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Understanding howagricultural practices alter biogeochemical cycles is vital formaintaining land productivity, food
security, and other ecosystem services such as carbon sequestration. However, these are complex, highly coupled
long-term processes that are difficult to observe or explore through empirical science alone. Models are required
that capture the main anthropogenic disturbances, whilst operating across regions and long timescales, simulating
both natural and agricultural environments, and shifts among these. Many biogeochemical models neglect agricul-
ture or interactions between carbon and nutrient cycles, which is surprising given the scale of intervention in nitro-
gen and phosphorus cycles introduced by agriculture. This gap is addressed here, using a plant-soil model that
simulates integrated soil carbon, nitrogen and phosphorus (CNP) cycling across natural, semi-natural and agricul-
tural environments. Themodel is rigorously tested both spatially and temporally using data from long-term agricul-
tural experiments across temperate environments. Themodel proved capable of reproducing themagnitude of and
trends in soil nutrient stocks, and yield responses to nutrient addition. The model has potential to simulate anthro-
pogenic effects on biogeochemical cycles across northern Europe, for long timescales (centuries) without site-
specific calibration, using easily accessible input data. The results demonstrate that weatherable P from parent ma-
terial has a considerable effect on modern pools of soil C and N, despite significant perturbation of nutrient cycling
from agricultural practices, highlighting the need to integrate both geological and agricultural processes to under-
stand effects of land-use change on food security, C storage and nutrient sustainability. The results suggest that an
important process or source of P is currently missing in our understanding of agricultural biogeochemical cycles.
The model could not explain how yields were sustained in plots with low P fertiliser addition. We suggest that
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plant access to organic P is a key uncertainty warranting further research, particularly given sustainability concerns
surrounding rock sources of P fertiliser.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Agriculture has been a major long-term driver of biogeochemical
cycle change. Globally, approximately 37% of the land surface is used
for agriculture, and much of this land has been farmed for hundreds of
years following the steep rise in demand for food coupled with
industrialisation in the 17th and 18th centuries (FAO, 2017). Land-use
change and the introduction of new crops, rotations and mechanisation
during this time have significant impact on the cycling of carbon, and
other nutrients. These disturbances have accelerated following the
Green Revolution in the 1950s and the widespread introduction of ni-
trogen and phosphorus fertilisers, and increased conversion of land to
agriculture (FAO, 2018).

Developing our understanding of how agriculture has modified bio-
geochemical cycles is critical as these alterations have consequences for
plant productivity and food security, climate regulation andwater qual-
ity and availability. If we are to manage and mitigate these conse-
quences, there is a need to develop understanding that:

i) Considers interactions between nutrient cycles– particularly car-
bon, nitrogen and phosphorus (C, N and P) - as all three have
been highly modified by anthropogenic land-use change and
land management practices

ii) Addresses long-term and large-scale effects, given the wide-
spread nature of agriculture, and that the majority of this land
will have been experiencing disturbances for decades/centuries

iii) Encompasses both land-use change and agricultural manage-
ment practices

Here, we present a new modelling framework that addresses these
three aspects, and we apply this model to a range of long-term sites
acrossNorthern Europe providing a test of themodel and anexploration
of the long-term effects of agriculture on C, N and P cycles.

There has been a great deal of research focusing on C cycle changes
in agricultural systems, driven by the importance of carbon in climate
regulation, and the links made between soil C and crop productivity
(Lal, 2005). The need for improved understanding and quantification
of C cycles in agricultural systems continues to growwith the rise of ini-
tiatives such as ‘4 per mille’ that aim to increase C stocks in agricultural
soils to mitigate climate change (Chambers et al., 2016; Van Groenigen
et al., 2017; Poulton et al., 2018). However, given the interaction be-
tween C, N and P cycles, and the magnitude of perturbation of N and P
in agricultural systems, understanding the control that these nutrients
have over the C-cycle is important.

Many empirical studies have observed significant reductions in soil C
as a result of conversion of land to agricultural uses (Lal, 2004; Smith
et al., 2016; Wei et al., 2014), but there is considerable variability in
the response of soil C due to varying soil properties, land management
practices, and climate regimes (Bruun et al., 2013; Wei et al., 2014;
Doetterl et al., 2015). Long-term experiments can provide valuable in-
sights into long-term effects, but there are relatively few long-term
datasets, and multiple drivers at these sites are often changing at once.
Modelling can help understand and decouple drivers, provide valuable
insights into controls on long-term change for these purposes.

Biogeochemical modelling of agricultural systems to date has pre-
dominantly focused on the cycling of C (RothC – Coleman and
Jenkinson, 1996) or integration of C and N (DAISY - Hansen et al.,
2012; DNDC - Li et al., 1992; SPACSYS – Wu et al., 2007). Models that
integrate C-N-P cycling provide a more comprehensive means of esti-
mating future changes in soil biogeochemistry, and are required to un-
derstand feedback processes and system response to environmental
change (Achat et al., 2016). However, existing C-N-P models mainly
focus on natural and semi-natural ecosystems (N14CP - Davies et al.,
2016a; CASACNP – Wang et al., 2010; ECOSSE – Smith et al., 2010;
JSBACH-CNP – Goll et al., 2012; CLM-CNP – Yang et al., 2014). Biogeo-
chemical models of heavily modified agroecosystems exist, however
the high temporal resolution of these models limits their application
to long-term simulations (of 100 s of years or more) due to computa-
tional constraints (Crop-DNDC – daily, Zhang et al., 2002; EPIC – daily,
Causarano et al., 2008; DAISY – hourly or finer, Hansen et al., 2012)
making them unsuitable for assessing the impacts of land-use changes.
The latest versions of models such as CENTURY (Parton et al., 1998); an
integrated C-N-P model with a later version including agricultural rep-
resentation (CENTURY.v4 - Metherell et al., 1993) and Roth-CNP
model (Muhammed et al., 2018) meet these requirements, yet to-date
applications of thesemodels do not simulate land-use change from nat-
ural to agricultural use (Bortolon et al., 2011; Cong et al., 2014; Probert
et al., 1995).

Evaluation ofmodels with observational data is of key importance to
provide confidence in model outputs. Several previous studies of soil
biogeochemistry either test models spatially (Davies et al., 2016a) or
temporally (Davies et al., 2016b; Li et al., 2017; Zhang et al., 2016)
only. Few studies combine both spatial and temporalmodel testing (ex-
amples include Cong et al., 2014), although these are often limited to a
small number of sites, and short temporal scales. If regional-scale esti-
mates of future biogeochemical change are the aim, thenmodel evalua-
tion through space and time is important.

In this study, we aim to address these gaps in our ability to under-
stand and predict long-term and large-scale changes in biogeochemical
cycles resulting from agricultural land use change and management
practices.We present an integrated C-N-Pmodelwith the ability to sim-
ulate both natural and agricultural land uses and transitions among
these. The new N14CP-Agri model includes representations of agricul-
tural practices and estimation of crop yields.We assess the performance
of this model through blind-comparison with yield, soil organic carbon,
nitrogen and Olsen-P data pertaining to 62 plots from 11 long-term ex-
perimental arable and improved grassland sites situated in Northern
Europe. This provides a test of the model's ability to simulate nutrient
cycle interactions, and its suitability for use over long timescales and re-
gional spatial scales. It also provides an opportunity to formally test the
ability of our current conceptual understanding of C-N-P cycles to ac-
count for plant-soil observations across a wide range of management,
climatic and soil conditions and histories, which we address in our
discussion.

2. Methods

2.1. Extending the N14CP model for agricultural ecosystems

The N14CP model, implemented within MATLAB, originally devel-
oped by (Davies et al., 2016a; Tipping et al., 2012) integrates C, N and
P cycling in semi-natural environments. The model tracks C, N and P
pools in total vegetation biomass, topsoil (upper 15 cm of soil) and sub-
soil layers on a quarterly (3 monthly) time-step. It has previously been
applied in temperate semi-natural systems (broadleaf and coniferous
forests, rough grasslands and heathlands) at site-scale (Davies et al.,
2016a), and national scale to investigate the long-term effects of
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atmospheric deposition of N in semi-natural system on C storage and
NPP (Tipping et al., 2017, 2019), and to a grazed unfertilised site
(Davies et al., 2016b). An overview of the model is provided in Fig. 1.

Vegetation is represented in the model by two pools of fine and
coarse biomass. Coarse material is assumed to have high lignin content
and to decompose on the surface, hence does not directly contribute to
the soil organic matter pools. Both coarse and fine biomass are defined
by C:N:P ratios obtained for each plant functional type (PFT) from liter-
ature values. The C:N ratio of fine tissues varies (within literature
values) to represent N enrichment, based on the availability of N.
Here, we have introduced four new arable PFTs to represent the main
arable plant groups grown in temperate agricultural systems; cereals
(e.g. wheat, barley), root crops (e.g. potatoes), legumes (e.g. peas and
beans) and oilseeds (e.g. oilseed rape, sunflower). Literature values of
root-to-shoot ratios (for above and below ground biomass) and C:N:P
stoichiometry were used to parameterise these PFTs (see supplemen-
tary information tables S1, (Bhattacharya et al., 1990; Hocking and
Meyer, 1991; Barnes and Pfirrmann, 1992; Chu et al., 1992; Demotes-
Mainard and Pellerin, 1992; López-Castañeda and Richards, 1994;
Janssen, 1996; Bolinder et al., 1997; Kang et al., 1998; Mollier and
Pellerin, 1999; Lambin et al., 2001; Li et al., 2001; Bolinder et al., 2002;
Baodong et al., 2005; Pietola and Alakukku, 2005; Kerkhoff et al.,
2006; Sadras, 2006; Hernandez et al., 2007; Kriauciuniene et al., 2008;
Mushagalusa et al., 2008; Bessler et al., 2009; Ort et al., 2013; USDA
Natural Resources Conservation Service, 2013; Patel et al., 2015;
Butterly et al., 2015; Girondé et al., 2015; Oregon Biodynamics Group,
2018; Zheng et al., 2018).

The model simulates net primary productivity based on the most
limiting factor out of temperature, precipitation, available N or available
P. The nutrient availability as defined by Davies et al. (2016a), is modi-
fied to take into account increased nitrogen fixation in a number of ag-
ricultural PFTs and fertiliser additions.

For legume crops a representation of N fixation by root nodules was
included. Fixation of N is a complex process controlled by soil tempera-
ture, moisture, and available nutrients (Wu & Mcgechan, 1999;
Vitousek et al., 2002). Soil N fixation within N14CP is currently deter-
mined as a function of P availability, and is down-regulated by N depo-
sition. Nitrogen fixation rates by legumes were selected based on
literature values (see supplementary information S2, tables 6 & 7,
Fig. 1. Schematic of N14CP model including nutrient pools, and processes simulated. DOC/N/P =
agricultural systems are highlighted in red. (For interpretation of the references to colour in th
Cowling, 1982; Crush et al., 1982; Archer, 1988; Bremer et al., 1988;
Peoples et al., 1995; Ledgard, 2001; Carlsson and Huss-Danell, 2003;
Crawley et al., 2005; Hauggaard-Nielsen et al., 2009; Jennings, 2010).
As improved grasslands contain leguminous species, representation of
N fixing within this PFT has also been introduced within this study
based on literature values (see supplementary information S2).

Fertiliser addition, alongside other land management practices such
as tillage, grazing, and harvesting were incorporated in the model on a
quarterly timestep. Fertilisers were added directly to the available
pool (see Fig. 1). The effects of tillage on organic matter decomposition
were represented by increasing decomposition rate constants for fast,
slow, and passive pools by a factor KPlough. Grazing animals were as-
sumed to consume 60% of the above ground biomass, with 25% of C
returning to the soil and 75% of N and P returned (similarly to Ball and
Ryden, 1984; Tyson et al., 1990; Jarvis, 1993; Lemaire and Chapman,
1996; Haygarth et al., 1998; Soussana et al., 2010).

For crops that are harvested, a fixed proportion of the biomass is as-
sumed to be removed based on typical harvest indexes (HI) for the crop,
which represent the proportion of above-ground biomass that is har-
vested. Values for HI for each arable plant functional type grouping (Ce-
real, Root, Legume and Oilseed) were estimated by collating HI indices
from literature values and averaging across plant type (supplementary
information S1 table 5, Bélanger et al., 2001; Donald and Hamblin,
1976; Hay, 1995; Jefferies and Mackerron, 1993; Li et al., 2014; Lobell
et al., 2002; Osaki et al., 2012; Prince et al., 2001). The remainder of
the plant is assumed to die after harvest and is added to the litter
pool. We then estimate yield from the biomass that was harvested. Pre-
vious studies have estimated net primary productivity (NPP) from yield
(Hicke et al., 2004; Jaafar and Ahmad, 2015; Li et al., 2014; Lobell et al.,
2002; Monfreda et al., 2008; Prince et al., 2001). Yield can be estimated
from NPP (g C m−2 yr−1) in the same way:

Yield ¼ NPP � HI � AGB
FC

ð1Þ

Where yield is in g m−2 yr−1 in dry mass, AGB is the Above-Ground
Biomass fraction (or below-ground biomass fraction for root crops), and
FC is the C content of dry matter. FC was set as 0.45 g C g−1 dry matter
(Hicke et al., 2004; Jaafar and Ahmad, 2015; Monfreda et al., 2008).
Dissolved Organic Carbon/Nitrogen/Phosphorus. New additions to extend the model for
is figure legend, the reader is referred to the web version of this article.)
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For arable crops, themodel separates nutrients assimilated throughNPP
into those available for removal via cropping (above ground biomass, or
all biomass for root crops) and those left in the soil system (as litter)
post-harvest. To ensure mass balance of nutrients within the model,
yield is estimated as:

Yield ¼ CRemoved � HI
FC

ð2Þ

Where CRemoved is the total C removed through harvest.

2.2. Data for model calibration and testing

Observational data for soil organic C, total N and P pools, soil pH and
crop yield were collated from several long-term agricultural soil exper-
iments in the UK and Northern Europe (Fig. 2 and supplementary infor-
mation S3 table 8). Each site has multiple plots with varying land
management e.g. fertiliser application rate. Experimental sites were se-
lected to include a range of temperature and precipitation patterns rep-
resentative of the region (see Fig. 2). The sites included tilled arable and
non-tilled grassland treatments. Average annual fertiliser application
rates ranged from 0–40.5 and 0–35.0 g m−2 yr−1 of N and P respec-
tively. Crop types include cereals (wheats, barley, rye, oats), roots (pota-
toes, beetroot, turnip), oilseed (oilseed rape) and legumes (peas,
clover). In total, 62 plots from 11 experimental sites were simulated,
plots selected had a minimum of two observations of topsoil C, N, and
yield. Several plots also had observed topsoil P, measured using the
Olsen P method (representing inorganic P and a portion of the organic
P),meaning available topsoil P data from the sites was not directly com-
parable to modelled outputs.

Mean temperature and total precipitation data at quarterly time-
step for each site from 1901–2015 were calculated using monthly CRU
TS4.00 (Climatic Research Unit Time-series version 4.00) modelled
data (Harris et al., 2014; Harris and Jones, 2017). Mean annual temper-
ature (MAT) prior to 1901 was temporally varied using an anomaly
based on Davis et al., 2003 (similarly to Davies et al., 2016a), and
mean annual precipitation (MAP) was held constant at the 30 year
Fig. 2. Site locations for model calibration and validation, and frequency distributions of mean a
and soil pH in year 2000 for plots, and soil types at experimental sites included in the study. D
1988, 1997; Christensen et al., 2006; Elliott and Thomas, 1934; Esperschütz et al., 2007; Fließba
Jacobs et al., 2009, 2011; Jensen et al., 2017; Kidd et al., 2017; Kirchmann et al., 1994; Kirkhamet
2015; North Wyke, ADAS, University of Newcastle, n.d.; Oberson et al., 1993; Raupp, 2001; Rile
1999).
average for 1901–1931. Observed N deposition data was used for sites
where this was available, and for other sites this was estimated from
EMEPmodelled deposition (MET Norway, 2016). A sequence of historic
variation from the mean was applied (similar to Schöpp et al., 2003) to
estimate past N deposition.

Land-use histories for the simulation period (10,000 BCE to present)
were determined for each site using site information available in the lit-
erature. Where histories were incomplete, forest clearance was as-
sumed to have occurred when b50% of usable land remained forested,
as per estimates by Kaplan et al. (2009) based on population size and
land suitability for agriculture and pasture.

Harvesting, tillage, and fertiliser application at each sitewere also set
based on literature information (see supplementary information table 8
for further details). For siteswhere the timing of arable harvestswas not
recorded it was assumed that harvest occurred in the 3rd quarter of the
year, and that 95% of above-ground biomass (accounting for 5% remain-
ing as stubble) was removed unless otherwise stated. Three of the ex-
perimental sites (Askov, Darmstadt and Broadbalk) were arable before
the start of the long-term experiments, but lack information on manur-
ing rate. It was assumed that arable land during these periods would
have received fertiliser in the form of animal or human manure, so a
constant rate of N and P addition (0.72 and 0.44 g m−2 yr−1 respec-
tively)was applied to these periods similarly toMuhammed et al., 2018.

2.3. Model parameterization and testing

Parameter values for processes that were included in the original
N14CP were unchanged (Davies et al., 2016a). Parameters for new
PFTs (including C:N:P ratios, above and below ground biomass fractions
and harvest indices) were set based on literature values (see 2.1 above
and supplementary information table 4).

Whilst several agro-ecosystemmodels simulate the impact of till-
age on soil physical properties, few models consider changes in bio-
geochemical properties (Maharjan et al., 2018). The KPlough
parameter within the agricultural representation was set at a value
of 3.0 (i.e. simulated decomposition rates in tilled soils were in-
creased threefold) based on the DNDC model (Li et al., 1994) which
nnual temperature (MAT) mean annual precipitation (MAP), nitrogen deposition (NDep)
ata are detailed in supplementary information table 8 (Birkhofer et al., 2008; Christensen,
ch andMäder, 2000; Heinze et al., 2010; Heitkamp et al., 2009; Hopkins et al., 2009, 2011,
al., 2014; Korsaeth, 2012; Korsaeth and Eltun, 2008;Maqsood et al., 2013;Natural England,
y et al., 2008; Riley and Eltun, 1994; Rothamsted research, 2017a, 2017b; Stockfisch et al.,
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simulates increased decomposition rates of up to 3 times where
ploughing occurs.

The initial pool of weatherable P, PWeath0, which is an initial condi-
tion was at first set to the value used for non-podzols and non-rankers
in Davies et al. (2016a) and Tipping et al. (2017). Within the model, P
enters the plant-soil system from this fixed initial weatherable pool
(PWeath0) based on an annual release (ΔPWeath) which is determined
by a temperature dependent first-order rate constant (kPWeath);

ΔPWeath ¼ FT NKPWeath:PWeath0 ð3Þ

Where FT is the fraction of the year with a mean quarterly tempera-
ture above 0 (see Davies et al., 2016a for further details). ΔPWeath en-
ters the topsoil layer and is spread evenly over the quarterly time
steps, contributing to available soil water P. In semi-natural applications
of the model, Davies et al., 2016a demonstrated that contemporary
stocks of soil organic C, N and P are strongly conditioned by PWeath0.
To investigate whether this also applied to agricultural settings, a sec-
ond parameterization was performed whereby PWeath0 was allowed
to vary between 50 and 1000 g m−2 for each site, to minimise a cost
function penalising the error between model outputs and observations.
Since the PWeath0 parameter represents initial weatherable P when the
soil begins to develop, in principle the value should be similar for all
Fig. 3.Observations (x axis) and simulated values (y axis) for key variables from themodel and
whole dataset (all plots) and are colour-coded by experimental site (Triangles represent grassl
represent arable sites: Apelsvoll (black), Ultuna (red), Askov (green), Gottingen Hohes (yellow
and triangles grassland sites. Left column shows data before calibration of PWeath0, and right
plots on a given site, so this parameter was calibrated on a site basis
rather than a plot basis.

We compared the model against all long-term experiment data
described in 2.2, analysing model outputs within MATLAB. Where
the default values of PWeath0 are used, this essentially forms a
blind test of the model as parameters are not calibrated to the site
data. Where PWeath0 is varied, this is not a blind-test, but an explo-
ration of the relative control that this initial condition can have
over multiple outputs across C, N and P cycles.
3. Results

The performance of the model was assessed through compari-
son with data across each of the 62 plots, from the 11 experimen-
tal sites. Here, we present results in 3 ways in order to address
the aims of the paper. Firstly, comparison by output variable
(across all plots and time points) to assess the ability of the
model to consider interactions between nutrient cycles. Secondly,
by land management practice, to evaluate the performance of the
model across a range of agricultural management types. Finally,
temporally, to evaluate the model performance simulating soil
change over time.
statistics (mean observed,mean simulated, R2, RMSE). 1:1 lines are shown. Plots show the
and sites: Palace Leas (red), Raisebeck (black), Pentwyn (blue), Park Grass (green), Circles
), Darmstadt (light blue), Therwil (blue), Broadbalk (purple). Circles represent arable sites
column with PWeath0 calibrated by site.
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3.1. Model results for all sites: default P weathering initial conditions

The left column of Fig. 3 shows the observed values and model sim-
ulated values for key output variables (topsoil organic C, total N, C:N
ratio and drymatter yield) for all data points prior to site-based calibra-
tion of the PWeath0. Mean observed and simulated values are of the
same magnitudes, and R2 values are all significant (p b 0.001) with
the exception of C:N ratios. Observed values of Olsen P show a signifi-
cant correlation with simulated topsoil organic P (R2 0.18 p b 0.001,
but a stronger correlation with simulated topsoil inorganic P (R2 0.45
p b 0 .001, supplementary information S5). However, it is important to
note that it is not possible to directly compare these outputs with values
obtained by Olsen P.

3.2. Model results for all sites: site-specific P weathering initial conditions

After calibrating the parameter PWeath0 by site, the model perfor-
mance across soil nutrient pools markedly improved (Fig. 3 right col-
umn). Performance of variables topsoil C and N improve markedly; R2

values increase from 0.23 to 0.66 and 0.67 to 0.81 respectively, RMSE
and intercepts of the correlations for these variables were also reduced,
illustrating the reduction of error in the simulated values. Performance
of variables C:N and yield also show improvement after calibration,
but not as significant. The site-calibrated PWeath0 values were found
to vary between 50 and 1000 g m−2 with an average of 255 g m−2.

3.3. Model results by land management

Themodel results broken down by landmanagement type in Table 1
and discussed in turn in here.

Over half of the plots were fertilised with both N and P (n= 37). As
themodel is based on Liebig's law, NPP is simulated based on the single
most limiting factor (of N, P, temperature or precipitation). Themajority
of the 37 plots fertilised with both N and Pwere calculated to be limited
byN,with 7 showing temperature/precipitation limitations (sometimes
fluctuating between N/temperature/precipitation limited), and 3
displaying P (or fluctuations between P and N) limitation. Table 1
shows that the performance of these plots is better than that of the av-
erage than those fertilised with only N or P.

Of the 62 plots, 10 had no additions of N or P fertiliser. Themodel in-
dicates that NPP at these unfertilised sites was limited by N or P. For all
the plots where Pwas addedwithout N (n=5)NPPwas also limited by
N. When N is added without P (n = 10) simulated NPP became P lim-
ited. Model performance at these 10 sites is below average, particularly
Table 1
Comparison of observed and model simulated results by land management type. Asterisks den

Arable

Control N and P P only N only

n sites 6 32 2 8

R2

C 0.31** 0.41** 0.98** 0.10
N 0.65** 0.44** 0.89** 0.68
C:N Ratio 0.44** 0.33** 0.01 0.02
Yield 0.45** 0.17** 0.15** 0.18

RMSE

C 765 657 172 298
N 35 42 18 13
C:N Ratio 1.27 1.22 0.82 1.77
Yield 58 118 21 86

Mean Obs

C 2695 3364 2183 1958
N 231 292 217 209
C:N Ratio 11.4 11.4 9 9.5
Yield 157 436 124 239

Mean Sim

C 2970 3261 3136 2193
N 248 272 202 205
C:N Ratio 11.3 11.5 13 10.1
Yield 112 370 50 102
for yields; average yields across these plots are underestimated by 77%,
yet all other plots are underestimated by only 15%.

3.4. Temporal results

The data collected from the long-term agricultural experimental
sites enables an assessment of model performance over time. To evalu-
ate the long-term model performance across all sites in simulating
trends in both C and N, the first and last observation from each site
was used to estimate a change in C and N over the observation period
(ΔC and ΔN). Initial observed values of C across all plots ranged from
1746–9387 g C m−2, with change between −3019 and + 3238 gC
m−2 during the period of observation (1–167 years). Observed and sim-
ulated ΔC show a positive relationship, however, this was not statisti-
cally significant (R2 b 0.01, p N 0.05). When ΔC is calculated as
percentage of soil C the relationship between observed and simulated
change is significant (R2 = 0.08 p b 0.05, see supplementary informa-
tion S6). Initial observed values of soil N across all plots ranged from
156–851 gNm−2, with change between−258 and+ 329 gNm−2 dur-
ing the period of observation. The model accuracy is greater for N (ΔN
R2 0.01 p N 0.05, ΔN as a percentage of soil N R2 = 0.21 p b 0.01). As
noted in section 3.1, the observational Olsen P data was not comparable
to simulated values.

To provide an example of time-series performance, Fig. 4 shows the
simulated soil C, N, and yield values for plots from the Askov site
(Denmark) with varying fertiliser applications. Averaged observed
values for each site, and averages of the simulation outputs, correspond-
ing to the observations are shown in Table 2. The Askov site is an arable
site with a crop rotation of cereal, root, cereal, grass/clover mix (oscilla-
tions in yields are due to crop rotation). The change in land use in 1795
from broadleaf forest to arable can be observed in the ‘spike’ in soil C
and N caused by a short-term increase in litter as a result of forest clear-
ance. Themodel simulates themagnitude of soil C andN and the tempo-
ral trends with reasonable accuracy. Additionally, the model captures
the impacts of the fertiliser treatments on soil C and N pools.

As also indicated by the overall statistics shown in Fig. 3, the model
typically underestimates yields, but the degree towhich it does so varies
with nutrient availability (yield performance is best in fertilised sys-
tems, as the results in section 3.3 describe). The observed inter-annual
variability of crop yields is not well-captured by the model largely due
to the use of averaged climate data, resulting in the omission of temper-
ature and precipitation variability. Additional factors such as pests and
diseases resulting in inter-annual variability of observed yields are
also not considered in the model. For these reasons, correlations be-
tween observed and simulated crop yields were low. However, as
ote statistical significance at *p b 0.05 and p** b 0.01 levels.

Grassland Tilled No Till

Control N and P P only N only

4 5 3 2 37 25
0.24 0.30* 0.05 0.17 0.42** 0.67**
0.68** 0.69** 0.60** 0.63** 0.58** 0.81**
0.37 0.37** 0.29 0.45 0.21** 0.19**
0.4** 0.37** 0.26** 0.02 0.33** 0.22**
880 774 226 1170 688 709
102 92 106 131 37 68
0.92 0.83 1.11 0.78 1.19 1.70
205 209 133 56 143 175
6426 6724 6067 5956 3081 3301
585 625 510 554 271 299
11.2 10.97 11.9 10.8 11.1 10.7
312 317 354 345 336 266
5817 5989 5227 5442 3112 3408
696 728 621 670 262 298
8.6 8.4 9.3 8.4 11.3 11.3
344 342 416 61.5 259 234



Fig. 4. Time series plots for Askov site B3. Plots include from top to bottom control, low,medium and highN and P fertiliser additions. Left column shows simulated soil carbon (black) and
nitrogen (red) in g m−2 yr−1 from 1700 to the end of the simulation. Change in land use in 1795 from broadleaf forest to arable is indicated by spike in soil C and N. Right column shows
simulated and observed yields (dry matter yields g m−2 yr−1). Yield oscillation (in observed and simulated) is due to crop type rotation.
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shown in Fig. 4 and Table 1, the variation in yield between plots as a re-
sult of fertiliser applications is captured reasonably well by the model.

To provide a grassland example, Fig. 5 shows the time series for Park
Grass (UK). Themagnitudes of soil C and N are comparable to those ob-
served. Grass yields (dry matter of cut hay) are predicted by the model
with a lower degree of accuracy than arable crop yields. At the control
plot and the high N addition plot, simulated NPP was limited by P due
to exhaustion of available P (see supplementary information S7. This
is similar to all other sites where N was added without P, as described
in section 3.3). Abrupt changes in the simulations reflect changes in har-
vest or fertiliser regimes (for example the N and P addition plot yields
increase in 2013 due to N addition change from 0 to 14.4 g m−2 yr−1).

4. Discussion

4.1. Overall performance

The N14CP-Agri model developed and tested here simulates ob-
served C, N and yield values for a range of sites across northern
Europe over long timescales. The results indicate the ability of the
model to simulate both spatial and temporal trends. Even prior to cali-
bration of the PWeath0 parameter, model performance statistics
shown in Fig. 3 indicated statistically significant relationships between
Table 2
Mean observed and simulated values for topsoil carbon and nitrogen (in gm−2 yr−1) and drym
fertiliser plots), and Park Grass site (grassland control, low N, P only, N and P, and high N fertil

Site Plot no. Management practice Obs C Sim C

Askov 1 Control 3104 2667
2 Low NPK 3340 2802
3 Medium NPk 3515 2913
4 High NPK 3509 2989

Park Grass 1 Control 5095 4150
2 Low N 5831 4638
3 P 5222 5092
4 N and P 5109 4879
5 High N 5368 4098
simulated and observed soil C, N, C:N, pH and crop yields. This is notable
given the small number of model parameters, which are set to universal
values across all plots and sites, with no site specific calibration, making
the model widely applicable. After adjusting the initial amount of
weatherable P present at a site level (but not the plot level), the
model performance acrossmultiple output variables could be improved
considerably.

Overall, when compared to the site-scale results of N14CPmodel for
broadleaf, rough grassland, shrubland and conifer sites across Northern
Europe (Davies et al., 2016a), the model performance (determined
throughR2 andRMSE between observed and simulated values) is better
for agricultural sites than for semi-natural sites. Thismay be attributable
to the fact that soil C-N-P in agricultural sites are conditioned by human
inputs of fertilisers, tillage and harvesting, the timings and magnitudes
of which are well characterised by experimental records. For semi-
natural sites, processes such as atmospheric deposition and weathering
of nutrients are relatively more significant in determining soil biogeo-
chemistry, and these fluxes and processes aremore difficult to quantify.
Additionally, one would expect that plant stoichiometry of monocul-
tural sites (agricultural) should be better characterised by the PFT pa-
rameters, and hence better represented within the model.

The temporal resolution of the model (quarterly) will inevitably
limit the degree to which variability of yield simulated; average
atter yields (gm−2 yr−1) for the Askov B3 sites(arable control, low,medium and highNPK
iser). N.B. the model is not calibrated to individual plots.

R2 Obs N Sim N R2 Obs yield Sim yield

0.78 236 261 0.57 213 159
0.84 263 267 0.49 437 341
0.75 274 271 0.20 516 389
0.69 278 275 0.15 604 414
0.1 445 424 0.85 180 59
0.93 448 482 0.99 231 182
0.71 394 494 0.00 413 595
0.54 424 481 0.81 389 506
0.92 464 431 0.94 342 54



Fig. 5. Time series plots for the ParkGrass site. Plots include from top to bottom control, lowN application, P only, N and P, and highN application. Left column shows simulated soil carbon
(black) and nitrogen (red) in g m−2 yr from 1860 to the end of the simulated soil carbon (black) and nitrogen (red) in g m−2 yr from 1860 to the end of the simulation. Right column
simulated and observed yields (as dry matter g m−2 yr−1).
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quarterly temperature will not capture temperature extremes or diur-
nal variations, relevant for crop growth and yield. Arable crops such as
wheat are particularly sensitive to the timing of temperature variations
within the growing season, with temperatures during certain plant
growth stages influencing grain yield (Porter and Gawith, 1999).
Other factors that affect yield but are not included in the model include
pests and diseases, and the effects of crop protection and higher yielding
varieties (e.g. Christensen et al., 2006). However, the model is intended
to simulate and explore long-term and large-scale effects of agriculture
on biogeochemical cycling and productivity, and as such does not aim
for the level of accuracy that can be obtained with a detailed crop
model and fine-resolution temporal input data. Yield magnitudes, and
the responses of both arable and grassland yields to addition of
fertilisers (and hence changing soil nutrient availability), were simu-
lated with reasonable accuracy, and the limited parameter set makes
the model widely applicable.

The model presented here is developed and tested here to simulate
plant-soil nutrient cycling in temperate ecosystems across Northern
Europe. Soil development in themodel is based on theWalker Syers con-
cept (Walker and Syers, 1976). We assume soil development begins at
−10,000 years BCE at the start of the Holocene. Extension of the model
to other regions would require conceptualisation of P sources in older
soils; global application of the model would require consideration of soil
development over much longer timescales (in the region of 106 years).
As the initial pool of weatherable P declines, replenishment of P sources
through tectonic uplift, and erosion would need to be included in these
soils. Furthermore, Plant Functional Types (both natural and agricultural)
are typical of temperate regions. New PFTs and their associated stoichio-
metric ratioswould need to be included to extend themodel to other eco-
system types. The current model does not apply to ombrotrophic peat,
which differs from other soils due to waterlogging, the burial of carbon
in the anoxic catotelm. A modified version of N14CP to describe peats is
in preparation. The model presented here is a model of plant-soil system
biogeochemistry and includes representation of nutrient losses in leach-
ate. Whilst we acknowledge that surface runoff and associated ero-
sional/depositional processes will redistribute sediment and associated
nutrients, this is not within the scope of this study.
4.2. P weathering

The response to P inputs via weathering demonstrates that agricul-
tural systems are not completely decoupled from prior natural condi-
tions, despite significant amendments to nutrient cycling through the
addition of fertilisers – in some cases for many decades. The parameter
PWeath0 (representing the initial pool of weatherable P) has a surpris-
ingly large effect on contemporary pools of C, N and P despite large nu-
trient additions and modification through cropping and tillage (see
supplementary information S8for details), indicating that weathering
of P is fundamental to the development to agricultural ecosystems.
The average calibrated value of PWeath0 for agricultural sites in this
study was 75% higher than that applied for semi-natural sites by
Davies et al., 2016a (255 and 145 g m−2 respectively). Higher values
of this parameter for agricultural sites may be expected due to the po-
tential for tillage to influence mineral weathering rates and P release
(Eriksson et al., 2016; Hartmann et al., 2013), or perhaps that naturally
fertile siteswith richmineral inputs aremore likely to have been chosen
for agricultural use. Simulations suggest that despite high additions of N
and P over long time periods, the modelled contemporary pools of C-N-
P are still sensitive to initial conditions. Previous studies have indicated
the importance of Pweathering for semi-natural ecosystems (Anderson,
1988; Davies et al., 2016a), but this study is the first to explore this in an
agricultural context. Therefore, to understand how global change will
influence ecosystems and cycling of C, N and P in both agricultural and
natural land uses, we need to consider geology and weathering
processes.
4.3. Performance by land use/management

The model evaluation presented in Table 1 indicates the accuracy of
model performance in both arable and grassland systems and across a
range of management practices, showing statistically significant rela-
tionships in each management type for the simulated variables.
Table 1 also highlights that simulated variables are less accurate for
unfertilised plots, in particular yields are under-predicted in unfertilised
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plots or those with very little P compared with N additions. In these
plots, the availability of P becomes severely low after a number of
years of continued cropping or grazing without P application, resulting
in very lowNPP estimates in themodel (see supplementary information
S7 for further details). This reduction in yield however, is not witnessed
in the observations. Adjustment of PWeath0 does not resolve this as the
value is selected based on minimising the cost function across several
variables (C, N, C:N ratio and yield) at several plots with and without
N and P fertilisers. It is difficult to understand whether poor perfor-
mance in non-fertilised agricultural settings is characteristic of this
model or a gap in our understanding more widely, as other agricultural
models that include nutrient cycles have not been tested under such
conditions. Nonetheless, as use of either inorganic or organic fertilisers
is standard in most agricultural settings, and the model performs well
under these conditions, we can conclude that the model is suitable for
most agricultural settings in Northern temperate Europe.

However, these experimental plots with extremely low (or zero)
P fertiliser additions provide more than a mere curiosity in terms of
management. The collapse of yields in simulation of these environ-
ments raises an interesting question as to how yields have been
sustained for so long on long-term experimental plots where P is
not added, and where P is exported in harvested material and not
replaced?

To help us understand where this P may be deriving from (e.g. from
a weatherable source, P deposition or other plant accessible sources)
and what processes or sources may be missing or underrepresented in
themodel, we estimated themagnitude of extra P needed in these sim-
ulations to sustain yields for these instances. We found that the extra P
required ranged from 0.15–2.5 g m−2 yr−1. This is a large amount of P,
akin to typical fertiliser rates, which typically range from
1.2–6 g m−2 yr−1 in the experiments drawn together in this study.
This additional P is in excess of a number of natural sources; the lower
end of this range is in excess of inputs via globally observed weathering
rates (Hartmann et al., 2013) suggesting that enhancedweathering due
to agricultural activity or plant activity is not a likely source. This range
also does not alignwell with likely P deposition rates; ameta-analysis of
observational data by Tipping et al., 2014 report measured total P in the
range of ~0.001 to 0.1 gm−2 yr−1, with amean of 0.027 gm−2 yr−1.We
experimented with adding both P deposition and enhancing/sustaining
higher weathering fluxes in simulations, however these contributions
cumulatively over time were not sufficient to prevent P exhaustion
and collapse of yields in these plots. Hence, we suggest that representa-
tion of these sources and processes in the model are not the primary
issue here.

Flexible plant stoichiometries are another potential mechanism by
which yields may be sustained in these plots: plants may adapt their
C:P ratios to sustain growth in low P conditions. We experimented
with setting the C:P ratio to the highest observed values from the liter-
ature to test if this would allow yields to be sustained, with no success,
again suggesting that this mechanism is not enough to explain how
yields are maintained under these conditions. Further empirical data
on nutrient content of crops on these long-term sites would be helpful
here.

Unaccounted for legacy P, not captured by our known history of
fertiliser application is another potential explanation. Previous exces-
sive P fertiliser additions have been shown to accumulate in soils and
sustain yields after addition of P is discontinued for several years
(Condron et al., 2013; Liu et al., 2014; Rowe et al., 2016; Zhu et al.,
2018). Historical P fertiliser additions prior to the start of the experi-
ment may not have been recorded and so were not represented in the
model.

Another explanation for where this P may be being made avail-
able in the field, as mentioned above, is via plant access to organic
forms of P in the soil. Our representation of plant access to organic
P as discussed in Davies et al., 2016a is basic; sources of P for NPP
are used preferentially in order of P retained within the plant, readily
available inorganic P (equal to the sum of P from decomposition, rot,
desorption and weathering), followed by less accessible organic
forms. Whilst the importance of phosphatase enzymes as a mecha-
nism for P assimilation in plants starved of P is well recognised,
quantification of their contribution is not known (Johnson et al.,
2003; Raghothama and Karthikeyan, 2005). This lack of empirical
data on the rate of plant access does not permit us to comment on
whether this mechanism, if differently parameterised or
conceptualised, couldmeet the extra P demand suggested by amain-
tenance of yields. Hence, this process remains a possibility and our
research highlights a major gap in our understanding of nutrient cy-
cling and sustainability in agricultural systems. More empirical re-
search is needed to provide insights into rates of plant access to
soil organic phosphorus, and combining these with models can
help robustly test hypotheses on plant P access under low P fertiliser
conditions.
5. Conclusions

The N14CP-Agri model presented in this study provides long-
term simulation of integrated C-N-P cycling in temperate soils for ag-
ricultural environments and allows transitions between agricultural
and natural land uses to be simulated. The model addresses the need
to simulate the long-term effects of land-use change from semi-
natural to agricultural land uses, and subsequent management prac-
tices on soil biogeochemistry. The results presented demonstrate the
ability of the model to reproduce both inter-site variability and tem-
poral change and produce results applicable across a broad range of
temperate fertilised agricultural environments. These simulations
also allow us to explore the relative importance of natural and an-
thropogenic nutrient flows in determining contemporary C storage,
and the role of nutrients in sustaining crops.

Including simulation of crop yields within the model provides a
means of estimating the impacts of soil biogeochemistry on food
production. The model captures the response of crop yields as a re-
sult of varying climate and location, land management practices
and soil biogeochemistry. The resultant model is applicable to a
range of scenarios to evaluate longer-term implications for yield, ter-
restrial C storage, and gaseous and dissolved fluxes of C, N and P, with
relevance for food security, climate change, water quality and
biodiversity.

The study has highlighted that even in heavily modified agricul-
tural soils, weatherable P still strongly influences the development
of soils and contemporary stores of C, N and P in agricultural soils.
Model accuracy for soil C and N significantly improved when this pa-
rameter was allowed to vary on a site basis. This is an important
finding since it demonstrates that despite large modifications to nu-
trient fluxes by humans, the state of agricultural systems and their
pools of C and N are not fully decoupled from prior natural
conditions.

Finally, the model testing also highlighted a gap in our current
understanding of agricultural nutrient cycling and sustainability.
Relatively poor modelled yield performance in plots with low P
fertiliser additions suggests an important process or source of P is
missing from our understanding of agricultural environments. Mul-
tiple potential sources and processes were explored, but none,
given present levels of knowledge, could account for the high level
of P required to sustain modelled yields in these situations. We sug-
gest that plant access to organic P and ‘occluded’ phosphates are key
uncertain processes that may help explain how the observed yields
are sustained under low P conditions. Further empirical and model-
ling studies should focus on addressing this knowledge gap, particu-
larly given that more agricultural systems are likely to be managed
with low P inputs in future due to sustainability and resilience con-
cerns surrounding use of rock sources of P fertiliser.
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