, the 
hypothesis that fragmentation can reconcile existing measurements of the mesopelagic carbon 
budget has not been rigorously tested. To address this gap, we have estimated fragmentation 
rates at broad scale by simultaneously tracking changes in large (21) and small (14) mesopelagic 10 
particle concentrations using optical data collected by Biogeochemical-Argo floats.  

We analyzed data from 25 floats deployed across the subpolar North Atlantic and the 
Atlantic and Indian sectors of the Southern Ocean between 2013 and 2016 (Fig. 1). All floats 
carried sensors for particulate optical backscattering (bbp), a proxy for particulate mass 
concentration (22), and chlorophyll a fluorescence (F), a proxy for live phytoplankton biomass 15 
(23) (See Table S1 for abbreviations used in this manuscript). Floats profiled to 1000 m with 
temporal and vertical resolutions of 2-3 days and 1 m, respectively, during spring/summer 
phytoplankton blooms. F and bbp were each divided into three components (Fig. S1) as described 
in (24): deep sensor blanks, including a background of small refractory particles (bbr and Fr); 
small, labile backscattering (bbs) and fluorescing (Fs) particles; and large, fast-sinking 20 
backscattering (bbl) and fluorescing (Fl) particles. The division between small and large 
corresponds roughly to a particle diameter of 100 µm for bbs vs bbl and a particle chlorophyll 
content of 60 pg for Fs vs Fl (24). We attribute Fl primarily to live phytoplankton aggregates; Fl 
represents a subset of bbl, which additionally includes fecal and detrital matter (21). Between 
May 2013 and February 2018, we identified 34 pulses of bbl and/or Fl in the mesopelagic that 25 
were associated with surface phytoplankton blooms and were clearly distinguishable from pre-
bloom background concentrations. Bulk large-particle sinking velocity was estimated for each 
large-particle pulse (e.g. Fig. S2) from the timing of peak concentration vs. depth (24). Mean 
sinking velocities (and 95% confidence intervals) across all pulses were 74 (58-100) m d-1 for 
large backscattering particles and 98 (79-129) m d-1 for large fluorescing particles. 30 

We observed close coupling between large- and small-particle concentrations during 
these flux pulses (e.g. Fig. 2). Small-particle concentrations increased rapidly during periods of 
peak large-particle concentration (Fig. 2; solid black lines) at all depths below 200 m, peaking 
slightly later (e.g. Fig. 2, left column: peak Fs lags peak Fl by ~2 d, regardless of depth). This 
coupling provides strong evidence that large-particle fragmentation drives the observed 35 
accumulation of small particles in the mesopelagic, both for large particles in general (bbl) and 
phytoplankton aggregates in particular (Fl).  

We quantified specific fragmentation rates during each sinking pulse by tracking these 
changes in the concentrations of large and small particles as a function of depth and time. Full 
computations, assumptions, and uncertainty budgets (24) are shown in (Figs. S3-S11), along with 40 
alternative calculations supporting key methodological assumptions (Figs. S11-S13). Mean 
fragmentation rate profiles across all pulses varied with depth and particle type from 0.03 d-1 to 
0.27 d-1 (Fig. 3). Although wide uncertainty bounds prevent firm conclusions, the patterns in 
these rates offer preliminary indications of possible fragmentation mechanisms. First, live 
phytoplankton aggregates (Fl) fragmented at higher rates than large sinking particles in general 45 



Submitted Manuscript: Confidential 

3 
 

(bbl) at all depths in the mesopelagic zone (Fig. 3). Fresh phytoplankton aggregates therefore 
appear either more fragile than other large sinking particles and/or subject to higher local shear. 
The latter might result from selective feeding on fresh material by zooplankton. Second, specific 
fragmentation rates decreased with depth (Fig. 3). This depth dependency could result from 
passive breakup of more fragile particles closer to the surface. It may also result from higher 5 
zooplankton activity closer to the surface, where we expect food to be more abundant and more 
nutritious. On average, fragmentation accounted for close to 50% of the observed loss rates of 
large particles in general and 30-60% of large fluorescing particle loss (Fig. 3, lower panels) at 
all depths between 250 and 950 m.  

We also found regional differences in specific fragmentation rates. When calculated 10 
using the same parameterizations (24), large-particle (bbl) specific fragmentation rates were 
significantly higher in the Southern Ocean than in the North Atlantic, between 250 m and 600 m 
(Fig. 4, left panel). On the other hand, fragmentation of fresh phytoplankton aggregates (Fl) was 
not different in the two regions (Fig. 4, right panel). Further differences in bbl fragmentation were 
observed between sub-regions of the Southern Ocean (see Table S2). Investigation of these 15 
regional differences may help to constrain the drivers of fragmentation.  

Our measurements provide geographically-broad and quantitative support for the 
hypothesis that fragmentation exerts a major control on mesopelagic carbon flux (12), leading to 
two important implications. First, when added to previous estimates of large-particle 
consumption by zooplankton and bacteria (13), fragmentation can now fully explain the 20 
observed flux attenuation at high latitudes. These results therefore strengthen our mechanistic 
understanding of the biological carbon pump. Second, our results imply that fragmentation may 
be the single most important process in determining the depth at which fast-sinking organic 
carbon is remineralized. By extension, fragmentation appears to be an important regulator of 
atmospheric CO2 concentrations (7) and of the delivery of energy to deep-ocean ecosystems vs. 25 
its retention in mesopelagic ecosystems (25).  
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Fig. 1. Location of particle-flux pulses. Gray circles represent the 34 pulses analyzed in this 
study. Darker grays indicate overlapping circles. Magenta circles indicate example pulses shown 
in Fig. 2. The background is a global satellite climatology of surface chlorophyll concentration 5 
from MODIS-Aqua (2002-2017). 
  



Submitted Manuscript: Confidential 

8 
 

 
Fig. 2. Fragmentation of large particles generates small particles at depth. Large- and small-
particle measurements from example large-particle pulses from the North Atlantic (left panels) 
and Southern Ocean (right panels). Large particle fluorescence Fl (green circles) and large 
particle backscattering bbl (red circles), are shown above corresponding log10 small-particle 5 
fluorescence Fs (green) and backscattering bbs (red). Large particle measurements are plotted 
individually with higher values (darker colors) covering lower values. Thin black lines show 
mixed-layer depth, thick solid lines show linear least-squares fits of maximum large-particle 
concentration with depth, and dashed lines show ± 15 d window used for fragmentation 
calculations. Similar visualizations for all 34 plumes in this study can be found at seanoe.org 10 
(doi:10.17882/70484). 
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Fig. 3. Fragmentation contributes 50% of the observed flux attenuation. Upper panels show 
mean specific fragmentation rates of large particles bbl (red) and of large fluorescing particles Fl 
(green) across all large-particle pulses. Lower panels show the mean fraction of bbl flux 
attenuation (red) and Fl flux attenuation (green) explained by this fragmentation. Pale shaded 5 
areas show 95% confidence intervals. Black curves and equations in upper panels show least-
squared exponential fits of specific fragmentation rates vs. depth.  
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Fig. 4. Regional differences in fragmentation. Comparison between mean specific 
fragmentation rates of large particles bbl (left) and of large fluorescing particles Fl (right) during 
North Atlantic (purple) and Southern Ocean (blue) phytoplankton blooms. Bold lines show 
means and shaded areas show two standard errors around the mean.  5 
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Materials and Methods 
Float dataset 

All data presented in this study were collected by autonomous profiling floats carrying 
sensors for chlorophyll a fluorescence (F) and particulate optical backscattering (bbp). All data 
are publicly available in near-real-time as part of the Biogeochemical Argo program. However, 
the data used here represent a small fraction of the total Biogeochemical Argo dataset, due to the 
particular requirements of our analyses. The calculations presented below of large-particle 
concentration, depth attenuation, and especially bulk sinking velocity require measurements of a 
pulse of large sinking particles that are statistically distinguishable from the background particle 
concentration at multiple depths in the mesopelagic. In practice, these large particles are rare 
relative to the volume sampled by the sensor, and high vertical resolution (~1 m or higher) 
measurements are required in order to obtain useful, depth-resolved concentrations from a single 
profile. In addition, typical sinking velocities (50-100 m d-1) require temporal frequencies of <5 d 
in order to sample a sinking pulse multiple times in the upper mesopelagic, where concentrations 
are more likely to be high enough to constrain sinking velocity measurements. Most 
Biogeochemical-Argo floats deployed to date profile at 5-10 d intervals and with ≥10 m 
resolution in the mesopelagic. For this reason, we limited our analysis to data from PROVOR 
floats whose sampling resolution we modified specifically for resolving pulses of large, sinking 
particles. These floats permit dynamic control of key sampling parameters. For the purpose of 
this study, we actively monitored all PROVOR floats deployed in the North Atlantic subpolar 
gyre and Southern Ocean between 2013 and 2018 and, during each spring/summer 
phytoplankton bloom we increased their vertical resolution from 10 m to 1 m and temporal 
resolution from 5-10 d to 2-3 d. High resolution was maintained until we visually confirmed that 
any associated sinking particle pulse had reached 1000 m. Starting in 2014 we extended high-
resolution data at least one month after each pulse in order to better constrain sinking velocities. 
Excluding obvious sensor failures and/or biofouling, we obtained 110 spring/summer seasons of 
data from 48 PROVOR floats in the North Atlantic and Southern Ocean during the study period. 
From these, we visually identified 34 clear, brief pulses of large particles (see signal partitioning 
in next section) that reached the lower mesopelagic (>500 m). These 34 pulses were used for the 
fragmentation estimates in this study. These pulses (see Fig. 1 of main text and Table S2) cover 
primarily the subpolar North Atlantic and the Indian sector of the Southern Ocean north of 52° S 
during the years 2013-2017. Our quantitative fragmentation results therefore apply primarily to 
these regions, although we might expect to find similar results in other high-latitude open-ocean 
blooms. The raw data for these floats can be obtained from the Argo Global Data Assembly 
Centers in Brest France (ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis) and Monterey, California 
(ftp://usgodae.org/pub/outgoing/argo/dac/coriolis) in subfolders named corresponding to the 
WMO numbers of individual floats given in Table S2. We have also separately published the 
intermediate (binned) data products from the 34 pulses used in this study along with many of the 
data processing visualizations presented below, but repeated for all 34 plumes (26). 
 
Partitioning of bbp and F 

We measured Chlorophyll a fluorescence F and the volume scattering function (at ~124° 
and 700 nm wavelength) using factory-calibrated WET Labs ECO sensors. These sensors also 
measured dissolved organic matter fluorescence (FDOM), used here only to aid data quality 
control (see below). The volume scattering function was converted to the particulate 
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backscattering coefficient bbp by subtracting an estimate of the scattering due to seawater (27) 
and multiplying by 2πχ, where χ=1.077 (28).  

We partitioned bbp into three components (see Fig. S1): 
 

!!" = !!# + !!$ + !!% , (1) 
 
where bbl is the optical backscattering coefficient due to “large” particles, bbs is the optical 
backscattering coefficient due to small, labile particles, and bbr is a deep blank that includes small 
refractory particles (see Table S1 for a list of abbreviations). The fraction bbl was separated from 
bbsr (the sum of bbs and bbr; see Fig. S1, red line) by applying an 11-point running minimum filter 
followed by an 11-point running maximum filter (21) to vertical bbp profiles (see Fig. S1 insets, 
yellow lines). This filter removes positive spikes due to large individual particles that are rare 
relative to the sample volume of ~10 ml (taking into account ~10 cm of movement during the 
sensors’ 1 s integration time). The residual “spikes” (difference between unfiltered and filtered 
data) represent bbl plus a background of instrument noise. We quantified this instrument noise 
component for each sensor by averaging all residual spikes below 300 m from each profile into 50 
m vertical bins, pooling all bins from each float and, removing all bins higher than twice the 
median, and then calculating the median a second time. This instrument noise component can be 
thought of as a “blank” for our spike signal, and should not be included in our bbl estimate. We 
therefore added this median blank to the filtered profiles to estimate bbsr (Fig. S1; red line). We 
then calculated bbl as the difference between total bbp (Fig. S1; black line) and bbsr. The minimum, 
mean, and maximum bbp “spike blanks” across all sensors were 0.023, 0.039, and 0.062 km-1 (note 
the different units), implying that spikes smaller than this level cannot be distinguished from 
instrument noise and therefore do not contribute to bbl (but instead contribute to bbs) Assuming a 
backscattering efficiency of 0.024 and a motion-corrected sample volume of 10 ml, these 
thresholds correspond very roughly to diameters of 98, 128, and 160 µm (29). Then, for each 
period of interest (~1 month surrounding a large-particle pulse), we estimated bbr as the 25th 
percentile of bbsr from 850-900 m (Fig. S1; blue line). Assuming that bbr is constant in both depth 
and time over our period of interest, we subtracted bbr from bbsr to obtain bbs, the backscattering 
due to small, labile particles (Fig. S1; pink shaded region). The same method was used to partition 
F into Fl, Fs, and Fr (Fig. S1, right panel). Fl spike blanks ranged from 0.006 to 0.012 mg Chl m-

3, roughly equivalent to particle chlorophyll contents of 55-124 pg Chl, given the 10 ml sample 
volume. Thus, our bbl and Fl signals, although uncalibrated, are estimated for reference to roughly 
correspond to particles with diameter >100 µm and chlorophyll content >60 pg, respectively, while 
our bbs and Fs signals correspond to scattering or fluorescence by particles <100 µm in diameter or 
containing <60 pg Chl. Note that both bbr and Fr include any error in factory dark calibration as 
well as any signal from refractory material. These refractory pools are treated as blanks and not 
used further in this study, but for reference mean bbr and Fr (± standard deviation) for the 
spring/summer bloom periods analyzed were (1.9±0.6)x10-4 m-1 and 0.02±0.02 mg m-3, 
respectively.  

Occasionally, we observed very large spikes in bbp (bbl > 0.008 m-1) and/or spikes in FDOM 
measured by the same ECO sensor. Again, assuming backscattering efficiency of 0.024 (29), bbl 
> 0.008 m-1 corresponds approximately to a diameter of >2 mm. These spikes occurred primarily 
in discrete layers near 300 m at noon and near the surface at midnight, strongly suggesting that 
they are caused by live zooplankton or small nekton that are capable of diel vertical migration. 
We therefore removed all bbp data from within 25 m of such spikes from the analysis. FDOM 
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spikes were identified by subtracting an 11-point median filter to isolate the high-frequency 
signal. These spikes were identified as high-frequency values exceeding twice the difference 
between the 10th and 90th percentile for each float. Note that the removal of the largest bbl spikes 
could potentially cause an under-estimate of sinking particle concentration (and flux) by 
excluding the very largest (and potentially fastest) sinking particles. If some of these particles 
fragment into bbl or bbs, they could introduce bias in our fragmentation calculations. We therefore 
test the impact of removing very large bbp spikes on our results in the sections below and find 
negligible impact for this dataset.  
 
Processing of large-particle signals 

We refer to the method for estimating the fragmentation rates presented in the main text as 
Method 1A. Unless stated otherwise, all methods described in this and the following sections 
refer to Method 1A. To estimate large-particle concentrations as well as large-particle loss and 
fragmentation rates, bbl and Fl were processed via a series of steps detailed in this subsection.  
We first used large-particle signals bbl and Fl to identify pulses of sinking matter and calculate 
the associated bulk sinking speeds, wbbl and wFl. We then binned and smoothed bbl and Fl and 
calculated their loss rates with respect to depth and time.  

We identified 34 pulses of backscattering spikes (bbl) and/or F spikes (Fl) associated with 
spring or summer blooms in the North Atlantic and Southern Ocean (e.g. Fig. S2, or Fig. 2 of the 
main text; full list in Table 2). To determine when particle flux peaked at each depth, we visually 
defined the rough temporal boundaries of each event (e.g. Fig. S2; vertical gray lines) and fit a 
Gaussian function (at 50 m intervals above 250 m, and 100 m intervals below 250 m due to 
lower particle concentration) to each large-particle timeseries within these boundaries and below 
the mixed layer (Fig. S2, black circles and horizontal lines). The width (standard deviation) of 
the Gaussian function was constrained between 3.5 and 14 days for Fl fits and between 7 and 14 
days for bbl fits, and the least-squared fit was optimized using the trust-region method. The center 
of the sinking pulse within the mesopelagic was then determined using a linear regression (Fig. 
S2, diagonal black line) between the midpoint depths (independent variable) and the timing of 
the maximum of each Gaussian fit (dependent variable; see Fig. S2, black circles), weighted by 
the inverse square of its 95% confidence interval (see Fig. S2, horizontal black lines). Overall, 
slopes (inverse sinking velocities) ranged from -2 to 3.7 d m-1. Note that negative slopes are not 
physically meaningful, but can result from uncertainty in the fit. Removing only negative fits 
could introduce a bias in our calculation of mean slope. To reduce error from poor fits without 
introducing such bias, we only retained slopes with 95% confidence intervals narrower than 
±0.015 d m-1. This filtering reduced the initial 34 pulses to 18 high-precision fits of bbl and 25 of 
Fl, each spanning multiple regions of both the North Atlantic and Southern Oceans. See Table S2 
for individual inverse velocity estimates and regions. The mean slopes (± 2 standard errors) of 
these high-precision linear regressions across all large-particle pulses are 0.0136±0.0036 d m-1 
for bbl and 0.0102±0.0025 d m-1 for Fl, corresponding to mean sinking velocities (and 95% 
confidence intervals) of %&!!# = 74 (58-100) m d-1 and %&&# = 98 (79-129) m d-1. Given the broad 
and overlapping confidence intervals, the difference between %&!!# and %&&# is not statistically 
significant, so it could simply be a result of uncertainty inherent in our calculations. On the other 
hand, our results may indicate that bbl contains a substantial fraction of detrital aggregates that 
sink slightly slower than fresh phytoplankton aggregates. Note also that our decision to remove 
very large bbp spikes (bbl > 0.008 m-1) might remove not only zooplankton (see previous 
subsection), but also very large, fast-sinking particles, potentially biasing our calculation of %&!!#. 
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We repeated the above calculations without the very large spike removal step and the difference 
was minimal: %&!!# = 78 (59-113) m d-1, indicating that this quality control (QC) step did not 
substantially bias these results. Separately, we repeated our mean sinking velocity calculations 
including all 34 plumes for both %&!!# and %&&# and obtained estimates of 74 (57-104) m d-1 and 
125 (90-206) m d-1, respectively. Again, the impact of this QC step on %&!!# was minimal. The 
28% increase in %&&# when the poorest fits are included could indicate moderate low bias in our 
%&&# estimate, but we think it is more likely that the low-quality fits are biased high, since a type-I 
linear regression on random “noise” should yield a slope of zero (equivalent to infinite sinking 
speed). In any case, neither of these tests yielded estimates that fell outside of the confidence 
intervals of our fully QCed estimates. The potential effects of this sinking speed uncertainty on 
our fragmentation estimates is traced in the error propagation exercise below.  

Our calculations of fragmentation rate require estimates of both large-particle 
concentrations (bbl and Fl) and the net changes in the concentrations of these particles (dbbl/dt 
and dFl/dt) as they sink (see Eq. 5). To reliably calculate these derivatives from the noisy large-
particle measurements, we binned and smoothed the large-particle data as described below. 
Large-particle concentrations were first averaged into 6-day, 50-m bins, with so-called 
Lagrangian, “pulse-following” temporal boundaries centered around each pulse’s linear sinking 
velocity fit (see Fig. S3 for bin edge visualization). The Lagrangian bin boundaries simplify 
calculation of the net loss rate of large particles. For each pulse, we calculated five temporal bins 
spanning ±15 days from the maximum of the large-particle pulse and 14 vertical bins spanning 
from 250 to 950 m. Although floats profiled to 1000 m, the bottom (beginning) 50 meters of 
each profile were excluded from further analysis because they often contained unrealistically 
high spikes, which we attribute to material that had accumulated on the top of the float during 
drift mode. The top 250 m were not used due to higher concentrations of large particles, which 
can prevent our large/small-particle filter from establishing a baseline free of large particles (21). 
The profiling interval during blooms was usually 2-3 days and occasionally 5 days, so temporal 
bins of 6 days ensured at least one, usually 2-3 profiles were available per bin. The vertical 
resolution during surface phytoplankton blooms was 1 m, so at least 50 and usually 100-150 
measurements were available per 50 m, 6 d bin, equivalent to 0.5 – 1.5 L, given the 10 ml sample 
volume. Again, the exclusion of very large bbp spikes could potentially cause a low bias in our bbl 
estimates, impacting further calculations, so we repeated the bin averaging process with and 
without the removal of (bbl > 0.008 m-1). Inclusion of these data only increased our bbl signals by 
an average of 1.6%, so the overall impact was negligible. Nevertheless, these occasional spikes 
did introduce “noise” in a few individual plume calculations, so we still chose to remove them. 

To further reduce noise, for Method 1A we smoothed the large-particle data using a so-
called “Martin curve” power law (4) of the form  
 

!!#(() = !!#_()) ∗ + *
())	,

,!
, (2) 

 
where b represents the strength of the particle attenuation with depth, bbl_100 represents bbl at 100 
m and the depth z is in meters. An analogous equation was used to smooth Fl as well. Vertical 
profiles of sinking particle flux below 100 m depth have been repeatedly found to approximate 
power laws throughout the ocean (30), suggesting that this smoothing method can reduce noise 
in our bbl (and Fl) profiles without introducing substantial biases at any given depth. We verified 
the appropriateness of the power-law fit for our dataset by averaging binned bbl (and Fl) profiles 
from all pulses into a single profile and fitting Eq. 2 between 250 and 950 m. These equations fit 
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the mean values within two standard errors at every depth (See Fig. S4), supporting this method 
of vertical smoothing within the depth bounds of the study. The influence of this smoothing step 
on our mean fragmentation profile is further explored below alongside other uncertainties (see 
Method 1B).  

To avoid over-fitting Eq. 2, we calculated a single value of b (attenuation of particles with 
depth) for each 30-day pulse but allowed bbl_100 (particle concentration) to vary among the five 6-
day temporal bins. The power law exponent b was obtained by averaging all five temporal bins 
into a single profile (e.g. Fig. S5, colored circles) and optimizing a non-linear least-squares fit of 
Eq. 2 to the mean bbl (or Fl) profile for the entire 30-day pulse (Fig. S5, black curves). The 
precision of the fit depends strongly on large-particle concentrations in the shallowest bins. Five 
of the 34 bbl(z) fits and 11 of the 34 Fl(z) fits yielded very low values at 275 m (bbl < 4*10-5 m-1 
or Fl < 0.005 mg m-3) and were excluded from further analysis for Method 1A. Method 1B (see 
below) included neither the power law smoothing nor this exclusion step. After this step, Method 
1A retained fits of both bbl(z) and Fl(z) (e.g. Fig. S5) for 18 pulses, fits of bbl(z) only for 11 
pulses, and fits of Fl(z) only for five pulses (see Table S2). For the retained large-particle pulses, 
bbl_100m and Fl_100m were calculated at each temporal bin as the slope of a type-I linear regression, 
forced through the origin, of dependent variable bbl (or Fl) vs. independent variable (z/100)-b 
using the fixed value of b determined above. Resultant smoothed profiles for each individual 
temporal bin (black) are shown together with unsmoothed binned profiles (colors) in Fig. S6.  

Depth-resolved estimates of the loss of large-particle concentration with depth (dbbl/dz and 
dFl/dz) were obtained from the derivative of the “Martin curve” power law with respect to depth. 
Because the “Lagrangian” temporal bin boundaries were chosen to follow the large-particle 
population as it sinks, the net loss of large particles with depth can be converted to the net loss 
rate with respect to time via Eq. 3, where %&!!# is the mean large-particle sinking speed: 
 

-!!"
-. = %&!!# ∗ -!!"-* . (3) 

 
Note that due to the Lagrangian frame of reference we adopted, Eq. 3 does not require 
sink/source terms to account for particles sinking in and out the water parcel under examination. 
Due to uncertainties in the individual estimates of %!!#, we calculated dbbl/dt (and similarly 
dFl/dt) for each temporal bin of each bloom using the single mean estimates of %&!!#= 74 m d-1 
and %&&#= 98 m d-1 calculated earlier in this subsection. Error in mean sinking velocities would 
lead to systematic bias in dbbl/dt and dFl/dt for all plumes, so sinking velocity was propagated to 
uncertainty bounds for dbbl/dt and dFl/dt by recalculating Eq. 3 using upper and lower 
uncertainty bounds of %&!!# and %&&# as input to Eq. 3 (See Table 1). Other sources of uncertainty 
in dbbl/dt and dFl/dt (e.g. uncertainty in power law fits) were assumed to be random and were not 
propagated, but contribute to inter-plume variability quantified below. Finally, the smoothed 
estimates of bbl, dbbl/dt, Fl, and dFl/dt were again averaged into 50 m vertical bins to yield 
smoothed, binned estimates (Fig. S7). 
 
Processing of small-particle signals 

Similar to the large-particle signals, we calculated the net change in small-particle 
concentration (dbbs/dt and dFs/dt) in a Lagrangian (particle-following) frame of reference, and 
we calculated mean concentrations and rates of change in the same 6 d, 50 m bins. However, the 
details of this part of the processing differed for two reasons. First, small-particle concentrations 
are inherently less noisy than large-particle concentrations (see Fig. S1), so it was not necessary 
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to smooth the data using a power law. Second, small particles sink more slowly, if at all, so their 
rates of change were calculated between profiles rather than between vertical bins. Small-particle 
signals were processed as follows. 

To define the Lagrangian frame of reference for small particles, we used a range of small-
particle sinking speeds %&$	of 0, 5, and 10 m d-1. Because bbs and Fs include single cells, which 
are expected to sink at ~1 m d-1 or slower (31), the upper limit of 10 m d-1 provides a 
conservative bound, allowing for a substantial fraction of small particles that sink 10-20 times 
faster than single cells. Each bbs and Fs profile was first interpolated to a 1 m grid in order to 
facilitate calculation of the rate of change. Then, for each pair of consecutive float profiles, a 
profile of dbbs/dt was calculated at time t (the midpoint between the two float profiles) as follows  

 
-!!#
-. (., () =

(
∆. +!!$ +. +

∆.
0 , ( + %&$

∆.
0 , − !!$ +. −

∆.
0 , ( − %&$

∆.
0 ,	,, (4) 

 
where Δt is the separation in time between two profiles. We calculated dFs/dt in the same way 
(replacing bbs with Fs in Eq. 4). In the simplest case of %&$	= 0, Eq. 4 is the difference between 
two consecutive bbs profiles, divided by Δt. For %&$	> 0, dbbs/dt at depth z is calculated using bbs 
from the previous profile at a shallower “starting” depth than z (z-%&$	* Δt /2) and bbs at a deeper 
“ending” depth than z (z+%&$	* Δt /2) from the following profile. Because particle concentrations 
typically decrease with depth, higher estimates of %&$	lead to lower (or more negative) estimates 
of dbbs/dt. This difference is most important at the top of the mesopelagic, where vertical 
gradients are the strongest. At each depth, we calculated a central estimate of dbbs/dt and dFs/dt 
based on %&$	= 5 m d-1 and upper and lower bounds based on %&$	of 10 and 0 m d-1, respectively, 
for uncertainty propagation. See Fig. S8 for example calculations of dbbs/dt and dFs/dt. Gridded 
profiles of both small-particle concentrations (bbs and Fs) and their rates of change (dbbs/dt and 
dFs/dt) were averaged in the same 6 d, 50 m bins as the large particles for further processing (see 
Fig. S9). 
 
Calculation of specific loss rates 

This subsection describes the calculation of specific loss rates of optical backscattering 
fractions bbl and bbs, but applies equally to fluorescence fractions Fl and Fs, substituting bb with F 
in all terms and equations below. Assuming no net production of particles in the mesopelagic, we 
can express dbbl/dt as a function of bbl and two specific loss-rate parameters: (1) the large-particle 
specific consumption rate mbbl that includes ingestion by larger organisms (less egestion) plus 
remineralization/dissolution by attached organisms, and (2) the specific fragmentation rate Dbbl 
that represents any physical (e.g., shear stress) or biological (e.g., sloppy feeding) processes that 
break large particles (bbl) into smaller ones (bbs):  

 
-!!"
-. ((, .) = −01!!#((, .) + 2!!#(z, t)5!!#((, .). (5) 

 
Note that Dbbl can in principle be negative, indicating net aggregation, for example if small 
particles stick to a large sinking particle, or if zooplankton consume small particles and produce 
large fecal pellets. Note also that zooplankton feeding in the surface and producing fecal pellets 
in the mesopelagic would violate our assumption of no net mesopelagic particle production and 
introduce a negative bias in our estimate of dbbl/dt. We further assumed that optical 
backscattering is conserved when a large particle fragments, so we could express changes in 
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small-particle backscattering dbbs/dt as a function of bbs, the small-particle specific consumption 
rate mbbs, and a source term due to net fragmentation of large particles, Dbblbbl:  
 

-!!#
-. ((, .) = −1!!$((, .)!!$((, .) + 2!!#((, .)!!#((, .). (6) 

 
The assumption that fragmentation has minimal effects on bulk optical properties is supported by 
measurements from both inorganic aggregates in the lab (29) and organic aggregates in situ (21), 
showing that F remains unchanged and bbp is either unchanged or slightly reduced by 
fragmentation. These findings are likely due to the low fractal dimension of natural marine 
aggregates, often below two (32–34), which implies that the total particle cross-sectional area 
concentration (the first-order driver of particulate optical properties) remains constant or even 
increases with fragmentation. Eqs. 5-6 contain three unknown parameters: mbbl, Dbbl and mbbs. In 
order to estimate all three parameters for each spatiotemporal bin, we introduced an additional 
term K, the ratio of mbbl to mbbs: 
 

1!!#((, .) = 1!!$((, .)6. (7) 
 
We assumed that the specific rates of consumption of large particles are greater than or equal to 
the specific rate of consumption of small particles, because we expect bbs to be either similarly 
labile to bbl (if freshly produced in the mesopelagic via fragmentation) or perhaps up to 4 times 
more refractory as “older” bbs may accumulate over the time period of the bloom. Therefore, we 
bounded K between 1 and 4, with a central estimate of 2. The last subsection provides 
independent estimates of mbbs that independently support the choice of this range. 

For each 6 d, 50 m bin, we calculated the three specific loss rates mbbs, mbbl, and Dbbl from 
the five quantities bbl, bbs, dbbl/dt, dbbs/dt, and K by solving Eqs. 5-7. In addition, we calculated 
the fraction of large-particle loss that is explained by fragmentation as D*bbl = Dbbl/(Dbbl +mbbl). 
Fig. S10 shows central estimates of all loss parameters (excluding mbbl and mFl, which are simply 
twice mbbs and mFs, respectively) for all spatiotemporal bins of the example large-particle pulse. 

For the uncertainty propagation explained in the next subsection, these calculations were 
repeated seven times: once using the central estimates of all five quantities, and then six 
additional times using the upper and lower bounds of dbbl/dt, dbbs/dt, or K along with the central 
estimates of the other two quantities. These bounds represent potential systematic biases 
stemming from uncertainty in our estimates of the mean values of %&!!#, %&$, and K (see Table 
S1).  
 
Mean fragmentation profiles and their uncertainties 

Below 500 m and before and after the central particle pulse, Fl was often negligible (see 
Fig. S7), leading to highly uncertain DFl fragmentation rates (see Fig. S10). We therefore 
excluded individual estimates of Fl and Fs loss rates where Fl < 0.005 mg m-3 (e.g. Fig. S10, 
black x’s) from further analysis (Method 1B, below, did not include this exclusion step). We then 
computed the median profile of each specific loss rate estimate (Dbbl, mbbl, mbbs, and D*bbl, and 
corresponding F loss parameters) across the five temporal bins to obtain a single profile of each 
specific loss rate for each sinking pulse that reduced the influence of single outliers. Each of 
these median profiles still contains uncertainty due to several bloom-specific factors, including 
error in Lagrangian rates of change due to horizontal advection and uncertainty in the power law 
fits to large-particle concentrations. To obtain a single, more robust estimate across all blooms in 
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all regions of the study, we calculated the mean of all pulse-specific profiles of specific loss rates 
(see Fig. 3 of main text), and we used two standard errors of this mean as an estimate of its 95% 
uncertainty bounds due to pulse-specific errors and variability (see Fig. S11, black dashed lines). 
We re-calculated these median and mean steps using each of the upper and lower bound 
fragmentation rates due to uncertainty in %&!!#, %&$, and K. Upper and lower bounds estimates of 
D and D* from each individual source of uncertainty are shown in Fig. S11. All uncertainty 
intervals were added quadratically to calculate combined uncertainty intervals for each estimate 
(Fig. S11, thin black lines). The largest source of uncertainty in the relative role of fragmentation 
D*bbl in the upper mesopelagic was K, the ratio of large- to small-particle specific consumption 
rate (Fig. S11; red lines). In the lower mesopelagic, %&$ (Fig. S11; blue lines) and inter-pulse 
variability (Fig. S11, black dashed lines) dominated D*bbl uncertainty. Inter-pulse variability was 
the dominant source of D*Fl uncertainty at nearly all depths. The large-particle sinking velocity 
%&# was a major source of uncertainty in specific fragmentation rates Dbbl and DFl, but not in the 
relative role of fragmentation in attenuating flux, because %&# affected our estimates of total large-
particle flux attenuation and fragmentation in roughly the same proportion. 

We also computed regional mean fragmentation profiles for the North Atlantic and 
Southern Ocean (See Fig. 4 of main text). In this case, we do not present complete uncertainty 
budgets, but show only two standard errors around the mean (inter-pulse variability), fixing K 
and w at our global central estimates of K=2, %&!!# = 74 m d-1, %&&# = 98 m d-1, and %&$ = 5 m d-1. 
This presentation highlights the statistically significant difference between North Atlantic and 
Southern Ocean mesopelagic particle dynamics. As long as K and w parameters are indeed 
constant between hemispheres, this result implies a significant difference in fragmentation rates. 

Method 1A (the primary method described above) includes several steps designed to reduce 
and quantify “noise” in our final mean fragmentation estimates. To address the possibility that 
these steps introduce bias in our mean profiles of D and D*, we recalculated D and D* profiles 
using a second, simpler methodology: “Method 1B” (Fig. S11, green symbols). We started 
Method 1B with the same bin-averaged estimates of bbl and Fl as Method 1A, but three 
processing steps were omitted. First, for Method 1B, bbl and Fl were not smoothed using a 
power-law fit. Second, blooms with low bbl and Fl in the shallowest bin were not excluded, so 
that all 34 blooms were included in both Dbbl and DFl calculations. Third, no bins with low values 
of Fl (Fl<0.005 mg m-3) were excluded. Instead, taking bb for example, all six-day 50 m bin-
averaged estimates of bbl from each depth (n=170, including five temporal bins for each plume) 
were averaged to obtain a single mean profile of bbl. A single mean dbbl(z)/dz profile was 
estimated as dbbl(z)/dz = (bbl(z+50)-bbl(z-50))/100[m] and converted to dbbl(z)/dt via Eq. 3, using 
our central estimate of wbbl. Individual six-day 50 m bin-averaged estimates of bbs and dbbs/dz 
were similarly averaged into single mean profiles for all 34 plumes. Mean Dbbl and mbbl profiles 
were then calculated as in Method 1A by solving Eqs. 5-7, using the same central estimates of K 
and wbbs (see Table S1). D*bbl was again calculated as Dbbl/(Dbbl + mbbl). The same Method-1B 
steps were repeated for F to calculate DFl and D*Fl. The resulting Method-1B mean Dbbl, D*bbl, 
DFl and D*Fl profiles (Fig. S11, green symbols) were more variable with depth but did not show 
clear, systematic differences from the central Method-1A estimates (thick black lines). This 
result suggests that our first-order Method-1A findings that high, depth-dependent fragmentation 
rates explain roughly half of mesopelagic flux attenuation are not artifacts of the smoothing or 
data removal steps designed to improve precision of our final estimates. Our Method 1A and 
Method-1B mean D*Fl results did show opposite trends with depth (Fig. S11, lower right panel), 
suggesting, along with the wide Method-1A confidence intervals, that the apparent increase in 
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D*Fl with depth is not a robust result, but the overall importance of D*Fl in the mesopelagic was 
unchanged. In addition, Method-1A Dbbl estimates exceeded Method-1B estimates (Fig. S11, 
upper left) at all depths below 700 m, suggesting that the power-law fit in Method 1A might have 
caused an over-estimate of all large-particle loss processes in the lower mesopelagic (see Fig. S4 
showing that mean large-particle attenuation with depth below 700 m may be over-estimated by 
a power law). However, the uncertainty in both methods prevent any strong conclusions on this 
subject.  
 
Alternative estimates of specific loss rates mbbs and mFs 

In order to check the assumptions of Method 1, including the likely range of K and our 
estimates of wl, we compared our Method 1 estimates of small-particle specific loss rates mbbs 
and mFs (derived from Eqs. 5-7) with estimates from two alternative methods not involving 
assumptions about either K or wl: Method 2, using early spring data, and Method 3, again using 
data from the sinking particle pulses. Mean values for all three results agree within uncertainty 
bounds (Fig. S12), supporting the validity of our methods and assumptions.   

For Method 2, we identified 12 events of early spring mixed-layer shoaling from three 
floats in the North Atlantic. In each event, rapid mixed-layer shoaling caused a mesopelagic 
particle population with elevated Fs to become isolated from surface production for ≥ 2 d. For a 
depth range that did not appear to be influenced by vertical mixing (i.e. low dbbs/dz), we 
calculated bbs(t) as described above and estimated mbbs by least squares fit of bbs(t) to Eq. 8, 
where t0 is the time of the first profile following stratification: 

 
!!$(.) = !!$(.)) exp0−1!!$(. − .))5. (8) 

 
Eq. 8 is a transformation of Eq. 6, with the fragmentation term removed due to negligible large-
particle concentrations in the early spring (confirmed by bbl and Fl measurements). Depth ranges 
were between 150 and 300 m. An example calculation is shown in Fig. S13. The same process 
was repeated for small-particle chlorophyll fluorescence (Fs) to estimate its specific loss rate mFs. 
Two of the 12 fits of mbbs were rejected because bbs was not significantly > 0. The remaining 10 
mbbs estimates and all 12 mFs estimates were significantly > 0. The mean mbbs and mFs of all 
events, plus or minus two standard errors were 0.102±0.028 d-1 and 0.180±0.048 d-1, respectively 
(Fig. S12; thick black lines). While these estimates correspond to a slightly earlier time period 
than our bloom calculations and contain no Southern Ocean data, they are valuable because they 
are simpler, involving no assumptions about large particles or fragmentation, so the approximate 
agreement with our Method 1 mbbs estimates (Fig. S12) at 275 m is reassuring. 

For Method 3, we used the same binned estimates of bbl and bbs, and dbbs/dt as Method 1 
(e.g. Figs. S7 and S9). However, we further assumed that mbbs and Dbbl were constant over a 30-
day time period (all five temporal bins) and 100 m depth range (two vertical bins). This 
assumption allowed us to simultaneously solve for mbbs and Dbbl using only Eq. 6 and multiple 
measurements of bbl and bbs, and dbbs/dt. Estimates of dbbl/dt (which in turn relies on %&!!#) and K 
were not needed, so that Method 3 provides a check on Method 1 parameterizations of %&!!# and 
K. However, the ability to simultaneously constrain mbbs and Dbbl via Eq. 6 (without Eq. 5 or Eq. 
7) relies on the dynamic range of the time-varying measurements of bbs, bbl, and dbbs/dt, so we 
chose only the six large-particle pulses accompanied by the highest maximum Fs observed 
between 500-550 m.  Pulses that occurred <1 month after deep mixing events (MLD>200 m) 
were excluded from this analysis to ensure that mesopelagic bbs (and Fs) originated from recent 
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sinking and/or fragmentation, rather than vertical mixing (as in Method 2), in case the specific 
loss rates of these two particle populations differed. 

At 100 m intervals, centered at 200-800 m, Method 3 estimates of mbbs and Dbbl were 
obtained by multiple linear regression, forced through the origin, of dbbs/dt as a function of 
Dbblbbl and –mbbsbbs (see Eq. 6), calculated using our central estimate of small-particle sinking 
velocity %&$ = 5 m d-1. Each regression contained ten data points (five temporal bins by two depth 
bins). The mean mbbs profiles ± 2 standard errors from all six blooms are shown as gray lines in 
Fig. S12 (left panel). Method 3 was repeated with fluorescence measurements to obtain mFs as 
well (Fig. S12, right panel). Method 1 estimates (Fig. S12, bold colored lines) fell within the 
bounds of Method 3 estimates of mbbs and mFs (gray lines) at all depths (Fig. S12). While 
uncertainty bounds are large, these results provide further confidence in Method 1, including our 
estimates of wl and our choice of K.  
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Fig. S1. Example partitioning of bbp and F profiles. Black lines show total bbp (left) or F 
(right) at native resolution. Yellow lines (insets) show low-pass “spike removal” filters. Red 
lines show bbrs (left) and Frs (right) the sum of refractory and small labile particle signals. The 
difference between red and yellow lines (insets) represents the deep “spike blank” for this bloom 
period, or the contribution of sensor noise to the high frequency “spike” signal. The difference 
between black and red lines is the large-particle signal bbl (left), or Fl (right). Blue lines show 
deep blanks bbr (left; well above zero presumably due to refractory material) and Fr (right; near 
zero, as refractory pool does not contain chlorophyll) for the bloom period. The difference 
between red and blue lines (shaded pink) is bbs (left) or Fs (right), the contribution of small, labile 
particles. Data are from float WMO6901523, June 2013 (Example pulse 1 in main text). 
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Fig. S2. Example calculation of bulk large-particle sinking velocities. Colored circles show 
raw large-particle (spike) signals bbl (red) and Fl (green), with higher values (larger spikes) 
plotted on top of lower values. Single dark circles against lighter background show the optical 
signals of single particles. The thin black line shows the mixed-layer depth. Vertical gray lines 
show initial, visual temporal boundaries of large-particle pulse. Open black circles show timing 
of the maximum of Gaussian fits to large-particle timeseries, and bold horizontal black lines 
show the 95% confidence interval of this timing. The diagonal bold black lines show the 
weighted linear fit to these maxima with respect to depth, used to calculate sinking velocities. 
Data are from float WMO6901523, 2013 (Example pulse 1 in main text). 
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Fig. S3. Bin averaging of large-particle signals. Upper panels show bbl and Fl, as in Fig. S2, 
but with bin boundaries overlaid (black grid). Lower panels show bin-averaged bbl and Fl. Data 
are from float WMO6901523, 2013 (Example pulse 1 in main text). A document containing 
similar plots for all 34 plumes can be found at seanoe.org (doi:10.17882/70484). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

15 
 

 

 
Fig. S4. Mean binned large-particle profiles from all particle plumes. Circles show means of 
all temporal bins from all 34 pulses, horizontal lines show two standard errors around the mean, 
and black curves and equations show least-squared power-law fits to the mean profiles. 
  



 
 

16 
 

 
Fig. S5. Example fits of “Martin curve” power laws to smooth large-particle profiles. Gray 
points show individual 6-day, 50 m bin averages of bbl (left) and Fl (right). Red and green circles 
show averages of the five temporal bins, and black curves show least-squared power law fits to 
these average profiles: bbl = 0.000201[m-1](z/100)-0.96 and Fl = 0.14[mg m-3](z/100)-1.7. Data are 
from float WMO6901523, 2013 (Example pulse 1 in main text). 
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Fig. S6. Smoothing of large-particle signals for each temporal bin. The timing of the 
temporal bin center, relative to time of pulse maximum (t), given above each panel, ranges from 
t-12 (top panels) to t+12 (bottom panels). Red and green stars show unsmoothed 6-day, 50 m 
binned bbl and Fl, respectively. Black curves power-laws (with exponent held constant) fit to 
each temporal bin. Data are from float WMO6901523, 2013 (Example pulse 1 in main text). 
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Fig. S7. Smoothed, binned estimates of large-particle concentrations and their specific net 
loss rates. Data are from float WMO6901523, 2013 (Example pulse 1 in main text). A document 
containing similar plots for all 34 plumes can be found at seanoe.org (doi:10.17882/70484). 
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Fig. S8. Calculation of dbbs/dt and dFs/dt. Top panels show small particle concentrations from 
two consecutive profiles, with paler colors indicating the earlier profiles. Bottom panels show 
derived estimates of dbbs/dt (left) and dFs/dt (right), bin averaged at 50 m intervals, with colors in 
lower panels indicating different assumed small-particle sinking velocities (%&$): 0, 5, and 10 m d-

1 in order of dark to light. Data are from float WMO6901523, June 2013 (Example pulse 1 in 
main text). 
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Fig. S9. Bin-averaged small-particle concentrations and their net rates of change. Net rates 
of change are calculated in a Lagrangian (particle-following) frame of reference, shown here 
assuming a central estimate of small-particle sinking speed, %&$	= 5 m d-1. Data are from float 
WMO6901523, 2013 (Example pulse 1 in main text). A document containing similar plots for all 
34 plumes can be found at seanoe.org (doi:10.17882/70484). 
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Fig. S10. Central estimates of mesopelagic particle loss terms in 6 d, 50 m bins for example 
bloom. Black x’s show bins that are excluded from analysis due to low Fl. Data are from float 
WMO6901523, 2013 (Example pulse 1 in main text). A document containing similar plots for all 
34 plumes can be found at seanoe.org (doi:10.17882/70484). 
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Fig. S11. Uncertainty budgets for mean fragmentation terms. Each panel shows central 
estimates of mean fragmentation terms across all pulses (thick black lines), along with 
uncertainty bounds due to pulse-specific error and variability (dashed black lines), mean small-
particle sinking velocity %&$	(blue), mean large-particle sinking velocity %&# (orange), and the ratio 
of large- to small-particle specific consumption rate K (red). The total uncertainty bounds (from 
the root sum of squares of all individual uncertainty intervals) is shaded in gray. Alternative 
“Method 1B” central mean fragmentation profiles, calculated without the vertical smoothing step 
and without removal of low bbl or Fl, are shown in green. 
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Fig. S12. Alternative calculations of small-particle specific loss rates. Colored lines show the 
primary estimates (Method 1A), including mean (dark lines) and confidence intervals (light 
shaded areas). Thick black lines show depth range and confidence intervals of the mean of early-
spring estimates (Method 2). Gray lines show confidence intervals of the mean of the alternative 
bloom-period estimates (Method 3).  
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Fig. S13. Example Method-2 calculation of mbbs and mFs. (A) Vertical profiles of bbrs showing 
progressive loss of a stranded small-particle population between 250 m and 600 m over five days 
following mixed-layer shoaling. Colors show time in days since the day of the first profile. 
Vertical black lines show estimates of deep “blank” bbr, and horizontal gray lines show depth 
window of mbbs calculations. (B) Timeseries of bbs in the 250-300 m window (blue) and least-
squared fit of exponential Eq. S8 (black curve). (C) Vertical profiles of Frs (colors and lines 
following panel A). (D) Timeseries of Fs in the 250-300 m window (blue) and least-squared fit of 
exponential Eq. S8 (black curve). Data in all panels are from float WMO6901647, 2015. 
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Table S1. Abbreviations used in this manuscript. 
Symbol Central Value  

(confidence 
range)† 

Units Description 

bbl  m-1 bbp due to large particles 
bbp  m-1 particulate optical backscattering coefficient 
bbr  m-1 bbp due to refractory particles (includes sensor blank) 
bbs  m-1 bbp due to small, labile particles 
bbrs  m-1 bbr + bbs 
Dbbl  d-1 specific loss rate of bbl due to fragmentation 
Dbbl*  – Fraction of total bbl loss due to fragmentation 
DFl  d-1 specific loss rate of Fl due to fragmentation 
DFl*  – Fraction of total Fl loss due to fragmentation 
F  mg Chl m-3 Chlorophyll a fluorescence (factory calibrated) 
Fl  mg Chl m-3 F due to large particles 
Fr  mg Chl m-3 F due to refractory particles (interpreted as sensor 

blank) 
Fs  mg Chl m-3 F due to small particles 
Frs  mg Chl m-3 Fr + Fs  
K 2 (1-4) – Ratio of mbbl/mbbs or mFl/mFs 
mbbs  d-1 specific loss rate of bbs 
mbbl  d-1 specific loss rate of bbl due to direct consumption 
mFs  d-1 specific loss rate of Fs 
mFl  d-1 specific loss rate of Fl due to direct consumption 
%&!!# 74 (58-100) m d-1 mean sinking velocity of large “marine snow” particles 
%&!!$  5 (0-10) m d-1 mean sinking velocity of small, labile particles 
%&&# 98 (79-129) m d-1 mean sinking velocity of chlorophyll within large 

particles 
%&&$ 5 (0-10) m d-1 mean sinking velocity of chlorophyll within small 

particles 
†Central Values only given for constant parameters used in fragmentation calculations 
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Table S2. Overview of large-particle pulses analyzed.  
See Table 1 for definition of terms in the column headings. Region abbreviations are for the Iceland Basin (ICB), Irminger Sea (IRS), Labrador Sea (LAS), other 
North Atlantic (NAT), Crozet Islands (CRO), East of Kerguelen Islands (KER_E), West of Kerguelen Islands (KER_W), and other Southern Ocean (SO). 
Example pulses (Fig. 2 of main text) are shown in bold font. 

Float 
WMO 

bbl pulse 
date region LAT LON wbbl

-1 wFl
-1

 

bbl power-
law  

Fl power-
law  

bbl  
275 m 

Fl  
275 m 

Dbbl  
275 m 

DFl  
275 m 

Dbbl
* 

275 m 
DFl

*
  

275 m 
Number   (°N) (°E) (d m-1) (d m-1) exponent exponent (m-1) (mg m-3) (d-1) (d-1)   
6901516 6-Jun-13 ICB 62.27 -21.96 0.019±0.012 0.012±0.003 -0.69±0.55 -2±1.3 9.10E-05 0.012 0.03 0.28 -0.15 0.33 
6901520 30-May-13 ICB 61.54 -24.41 - 0.021±0.013 -0.94±0.6 - 0.00013 0.0037 0.04 - 0.22 - 
6901647 3-Jun-15 ICB 59.14 -24.77 0.018±0.013 0.011±0.004 - -0.33±0.99 3.80E-05 0.0077 - -0.09 - -0.30 
6901647 8-Jun-17 ICB 63.44 -26.54 0.021±0.012 0.015±0.004 -0.74±0.82 -2.8±0.81 0.00018 0.027 0.06 0.54 0.23 0.52 
6901523 1-Jul-14 IRS 60.50 -33.66 0.008±0.01 - -0.47±0.52 - 0.0001 2.10E-07 0.08 - 0.58 - 
6901482 30-Jun-14 IRS 63.29 -33.31 0.008±0.01 - -0.31±0.67 - 8.70E-05 0.00097 0.06 - 0.47 - 
6901519 30-Jun-14 IRS 59.01 -33.19 0.012±0.009 - -0.24±0.56 -1.8±4.4 8.30E-05 0.0054 0.07 0.37 1.26 0.64 
6901523 15-Jun-13 LAS 57.44 -49.96 - 0.01±0.003 -0.96±0.77 -1.7±0.72 7.60E-05 0.025 0.11 0.30 0.41 0.28 
6901527 25-May-15 LAS 58.02 -49.24 0.009±0.006 0.009±0.002 - -2.2±0.85 2.60E-05 0.028 - 0.53 - 0.67 
6901486 22-May-15 LAS 58.47 -50.99 0.021±0.007 0.007±0.004 - -2.4±0.88 2.10E-05 0.037 - 0.60 - 0.69 
6901524 28-May-15 LAS 57.06 -43.18 - 0.01±0.011 - -3.7±0.52 2.70E-05 0.022 - 0.85 - 0.69 
6901527 3-Jul-16 LAS 57.33 -45.00 - 0.006±0.007 - -1.2±1.4 3.10E-05 0.0092 - 0.19 - 0.37 
6901525 14-May-14 NA 48.65 -43.71 0.006±0.008 0.006±0.007 -0.77±0.53 -1±0.51 6.10E-05 0.023 0.14 0.23 0.58 0.29 
6901516 16-Jun-14 NA 52.86 -34.83 0.006±0.005 0.005±0.003 -0.27±0.54 - 4.10E-05 0.0022 0.01 - 0.28 - 
6901575 10-Nov-15 CRO -44.06 49.68 - 0.019±0.008 -0.8±0.54 -1.5±0.87 5.30E-05 0.017 0.06 0.12 0.30 0.21 
6901493 10-Nov-15 CRO -44.06 49.65 0.026±0.015 0.016±0.01 -0.99±0.74 -2.1±0.67 6.20E-05 0.017 0.08 0.14 0.33 0.07 
6901583 27-Nov-15 CRO -44.14 53.20 0.017±0.009 0.002±0.003 -0.5±0.52 -0.72±0.84 5.50E-05 0.015 0.07 -0.13 0.33 -0.16 
6901578 14-Nov-16 CRO -45.61 63.61 - - -1.2±0.44 - 5.80E-05 0.0049 0.11 - 0.41 - 
6901490 5-Feb-15 KER_E -48.68 72.85 0.004±0.011 0.005±0.003 -1.9±0.69 -1.1±0.67 9.00E-05 0.011 0.34 0.36 0.60 0.64 
6901004 5-Feb-15 KER_E -48.71 72.77 -0.002±0.012 0.005±0.006 -1.7±1.5 -0.9±0.56 9.70E-05 0.0085 0.31 0.24 0.63 0.70 
6901583 2-Dec-16 KER_E -48.98 83.68 0.019±0.012 0.009±0.01 -0.73±0.5 -1.1±1.2 5.90E-05 0.0077 0.08 0.05 0.47 -0.06 
6902734 13-Dec-16 KER_E -49.12 73.39 - - -1.3±0.58 -1.6±0.4 8.80E-05 0.033 0.23 0.45 0.57 0.66 
6902738 11-Dec-16 KER_E -48.50 72.04 - 0.009±0.007 -1.2±0.58 -1.3±0.33 0.00011 0.056 0.23 0.32 0.69 0.84 
6902735 8-Dec-16 KER_W -52.67 68.28 - 0.003±0.009 -0.72±0.71 - 4.60E-05 0.0041 0.11 - 0.55 - 
6902739 10-Dec-16 KER_W -52.75 68.19 - 0.001±0.005 -1.3±0.42 -2.3±0.86 5.80E-05 0.0056 0.20 0.89 0.58 0.40 
6901574 11-Jan-16 KER_W -50.66 67.25 - 0.002±0.011 -2.2±1 - 7.20E-05 0.0031 0.34 - 0.54 - 
6901579 13-Feb-15 KER_W -51.78 67.49 - - -1.4±0.91 - 5.60E-05 0.0016 0.27 - 0.72 - 
6901574 9-Feb-15 KER_W -51.80 67.52 - - -1.2±0.54 - 6.20E-05 0.0017 0.21 - 0.69 - 
6901575 14-Dec-17 SO -46.64 108.43 - 0.019±0.006 -1.5±0.4 -2±1 9.40E-05 0.0065 0.18 1.55 0.40 0.66 
6901583 1-Jan-18 SO -48.87 116.81 - 0.014±0.014 -1.1±0.82 - 5.10E-05 0.0012 0.14 - 0.41 - 
6901578 24-Dec-17 SO -46.27 95.03 0.019±0.009 0.018±0.007 -1.2±0.53 -4.1±2.2 7.10E-05 0.0076 0.10 0.45 0.33 0.43 
6902737 20-Dec-17 SO -52.17 82.00 0.02±0.015 - -1.7±0.59 -1.4±0.38 0.00012 0.0065 0.15 0.19 0.31 0.43 
6902736 31-Dec-17 SO -52.46 96.61 - - -2.1±1.2 -4.6±1.9 0.00011 0.0055 0.26 0.98 0.47 0.64 
6901492 20-Dec-13 SO -41.96 10.34 0.014±0.014 0.019±0.007 -0.98±0.66 -1.2±1.2 4.80E-05 0.0087 0.12 0.03 0.38 0.40 
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