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e Organic-rich mudstones (“black shales”) are conventional hydrocarbon source rocks
and candidate targets for unconventional hydrocarbon exploration in the UK.

e Black shales can also host ore-grade enrichments in redox-sensitive trace metals such
as Mo, U, V, Ni and Cu. V, for example, is used in redox-flow batteries for large-scale

electricity storage.

e Here we show ancient redox processes exterted a key control on the distribution of
organic and metal ‘resources’ through a UK Mississippian black shale succession.

Geological Setting

e The Mississippian (~330 Ma) Bowland Shale Formation is the primary target for
unconventional hydrocarbon exploration in the UK"2 and in equivalents across Europe,
including the Epen Formation® (Netherlands) and Upper Alum Shale Formation*

(Germany).

e The upper unit of the Bowland Shale, termed the Upper Bowland Shale, is a highly
complex, interbedded carbonate and siliciclastic succession® that developed In
response to high magnitude glacio-eustatic sea level fluctuations and delta
progradation. This complexity means the resource potential of this succession is poorly
constrained. In order to improve understanding of this unit, we integrate sedimentology,
organic and inorganic geochemistry from three time-equivalent Upper Bowland Shale

sections (A-C) in the UK Craven Basin [Figs. 1-2].
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The Bowland Shale exhibits:

e Moderate enrichment in many redox-sensitive trace metals (Mo, U, Ni, Cu) that is
generally comparable to ‘typical’ black shales (using a global dataset from [ref. '4]).

e Facies-specific V enrichment is comparable to ‘highly metalliferous black shales’,
including the Talvivaara Formation (Finland) that is mined for metals including V.
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key control on metal fixation, mineral authigenesis and preservation

of OM, with implications for understanding the temporal and spatial
distribution of resources through this black shale.



