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Abstract
Aim: To track the peopling of the South Pacific and assess their impact on terrestrial 
and aquatic ecosystems.
Location: Upolu, Samoa.
Taxon: Terrestrial and aquatic plants.
Methods: A sedimentary record covering the last c. 10,500 years was recovered 
from the volcanic crater that contains Lake Lanoto'o near the centre of Upolu 
Island. Information on past ecological change was obtained from microscopic and 
macroscopic remains extracted from the sediments: charcoal (fire history), pollen/
spores and plant remains (vegetation history), and lake status (algae/cyanobacteria). 
Information on the depositional environment and climate was obtained from geo-
chemical and sedimentary analysis: loss-on-ignition (sediment composition), cryp-
totephras (volcanic eruptions) and precipitation regime (Ti/inc). The environmental 
history developed was compared with the archaeological record from the region.
Results: Charcoal material was found in the Lake Lanoto'o sediments at higher abundances 
and more frequently in samples from the period after the first archaeological evidence of 
people on Upolu (c. 2900–2700 years ago). No abrupt shift is recognized in the vegeta-
tion or aquatic ecosystem assemblages coincident with the arrival of people on the island.
Main conclusions: Macrocharcoal is demonstrated to be an effective proxy for detect-
ing human occupation of Upolu around 2,800 years ago. The immediate impact of these 
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1  | INTRODUC TION

Tracking the initial spread of humans around the globe allows an as-
sessment of how humans have shaped ecosystems and landscapes. 
Identifying the first arrival of humans into a landscape, however, is 
often challenging because populations were likely small, transient 
and often did not produce materials that are frequently preserved 
(Gosden, 1993; Graves & Addison, 1995). Measures for assessing the 
arrival and impact of humans in ecosystems can be divided into two 
categories: (a) direct measures, which seek to obtain physical evidence 
of past human activity and (b) indirect measures, which infer past 
human activity from secondary observations. Aside from the discov-
ery of sites or artefacts representing a past material culture, one of the 
most effective direct measures for tracking past human activity has 
been found to be the presence, and abundance, of ancient (fossil) char-
coal found in soils or sediments (following Whitlock & Larsen, 2001). 
The use of charcoal to track past human activity has been shown to be 
particularly effective in tropical settings where natural fire is limited 
due to either a lack of ignition source or flammability, that is, the ap-
pearance of fire is dependent on the arrival of humans (Argiriadis et al., 
2018; Burney et al., 2004; Gosling et al., 2017; Huebert & Allen, 2016).

The South Pacific Islands (Oceania) are believed to contain some of 
last ecosystems on Earth to be colonized by humans (Figure 1). Indirect 
evidence from linguistic and genomic analysis suggest that the disper-
sal of Austronesian-speaking peoples into Oceania began c. 5,000 cal-
ibrated years before present (cal BP) when it had reached as far as the 
Solomon Islands (Gray, Drummond, & Greenhill, 2009). Subsequently, 
people from the Bismarck Archipelago dispersed east c. 3,000 years 
ago and reached the easternmost islands of Polynesia within the last 
1,000 years (Gray et al., 2009; Matisoo-Smith, 2015). These dates 
are supported by direct archaeological evidence that suggests the 
homonid occupation of New Guinea began during the late Pleistocene 
(c. 50,000 years ago; Summerhayes, Field, Shaw, & Gaffney, 2017), but 
that people did not reach western Polynesia until c. 2,850 cal BP (Burley, 
Edinborough, Weisler, & Zhao, 2015) or the easternmost islands, such 
as Rapa Nui (Easter Island), until c. 900–800 cal BP (Wilmshurst, Hunt, 
Lipo, & Anderson, 2011). The timing of human dispersal across the 
South Pacific in the Holocene has been linked to heightened periods 
of El Niño activity that elevated drought frequency and likely pushed 
peoples to migrate eastwards (Anderson, Gagan, & Shulmeister, 2007).

The impact of the dispersal of human populations across the 
South Pacific, and the interplay between humans and climatic factors, 

in modifying ecosystems is the subject of ongoing debate (Kirch, 
2017; Nunn, 2007; Spriggs, 2014). It is likely that ecosystems on is-
lands in the South Pacific were impacted by removal, and addition, of 
resources by the first peoples (Anderson, 1952; Flenley & King, 1984; 
Gosden, 1993; Prebble et al., 2019; Prebble & Wilmshurst, 2009). 
Many South Pacific island ecosystems are also known to be sensi-
tive to changes in moisture availability (Mueller-Dombois & Fosberg, 
1998), such as those resulting from changes related to the El Niño 
Southern Oscillation (ENSO) (Hassall, 2017; Zhang, Leduc, & Sachs, 
2014). Similarly, short-lived abiotic events such as volcanic or tsu-
nami events have been shown to have influenced the ecosystems on 
small islands through burial (Spriggs, 2014) or arrival of new species 
via rafting (García-Olivares et al., 2017). Unravelling the different 
drivers of ecosystem change has become important for understand-
ing the dynamics of natural ecosystems and for discovering the spe-
cific impacts resulting from the arrival of humans. Here we present a 
new c. 10,500 year record of fire and ecosystem change from Upolu 
(Samoa) and assess the relative importance of humans, volcanic ac-
tivity and climate in shaping terrestrial and aquatic ecosystems.

1.1 | SAMOAN ARCHIPELAGO

1.1.1 | Geographical setting

The Samoan archipelago lies within the western Pacific Ocean and com-
prises 10 islands (13–14oS, 170–173oW). Just two islands, Savai'i and 
Upolu, make up 96% of the landmass (total 2,934 km2; Figure 1). The 
Samoan islands were formed though volcanic activity during at least 
the last c. 1 million years as a consequence of the movement of the 
Pacific Plate (Hawkins, 1976; Kear, 1967; Kear & Wood, 1959). The ge-
ology of Samoa predominantly comprises basaltic cones that have been 
heavily eroded during the Pliocene and early Pleistocene, and they are 
now buried by late Pleistocene lava flow deposits (Stearns, 1944). The 
last volcanic eruption in Samoa occurred on Savai'i in AD 1911 and on 
Upolu at some unknown time during the Holocene (Venzke, 2013). The 
majority of the modern Samoan flora is of Malaysian origin and can be 
divided into four groups broadly defined by altitude (Table 1).

The climate of the Samoan archipelago is controlled by the inter-
play between the South Pacific Convergence Zone (SPCZ), the Trade 
Winds and the Inter-Tropical Convergence Zone (ITCZ). Mean monthly 
minimum (23°C–24°C) and maximum (29°C–30°C) temperature are 

settlers on the vegetation seems to have been minimal; however, a subsequent opening 
up of the landscape is suggested through the gradual increase in ferns. The absence of 
any significant change in the aquatic community associated with, or after, the arrival of 
people on the islands suggests that humans rarely visited the lake. We suggest that on 
Upolu a simple model of decreasing human impact away from coastal areas is applicable.

K E Y W O R D S

algae, aquatic, charcoal, cyanobacteria, fire, Pacific, pollen, Polynesia, terrestrial, vegetation
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F I G U R E  1   Climatic and geographical context of study region. (a) Distribution of precipitation across the globe, precipitation to the 
Samoan archipelago is influenced by changes in the South Pacific Convergence Zone (SPCZ) and the Inter-Tropical Convergence Zone 
(ITCZ) data from GPCPV2.2 (1979–2014). (b) Samoan archipelago (inset) and Upolu Island (yellow box), position of Lake Lanoto’o study site 
indicated by red box. (c) Topographic map of the area around Lake Lanoto’o, position of core site indicated by red dot. (d) Photograph of Lake 
Lanoto’o taken from the rim of the volcanic crater, position of coring platform on lake indicated by red arrow. (e) Bathymetric map (upper 
panel) with depth indicated in meters below lake surface, and cross section of Lake Lanoto'o (lower panel), cross section in lower panel 
follows the line from i to ii, position of core site indicated by red dot [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b) (c)

(d) (e)
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relatively constant throughout the year, but precipitation can vary 
from > 400 mm (January) to < 150 mm (July). The climate of Upolu is 
classified as tropical, with a mean annual temperature of 26.6°C and 
mean annual precipitation of c. 2,800 mm (Lagomauitumua, Seuseu, 
& Faasaoina, 2011), with the south-east trade wind belt delivering 
slightly more rain to the southern region. No distinct dry season ex-
ists, but during November and April it is generally warmer and wetter 
with a greater frequency of tropical storms and hurricanes (Mueller-
Dombois & Fosberg, 1998). Strong year-to-year climatic variation has 
been observed to occur related to the movement of the SPCZ during 
different ENSO phases, that is, the La Niña phase delivers more wet 
season rainfall, while the El Niño phase leads to relatively drier condi-
tions (Lagomauitumua et al., 2011). Sedimentary archives of past cli-
mate on Samoa have been reconstructed over the Holocene and show 
abrupt changes in precipitation proxies interpreted to indicate regional 
changes in the position and intensity of the SPCZ (Hassall, 2017).

1.1.2 | Human history

The earliest evidence for human occupation of Samoa comes from ra-
diocarbon dates associated with artefacts found at the Ferry Berth 
archaeological site near the coastal town of Mulifauna (Upolu) (Leach 
& Green, 1989; Petchey, 2001; Petchey & Kirch, 2019; Rieth & Hunt, 
2008). The pottery and adze's found at the Malifauna site are char-
acteristic of the Lapita culture (c. 2900–2700 cal BP) and are made 
of local material (Leach & Green, 1989). The widespread scatter of 

archaeological finds (Davidson, 1969), and identification of ancient 
building structures through remote sensing techniques (Jackmond, 
Fonoti, & Tautunu, 2018), across the island indicates occupation of 
large areas during some period, or periods, prior to European contact 
in AD 1840 (110 cal BP). Current archaeological evidence from settle-
ment sites on Upolu, however, suggest that human populations may 
not have moved to inland locations until late in the islands occupation: 
1500–1000 cal BP (Morrison, Rieth, Dinapoli, & Cochrane, 2015), c. 
595 cal BP (AD 1355) at Cog Oven and c. 315 cal BP (c. AD 1635) at 
Mount Olo (Jennings, Holmer, & Jackmond, 1982).

Patterns of social organization are not thought to have greatly 
altered through the period of human occupation of Samoa (Wallin 
& Martinsson-Wallin, 2007); however, a four-step sequence of set-
tlement patterns has been suggested (Green, 2002; Morrison et al., 
2015): (a) c. 2900–2700 years ago linked to Lapita decorated ceram-
ics, (b) c. 2700–2000/1500 years ago linked to Polynesian plainware 
ceramics, (c) c. 1500–1000 years ago ‘Samoan Dark Ages’ when set-
tlement pattern evidence is limited at the coast but is present inland 
and (d) c. 1000–200 years ago. The reasons behind the pre-historic 
changes in settlement patterns on Upolu remain ambiguous and 
they have not, to date, been directly associated with external fac-
tors; however, the subsequent arrival of Europeans on the islands is 
seen as a major driver of change (Wallin & Martinsson-Wallin, 2007).

2  | MATERIAL S AND METHODS

2.1 | Study site: Lake Lanoto'o (Upolu island)

Lake Lanoto'o (171°50′W, 13°54′S) is a 0.11-km2 volcanic crater lake at 
the centre of Upolu island c. 760 m above sea level (a.s.l.) with a catch-
ment area of 0.23 km2. The Salani volcanic deposits that define the region 
are thought to have formed between c. 310,000 and 64,000 years ago 
(Kear & Wood, 1959). Today the lake is c. 400 m diameter with a maxi-
mum depth of 17.5 m (Figure 1), in the surface layers lake water is pH 
7, with a temperature of c. 27°C, oxygen saturation of 105% and a con-
ductivity of 15 μs/cm (measured in September 2014). At c. 10-m depth, 
a thermocline results in a relatively abrupt change to cooler (23°C) an-
oxic conditions (dissolved Oxygen 10%), pH 4 and increased conductivity 
21 μs/cm (Hassall, 2017). Lake Lanoto'o is boarded by steep slopes that 
reach up to 790 and 770 m a.s.l. to the east and west, respectively. The 
soils that surround the lake today contain highly weathered red lateritic 
clay with low silica but high TiO2 content (Wright, 1963) and are veg-
etated with dense montane forest (Olson et al., 2001; Whistler, 1992).

2.2 | Sediment

2.2.1 | Core recovery

A sequence of overlapping cores was obtained from the deepest re-
gion of Lake Lanoto'o in September 2014 (Figure 1). A UWITEC grav-
ity-type corer was used to recover the upper 60 cm. A cam-modified 

TA B L E  1   Summary of composition of major vegetation groups 
on Samoa (Olson et al., 2001)

Vegetation 
groups Key taxa

Littoral Scaevola taccada (Goodeniaceae), Pandanus 
tectorius (Pandanaceae), Barringtonia 
asiatica (Lecythidaceae), Calophyllum 
inophyllum (Calophyllaceae), Pisonia grandis 
(Nyctaginaceae), Cocos nucifera (Arecaceae)

Lowland 
rainforest

Diospyros samoensis (Ebenaceae), Diospyros 
elliptica (Ebenaceae), C. inophyllum 
(Calophyllaceae), Dysoxylum samoense 
(Meliaceae), Dysoxylum maota (Meliaceae), 
Pometia pinnata (Sapindaceae), Planchonella 
samoensis (Sapotaceae), Syzygium spp. 
(Myrtaceae), Myristica fatua (Myrtaceae)

Wet-cool 
montane 
rainforest

Dysoxylum huntii (Meliaceae), Syzygium spp. 
(Myrtaceae), Weinmannia spp. (Cunoniaceae), 
Canarium harveyi (Burseraceae), Rhus 
taitensis (Anacardiaceae), Astronidium spp. 
(Melastomataceae)

Cloud forest Reynoldsia pleiosperma (Araliaceae), Weinmannia 
samoensis (Cunoniaceae), D. huntii (Meliaceae) 
and Coprosma savaiiensis (Rubiaceae), 
Dicranopteris linearis (Gleicheniaceae), 
Freycinetia storckii (Pandanaceae), Cyathea spp. 
(Cyatheaceae)
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piston corer was used to retrieve overlapping sediment cores to a 
depth of 302 cm below the mud–water interface (Colinvaux, Oliveira, 
& Moreno, 1999). All cores were stored intact in airtight tubes and 
kept in cold storage (+4°C) at the University of Southampton (UK). 
Subsamples were subsequently extracted from the cores for radio-
carbon dating and palaeoecological analysis.

2.2.2 | Core analysis

The cores were correlated on the basis of sedimentary character-
istics determined by loss-on-ignition (LOI), magnetic susceptibil-
ity and Itrax core scanning data (Figure 2). True core depths (cm 
below mud–water interface) were then re-calculated to form a sin-
gle composite depth model that was, in turn, used for age versus 
depth modelling.

Loss-on-ignition analysis was applied to contiguous 1-cm3 sub-
samples (following Lamb, 2004). Whole cores were measured for 
volume-specific low-frequency magnetic susceptibility using a 
Bartington Instruments MS2K sensor at contiguous 1-cm intervals 
(following Dearing, 1994). Geochemical analysis was undertaken 
using an Itrax core scanner (Cox Analytical Systems, Gothenburg, 
Sweden; following Croudace, Rindby, & Rothwell, 2006) and %C and 
%N (used to calculate C/N) using an elemental analyser. A molyb-
denum tube (30 kV, 30 mA) was used to scan each core at 500-µm 
resolution and at 200 µm for the surface gravity core. The analytical 
dwell time was set at 30 s.

2.3 | Age versus depth model

Radionuclide dating was used to generate and age model for the Lake 
Lanoto'o sediments. For the surface gravity core, the activity of 137Cs 
and 210Pb was measured using Canberra well-type HPGe gamma-
ray spectrometers (Canberra UK Ltd., Didcot, UK—now Mirion 
Technologies). The gamma ray spectra were acquired for 100,000 s 
for each contiguous 0.5 cm samples and processed using Fitzpeaks 
gamma deconvolving software (JF Computing, Stanford-in-the-
Vale, UK). All measurements were undertaken at the Geosciences 
Advisory Unit (GAU)-Radioanalytical Laboratories based at the 

National Oceanography Centre, Southampton (Croudace, Warwick, 
& Morris, 2012).

The CRS model was applied to the resulting 210Pb profiles to 
account for variations in accumulation rate and has been used in 
other sites in the Pacific (following Zhang et al., 2014). Our CRS 
model obtained r2 values of .91, p < .0001. We tested the model 
using the independent 137Cs estimates for bomb fallout identified 
at 9 cm (AD 1954 ± 1) when appreciable fallout levels of 137Cs in 
the atmosphere first occurred, and the peak at 7 cm which was 
ascribed to the AD 1964 ± 1 fallout peak (Croudace et al., 2012; 
Terry, Kostaschuk, & Garimella, 2006). The 210Pb CRS model for 
Lake Lanoto'o produced comparative dates of AD 1953 ± 1 at 9 cm 
and AD 1966 ± 1 at 7.5 cm. Average accumulation rates using this 
model for the upper sediments in Lake Lanoto'o were 9.92 years/
cm.

Radiocarbon (14C) measurements were obtained from 18 bulk 
sediment samples using the acid-alkali-acid pre-treatment method 
at SUERC (Table 2). All dates were reported in conventional 14C 
years before AD 1950, with analytical confidence expressed at 
the ± 1σ interval. Radiocarbon dates were calibrated to calendar 
ages using the SHCal13 curve for southern hemisphere (Hogg et 
al., 2013).

All dates were used to create an age versus depth model for Lake 
Lanoto'o in BACON 2.2 Bayesian modelling software (Blaauw & 
Christen, 2011; Figure 2). While the majority of the dates are strati-
graphically consistent throughout the sequence, BACON highlights 
two samples (LAN14-2-2 11-12 cm and LAN14-1-3 17-18 cm) that are 
outliers, the former being older than expected and the latter being 
younger than expected.

2.4 | Palaeoecological analysis

Two different sets of subsamples were processed from the Lake 
Lanoto'o sediment core to extract different types of palaeoecologi-
cal information: (a) microscopic remains, to reconstruct regional fire 
history (microcharcoal), vegetation history (pollen), lake status (algae 
and cyanobacteria) and volcanic eruptions (cryptotephra) and (b) 
macroscopic remains, to reconstruct local fire history (macrochar-
coal) and local vegetation (plant remains).

F I G U R E  2   Age versus depth model 
for Lake Lanoto'o sediment core. Green 
points are 210Pb and 137Cs CRS modeled 
ages. Blue symbols are bulk 14C AMS 
dates with 2 sigma errors. All data are 
calibrated using SHCal13 in BACON 2.2 
(Blaauw & Christen, 2011; Hogg et al., 
2013) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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2.4.1 | Microscopic remains: Microcharcoal, pollen, 
spores, algae, cyanobacteria and cryptotephra

One cubic centimetre subsamples were prepared for microscopic 
analysis using standard protocols (Moore, Webb, & Collinson, 1991), 
including density separation, acetolysis and sieving at 180 µm. A 
Lycopodium tablet (University of Lund, batch #483216, containing 
18,583 grains ± 4.1%) was added to each sample to allow the cal-
culation of concentrations (following Stockmarr, 1971). Examination 
of material was done using a Leica DMBL microscope at 400× and 
1,000× magnification. Microcharcoal, pollen and spores were identi-
fied and counted in parallel (32 samples). Algae and cyanobacteria 
were identified and counted in parallel (58 samples). Microcharcoal 
counts were obtained following guidelines on identification de-
scribed in Whitlock and Larsen (2001). A threshold of ≥ 5% of the 
maximum value was used as an indication of microcharcoal input 
over potential background (following Kelly, Higuera, Barrett, & 
Hu, 2011). Pollen and spore identifications were achieved through 
comparison with the reference collections at the University of 
Amsterdam and Utrecht University, and published atlases (APSA 
Members, 2007; Roubik & Moreno, 1991). Pollen and spore sums of 
> 300 grains were achieved for each sample, excluding Cyperaceae. 
Algae and cyanobacteria were identified through comparison with 
reference material at the University of Amsterdam and published at-
lases (Canter-Lund & Lund, 1995; van Geel, 1976, 1978; Medeanic, 
2006; Poulíčková, Žižka, Hašler, & Benada, 2007). Algae and cyano-
bacteria were counted until sums of > 300 had been achieved.

Cryptotephra layers were identified following subsampling of 
contiguous 5-cm long sections throughout the entire core sequence. 
Cryptotephras were extracted by sieving to recover the 125–25 µm 
fraction, and density separation using sodium polytungstate; cleaning 
float of 1.95 g/cm3, extraction float of 2.5 g/cm3 (following Blockley 
et al., 2005). The supernatant of the extraction float was mounted on 
glass slides in Canada Balsam and scanned for the presence of glass 
shards under an optical microscope fitted with cross-polarizing fil-
ters. The numbers of shards were then counted and concentrations 
per gram of sample (dry weight) calculated. Where tephra shards were 
identified the sample resolution was refined to 1 cm.

2.4.2 | Macroscopic remains: Macrocharcoal, plant 
remains and sediment composition

In all, 86 subsamples of 1 cm3 were prepared for macroscopic 
analysis through bleaching with 3% H2O2 on a hotplate at 150°C 
for 15 min, and sieving at 160 µm. Identification of macrocharcoal, 
plant remains and sedimentary material was done simultaneously 
using a Leica MZ16 stereo microscope at 0.71–11.5× magnification. 
Macrocharcoal was identified based upon colour (black), shape (an-
gularity) and breakage pattern when pressure was applied (splinter-
ing), following Whitlock and Larsen (2001). Macrocharcoal particles 
were counted and digitally photographed using a Fuji X-M1 camera. 
The images of macrocharcoal particles were analysed in ImageJ to 
calculate area (Rasband, 2008). A threshold of ≥ 5% of the maximum 

TA B L E  2   Radiocarbon ages obtained from Lake Lanoto'o, presented as 14C years before AD 1950. The δ13C is expressed as relative 
to the VPDB (δ13CVPDB) from Hassall (2017). SUERC = NERC Radiocarbon facility, East Kirkbride. BETA = Beta Analytic (Miami, USA), 
UCIAMS = Keck-CCAMS Group (California, USA)

Laboratory ID Sample ID
Depth below sediment 
surface (cm) Material δ13CVPDB (‰)

14C uncalibrated 
age (yr BP)

UCIAMS-179834 LAN14-U2 24−25 cm 24–25 Plant macrofossil –25.9 540 ± 15

SUERC-63980 LAN14-1-1 20−22 cm 45–46 Bulk –22.6 1,096 ± 35

BETA-439599 LAN14-1-1 31−32 cm 56–57 Wood –26.8 1,630 ± 30

BETA-439600 LAN14-1-1 45−46 cm 70–71 Plant –26.7 2,570 ± 30

SUERC63981 LAN14-1-1 54−55 cm 79–80 Bulk –24.8 2,453 ± 37

UCIAMS-179835 LAN14-1-1 61−62 cm 86–87 Plant macrofossil –26.9 2,700 ± 20

SUERC-68884 LAN14-2-1 30−31 cm 108–109 Bulk –25.9 3,607 ± 44

SUERC-68885 LAN14-2-1 60−61 cm 138–139 Bulk –27.3 4,497 ± 48

SUERC-63982 LAN14-1-2 13−14 cm 128–129 Bulk –24.2 4,064 ± 35

SUERC-63983 LAN14-1-2 35−36 cm 150–151 Bulk –25.6 4,638 ± 36

SUERC-68886 LAN14-1-2 43−44 cm 157–158 Bulk –25.2 5,071 ± 48

SUERC-63984 LAN14-1-2 57−58 cm 172–173 Bulk –24.0 5,768 ± 38

SUERC-68887 LAN14-1-2 69−70 cm 183–184 Bulk –23.4 6,128 ± 59

SUERC-68891 LAN14-2-2 11−12 cm 208–209 Bulk –23.6 8,092 ± 77

SUERC-68892 LAN14-1-3 17−18 cm 238–239 Bulk –24.5 5,879 ± 56

SUERC-68893 LAN14-1-3 33−34 cm 254–255 Bulk –24.2 7,794 ± 74

SUERC-68894 LAN14-1-3 68−59 cm 279–280 Bulk –25.7 8,462 ± 82

SUERC-63985 LAN14-1-3 77−78 cm 299–300 Bulk –22.8 9,440 ± 40
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value was used as an indication of macrocharcoal input over poten-
tial background, following Kelly et al. (2011). Plant remains iden-
tifications were achieved through reference to collections at the 
University of Amsterdam.

2.4.3 | Statistical analysis

Detrended correspondence analysis (DCA) was used to character-
ize the major trends in the pollen and spore, and algae and cy-
anobacteria datasets. Percentage abundance data for all taxa were 
used in both cases. The DCA analysis was performed in R 3.5.1 (R 
Core Team, 2018) using the package Vegan 2.5-2 (Oksanen et al., 
2017).

3  | RESULTS

3.1 | Sediment characteristics

The Lake Lanoto'o sediment core was found to comprise two distinct 
sediment types: (a) orange-coloured (Munsell 7.5YR 5/6) sediments 
with high titanium (Ti/inc), high magnetic susceptibility (K), high C/N 
ratio and low organic carbon, and (b) dark brown coloured (Munsell 
7.5YR 2.5/5) sediments with low titanium (Ti/inc), low magnetic 

susceptibility (K), low C/N ratio and high organic carbon (Figure 3). 
At one point in the core (181–180 cm, c. 6,837 cal BP), rounded sili-
cate sand (> 160 µm) was found within the sediment in an obliquely 
slanting layer that extended over 7.3 cm.

3.2 | Microscopic remains

3.2.1 | Microcharcoal

Prior to the first archaeological evidence of humans on Upolu (c. 
2,800 cal BP), microcharcoal was found in six of the 19 samples ex-
amined (32%), while in the post-occupation period 13 out of 14 sam-
ples were found to contain microcharcoal (93%). Furthermore, the 
older samples contained low abundances (mean 1,199 particles/cm3) 
of microcharcoal when compared with the more recent period (mean 
7,848 particles/cm3) (Figure 3). One sample in the pre-archaeology pe-
riod contains an abundance of microcharcoal equivalent to the post-
archaeology period; c. 11,400 particles/cm3 at c. 4,200 cal BP.

3.2.2 | Pollen and spores

Throughout most of the last c. 10,500 years Moraceae/Urticaeae 
(mean 14%), monolete spores (13%), Myrtaceae (12%) and 

F I G U R E  3   Physical properties and charcoal diagram from Lake Lanoto'o (Uplou, Samoa). Horizontal dashed grey line indicates the 
presence of siliceous sand (> 160 µm; c. 6,700 cal BP). Horizontal light grey bars indicate tephra layers (c. 10,063–9775, 3829–3576 and 
81–62 cal BP). Horizontal dark grey bars indicated: (i) first archaeological evidence of Lapita people on Upolu c. 2900–2700 cal BP (Lap.; 
Petchey, 2001) and (ii) Samoan Dark Ages c. 1500–1000 cal BP (SDA; Davidson, 1979; Green, 2002; Reith & Hunt, 2008). Vertical dotted 
lines on the charcoal data indicated 5% of maximum abundance, values above 5% are considered to exceed the background noise (following 
Kelly et al., 2011). TOC = Total Organic Carbon. Mag. = Magnetic
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Weinmannia (9%) have been major components of the pollen/
spore assemblage at Lake Lanoto'o (Figure 4). Large variations in 
abundance, however, are observed in a number of taxa before, 
and after, the first archaeological evidence of humans on Upolu, 
notably: Myrtaceae (range 1%–33%), Moraceae/Urticaceae (5%–
32%), Wienmannia (2%–27%) and Pandanus (0%–24%). Following 
the archaeological evidence of humans on Upolu, it is notable that 
Myrtaceae does not reach above 5%, while Cyatheaceae gradu-
ally increases from around 4% at c. 3,000 cal BP up to over 10% 
by c. 1,200 cal BP. There is no observed change in the concen-
tration of pollen/spores within the sediment coincident with the 
first archaeological evidence of humans on Upolu, but changes 
in abundance of taxa indicate the largest sustained change in 
the pollen assemblage in the last c. 10,500 years (DCA1 scores, 
Figure 4).

3.2.3 | Algae and cyanobacteria

Algae and cyanobacteria were found in high concentrations (mean 
1,500,000 per cm3) throughout the Lake Lanoto'o sediment core, 
except for the period between c. 6500 and 5300 cal BP when 
concentrations drop dramatically (< 250,000 per cm3) (Figure 5). 
During periods of high concentration, the algae and cyanobacte-
ria assemblage is comprised predominantly of Botryococcus (11%–
50%). During the period of low concentration, the assemblage 
mainly comprises four types of algae/cyanobacteria that have not 
been taxonomically assigned: Type 128A (up to 25%), Type 128B 
(up to 54%) and Type A (up to 21%; van Geel, 1976, 1978). There 
is no change observed in the algae and cyanobacteria community 
coincident with the first archaeological evidence of humans on 
Upolu.

3.2.4 | Tephra

Cryptotephra particles were found in three samples from the Lake 
Lanoto'o sediment core at 292–287 cm (c. 10,063–9775 cal BP), 109–
104 cm (3829–3576 cal BP, 1879–1626 BC) and 14–13 cm (81–62 cal 
BP, AD 1869–1888; Figure 2). Within these samples between 70 and 
10,000, tephra particles per gram were found.

3.3 | Macroscopic remains

3.3.1 | Macrocharcoal

Macrocharcoal is absent from the Lake Lanoto'o sediments prior to 
the earliest archaeological record of humans on the island around c. 
2,800 years ago (Figure 3). Within the last c. 2,800 years, macrochar-
coal fragments were found in nine of the 32 (28%) samples analysed. 
Macrocharcoal particle counts within the last c. 2,800 years ranged 
from 0 to 9, with the maximum area of charcoal recorded occurring at 
c. 1,200 cal BP (0.86 mm2); all but one of the occurrences of macro-
charcoal exceeded 5% of the maximum area value (0.04 mm2).

3.3.2 | Plant remains

Three types of macroscopic plant remains were identified within the 
sediments from Lake Lanoto'o. One of these was identified as fern 
sporangia, whereas the other two were identified as seeds from an 
unknown plant (Appendix 1). The fern sporangia and Type-2 plant 
remain from Lake Lanoto'o were present intermittently throughout 
the entire record. The Type-1 plant remains first appears in the Lake 
Lanoto'o record c. 4,200 cal BP.

F I G U R E  4   Summary diagram for pollen, spore and macroscopic remains from Lake Lanoto'o (Uplou, Samoa). Pollen and spore taxa shown 
represent all taxa occurring at > 5% in at least one sample. For images of macroscopic remains see Appendix 1. Notation follows Figure 3
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4  | DISCUSSION

4.1 | Fire and the human occupation of Upolu

Macro- and microcharcoal are commonly interpreted as evi-
dence of burning in the local and regional environment (Clark & 
Royall, 1996). The definition of what is considered ‘local’ versus 
‘regional’ is depended on the site-specific setting and conditions, 
important factors include topography and prevailing wind direc-
tion (Whitlock & Larsen, 2001). In the case of Lake Lanoto'o, the 
macrocharcoal signal could be derived from two sources: (a) burn-
ing within the small catchment (0.23 km2) immediately around 
the lake and (b) burning on the coast c. 9 km to the south; fires 
> 0.02 km2 can generate convective columns > 1,000 m (Palmer 
& Northcutt, 1975) that are capable of transporting macrochar-
coal c. 10 km (Clark, 1988). It seems, however, unlikely that mac-
rocharcoal material could reach Lake Lanoto'o from beyond the 
shores of Upolu as the main neighbouring island is c. 50 km north-
west. Microcharcoal, however, is known to travel 10s kms from its 
source (Clark, 1988), so could have reached Lake Lanoto'o from 
fires anywhere on Upolu or on a nearby island.

The first appearance of macrocharcoal in the Lake Lanoto'o sedi-
ments occurs at c. 2,700 cal BP, and is (within analytical uncertainty) 
within the dates from the earliest archaeological evidence for human 
occupation on Upolu (Figure 3). The close agreement between the 
macrocharcoal and the archaeological evidence suggests that humans 
were necessary to provide a source of ignition and/or sustain fire on 
Samoa, and mirrors similar patterns seen on Vanuatu, New Caledonia 
and Fiji (Hope, Stevenson, & Southern, 2009). The abundance of mac-
rocharcoal found within the Upolu sediments is low (below 10 particles 

per cm3) when compared with abundances found in sediments known 
to be associated with large-scale landscape clearance (above > 200 
particles per cm3) on Mauritius (Gosling et al., 2017). The relatively 
low abundance of macrocharcoal on Upolu suggests that either fire 
activity within the lake catchment was very limited, or that larger scale 
fires elsewhere on the island contributed material via long-distance 
transport. Both interpretations fit with the idea that initial colonizers 
focused on coastal areas (Cochrane et al., 2016).

Archaeological evidence indicates that settlements had appeared 
throughout the Samoan archipelago by c. 2,100 cal BP (Rieth & Hunt, 
2008). However, during the Samoan Dark Ages (c. 1500–1000 cal 
BP), there is a comparative absence of archaeological evidence on 
Upolu at the coast. Intriguingly, the largest peak in macrocharcoal 
(by area) in the Lake Lanoto'o sediments occurs during the Samoan 
Dark Age period (c. 1,200 cal BP) and macrocharcoal was found in 
40% of the samples analysed during this time window (Figure 3). The 
continued presence of charcoal within the Lake Lanoto'o sediments 
confirms that humans continued to be present on the island during 
the Samoan Dark Ages, and corresponds with preliminary evidence 
of increased inland settlement at this time (Morrison et al., 2015). 
The idea of more widespread past human populations on Upolu is 
supported by recent analysis of LiDAR data which shows a wider 
distribution of human made structures across the island than was 
previously thought (Jackmond et al., 2018).

The microcharcoal record follows the major trend of the mac-
rocharcoal with persistent occurrence only after the first archaeol-
ogy, that is, microcharcoal is above background levels in all samples 
after 2900–2700 cal BP (Figure 3). However, the microcharcoal re-
cord suggests that fire was present on Upolu, and/or nearby islands, 
prior to the start of the archaeological record (background levels are 

F I G U R E  5   Summary algal and cyanobacterial diagram from Lake Lanoto'o (Uplou, Samoa). Notation follows Figure 3
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exceeded in six of the 20 pre-archaeology samples analysed). The 
large early peak in microcharcoal at c. 4,200 cal BP is not mirrored in 
the macrocharcoal record, but is coincident with a shift in the pollen 
assemblage and the first appearance of an unknown seed (Figure 4). 
The change in the pollen assemblage is driven by a replacement of 
Myrtaceae with Moraceae/Urticaceae, both common components 
of the montane and lowland forests, which perhaps indicates that 
fire was impacting ecosystems at lower elevations. The Type-1 plant 
remains (probably a grass seed, M. Prebble pers. comm.) could indi-
cate a new arrival on the Upolu, or be indicative of a plant becoming 
more successful under the changed conditions. The early peak in mi-
crocharcoal, and associated vegetation changes, could be tentatively 
interpreted as indicative of a short-lived human visit to Upolu (or a 
nearby island) or due to climatic changes around c. 4,200 cal BP; 
however, both explanations remain open to discussion:

• If a short-lived human visit is invoked, then this would place people on 
Upolu c. 1,200 years before the earliest archaeological evidence on the 
island (Petchey & Kirch, 2019) and prior to the current earliest esti-
mates of the colonization of Remote Oceania (c. 3,000 cal BP, Sheppard, 
Chiu, & Walter, 2015; 3500–2800 cal BP Anderson, 2009). The closest 
dated archaeological evidence in the South Pacific prior to c. 4,200 cal 
BP comes from the Solomon Islands, > 3,000 km west, which has been 
inhabited for around 5,000 years (Gray et al., 2009). Consequently, a 
small population would have had to make a long leap to have arrived on 
Upolu by c. 4,200 cal BP to be responsible for the charcoal particles.

• If a climate explanation is invoked, the elevated global aridity event 
around c. 4,200 cal BP could be responsible (de Menocal, 2001); how-
ever, independent indicators of precipitation from the Lake Lanoto'o’ 
core suggest this was the wettest period since sediment accumula-
tion began (Hassall, 2017). To make Upolu wet while increasing aridity 
(and burning) elsewhere in the South Pacific could be possible given a 
southward shift in the ITCZ and SPCZ (Emile-Guey et al., 2016; Sachs 
et al., 2018) which would have resulted in wetter conditions on Upolu 
and allowed microcharcoal transport from arid areas.

Interestingly, there are distinct increases in fire (charcoal abun-
dance) at two sites on Fiji, Volivoli and Navatu, at c. 5,200 and c. 
4,000 cal BP, respectively, which are attributed to lightening strikes 
during drier El Niño conditions (Hope et al., 2009). This and the ab-
sence of archaeological or sedimentary evidence to support early 
human populations on intervening islands currently favours the cli-
matic hypothesis; however, alternatively this peak may just repre-
sent a chance fire event caused by volcanic activity or a lightening 
strike somewhere in the region.

4.2 | The impact of humans on the 
ecosystems of Upolu

Lake Lanoto'o has a diameter of c. 400 m suggesting that around half of 
the pollen captured within the sediments likely came from further than 
100 m from the lake (termed ‘regional’ following Jacobson & Bradshaw, 

1981). The prevailing winds from the south-east likely transport pollen 
upslope and consequently bias, and expand, the range of the signal to 
vegetation found on the southern side of the island. The pollen data 
indicate that Moraceae/Urticaeae, Myrtaceae, Weinmannia and ferns 
were the major components of the terrestrial vegetation for most the 
last c. 10,500 years (Figure 4). Significant changes are observed in all 
of these taxa before, and after, the first archaeological evidence of 
humans on Upolu indicating a naturally dynamic vegetation mosaic.

The certain arrival of humans on Upolu c. 2900–2700 cal BP, 
as indicated by the archaeological and the macrocharcoal record 
(Figure 3), is coincident with changes in the relative abundance of 
terrestrial taxa commonly found in montane and lowland forests and 
a climatic drying (Hassall, 2017). Following the initial replacement of 
Myrtaceae with Moraceae/Urticaceae, the subsequent gradual in-
crease in Cyatheaceae pollen is the most notable change. The gradual 
increase in the abundance of Cyatheaceae interestingly mirrors the 
pattern observed in the Galapagos (Restrepo et al., 2012) and Mo'orea 
(Stevenson, Benson, Athens, Kahn, & Kirch, 2017), and the increase 
in fern species more generally found on Rimitara (Austral Islands) 
(Prebble & Wilmshurst, 2009) and on Atiu, Mangaia and Rarotonga 
in the Cook Islands (Fujiki et al., 2014; Kirch & Ellison, 1994; Parkes, 
1997). The Cyatheaceae and fern signals on these islands have been 
interpreted as indicative of an opening up of the landscape by humans 
and a similar explanation seems likely on Upolu.

The gradual nature of the suggested landscape opening on Upolu 
indicates an incremental human impact that mirrors trajectories of 
change observed on Fiji (Roos, Field, & Dudgeon, 2016), but is in con-
trast to abrupt impacts recorded in Rapa Nui (Flenley & King, 1984; 
Rull, 2016). It is likely that, in all situations, the ratio between the 
human population size and the amount of available land and coastal 
areas plays an important role on the degree of impact. Smaller islands 
are therefore likely to be more vulnerable to rapid landscape transfor-
mation by the arrival of humans. The incremental nature of terrestrial 
ecosystem change on Upolu suggests that the initial human popula-
tions may have been quite small relative to the island size, mirroring 
inferences drawn from data related to the size of the language phy-
logenies (Gray et al., 2009) and the low number of archaeological sites 
found during this early period (Cochrane et al., 2016; Leach & Green, 
1989). Initial human impact on Hawaiian Islands exhibits a similar spa-
tial pattern with rapid changes seen to occur shortly after occupation 
in coastal areas (Athens, Ward, & Wickler, 1992) while remote inland 
areas remain relatively unaffected (Selling, 1948).

The major component of the algal community within Lake Lanoto'o 
for most of the last c. 10,500 years is Botryococcus (Figure 5). There 
is no significant change in the algal or cyanobacteria community 
composition or concentration at, or following the first archaeological 
evidence of humans on Upolu (c. 2,800 cal BP). The absence of any 
significant change in the algae/cyanobacteria of Lake Lanoto'o during 
the period of human occupation suggests that human activity at, or 
near, the lake did not impact water quality or aquatic ecosystems. The 
absence of any discernible impact on the aquatic community is com-
mensurate with the interpretation from the charcoal record of a low 
level, or absence, of humans at Lake Lanoto'o.
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Our data support the view that the impact of the arrival of humans 
on islands is strongly controlled by the local scale and conditions of 
each island (Kennett, Anderson, Prebble, Conte, & Southon, 2006; 
Prebble, 2006). On larger islands, extensive coastal landscapes buffer 
rapid modification by, initially small, colonizing populations; however, 
as populations grow the intensity and extent of landscape change in-
evitably increases. Remote locations on islands, such as Lake Lanoto'o, 
consequently appear to be buffered by the geography against major 
human induced ecosystem change and are thus important sites of na-
tive biodiversity reflected in the protected status of this site.

4.3 | Non-human drivers of ecosystem change 
on Upolu

Humans seem to have played no role in modifying ecosystems on 
Upolu prior to c. 2,800 cal BP. However, since significant changes are 
recorded in the palaeoecological record, it is therefore necessary to 

look for alternative explanations (Figure 6). Independent sedimento-
logical evidence from Lake Lanoto'o provides some insights into the 
likely drivers of these changes (Figure 3).

Three volcanic events have been identified through cryp-
totephras within the Lake Lanoto'o sediments, but no discernable 
response is found in either the terrestrial or aquatic communities 
(Figures 4 and 5). Similar sized lakes in tropical settings have been 
shown to suffer community turnover in response to the deposition 
of volcanic tephra (Matthews-Bird et al., 2017). The absence of a re-
sponse on Upolu likely reflects a comparatively low input of volcanic 
material. The highest concentration of cryptotephra was found be-
tween AD 1869 and 1888 (81–62 cal BP) and could represent a pre-
cursor to the documented eruption on Savai'i in AD 1911 (Venzke, 
2013).

The presence of siliceous sand in the Lake Lanoto'o sediments at c. 
6,700 cal BP is soon after a rapid decline in the abundance of algal and 
cyanobacteria found within the Lake Lanoto'o sediments (Figure 5). 
This section of the core is also subject to the greatest uncertainty 

F I G U R E  6   Composite diagram characterizing abiotic and biotic environmental change on Upolu (Samoa) over the last c. 10,500 years. 
Notation follows Figure 3
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within the age versus depth model (Figure 2). The presence of sand 
and reversed radiocarbon dates may indicate that a significant per-
turbation of the sediment occurred, such as a landslide, which altered 
the water quality and caused the turnover and decline in the algal and 
cyanobacteria community. Following this rapid decline, the abundance 
of algae and cyanobacteria remained low within the Lake Lanoto'o 
record for c. 1,200 years. The recovery of the algal and cyanobacte-
ria community at c. 5,300 cal BP is coincident with an increase in the 
concentration of titanium and magnetic susceptibility within the lake 
sediments (Figure 3), which represents increased in-wash of soil from 
the catchment as a result of a prolonged wetter period (Hassall, 2017), 
and likely resulted in a freshening of the lake.

The vegetation communities on Pacific islands have been 
shown to fluctuate in response to variations in past climate regime. 
On Tahiti, drier and cooler climates during the late Pleistocene (c. 
45,000–41,000 years ago) saw an increased dominance of grasses, 
ferns and sedges (Prebble et al., 2016), while droughts associated 
with the Medieval Climate Anomaly (AD 800–1250/1150–700 cal 
BP) resulted in a loss of moisture demanding Cyathea ferns (Restrepo 
et al., 2012). In the Lake Lanoto'o core, precipitation has been inter-
preted as being high between c. 5,500 and 2,500 years ago (Hassall, 
2017; Ti/inc curve Figure 3). The elevated precipitation through this 
period does not appear to have resulted in any significant change 
in the vegetation community (Figure 6). This suggests that while 
island ecosystems of the South Pacific are vulnerable to drought 
events, elevated precipitation on the levels experienced during the 
Holocene were not sufficient to drive species turnover or effect a 
major change in the balance of the community composition.

5  | CONCLUSIONS

Despite low abundance, the macrocharcoal record from Lake Lanoto'o 
detects the first human occupation of Upolu confirmed by direct archae-
ological evidence. The persistence of a strong charcoal signal through the 
Samoan Dark Ages suggests that people persisted on the island through 
this period. The close correlation between charcoal and human occupa-
tion of Upolu lends further weight to the argument that the investigation 
of ancient charcoal preserved in the sedimentary records is an effective 
method for detecting human occupation of ecosystems that do not natu-
rally carry fire, even when the human populations are small.

Comparison of terrestrial and aquatic ecosystem change with 
the archaeological record and fire history of Upolu suggests that 
the arrival of humans on the island did not have a major impact on 
ecosystems in the central, higher elevation areas of the island. Our 
data support a simple model of decreasing human impact away from 
coastal areas towards high mountain environments with a gradual, 
but continual, process of opening up of the landscape; this model is 
in contrast to rapid, island wide, impacts identified on some other 
small islands. The inferred spatial gradient in human impact suggests 
that remote areas, such as Lake Lanoto'o, were buffered against hu-
man-induced ecosystem change and are thus important sites of un-
derstanding native biodiversity.

The long-term ecological dynamics observed in the aquatic com-
munity of Lake Lanoto'o seems to be driven by internal (sedimento-
logical) and external (climatological) factors, rather than by human 
factors. In contrast the terrestrial ecosystems seem to be unrespon-
sive to increased precipitation during the middle Holocene. The 
absence of major abrupt changes in the terrestrial ecosystem com-
position, and the likely natural drives of changes seen in the aquatic 
ecosystems, suggests that the early occupation of Upolu by humans 
did not have a significant ecological impact close to Lake Lanoto'o.
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APPENDIX 1
Abundant macroscopic plant remains recovered from sediments of Lake Lanoto'o (Upolu, Samoa): (a) Fern sporangia, (b) unknown seed Type 
1, and (c) unknown seed Type 2.
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