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Abstract 19 

 20 

Norsminde Fjord has received extensive geoarchaeological investigation, hosting one of the 21 

classic Stone Age shell midden sites in Denmark, and one of the best examples of the 22 

widespread oyster decline at the Mesolithic-Neolithic transition. Here intra-shell δ18O (and 23 

δ13C) analyses from the common periwinkle, Littorina littorea (L.) are used to infer inter-24 

annual environmental changes at the Mesolithic-Neolithic transition (four from each period). 25 

This study utilises a modern δ18O L. littorea-salinity training set previously developed for the 26 

Limfjord, Denmark to quantify winter salinity. δ18O values range between +1.6 and +4.0‰ in 27 

the Late Mesolithic and –6.3‰ to +2.0 in the Early Neolithic. Using maximum δ18O values, 28 

winter salinity at the known temperature of growth cessation in L. littorea (i.e. +3.7±1°C) for 29 

the first annual cycle of each shell ranges between 25.5–26.8 psu (s.d. 0.56) for the Late 30 

Mesolithic, with an average salinity of 26.1 psu. Early Neolithic shells range between 19.4 to 31 

28.2 psu (s.d. 4.59) with an average salinity of 23.7 psu. No statistically significant change in 32 

salinity occurs between the Late Mesolithic and Early Neolithic. This result supports recent 33 

diatom/mollusc-based inferences that salinity was not the sole cause of the oyster decline, 34 



though some evidence is presented here for more variable seasonal salinity conditions in the 35 

Early Neolithic, which (along sedimentary change and temperature deterioration) might have 36 

increased stress on oyster populations in some years. It is recommended here that for 37 

robust palaeoenvironmental inferences, where possible, multiple specimens should be used 38 

from the same time period in conjunction with multiproxy data. 39 

 40 
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 43 

Introduction 44 

Since their discovery in Denmark in the mid–nineteenth century (Steenstrup et al., 1851), 45 

shell middens (termed kitchen middens or “køkkenmøddinger”, e.g. Fig. 1C), formed in 46 

connection with human shell–fishing, have proved one of the best archaeological deposits 47 

for studying patterns of human subsistence through time. Extensive excavation of many 48 

Danish stratified shell middens have produced a detailed temporal record of changes in 49 

human practices and resource exploitation (Andersen, 1989; Andersen, 2007; Andersen, 50 

2008a; Andersen, 2008b), which along with isotopic analysis of bone collagen from humans 51 

and domesticated animals (e.g. Fischer et al., 2007; Tauber, 1981) demonstrates that 52 

marine resources have played a central role in the subsistence of cultures and societies in 53 

Denmark over large parts of the Middle- and Late-Mesolithic (Andersen, 2007; Fischer et al., 54 

2007). At the Mesolithic–Neolithic transition, there is a shift in diet from a largely marine to a 55 

predominately terrestrial sourced diet (Fischer et al., 2007), coincidental with a marked 56 

change in molluscan faunal composition in many Stone Age shell middens; i.e. from 57 

predominately high salinity and warmer-habitat demanding oysters (Ostrea edulis L.) in the 58 

Mesolithic midden sections to lower salinity and temperature tolerant cockles (Cerastoderma 59 

edule L.) in the Neolithic sections (Andersen, 2007) and refs therein; Fig. 1D).  60 

 61 

Environmental hypotheses (e.g. temperature/salinity decline, increased sediment 62 

accumulation; Rowley-Conwy, 1984; Andersen, 2007; Lewis et al., 2016) have been put 63 

forward to explain this widespread faunal shift in Danish shell middens, but to date the role 64 

played by intra–annual/seasonal climate change remains unknown and untested. This is due 65 

to the almost total lack of seasonal/intra–annual resolution data concerning salinity or 66 

temperature change available from coastal Denmark over the Holocene in the direct vicinity 67 

of important archaeological settings; in fact only one quantitative record of Holocene 68 

temperature change (i.e. pollen–inferred January and July temperature (i.e. Brown et al., 69 

2012) exists for the entire country. One potential method of inferring seasonal/intra–annual 70 



temperature and salinity change is to analyse δ18O and δ13C profiles along the direction of 71 

growth in molluscs present within the shell middens (and collected from the adjacent fjord by 72 

humans) (Burman and Schmitz, 2005; Andrus, 2011; Leng and Lewis, 2016). 73 

 74 

Here we investigate seasonal/intra–annual climate variability (particularly salinity and 75 

temperature) through δ18O (and δ13C) data from periwinkles (Littorina littorea L.) collected by 76 

humans and deposited in the Norsminde shell midden (Fig. 1). Eight periwinkles were 77 

analysed from stratigraphic midden layers, either side of the culturally important 78 

Mesolithic/Neolithic transition and broadly synchronous with the oyster decline (both dated to 79 

ca. 5900 cal. yrs BP; Andersen, 2007) detected in the shell midden. To test repeatability, 80 

four shells were analysed from each of two layers near the Mesolithic-Neolithic Transition, 81 

one layer (L7; Fig 1D) from the Late Mesolithic (LM) when oysters were abundant and the 82 

other layer (L4; Fig 1D) from the Early Neolithic (EN) when the shell midden is dominated by 83 

cockles (and blue mussels, Mytilus edulis L.).  84 

 85 

We also attempt to quantify winter salinity from the δ18O isotope data using the previously 86 

determined isotope–temperature–salinity relationship (or transfer function) for L. littorea 87 

(Burman and Schmitz, 2005) established for the Limfjord (inland coastal waters of North 88 

Jutland, Denmark). This transfer function was previously applied to two subfossil periwinkles 89 

from the Mesolithic Danish Ertebølle locus classicus shell midden (Burman and Schmitz, 90 

2005), and to Eemian specimens from the English channel and the Swedish Kattegat to 91 

compare sea surface temperatures and salinity during the Eemian with present day (Burman 92 

and Påsse, 2008). The Danish Ertebølle study, though based on two shell, gave some 93 

indication that within the Mesolithic Ertebølle period (ca. 7,400–5,900 cal. yrs BP), both 94 

salinity and sea surface temperature were higher in the central Limfjord than present day 95 

(Burman and Schmitz, 2005). 96 

  97 

Building on this previous work, here we aim to determine if growth series data from L. littorea 98 

specimens is repeatable throughout individual shell midden layers. This will better enable us 99 

to assess the potential of this technique for inferring qualitative (and potentially quantitative) 100 

temporal changes in salinity (and/or temperature) and seasonality directly from stratigraphic 101 

shell middens over the entire shell midden accumulation (i.e. occupation) phase. This is 102 

critical for robustly testing if changes in faunal composition within shell middens correspond 103 

with environmental/climatic change (e.g. Fig 1D), and subsequently whether clear links can 104 

be determined between environmental (including climate) change, shell fish availability and 105 

human subsistence trends (i.e. environmental hypotheses of cultural change). Furthermore, 106 

to fully understand human–environment interactions through time, the role played by 107 



seasonal environmental/climate change must be considered in geoarchaeological 108 

investigation. 109 

 110 

Methods and materials 111 

Norsminde Fjord (56 º01’018”N, 10 º14’049”E) is a small estuarine system (~6 km long, 250 112 

m wide, surface area of ~1.68 km2, max. depth 2 m, average depth 0.6 m) situated in a 113 

glacial meltwater erosion basin, along the east coast of Jutland about 20 km south of the city 114 

of Århus (Fig. 1). It is predominately fed by one major inflow (Odder Å) that drains a 115 

catchment area of ~101 km2 (Nielsen et al., 1995). Odder Å (fed by several tributaries) is 116 

responsible for draining 85 % of the catchment before entering the fjord in the south–west at 117 

its innermost section (Fig. 1B). This creates a salinity gradient within the fjord with salinities 118 

of ~0 psu freshwater occurring at the mouth of the Rævs Å, gradually increasing up to ~24 119 

psu at the Kattegat entrance (with most of the fjord around ~18–20 psu). At present 120 

Norsminde Fjord has no regular temperature or salinity stratification regime. Recent annual 121 

monitoring of Norsminde Fjord at a sampling site in the northern area of the fjord (Fig. 1B) 122 

showed that temperature varies by ~20oC over the year (range 0.5 to 20.0°C in 1989/90) 123 

with the maximum occurring in July and the minimum in February (Therkildsen and 124 

Lomstein, 1994). In the same year salinity varied between 15.0 to 26.8 psu. 125 

 126 

Norsminde Fjord has been subject to extensive archaeological research (e.g. Andersen, 127 

1976; Andersen, 1983; Andersen, 1989; Bailey and Milner, 2008; Andersen and Malmros, 128 

1965; Gabrielsen, 1953) and is now one of the most important Stone Age regions in 129 

Denmark, with its shorelines hosting a whole series of Mesolithic and Neolithic aged coastal 130 

settlements (e.g. kitchen middens; Flynderhage, Norslund, Kalvø; Gabrielsen, 1953; 131 

Andersen and Malmros, 1965; Andersen, 1983; Fig 1D) and individual archaeological finds 132 

(e.g. flint tools, various axes, bones/antlers). Of interest here, the characteristic kitchen 133 

midden (”køkkenmødding”; Fig. 1C) spanning the Mesolithic–Neolithic transition was 134 

unearthed during the latest major excavation (1972–1989; Andersen, 1989) and clearly 135 

documents the importance of the fjord and marine environment to Stone Age cultures and 136 

societies. The L. littorea shells analysed in this study were retrieved during this excavation 137 

period (Andersen, 1989). The mollusc fauna of this shell midden is diverse, though it is 138 

generally dominated by Ostrea edulis (European flat oyster), Cerastoderma edule (common 139 

cockle), Mytilus edulis (blue mussel) and Littorina littorea (common periwinkle), the 140 

abundances of which change markedly throughout the stratigraphic layers (Bailey and 141 

Milner, 2008; Fig. 1D). For this study, only well-preserved shells were selected for analysis, 142 

i.e. they had a continuous section from the apex to outer margin, with no visible signs of 143 



erosion. All shells selected were relatively large (i.e. diameter >1.7cm, height >2.2cm), 144 

avoiding juvenile or very young specimens. Shell details are provided in Table 1. 145 

 146 

The common or edible periwinkle (L. littorea) is common in the upper shore region down to 147 

the shallow sublittoral, particularly favouring rocky shores, but is also abundant on soft 148 

substrates (such as in estuaries and fjords) and algal biofilms (Fretter and Graham, 1980; 149 

Petersen, 2004). The species is omnivorous, feeding on small invertebrates such as 150 

barnacle larvae, as well as macroalgae, microalgae and germlings; Watson and Norton, 151 

1985, Wilhelmsen and Reise, 1994). In Denmark L. littorea is present today on all coasts 152 

(apart from exposed sandy beaches) as far south east as Bornholm in the Baltic Sea 153 

(Petersen, 2004; Fretter and Graham, 1980). Since the Littorina transgression in 154 

Denmark/Kattegat (ca. 9,600–8,000 cal. yrs BP; Petersen, 1981; Bendixen et al., 2015; 155 

Christiansen et al., 1993; Bennike et al., 2000; Bennike et al., 2004), L. littorea has been 156 

continually present (and often abundant) throughout the Danish waters and the Baltic Sea 157 

(commonly as part of the Mytilus epifauna; Petersen, 2004; Petersen et al., 2005), extending 158 

as far as Estonia up until ca. 3,000 BP (Petersen, 2004). It has remained present north of 159 

Bornholm throughout the late Holocene up until present day.  160 

Littorina littorea has a broad temperature and salinity tolerance making it useful for isotope–161 

based archaeological studies, rarely disappearing completely from the record in Danish shell 162 

deposits north of the Belt Sea’s and Øresund. The lower range of salinity tolerance of L. 163 

littorea is unknown, but it can thrive in salinities >11.5–14 psu through to fully marine 164 

conditions (~35 psu), and can survive for short periods of time in salinities <14 psu, though 165 

relatively inactive (Todd, 1964; Rosenberg and Rosenberg, 1972). The lower temperature 166 

limit of L. littorea is below zero (perhaps as low as –13°C), through to ~+35°C (Davenport 167 

and Davenport, 2005). A previous stable isotope study of L. littorea shells show that 168 

seasonal/annual (and longer-term) changes in the temperature or salinity of the ambient 169 

water are reflected in the isotopic composition of the shell  (principles outlined in Fig. 2), 170 

making this species a potentially valuable recorder of past environmental/climatic conditions 171 

(Andreasson et al., 1999). 172 

Whilst reproduction can occur most of the year in some environments, in more temperate 173 

climates such as the UK and Denmark, it is common only in late winter/spring (Fretter and 174 

Graham, 1980). The larval stage usually lasts between 2–6 weeks (being temperature–175 

dependent) and can result in dispersal distances of over 10 km (Fish, 1972; Fish, 1979). 176 

Naturally, L. littorea reaches maturation in 1–3 years (Williams, 1964; Fish, 1972; Fretter and 177 

Graham, 1980) and can live for over 9 years (Heller, 1990), though specimens found in 178 

archaeological deposits are often much younger (here, collected at 2–3 years old based on 179 



the number of δ18O cycles apparent in each shell; Fig. 3A, Table 1). Growth rates are 180 

generally highest in the early years due to an ontogonetic decrease in growth for L. littorea 181 

(Williams, 1964; Andreasson et al., 1999; Ekaratne and Crisp, 1984).  182 

 183 

Analytical methods  184 

All eight periwinkle shells were cleaned thoroughly by brief submersion in (5%) sodium 185 

hypochlorite, followed by rinsing and scrubbing of the outer surface with deionised water to 186 

remove any extraneous material. After drying, each shell was successively drilled along the 187 

direction of growth (from the apex to the aperture) using a microdrill fitted with a 0.3 mm 188 

diameter drill bit. A sampling resolution of ∼0.3 mm (amounting to 54–83 samples per shell; 189 

542 samples in total) was obtained, with care taken to drill only the outer prismatic calcium 190 

carbonate layer (Leng and Lewis, 2016). Approximately 50-100 micrograms of carbonate 191 

were used for isotope analysis using an Isoprime dual inlet mass spectrometer plus 192 

Multiprep device. Samples are loaded into glass vials and sealed with septa. The automated 193 

system evacuates vials and delivers anhydrous phosphoric acid to the carbonate at 90ºC. 194 

The evolved CO2 is cryogenically cleaned and passed to the mass spectrometer. Isotope 195 

values (13C, 18O) are reported as per mille (‰) deviations of the isotopic ratios (R 13C/12C, 196 
18O/16O) calculated to the VPDB scale using a within-run laboratory standard calibrated 197 

against NBS-19: δ = (Rsample/Rstandard – 1)*1000. Craig correction is also applied to account for 198 
17O. Analytical reproducibility of the standard calcite (KCM) is < 0.1‰ for 13C and 18O.  199 

Quantification of salinity and temperature 200 

Using the above mentioned Limfjord training set (Fig. 1A) quantifying relationships between 201 

δ18Owater and δ18Oshell in modern L. littorea specimens over a salinity/temperature gradient, 202 

δ18O from subfossil L. littorea shells can be used to quantify winter salinity and summer 203 

temperature changes with accuracy over Holocene timescales. This is based on the 204 

assumption that the annual range for variation in the shell δ18O values is largely determined 205 

by the seasonal change in water temperature and that the seasonal salinity changes are 206 

small in comparison between April and December across the Limfjord, averaging 3.37‰ 207 

(range 3 to 3.6‰; Burman and Schmitz, 2005). Burman and Schmitz (2005) found a 208 

relationship of +0.25‰ δ18O change per +1 unit of salinity (psu) and –0.22‰ δ18O change 209 

per +1°C in modern specimens, and argue that this relationship has not changed over the 210 

Holocene. Based on the linear relationship for δ18O of the shell calcite versus temperature, 211 

Burman and Schmitz (2005) determined that shell growth ceases around 3.7°C for the 212 

modern Limfjord L. littorea specimens. As the δ18O record reflects largely the combined 213 



effects of salinity and temperature, then if one of these parameters is known the other can 214 

be inferred with high accuracy (within ~1-2°C or 1-2psu; Burman and Schmitz, 2005), on the 215 

assumption that the modern relationship holds true for the sub-fossil shells (method for 216 

conversion outlined in Supplementary Material). Here, as the winter temperature is known at 217 

the point that growth ceases (i.e. 3.7±1°C), salinity at this time can be calculated. Taking the 218 

first clear winter maximum δ18Oshell in the sub-fossil shells as the point at which growth 219 

ceases (see Fig. 3A), we used the modern relationship for L. littorea determined by Burman 220 

and Schmitz (2005) to convert each shell δ18O (VPDB) winter value into δ18Owater (VSMOW) 221 

(Fig. S1) at the point of growth cessation (which would be at 3.7±1°C). We then converted 222 

each δ18O (VSMOW) value into a salinity estimate using the modern relationship between 223 

δ18Owater (VSMOW) and salinity (i.e. 0.25‰ per salinity unit) (Fig. S2). 224 

 225 

In the sub–fossil specimens from the Norsminde shell midden, where annual cycles are clear 226 

(see Fig. 3A) the highest δ18O value is used to determine the point at which growth stops 227 

and subsequently the marker for 3.7°C. This is supported by regional temperature 228 

reconstructions which suggest that over the study period average winter temperature were 229 

below 3.7°C (Antonsson and Seppä, 2007; Seppä et al., 2009; Brown et al., 2012) and in 230 

most shells the highest δ18O values are often followed by a relatively rapid decrease in δ18O. 231 

This follows the methodology used by Burman and Schmitz (2005) and is verified by the 232 

modern L. littorea specimens. Andreasson et al. (1999) highlight that only the δ18O cycle 233 

closest to the apex should be used for estimation of annual ranges of surface-water 234 

temperature due to the cessation or decrease in growth related to ontogeny and spawning 235 

after 2-3 years. In contrast to the Limfjord sites sampled by Burman and Schmitz (2005), 236 

Norsminde Fjord currently exhibits relatively large annual differences in salinity (>10 psu; 237 

Therkildsen and Lomstein, 1994). This means that summer maximum temperature cannot 238 

be calculated using the methods employed by Burman and Schmitz (2005) (in the absence 239 

of  high-quality independent palaeo-temperature curve, as an unknown portion of the change 240 

in the annual δ18O will be due to salinity change (resulting from variable incorporation of 241 

freshwater into the fjord between wetter and drier months and potentially evaporation during 242 

warmer summers). 243 

 244 

Results 245 

The individual shell profiles for δ18O are provided in Figure 3A and shell metrics (range, 246 

minimum, maximum, standard deviation, and winter salinity inferences) are provided in 247 

Table 1 and Figure 3B. Whilst the sample population is low (n = 8) for a season of collection 248 

study, these periwinkles appear to have been collected predominately in the 249 



summer/autumn for the Mesolithic shells and the autumn/winter for the Neolithic shells 250 

(Table 1). δ13C values range between –2.3‰ to +1.6‰ (VPBD) in the Late Mesolithic and –251 

9.0‰ to +3.2‰ in the early Neolithic shells, the predominantly high values suggesting that 252 

shell carbon is sourced from marine dissolved inorganic carbon. Due to the focus of this 253 

study on changing δ18O derived salinity/temperature signals from L. littorea shells, no further 254 

consideration of the δ13C data is provided here (see Supplementary Material for more 255 

details).  256 

δ18O and winter salinity estimates 257 

δ18O values range between –6.3‰ and +2‰ (VPBD), with generally a similar overall 258 

distribution of values in both the Mesolithic and Neolithic shells (–4‰ to +2‰), but with the 259 

very lowest values (below –4‰) occurring only in the Early Neolithic shell samples. All shells 260 

show at least one or more complete annual cycle (see Fig. 3A, Table 1), though in some 261 

cases annual cycles are difficult to determine confidently (labelled in Fig. 3A). The highest 262 

δ18O values (lowest temperatures) tend to be followed by a sharp decrease in δ18O values, 263 

marking the start of the winter growth cessation, then growth resuming in the warmer months 264 

in these specimens. 265 

Winter salinity inferences for the Mesolithic shells range between 25.5–26.8 psu (standard 266 

deviation of 0.56 psu) with an average salinity of 26.1 psu. The average winter salinity 267 

inference for the Neolithic is slightly lower (i.e. 23.7 psu) than for the Mesolithic, but Neolithic 268 

values are generally more variable (standard deviation of 4.59), ranging from 19.4 to 28.2 269 

psu. The salinity calculations are shown in the Supplementary Material (see Fig. S1 and S2). 270 

No significant change is apparent between Mesolithic and Neolithic average winter salinity (t-271 

test with unequal variances: p > 0.05). 272 

Discussion 273 

δ18O 274 

The cyclical variability displayed by the sub-fossil L. littorea shells from Norsminde primarily 275 

reflects the annual changes in water temperature and salinity of the fjord and growth 276 

patterns of the individual shells (cf. Andreasson et al., 1999; Burman and Schmitz, 2005; Fig. 277 

3A). Within a shell, winters are represented by highest δ18O values and therefore changes 278 

are largely driven by temperature due to the inverse temperature-δ18Oshell relationship in 279 

Danish coastal waters (–0.22‰ per ºC; Burman and Schmitz, 2005). This results in δ18O 280 

minima during the summer, due to the associated large temperature increase, which 281 

outweighs annual salinity changes (e.g. 20 ºC annual temperature fluctuation from January 282 



to July, compared to ~12 psu salinity change in 1989/90; Therkildsen and Lomstein, 1994). 283 

However, salinity changes will have an impact on the δ18Oshell content  (+0.25‰ δ18O change 284 

per +1 psu; Burman and Schmitz (2005)) over the year primarily due to changing freshwater 285 

input (Burman and Schmitz, 2005), though evaporation might contribute during particular 286 

warm/dry periods, e.g. during the Holocene thermal maximum (HTM).  287 

A positive salinity-δ18Oshell relationship exists in Danish coastal waters (0.25‰ per psu; 288 

Burman and Schmitz, 2005), driven by highest levels of precipitation input in winter (modern 289 

precipitation for South Scandinavia is ~–8 to –11‰ (VSMOW) yielding lower δ18O than 290 

adjacent coastal/marine waters ~–4‰ (VSMOW); Frohlich et al., 1988; IAEA, 2001; 291 

Burgman et al., 1987; LeGrande and Schmidt, 2006). Whilst it is possible that some of the 292 

winter precipitation is locked up in snow and ice and released later in the season, we believe 293 

that in the late Mesolithic period, at the peak of the HTM, there was likely to have been less 294 

snow/ice cover effects (Brown et al., 2012). As indicated above, these effects mean that 295 

absolute annual temperature information cannot be extracted from the δ18Oshell data. The 296 

only time that relative temperature and salinity effects can be separated and a quantitative 297 

inference produced is for winter salinity, at a time when the temperature is known: i.e. here 298 

at 3.7ºC, the point that growth ceases in the L. littorea shells (based on modern specimens; 299 

Burman and Schmitz, 2005). The (winter) salinity within Norsminde fjord is driven by the 300 

relative mixing of freshwater and seawater, with high salinity water input from the Kattegat 301 

and freshwater from the catchment delivered predominately by fluvial inputs (Fig. 1B). 302 

Salinity in the fjord was higher in the Late Mesolithic/Early Neolithic than present day (Lewis 303 

et al., 2016), due to higher sea-levels (Berglund et al., 2005; Christensen, 2001) and 304 

consequently a wider and more open with the Kattegat. This is also supported by the salinity 305 

inferences presented here (Table 1; Fig. 4E) and discussed in more detail below.  306 

Here, short-term variations in the winter δ18O maximum (i.e. year to year variation in isotope 307 

values within shells and between shells from the same layer at the 3.7ºC growth cease) are 308 

interpreted as salinity change, linked to climate (i.e. freshwater input vs marine water), rather 309 

than collection location and movement of L. littorea specimens along the salinity gradient 310 

within Norsminde Fjord (see below). Whilst some evidence exists for a fall in sea-level near 311 

the Late Mesolithic/Early Neolithic boundary (Berglund et al., 2005; Christensen, 1995), 312 

shorter term (annual to sub-decadal) variations in sea-level are unlikely to be of large 313 

enough magnitude to effect marine water exchange and fjord salinity alone. It is also 314 

important to note that there is substantial fluctuation of summer minimum δ18O values within 315 

shells, suggesting that summer salinity and/or temperature fluctuated from year to year over 316 

the study period, though as these signals cannot be separated without a high-quality 317 

independent salinity or temperature record, we focus here on winter salinity. 318 



Change in average winter salinity is minimal (and not significant) between shells from the 319 

Late Mesolithic and those from the Early Neolithic, though there is some difference in the 320 

range and variability (as shown by the standard deviation of all δ18O values) in shells from 321 

the Early Neolithic (Fig. 3A and 4E). Given the salinity gradient within the fjord today (and 322 

likely during the late Mesolithic/Early Neolithic), this could be explained by several possible 323 

mechanisms including a change in collection location, movement/displacement of L. littorea 324 

shells or climate/sea level variability, the latter affecting inputs of fresh- and saline- water into 325 

the fjord and consequently salinity. A change in the collection location of some of the Early 326 

Neolithic shells is possible (e.g. L4-1 and L4-2 give lower winter salinity estimates; Table 1), 327 

though we deem this unlikely to be the controlling factor as L. littorea was harvested in much 328 

smaller quantities than oysters or cockles, and therefore unlikely to be placed under such 329 

resource pressure. Though not systematically measured (as for oysters and cockles; Bailey 330 

and Milner, 2008) no report of any change in average size of L. littorea shells has been 331 

reported. Hence it is likely that they were available in sufficient supply and most likely 332 

collected at the most convenient (nearby) location. 333 

Movement of the individual L. littorea shells from high to low salinity parts of the shore is also 334 

possible, but unlikely. Littorina littorea is capable of some movement, and able to move up 335 

and down the shore, often tracking the tide at slow speeds (~2 cm min-1) to maintain 336 

immersion, feeding and optimum salinity (Newell, 1958). However, in terms of moving from 337 

higher to lower salinity areas within the fjord, this seems unlikely, as individuals tend to crawl 338 

down the shore with the receding tide and then return to the same location as the tide comes 339 

in, often leaving U-shaped trails in sandy/muddy sediment (Newell, 1958). Wind and wave 340 

action could redistribute individuals, though in a relatively sheltered shore with a small tidal 341 

range (<1 m) and generally low energy system, living individuals are unlikely to be re-342 

distributed long distances. 343 

The most likely explanation for these varying trends is fluctuation in annual climatic 344 

conditions. The Early Neolithic was a time of changing climate, with cooling temperatures 345 

(Seppä et al., 2009; Antonsson and Seppä, 2007; Brown et al., 2012) and increased 346 

precipitation or surface wetness (Seppä et al., 2005) as the Holocene thermal maximum 347 

began to wane. Layers in shell middens cover relatively coarse time periods (perhaps up to 348 

200 years in Norsminde; Andersen, 1989; Bailey and Milner, 2008), so the lifespans of 349 

individual molluscs (here, 2-3 years) within a layer are unlikely to overlap. Variable 350 

summer/winters (e.g. warmer or colder and wetter or drier years) were likely recorded in 351 

some specimens and not others, which highlights a danger of using single shell analyses 352 

which may be skewed by atypical conditions. Furthermore, in a transitional climate period, 353 

fluctuating temperature and rainfall (leading to salinity variations) between extremes might 354 



be expected, hence explaining the larger range and lower δ18O winter values (and lower 355 

salinity) in two of the four Early Neolithic shells. Sea-level might also have contributed to the 356 

freshwater-marine water balance within the fjord (and consequently δ18O content of the 357 

water and L. littorea shells), with higher sea-levels likely to increase the volume of high-358 

salinity marine water entering the fjord. The regional sea-level curves (Fig. 4D) suggest 359 

some potential decline between the Late Mesolithic and Early Neolithic (particularly at 360 

Blekinge, though more muted and fluctuating at the closer site Vedbæk; Fig. 4D) but the DI-361 

salinity from Norsminde Fjord suggests that this did not manifest in long-term changes to 362 

average salinity of the Fjord (Fig. 4E). However, shorter-term atmospheric/climate driven 363 

sea-level variability (e.g. Andersson, 2002; Woolf et al., 2003) combined with variable 364 

freshwater input might have affected salinity within the fjord on annual to sub-decadal 365 

timescales. 366 

When converted to salinity (at the 3.7±1ºC temperature induced growth cessation) using the 367 

modern training set (after Burman and Schmitz, 2005), the δ18O data shows a larger range in 368 

winter salinities in the Early Neolithic than in the Late Mesolithic (Fig 4E; Table 1). A shift 369 

towards wetter conditions is widely observed in the Early Neolithic (Snowball et al., 2004; 370 

Seppä et al., 2005) and potentially increased the number of extreme wet winters. This would 371 

in turn increase the input of freshwater into fjord systems such as Norsminde Fjord and 372 

could account for the occasional low salinities recorded in the L. littorea shells. It is important 373 

also to acknowledge that there is some contradictory evidence suggesting that drier 374 

conditions might have prevailed in the Early Neolithic (e.g. Lake Bliden; Olsen et al., 2010) 375 

and that precipitation/surface wetness likely exhibits regional variability. Although no data 376 

are available specifically for the Norsminde Fjord catchment, short-term/annual winter 377 

(and/or summer) extremes are possible under any climate regime and highlights the need for 378 

independent multiproxy data and high-quality local and regional records.  379 

Comparison with regional parameters 380 

During the late Stone Age (ca. 8,000-3,700 cal. yrs BP), both sea–level (e.g. Berglund et al., 381 

2005; Christensen, 2001; Fig. 4D) and salinity (e.g. Petersen, 2004; Lewis et al., 2016; 382 

Weckström et al., 2017; Fig 4E) were higher than present day in Denmark and western 383 

areas of the Baltic Sea. The winter (minimum) salinities presented here (from the L. littorea 384 

shells) also imply higher salinity than present day within Norsminde Fjord, though the δ18O 385 

based estimates generally suggest higher salinity compared to the diatom record (Lewis et 386 

al., 2016) (Fig. 4E). This offset between the DI–salinity and L. littorea winter minimum salinity 387 

is likely explained by DI–salinity inferences not being season–specific, averaged over 388 

several years and incorporating diatoms from a spatially wider area of the fjord (i.e. lower 389 



salinity inferred from the assemblage), in addition to standard error in both methodologies. 390 

Furthermore, it is likely that the periwinkles were originally collected in close proximity to the 391 

shell midden, which is located much closer to the mouth of Norsminde Fjord than the 392 

sediment coring site, and therefore subject to higher salinities (Fig. 1B) 393 

Burman and Schmitz (2005) originally used the methodology employed here to reconstruct 394 

changes in two sub-fossil shells from the Ertebølle shell midden (with these two shells dated 395 

to the Late Mesolithic). The data presented here suggest lower salinity in Norsminde Fjord 396 

(26.1 psu) than at Ertebølle (i.e. 31 psu) during the Late Mesolithic. This is expected due to 397 

where Ertebølle is in the Limfjord, and in closer proximity to the high salinity water of the 398 

North Sea (Fig. 1A). Modern-day salinity at Ertebølle is ~26 psu compared to an average of 399 

~18-20 psu at Norsminde Fjord, though it is important to highlight that a different land–sea 400 

configuration (e.g. Kysing Fjord; Fig. 1B) existed in both the Limfjord and Norsminde Fjord at 401 

that time due to isostatic uplift and higher sea level (Andersen, 1989; Christensen, 2001). 402 

During the mid-Holocene high sea-level stand, an opening to the Skagerrak and North Sea 403 

in the north has been inferred (Andersen, 1995; Andersen, 2007; Petersen et al., 2005), 404 

closer to the Ertebølle site than the modern-day entrance in the west (Fig. 1A). Also, during 405 

the mid–Holocene (ca. 7000–4000 cal. yrs BP), Norsminde Fjord was significantly larger 406 

incorporating the Kysing palaeo-fjord (~10 km long, 2.7–3 km wide and ~500 m at the 407 

Kattegat mouth, Andersen, 1989; Fig. 1B). A wider connection between Norsminde Fjord 408 

and the Kattegat under higher sea-levels would have improved exchange of marine water 409 

(and sediment) resulting in higher fjord salinity and lower sedimentation rates (Lewis et al., 410 

2016). This created optimal conditions for a variety of marine molluscs such as oysters, an 411 

important component of Stone Age shell middens, particularly in the Late Mesolithic layers 412 

(Andersen, 2007; Bailey and Milner, 2008). However, this connection started to narrow 413 

sometime in the late Mesolithic (though exact date remains unknown), due to longshore 414 

transport of sediment and subsequent development of beach ridges (Andersen, 1989). 415 

Archaeological debate: salinity change at the Mesolithic–Neolithic transition 416 

This issue of salinity change at the Mesolithic-Neolithic transition and its potential role in the 417 

oyster decline is briefly revisited here, using shell δ18O as an independent proxy for salinity 418 

change. Lewis et al. (2016) argue that there was no sudden salinity decline or persistently 419 

lower salinity in the Danish coastal waters in the Early Neolithic period, and therefore rebuke 420 

the hypotheses that declining salinity caused the reduction in oysters present in numerous 421 

coastal shell middens across Denmark, including Norsminde (Rowley-Conwy, 1984; 422 

Andersen, 2007). The L. littorea isotope results presented here support Lewis et al. (2016) 423 

as statistical analyses suggest that there is no significant (p>0.05) change in winter salinity 424 



between the Late Mesolithic and Early Neolithic (Table 1; Fig. 4E). However, it is important 425 

to highlight here that this is only a comparison between two layers of the Norsminde shell 426 

midden (with 600-700 years time difference) and higher resolution (and longer-term) 427 

changes still need investigation.  428 

For the oyster decline, the change in seasonality might be of importance, with salinity (and 429 

δ18O values) appearing to exhibit greater variability in the Early Neolithic than in the Late 430 

Mesolithic (both a higher range and standard deviation is observed between these layers; 431 

Fig. 3B, 4E). Greater seasonal salinity (and temperature) fluctuations might also have 432 

contributed to the reduction in oysters, by adding further stress upon accessible oyster 433 

populations in addition to increasing sedimentation rates in fjords (Fig. 4C) and a general 434 

temperature decline (Fig. 4A; outlined by Lewis et al., 2016). The isotope data suggest that 435 

in some years winter salinity fell near or below the minimum level required to support 436 

breeding oyster populations (i.e. ~23 psu; Jensen and Spärck, 1934; Spärck, 1924; Yonge, 437 

1960). Whilst oysters require water temperatures above ~15ºC to breed (Jensen and 438 

Spärck, 1934; Spärck, 1924; Yonge, 1960), in some years low salinity could have extended 439 

into the warmer months (e.g. low salinity winters followed by wet springs/summer) and 440 

narrowed the breeding season (in spring/summer). In these years human exploitation with 441 

reduced replenishment might have caused decline/stress of oyster populations. In addition, 442 

Norsminde Fjord was near the southern limits of oyster habitation in the inner Danish waters 443 

(Jensen and Spärck, 1934; Petersen, 2004) even in the late Stone Age (7,400-3,700 cal. yrs 444 

BP), when salinity and sea–levels were above present day (Berglund et al., 2005; 445 

Christensen, 2001), perhaps with the result that small fluctuations in salinity might have had 446 

severe impacts. This, coupled with changing sedimentation patterns within the fjord (Lewis et 447 

al., 2016; Fig. 4C) and climate change, including both temperature decline (Snowball et al., 448 

2004; Antonsson and Seppä, 2007; Brown et al., 2012; Seppä et al., 2009; Fig 4A) and a 449 

potential shift towards wetter conditions (Seppä et al., 2005; Fig. 4B), might have put 450 

cumulative stress on oyster populations in Danish coastal waters. However, as layer 4 is 451 

several hundred years later than the oyster decline, further assessment of seasonal change 452 

is needed from earlier layers (i.e. layers 5 and 6; Fig. 1D) of the Norsminde shell midden. 453 

Future implications 454 

This study uses multiple shells from individual layers of a shell midden sequence. The data 455 

presented here demonstrate clear inter–layer variability between shells; e.g. Neolithic 456 

minimum winter δ18O in the first annual cycle range from –0.77 to +1.98 resulting in salinity 457 

inference ranges from 19.4 to 28.2 psu. This expresses the need for care in single shell per 458 

layers studies. For example, from this study, while the Late Mesolithic shells produce very 459 



similar inferred salinity, the variability within the Early Neolithic shells demands that at least 3 460 

shells are used to adequately provide a useful mean salinity for this period and give a 461 

realistic idea of its variability. Comparing any of the four Late Mesolithic shells with any from 462 

the Early Neolithic, winter salinity might be inferred to have fallen (L4-1, L4-2), stayed 463 

broadly similar (L4) or risen (OEM) across the Mesolithic-Neolithic transition. Therefore, in 464 

order to avoid inferences being potentially skewed by this variability, we suggest that future 465 

studies of this type should use multiple specimens per layer if possible. In cases where this 466 

is unfeasible, perhaps due to preservation of suitable specimens or time/money constraints, 467 

then results should be interpreted with extreme caution and compared against other, 468 

independent multiproxy data. 469 

Lastly, we acknowledge that finer resolution drilling and implementation of 470 

sclerochronological techniques could have provided further information concerning the 471 

timing, duration and rate of growth in the analysed shells (Schöne, 2008; Wingard and 472 

Surge, 2017; Schöne and Gillikin, 2013) and should be incorporated in future studies. 473 

However, for the sake of this study, we argue that these shells were drilled at sufficient 474 

resolution (0.3mm) to capture intra-annual variation as demonstrated by the similar intra-475 

shell isotope profiles to previous studies (e.g. Andreasson et al., 1999; Burman and Schmitz, 476 

2005) and further sclerochronological analyses are unlikely to have altered final 477 

salinity/seasonality inferences and interpretation. 478 

Conclusions 479 

Using the modern relationship between δ18Oshell in L. littorea with temperature and salinity, 480 

the maximum δ18O values for the first annual δ18O cycle can be used to calculate winter 481 

salinity at the known temperature of growth cessation in L. littorea (i.e. +3.7±1°C; as derived 482 

from a Limfjord based training set). Here, δ18O –based quantitative reconstruction of salinity 483 

from subfossil L. littorea shells has provided further insight on the environmental conditions 484 

at the Mesolithic-Neolithic transition in Denmark and the widespread oyster decline. The 485 

data presented here support the inference that no change in average salinity occurred 486 

between the Late Mesolithic and Early Neolithic period, but shows that the Early Neolithic 487 

was characterised by a more variable climate (and consequently salinity). High-resolution 488 

(seasonal to inter-annual) isotopic analysis of L. littorea shells from archaeological deposits 489 

(and sedimentary cores) offer great potential in future geoarchaeological studies. Shell 490 

geochemistry from the common periwinkle can provide detailed information on seasonal to 491 

inter-annual conditions and, with a modern training set, can be used to infer palaeo-salinity 492 

quantitatively. Further, as L. littorea was commonly collected for subsistence purposes by 493 

prehistoric people and is able to tolerate a wide range of temperatures and salinities, it does 494 



not easily disappear from the record entirely under changing environmental conditions. As it 495 

has a more continuous and abundant presence than other common molluscs, it is very 496 

suited for such isotopic or sclerochronological work. However, in order to enhance 497 

geoarchaeological debate, certain criteria must be met for any such target mollusc. These 498 

include a knowledge of modern-day ecology and local and regional shell-secretion response 499 

to key environmental parameters (i.e. temperature and salinity), clear growth cycles within 500 

the sub-fossil shells, the use of multiple shells from individual layers/time periods and 501 

wherever possible, other independent multiproxy data for comparison.  502 
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Figures: 510 

 511 

Figure 1: Study area and shell midden data. A. Map of Denmark showing location of the 512 

study area and the training sites (i-iv) incorporated in the Burman and Schmitz (2005) study 513 



from which the modern-day training set is produced. B. Norsminde Fjord geology, 514 

topography and archaeological map (modified from Andersen, 1989). Today only Norsminde 515 

Fjord (white area) is sub–merged by marine waters, but at times of higher sea–level (during 516 

the late Stone Age) a much larger fjord existed as shown by the extent of the Kysing palaeo–517 

fjord (light grey shading). Kalvø formerly existed as an island in the middle of the 518 

Norsminde–Kysing Fjord (Andersen, 1983). TL = location of sampling station in Therkildsen 519 

and Lomstein (1994). SC = location of sedimentary core for palaeoenvironmental analyses 520 

(P. Rasmussen et al. unpublished data; Lewis, 2011; Lewis et al., 2016; and presented in 521 

Fig. 4C, E). Numbered sites refer to key archaeological sites: 1. Norsminde shell midden (or 522 

køkkenmødding), 2. Frederiks Odde, 3. Kalvø, 4. Norslund, 5. Flynderhage. C. Photo of a 523 

section through the Stone Age Norsminde shell midden, covering the mid to late–Mesolithic 524 

Ertebølle period and Early Neoltihic Funnel Beaker period (ca. 6,800–5,500 cal. yrs BP), 525 

including the much–debated Mesolithic–Neolithic transition (photo courtesy of S.H. 526 

Andersen). D. Percentage abundance of key molluscs present in stratigraphic layers of the 527 

Stone Age Norsminde shell midden between ca. 6,500–5,200 cal. yrs BP/4,500–3,200 BC 528 

(from Bailey and Milner, 2008). Note that Littorina littorea is ever-present throughout the 529 

study period and the reduction of Ostrea edulis in the Late Mesolithic, and concurrent 530 

increases in Cerastoderma edule and Mytilus edulis. The shells used in this study originate 531 

from shell midden layer 7 (Late Mesolithic shells L7, L7-1, L7-2 and NXA) and layer 4 (Early 532 

Neolithic shells L4, L4-1, L4-2 and OEM); these 2 layers are shaded grey. 533 

 534 



 535 

Figure 2. Theoretical relationship between δ18O in a Littorina littorea shells in response to 536 

variation in annual seawater temperature and salinity. Temperature exerts the dominant 537 

control on the δ18Oshell over an annual cycle as yearly temperature variation exceeds salinity 538 

change (hence why δ18Oshell declines during summer. **At known temperature (i.e. 3.7±1°C 539 

the point at which growth ceases in modern L. littorea specimens) salinity can be calculated 540 

using modern day relationship between δ18Oshell and temperature/salinity (i.e. transfer 541 

function produced by Burman and Schmitz (2005), which also includes conversion from 542 

δ18Owater (measured in VSMOW) to δ18Oshell (measured in VPDB; see Supplementary 543 

Material and correction for fractionation effects). 544 

 545 



 546 

Figure 3. A. Temporal (i.e. interannual) profiles of δ18O data from eight Littorina littorea 547 

shells from the Norsminde shell midden (left panel: Late Mesolithic shells; right panel: Early 548 

Neolithic shells). Isotope data are plotted against sample number (on x–axis), starting from 549 

the apex (i.e. youngest part of the shell = 1; see inset C) and following the direction of 550 

growth round the spiral towards to the outer lip. Vertical dotted black lines represent inferred 551 

summer δ18O minimum (July/August) and horizontal grey lines represent winter maximum 552 

(and the likely temperature induced cessation of growth at ~3.7°C; Burman and Schmitz, 553 



2005). Dubious winter maxima are indicated with a question mark and not included for 554 

quantification of winter salinity. B. δ18O shell–isotope metrics (including range, standard 555 

deviation, maximum, minimum and average) and approximate age range of the shells 556 

analysed in this study. C Photos of drilled L. littorea shells with key features labelled. DoG = 557 

direction of growth. 558 

 559 

 560 

Figure 4. Comparison of the δ18O Littorina littorea based quantitative salinity estimates from 561 

the Norsminde shell midden (presented here) with other Norsminde Fjord palaeo data and 562 

regional temperature and sea-level change (7.400-5.000 cal. yrs BP). A. Mean January and 563 

July pollen-inferred temperatures from Denmark (Brown et al., 2012). B. Oxygen isotope 564 

analysis (δ18O) of lacustrine carbonates from Lake Igelsjön showing effective humidity 565 

(Seppä et al., 2005). C. Norsminde Fjord sediment accumulation rate over the study period 566 

reconstructed from a 14C dated sediment core (Lewis, 2011; Lewis et al., 2016; P. 567 

Rasmussen and J. Olsen unpublished data; SC in Fig. 1). D. Sea-level change from 568 

Vedbæk, Zealand, (Christensen, 2001) and Blekinge, SE Sweden (Berglund et al., 2005). E. 569 

Diatom-inferred salinity (x) from Lewis et al. (, 2016) with a 0.1 span Lowess smooth (black 570 



dotted line) and quantitative winter minimum salinity estimates from the 4 Late Mesolithic 571 

and 4 Early Neolithic periwinkles. The salinity estimates (calculated from the highest winter 572 

δ18O in the cycle nearest the apex) are shown with solid black lines (–) and the average with 573 

dotted lines (--). The grey dashed line between the two averages show salinity change 574 

between the Late Mesolithic and early Neolithic: this minor drop in salinity is not significant 575 

(p>0.05). SD = standard deviation of the salinity estimates for the Late Mesolithic and Early 576 

Neolithic shells respectively577 



Period Shell No. of 

samples 

No. of 

winters 

(summers) 

Season of 

collection 

δ13C isotope metrics 

(See Supplementary 

Material; Fig. S3) 

δ18O isotope metrics δ13C vs. δ18O 

(See Fig. S3) 

Winter 

salinity 

estimate 

Late 

Mesolithic 

(LM) 

NXA 61 2 (2) Autumn/ 

Winter 

Max: 1.58; Min: –1.40; Range: 

2.98; Average: 0.41; SD: 0.58 

Max: 1.15; Min: –3.12; 

Range: 4.27; Average: –

1.48; SD: 1.06 

r = 0.30; r2 = 

0.09; p = 0.019 

(p>0.01) 

25.5 psu 

LM L7-1 74 2 (1) Winter Max: 1.60; Min: –2.31; Range: 

3.92; Average: –0.05; SD: 

0.84 

Max: 1.24; Min: –3.97; 

Range: 5.21; Average: –

1.29; SD: 1.46 

r = 0.29; r2 = 

0.08; p = 0.012 

(p>0.01) 

25.8 psu 

LM L7-2 76 1 (2) Spring Max: 1.38; Min: –1.09; Range: 

2.47; Average: 0.60; SD: 0.54 

Max: 1.57; Min: –3.61; 

Range: 5.18; Average: –

1.74; SD: 1.28 

r = 0.50; r2 = 

0.25; p = 

0.0000045 

(p<0.01*) 

26.8 psu 

LM L7 54 2? (3?) Autumn/ 

Winter 

Max: 1.56; Min: –1.31; Range: 

2.86; Average: 0.74; SD: 0.54 

Max: 1.39; Min: –2.58; 

Range: 3.97; Average: –

1.38; SD: 0.91 

r = 0.22; r2 = 

0.05; p = 0.10 

(p>0.01) 

26.2 psu 

Early 

Neolithic 

(EN) 

L4-1 83 2+ (2+) Winter Max: 2.24; Min: –7.78; Range: 

10.03; Average: –0.63; SD: 

1.65 

Max: 0.37; Min: –5.72; 

Range: 6.08; Average: –

1.59; SD: 1.10 

r = 0.83; r2 = 

0.69; p = 4.80E-

22 (p<0.01*) 

20.1 psu 

EN L4-2 60 2 (1+) Spring? Max: 2.00; Min: –8.99; Range: 

10.99; Average: –1.36; SD: 

2.11 

Max: –0.50; Min: –6.26; 

Range: 5.77; Average: –

2.26; SD: 1.17 

r = 0.88; r2 = 

0.77; p = 3.64E-

19 (p<0.01*) 

19.4 psu 

EN L4 70 2? (2?) Spring Max: 1.23; Min: –0.89; Range: 

2.12; Average: 0.15; SD: 0.53 

Max: 1.59; Min: –3.08; 

Range: 4.67; Average: –

1.48; SD: 1.19 

r = 0.42; r2 = 

0.17; p = 

27.1 psu 



0.00033 

(p<0.01*) 

EN OEM 64 2 (2) Spring Max: 3.15; Min: –0.79; Range: 

3.95; Average: 1.45; SD: 0.72 

Max: 1.98; Min: –3.37; 

Range: 5.35; Average: –

1.22; SD: 1.45 

r = 0.11; r2 = –

0.01; p = 0.40 

(p>0.01) 

28.2 psu 

 

Table 1. Details of the Littorina littorea shells analysed in this study. 
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