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Abstract The Pearl River Delta contains the world's largest urban area in both size and population. It
is a low-lying flood-prone coastal environment exposed to sea level rise (SLR) and extreme water levels
caused by typhoons. A Finite Volume Community Ocean Model implementation for the South China Sea
and the Pearl River Delta is used to understand how future SLR, tides, and typhoon storm surges will
interact and affect coastal inundation. The SLR signal and extreme surge levels provide the major
contributions to flooding; however, amplification of tides could exceed 0.5 m for 2.1 m SLR and should be
considered when planning future coastal defences. On the other hand, if typhoons like Hato or Mangkhut,
the latest and strongest ones hitting the area, were to happen in the future, a surge level reduction up to 0.5
m could be expected in coastal areas.

1. Introduction
China's Pearl River Delta (PRD), located in the Guangdong province in the southern part of China, has
experienced rapid population and economic growth since the 1980s. The PRD is an extensive river system
that combines three major tributaries of the Pearl River: the North, East, and West rivers. As well as the
delta itself, PRD refers to the urban agglomeration of nine cities (Guangzhou, Shenzhen, Zhuhai, Foshan,
Dongguan, Zhongshan, Jiangmen, Huizhou, and Zhaoqing) and China's special administrative regions of
Hong Kong and Macao (see Figure 1a for locations). With a growth rate of 4.5% per year, by 2010, the PRD
megacity had surpassed Tokyo as the world's largest urban area in both size and population (World Bank
et al., 2015)and the total number of inhabitants now exceeds 60 million. The PRD's GDP exceeds 1 trillion
U.S. dollars, which would place it in the ranking of the top 20 national economies worldwide (Guangdong
Statistical Bureau, 2017; International Monetary Fund, 2018).

The PRD is a low-lying coastal area, with much of its surface area less than 2 m above mean sea level
(MSL) (Syvitski et al., 2009; Wu et al., 2018). It is exposed to current and future sea level rise (SLR)
(He et al., 2014; Huang et al., 2004; Qu et al., 2018) and to extreme water levels generated by typhoons in
the Western Pacific and South China Sea (Li et al., 2018; Yang et al., 2015). There are other delta megacities
around the world facing similar challenges: for example, Kolkata and Dhaka (Ganges-Brahmaputra), Yan-
gon (Irrawaddy), Bangkok (Chao Phraya), Ho Chi Minh City (Mekong), Shangai (Yangtze), Alexandria and
Cairo (Nile) (Syvitski & Saito, 2007; Syvitski et al., 2009). Among those, Guangzhou, the largest city in the
PRD, is the world's most economically vulnerable city to rising sea levels, with 16% of its population living
within 0.5 m of present-day MSL. Estimated flood losses for Guangzhou exceed 13 billion U.S. dollars by
2050 in the scenario of a relative sea level increase of 0.6 m (including subsidence and SLR) and with adap-
tation to maintain present flood probability (Hallegatte et al., 2013). Shenzhen, the second largest city in
the PRD, is also high in the ranking, being the ninth city in the world in terms of present estimated annual
losses due to flooding, reaching the fourth place by 2050 (Hallegatte et al., 2013). Under the same 2050 sce-
nario, Hong Kong is also among the top 50 cities in terms of future flood losses, although these are projected
to be 100 times smaller than in Guangzhou (Hallegatte et al., 2013).

From the perspective of coastal flooding, there are various mechanisms, spanning a wide range of time
scales, that together define extreme water level events: (1) the long-term annual-to-decadal scale of SLR, (2)
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Figure 1. Total water level changes due to 0.5 and 2.1 m SLR: present average total water level during the dry season
(a) and during the wet season (d); change in average total water level with 0.5 m SLR during the dry season (b) and
during the wet season (e); change in average total water level with 2.1 m SLR during the dry season (c) and during the
wet season (f). The future change in average total water level is calculated as the difference between the future minus
the SLR imposed at the boundary and the present average future total water level.
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the annual and interannual variability of freshwater discharges due to seasonal monsoon climate, (3) the
daily scale of weather-related wave and surge events, and (4) the semidiurnal to diurnal scale of astronomical
tidal oscillations. SLR increases the frequency of storm surge-induced flooding, because it sets a higher water
level such that even low-to-moderate coastal surges become more likely to overtop existing coastal defences
(Arns et al., 2017; Vitousek et al., 2017; Wang et al., 2017). Thus, even if typhoons do not get stronger or more
frequent in the future (this is still much debated: Sobel et al., 2016; Stocker et al., 2013; Walsh et al., 2016),
major increases in future flood risk will still be driven by SLR (Rahmstorf, 2017). The cumulative impact
of more frequent flooding events due to SLR could be comparable to those events presently infrequent but
more extreme (Moftakhari et al., 2017).

As intermittent flooding is mainly a consequence of extreme water levels, rather than MSL, it is essential to
consider both regional trends in MSL and how those will interact with coastal processes. The presence of the
coast and shallow waters results in processes, such as tides, being considerably more complex than offshore,
which in turn result in a coastal modification of the larger-scale sea level variability (Woodworth et al.,
2019). Thus, MSL, storm surge, and tides cannot just be added together when planning coastal protection
measures as the size, depth, and width of estuaries and bays will strongly influence the tidal and storm surge
dynamics, and their interactions with SLR (Bilskie et al., 2014; 2016; Du et al., 2018; Familkhalili & Talke,
2016; Holleman & Stacey, 2014; Idier et al., 2019; Passeri et al., 2015). This makes necessary a site-specific
study to quantify the tide-surge-SLR interactions in the PRD. The questions to be answered in this paper are
as follows: (i) What intensification in extreme water levels can we expect in the PRD under future climate
conditions? (ii) What is the role played by SLR-tide-surge interactions in the coastal flooding patterns?

To answer those questions, we have built an FVCOM (Finite-Volume Community Ocean Model; Chen et al.,
2003) implementation for the South China Sea and PRD. The model has an unstructured grid that extends
from a coarse grid in the open ocean where tides and sea level changes are introduced, to an appropriate
high resolution (100 m) in the delta distributary channels (see the supporting information for the description
of the model setup and validation). In this study, we explore how the mean SLR signal coming from the
open ocean interacts with coastal processes in the PRD, and whether tidal range and mean high water also
increase with SLR. Additionally, we study how the surges generated by the two most recent and strongest
typhoons that impacted the PRD, Typhoon Hato (2017) and Typhoon Mangkhhut (2018), would change
under future sea level conditions.

2. Materials and Method
To explore the effect of SLR on the tidal dynamics, we chose to run the model for 1 month from the 15
December 1986 to the 15 January 1987 (the model was started 5 days earlier to allow for spin-up), including
the highest astronomical tide that occurred on the 1 January 1987. The future MSL increase is imposed only
along the model domain boundary, added to the tidal elevations (Egbert & Erofeeva, 2002, see the supporting
information). This method allows the SLR to propagate through the domain guided by the models' governing
equations (during spin-up), much like a tidal forcing without periodicity. With this dynamic approach the
increase in sea level is deterministically established in the model domain, whereas a static approach would
require to increase the baseline water levels everywhere in the model domain by the amount of SLR (Hagen
& Bacopoulos, 2012), that is, by introducing a new bathymetry. The tidal forcing is kept the same for the
present and future SLR scenarios.

In this work we model under four future SLR scenarios: 0.3, 0.5, 0.9, and 2.1 m. These correspond to the
median (50th percentile) and upper limit (95th percentile) by 2050 (0.3 and 0.5 m, respectively) and by 2100
(0.9 and 2.1 m, respectively) of the regional sea level projections for the “High-end” RCP 8.5 future climate
scenario, taken from Jackson and Jevrejeva (2016). The RCP8.5 scenario (Moss et al., 2010) is the “business
as usual” (high greenhouse gases emissions) future climate scenario. “High-end” means that the SLR projec-
tions include an increased ice-sheet contribution using the expert elicitation of Bamber and Aspinall (2013),
which leads to a global SLR higher than that of the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC AR5) (Church et al., 2013). Moreover, we consider here regional sea level projec-
tions, as changes in future sea level will not occur uniformly around the globe. Indeed, the PRD local upper
limit of 2.1 m is 30 cm higher than the global average by 2100 (1.8 m) (Jevrejeva et al., 2016). While the
choice of the four future SLR scenarios has been based on these assumptions, the model experiments do not
necessarily correspond to water levels for a particular MSL projection for a specific climate scenario or time
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horizon. The applicability of our results is much broader, for example, 0.3 m is the RCP 8.5 scenario in 2040
(95th percentile) and 0.5 m could equally apply to the RCP 4.5 scenario in 2060 (95th percentile) or in 2090
(50th percentile), while 0.9 m is the upper limit in 2100 for the RCP 4.5 scenario (Jackson & Jevrejeva, 2016).

Since the PRD shows a significant seasonal river discharge variation, 10 model runs have been performed
to explore the effects of SLR on tidal dynamics and how those are modulated by the seasonal river discharge
(see Experiments 1–10 in Table S1 in the supporting information); each of the future SLR scenarios have
been simulated for wet and dry seasonal conditions (Zhang et al., 2012).

To explore the effects of SLR on storm surge dynamics, we study the two most recent typhoons that impacted
the PRD. Since 1950 there have been a total of 16 typhoons that necessitated the issuance of the Hurricane
Signal No. 10 (the most severe warning) in Hong Kong. The latest have been Hato (2017) and Mangkhut
(2018). They are among the strongest typhoons to affect the coastal areas of the PRD over the last several
decades (Li et al., 2018). To reproduce these typhoon events, we forced the FVCOM PRD model with wind
velocity and air pressure calculated using the Holland parametric model (Holland, 1980; Holland et al.,
2010), which uses observed maximum wind speed and radius of maximum winds to calculate radial profiles
of sea level pressure and winds in a tropical cyclone. Observations were obtained from 3-hourly data pro-
vided by the International Best Track Archive for Climate Stewardship (IBTrACS) Version 4. This approach
was preferred to the usage of the ERA5 reanalysis, as we found that the peaks in wind velocity (and thus in
water levels) were underestimated using the latter (see Figure S5).

For both typhoons we ran 15 different model experiments (see Table S1) to explore the effect of the four SLR
scenarios. Since typhoons usually impact the PRD during the wet season, we do not consider the additional
modulation of the freshwater river discharge. Experiments 11–15 (for Hato) and 26–30 (for Mangkhut) allow
the study of tide, surge, and SLR interactions; in these experiments the model has been fully forced by
atmospheric forcing, tides, and SLR. Experiments 16–20 (for Hato) and 31–35 (for Mangkhut) allow the
study of tides and SLR interactions and are needed for the calculation of the surge; the model has been forced
by tides and SLR only at the model boundary. The surge can be calculated as the difference between the fully
forced run (Experiments 11–15 and 26–30) and the corresponding tide-only forced run (Experiments 16–20
and 31–35) for a given SLR. Experiments 21–25 (for Hato) and 35–40 (for Mangkhut) allow the study of the
surge and SLR interactions only (no tides); for these experiments the model has been forced by atmospheric
forcing and SLR at the model boundary.

3. Results
Our modeling show that SLR dynamically affect water levels in the PRD during different seasonal conditions
(Figures 1a and 1d) where the difference between wet and dry season is mainly seen in the western part of
the delta. The average water level is 1–3 m larger during the wet season in the West river (see Figure 1a for
location). This is due to the latter contributing 77% of the total Pearl River discharge and showing the larger
seasonal variation (Wu et al., 2016). Figures 1b and 1c and Figures 1e and 1f show the difference between
the future and the present average total water level minus the mean SLR imposed at the model boundaries
for 0.5 and 2.1 m SLR (see Figure S6 for 0.3 and 0.9 m SLR). A value of zero indicates that the average total
water level increases by the same amount as in the open ocean, a positive value means it is higher than the
externally imposed value, and a negative value means it is lower than the external value. During the dry
season, with 0.5 m SLR, the average total water level increase is 0.5 m everywhere in the PRD (Figure 1b),
while during the wet season, the influence of SLR is opposed by the larger river discharge in the western part
of delta (Figure 1e), where the mean SLR signal is halved. Similar behavior is observed with 2.1 m SLR, the
average total water level increases by 2.1 m everywhere in the delta during the dry season (Figure 1c), while
the effect is halved by the river discharge during the wet season in the western river branches (Figure 1f).
In this work we did not consider changes in the river discharge connected with future climate conditions.

We found that SLR can also intensify the severity of coastal flooding by introducing feedbacks on tides. The
tide in the PRD has a mixed semidiurnal character, with a spring tidal range and a mean higher high water
(MHHW) reaching 1.5 m; thus, it can be classified as a microtidal estuary (spring tidal range is defined as
twice the sum of the M2 and S2 amplitudes, while MHHW is defined here as the sum of M2, O1, and K1).
The tide comes from the South China Sea and propagates from the east toward the PRD, where the tidal
amplitude gradually increases. The maximum tidal range and amplitude occur in the upstream part of the
Humen Estuary (see Figure 1a for location), where Guanzhou is located (see Figures 2a and 2d). A 0.5 m
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Figure 2. Tidal amplitude changes due to 0.5 and 2.1 m SLR (wet season): (a) present spring tidal range and predicted
change with 0.5 m SLR (b) and with 2.1 m SLR (c); (d) present MHHW and predicted change with 0.5 m SLR (e) and
with 2.1 m SLR (f).
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Figure 3. Storm surge changes due to 0.5 and 2.1 m SLR: present maximum surge level during typhoon Hato (a) and
during typhoon Mangkhut (d); predicted change in the maximum surge level with 0.5 m SLR for Hato (b) and for
Mangkhut (e); predicted change with 2.1 m SLR for Hato (c) and for Mangkhut (f).

DE DOMINICIS ET AL. 6 of 11



Geophysical Research Letters 10.1029/2020GL087002

SLR leads to an amplification of the tides in the upstream river branches of 5–15 cm, predicted for both the
spring tidal range and the MHHW (see Figures 2b and 2e). With a SLR of 2.1 m, the amplification of the
tides exceeds 0.5 m in the upper part of the West river (see Figures 2c and 2f). That river branch, under
present conditions, shows a tidal range of about 0.5 m; thus, with 2.1 m SLR the tidal range will double, and
the same occurs for the MHHW. Results shown in Figure 2 were obtained by including the wet season river
discharge, as this can lead to more extreme changes. Indeed, we found that during the wet season, the larger
average total water level, and thus less bottom friction, leads to a larger (by a few cm) increase in spring tidal
range and MHHW in the central and western upper part of the delta (for the dry season results, see Figure
S7). In the very upper part of the eastern river branches, however, the increase in spring tidal range and
MHHW is larger during the dry season, as the river discharge is not suppressing the tidal dynamics there,
as happens during the wet season. Changes in tidal range and MHHW with 0.3 and 0.9 m SLR are shown in
the supporting information (Figures S8 and S9). With 0.3 m SLR, changes are visible only in the small river
branches and are less then 10 cm. With 0.9 m SLR, changes follow the same pattern as for 0.5 and 2.1 m
SLR, with intermediate values.

Lastly, we examined how SLR interacts with weather-related surge events (waves have not been considered
in this work) through the change in water depth (surge heights depend upon this and coastal geometry).
Our baseline model of storm surge generated by Typhoon Hato (Figure 3a) shows that the coastal cities of
Macao and Zhuhai experienced a storm surge exceeding 2 m, which agrees with observations; the maximum
storm surge recorded at the Zhuhai station was 2.79 m (Hong Kong Observatory, 2017). In Hong Kong the
modeled storm surge is about 1 m (Figure 3a), reproducing local observations (Hong Kong Observatory,
2017). With a 0.5 m SLR (Figure 3b), the attenuation of the surge of less than 0.2 m is visible close to the
Macao and Zhuhai coast, as well as on the opposite side of the river, where Shenzhen is located. With a 2.1 m
SLR (Figure 3c), the attenuation of the surge is visible in the whole Humen estuary; it reaches 0.2–0.6 m at
Macao, Zhuhai, and Shenzhen. In contrast, an increase of the surge is instead observed in the upper river
branches with SLR (Figure 3c).

Mangkhut shows a greater wind intensity than Hato but happened on a neap tide rather than a spring
tide. It induced a storm surge in Hong Kong of more than 2 m (Figure 3d), which agrees with observations
(see Figure S5) and with the total water levels being the highest ever recorded (Hong Kong Observatory,
2018). Record-breaking storm surges were also recorded in many parts of the territory, with surges exceeding
4 m close to Zhuhai and Macao and in the whole Humen estuary (Figure 3d). The effect of SLR on the
surge is similar to that observed for Hato, but with a stronger reduction of the surge. With 0.5 m SLR the
reduction is slightly stronger and over a wider area than for Hato (Figure 3e), and with 2.1 m SLR the surge
reduction reaches 0.5 m close to Macao and Zhuhai, and also along the coast close to the Tanjiang River
(see Figure 1a for location), where the storm landed (Figure 3f). As found for Hato, an increase of the surge
is instead observed in the river branches with both 0.5 m (Figure 3e) and 2.1 m SLR (Figure 3f). Changes in
maximum surge levels with 0.3 and 0.9 m SLR are shown in the supporting information (Figure S10); they
follow a similar pattern observed with 0.5 and 2.1 m SLR.

4. Discussion
Our results contribute to the developing literature on the role of SLR in coastal regions, and its impacts and
interaction with tides (Carless et al., 2016; De Dominicis et al., 2018; Greenberg et al., 2012; Holleman &
Stacey, 2014; Idier et al., 2017; Lee et al., 2017; Luz Clara et al., 2014; Passeri et al., 2015; 2016; Pelling, Uehara,
et al., 2013; Pelling, Green, et al., 2013; Pelling & Green, 2013; Pickering et al., 2012; 2017; Ward et al., 2012).
The changes in tides generated by SLR, shown in the previous section, are in line with previous studies for
different semienclosed seas, shelf seas, and estuaries. Those studies showed that tidal amplitudes change
due to SLR-induced depth changes and reduced bottom friction, and those changes are spatially variable.
Focusing on the main PRD cities' locations (see Figure S14), the coastal cities of Hong Kong, Macao, and
Zhuhai do not experience large changes in tidal amplitudes even with the largest 2.1 m SLR scenario. Moving
upstream in the river branches, all cities show changes in tidal range/MHHW quasi-linearly increasing
with SLR. Dongguan and Foshan experience the largest changes, with increases up to 0.5 m during the wet
season in both tidal range and MHHW with 2.1 m SLR. Shenzhen is the only location showing a nonlinear
behavior, with tidal changes reaching 0.4 m (for tidal range) and 0.3 m (for MHHW) with 0.9 m SLR, and
not increasing further with 2.1 m SLR.
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Storm surge can both amplify with SLR due to the decreased effect of bottom friction (Ali, 1999; Familkhalili
& Talke, 2016; Liu & Huang, 2019) or diminish due to the reduction of the surface wind stress on the
water column (Arns et al., 2015; 2017; Shen et al., 2019). Wind stress plays an important role in piling up
water against the coast in shallow water, and the effect is inversely proportional to the water depth. This
is why increasing MSL can lead to a reduction of the surface wind stress on the water column and thus to
a decreased storm surge. In the PRD and for storms like Hato and Mangkhut, this effect has proven to be
more relevant (especially for high SLR scenarios) than the reduced bottom friction, which would act in the
opposite direction (increasing the surge). Indeed, Figure S11 shows that the difference between the wind
stress and bottom stress terms (as written in the momentum equations, i.e., divided by density and total
water depth and with the bottom stress with a negative sign) has positive values. This means that the wind
stress is the dominant one. The combination of wind and bottom stress term decreases with increasing SLR
in coastal areas, justifying the simultaneous decrease of the surge (as shown in Figures 3 and S10).

The increase in the maximum surge observed in the western river branches can be attributed to the inter-
actions between tide, surge, and SLR. Indeed, Figures S12 and S13 show the change in surge with SLR,
for both Hato and Mangkhut, generated only by the atmospheric forcing (no tides). With this setup, the
atmospheric-only forced surge decreases everywhere; thus, it is only when the tides are also considered that
the surge increases in the river branches (as shown in Figures 3 and S10). Additionally, SLR induces nonlin-
ear changes in the maximum storm surge as shown in Figure S15 and in agreement with previous studies
(Bilskie et al., 2016; Passeri et al., 2015). A nonlinear reduction in the maximum storm surge is observed for
the coastal cities of Macao, Zhuhai, Hong Kong, and Shenzen for both typhoons for this range of SLR sce-
narios. Macao and Zhuhai experience the largest changes showing a 0.5–0.6 m decrease in the maximum
storm surge during typhoon Mangkhut under 2.1 m SLR (Figure S15). With 2.1 m SLR, those cities located
in the river branches show an increase in surge, not exceeding 20 cm, for typhoon Hato, while with the same
SLR scenario, all the noncoastal cities, except for Foshan, experience a reduction in the maximum storm
surge for typhoon Mangkhut (Figure S15).

Changes in tidal dynamics, of the same order of magnitude as the changes caused by SLR, have been already
observed in the PRD. These changes are mainly caused by human activities, such as sand mining and
land reclamation during the last 50 years to satisfy the needs of high population growth and urbanization
(Cai et al., 2018; Zhang et al., 2015; 2009; 2010). These emerge as contemporary factors, which have not
been considered in this work, and which will change the bottom topography of the delta, influencing
tidal and surge propagation dynamics. We should consider that additional changes generated by SLR and
SLR-tide-surge interactions have to be placed in the context of a fluvial basin already stressed by human
activities and that can also be further augmented by natural and human-induced subsidence (Wang et al.,
2012) and a change in river sediment fluxes due to river damming, irrigation, and mining (Wu et al., 2018).

An additional assumption of this study is that adaptation measures will be put in place and the PRD will
be fully protected (i.e., no inundation is allowed beyond a fixed coastline) from SLR and the additional
feedbacks on tides and surges we are presenting in this work. This is realistic given that the PRD is already
protected by seawalls, although other studies (e.g., Lee et al., 2017; Pelling, Green, et al., 2013; Shen et al.,
2019) have shown that allowing for inundation would lead to different results. Additionally, changes in
the landscape (morphology, topography, sediment supply, and land use/land cover; e.g., Bilskie et al., 2014;
Passeri et al., 2015; 2016; Siverd et al., 2019; Twilley et al., 2016; Yang et al., 2015) are not studied here but
will be addressed in a continuation of this study.

5. Conclusions
The PRD is the largest urban agglomeration in the world but is located in a low-lying, deltaic, flood-prone
coastal environment exposed to SLR as well as extreme water levels generated by seasonal river discharge-,
tides-, and typhoons-induced surges. This study is the first to address SLR-tides-surge interactions in the
PRD under several future mean water level scenarios. We used an FVCOM model implementation of
the PRD region to explore the impact of projected SLR upon future tidal and storm surge water levels.
We examined four future SLR scenarios: 0.3, 0.5, 0.9, and 2.1 m, which encompass the broad range of
climate-scenario-based sea level projections making the results applicable across time horizons.

We found that the mean SLR from the open ocean will increase water levels in the PRD differently during
the wet and the dry season. Cities on the western side of the delta will feel the effect of SLR less during the
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wet season, because the effective SLR is halved by the river discharge, while cities in the eastern part of the
delta will be more vulnerable.

We found that SLR can change the severity of coastal flooding by introducing feedbacks on tides and surge
levels. In the PRD, tidal amplitudes change due to SLR-induced depth changes and consequent reduced
bottom friction. A quasi-linear trend in tidal amplification with SLR has been observed for the main cities
in the PRD. Amplification of spring tidal range and MHHW are about 0.1–0.5 m with SLR scenarios of
0.5–2.1 m, with cities located in the upstream river branches experiencing the largest changes (as Dongguan
and Foshan reaching 0.5 m changes). Thus, the simple approach of just increasing the height of coastal
defences by the amount of regional projected SLR might not be sufficient in some coastal regions since local
changes in tidal amplitudes due to SLR have to be added on top of MSL changes, as already reported by
Woodruff et al. (2013) and Arns et al. (2017).

Conversely, if typhoons such as Hato or Mangkhut were to happen in the future, a surge level reduction
exceeding 0.5 m can be expected in some coastal areas for 2.1 m SLR, such as Macao and Zhuhai. In the PRD,
the increased water depth due to SLR leads to the reduction of the surface wind stress on the water column,
which has proven to be more important than the opposing effect of bottom friction. Thus, the surge reduction
in coastal areas has the potential to counteract the increasing flood risk associated with SLR or changing
tides. However, SLR feedbacks on surge are nonlinearly related to SLR and vary spatially. Indeed, an increase
of the surge is observed in the river branches and it is associated with tide-surge-SLR interactions. Failure
to account for these interactions can lead to a meaningful over/underestimation of local coastal exposure.
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