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Fig. 1 (right) Palaeogeography modified from [ref. 6]. 
Study sites are located in the Craven Basin (Lancs., 
UK), a post-rift  ‘block-and-basin’ setting6, as part of 
the palaeo-equatorial Mississippian Rheic-Tethys 
epicontinental seaway.
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Stratigraphic column and 
composite (left) from [ref. 5] 
after [ref. 7]
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The Bowland Shale includes discrete, macrofauna- bearing, 
carbonate-rich sedimentary packages termed ‘marine 
bands’8,9. Marine bands are interpreted as ‘condensed 
sections’; sediments starved of terrigenous material 
deposited during periods of maximum marine flooding10 in 
response to far-field ice-sheet volume on Gondwana11. 

Bulk V and Ni bimodal ‘competitive’ enrichment (Fig. 5) is best explained by intermittent 
operation of ‘redox oscillation’16 in porewaters during deposition and early diagenesis.

Redox oscillation describes the vertical fluctuation in Eh and pH 
conditions in shallow sediments. Organic-rich marine sediments 
subject to intense physical reworking and in receipt of a large supply 
of metal oxidants, such as in the modern Amazon fan, are prone to 
early diagenetic redox oscillation16. This process greatly enhances 
the rate of OM remineralisation in marine sediments by increasing 
the exposure time to oxidants yielding the highest free energy. 

A high sediment accumulation rate (Fig. 3) combined with a 
relatively large supply of metal oxides and labile OM (Fig. 6) 
stimulated early diagenetic redox oscillation. Abundant reactive OM 
containing free-base porphyrins may explain the high V enrichments 
in the Bowland Shale compared to other ‘typical’ black shales.

Redox oscillation coupled to a high flux of OM to seabed exerted a 
key control on metal fixation, mineral authigenesis and preservation 
of OM, with implications for understanding the temporal and spatial 
distribution of resources through this black shale.

● Organic-rich mudstones (“black shales”) are conventional hydrocarbon source rocks
and candidate targets for unconventional hydrocarbon exploration in the UK.

● Black shales can also host ore-grade enrichments in redox-sensitive trace metals such
as Mo, U, V, Ni and Cu. V, for example, is used in redox-flow batteries for large-scale
electricity storage.

● Here we show ancient redox processes exterted a key control on the distribution of
organic and metal ‘resources’ through a UK Mississippian black shale succession.

The Bowland Shale exhibits: 
● Moderate enrichment in many redox-sensitive trace metals (Mo, U, Ni, Cu) that is
generally comparable to ‘typical’ black shales (using a global dataset from [ref. 14]).

● Facies-specific V enrichment is comparable to ‘highly metalliferous black shales’14,
including the Talvivaara Formation (Finland) that is mined for metals including V.

Fig. 5 V and Ni enrichment factors 
plotted with RockEval pyrolysis 
hydrogen index (HI).

HI is a measure for the H-content 
in organic matter (OM) and is used 
to assess hydrocarbon source 
rock potential.

Vanadiferous and H-rich OM =
‘prospective’ intervals?

Fig. 4 Bowland 
Shale V data 
acquired using
x-ray fluorescence
(XRF) from [ref. 15] 
and laser ablation 
ICP-MS 
[unpublished].

● The Mississippian (~330 Ma) Bowland Shale Formation is the primary target for
unconventional hydrocarbon exploration in the UK1,2 and in equivalents across Europe,
including the Epen Formation3 (Netherlands) and Upper Alum Shale Formation⁴ 
(Germany). 

● The upper unit of the Bowland Shale, termed the Upper Bowland Shale, is a highly
complex, interbedded carbonate and siliciclastic succession⁵ that developed in
response to high magnitude glacio-eustatic sea level fluctuations and delta 
progradation. This complexity means the resource potential of this succession is poorly 
constrained. In order to improve understanding of this unit, we integrate sedimentology, 
organic and inorganic geochemistry from three time-equivalent Upper Bowland Shale 
sections (A-C) in the UK Craven Basin [Figs. 1-2].
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Fig. 3

Fig. 6 Proposed palaeoredox model from [ref. 15]
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Fig. 7 V and Ni stability fields redrawn from [ref. 17]

References

Acknowledgements
The majority of data and interpretations presented are the outputs of PhD DTP research by JE funded by the Natural 
Environment Research Council (NERC), [grant no. NE/L002493/1], within the Central England Training Alliance 
(CENTA). The study also received CASE funding from the British Geological Survey. SWP acknowledges support 
from a Royal Society Wolfson Research Merit Award. Nick Riley (Carboniferous Ltd) is thanked for sharing 
biostratigraphic expertise and assistance. Nick Marsh and Tom Knott (University of Leicester) are thanked for 
providing assistance during XRF analyses. Borehole core samples were accessed via the National Geological 
Repository, British Geological Survey. Angela Lamb, Jack Lacey and Hillary Sloane (BGS) are thanked for provision 
of isotopic analyses.

1 Andrews, I. J. The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological Survey for Department of Energy and Climate 
Change (2013).
2 Clarke, H., Turner, P., Bustin, R. M., Riley, N. & Besly, B. Shale gas resources of the Bowland Basin, NW England: a holistic study. Petroleum Geoscience, 
doi:http://dx.doi.org/10.1144/petgeo2017-066 (2018).
3 Nyhuis, C. J., Riley, D. & Kalasinska, A. Thin section petrography and chemostratigraphy: Integrated evaluation of an upper Mississippian mudstone dominated 
succession from the southern Netherlands. Netherlands Journal of Geosciences - Geologie en Mijnbouw 95, 3-22, doi:10.1017/njg.2015.25 (2015).
4 Kerschke, D. & Schulz, H.-M. The shale gas potential of Tournaisian, Visean, and Namurian black shales in North Germany: baseline parameters in a geological 
context. Environ Earth Sci 70, 3817-3837, doi:10.1007/s12665-013-2745-9 (2013).
5 Emmings, J., Davies, S., Vane, C. H., Leng, M., Moss-Hayes, V. & Stephenson, M. From Marine Bands to Hybrid Flows: Sedimentology of a Mississippian Black 
Shale. Sedimentology (ACCEPTED MANUSCRIPT).
6 Waters, C. N., Browne, M. A. E., Dean, M. T. & Powell, J. H. Lithostratigraphical framework for Carboniferous successions of Great Britain (Onshore). British 
Geological Survey Research Report RR/07/01 (2007).
7 Newport, S. M., Jerrett, R. M., Taylor, K. G., Hough, E. & Worden, R. H. Sedimentology and microfacies of a mud-rich slope succession: in the Carboniferous 
Bowland Basin, NW England (UK). Journal of the Geological Society 175, 247-262, doi:10.1144/jgs2017-036 (2018).
8 Ramsbottom, W. H. C. Major cycles of transgression and regression (mesothems) in the Namurian. Proceedings of the Yorkshire Geological and Polytechnic 
Society 41, 261-291, doi:http://dx.doi.org/10.1144/pygs.41.3.261 (1977).
9 Waters, C. N. & Condon, D. J. Nature and timing of Late Mississippian to Mid-Pennsylvanian glacio-eustatic sea-level changes of the Pennine Basin, UK. Journal 
of the Geological Society 169, 37-51, doi:http://dx.doi.org/10.1144/0016-76492011-047 (2012).
10 Posamentier, H. W., Jervey, M. T. & Vail, P. R. Eustatic Controls on Clastic Deposition I - Conceptual Framework. Society of Economic Paleontologists and 
Mineralogists Special Publication (1988).
11 Veevers, J. J. & Powell, C. M. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. 
Geological Society of America Bulletin 98, 475-487, doi:10.1130/0016-7606(1987)98 (1987).
12 Sadler, P. in GeoResearch Forum. (1999)
13 Large, R. R. Future Potential for Metal Resources from Black Shales: Ni, Mo, Zn, Cu, U, V, Ag, Au, PGE.  (Accessed 2018).
14 Johnson, S. C., Large, R. R., Coveney, R. M., Kelley, K. D., Slack, J. F., Steadman, J. A., Gregory, D. D., Sack, P. J. & Meffre, S. Secular distribution of highly 
metalliferous black shales corresponds with peaks in past atmosphere oxygenation. Mineralium Deposita 52, 791-798, doi:10.1007/s00126-017-0735-7 (2017).
15 Emmings, J. Controls on UK Lower Namurian Shale Gas Prospectivity: Understanding the Spatial and Temporal Distribution of Organic Matter in Siliciclastic 
Mudstones PhD thesis, University of Leicester, (2018).
16 Aller, R. C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Marine Chemistry 61, 143-155, doi:10.1016/S0304-4203(98)00024-3 
(1998).
17 Lewan, M. D. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta 48, 2231-2238, 
doi:http://dx.doi.org/10.1016/0016-7037(84)90219-9 (1984).


