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Land-use change in tropical forests can reduce biodiversity and ecosystem carbon (C)

storage, but although changes in aboveground biomass C in human-modified tropical

forests are well-documented, patterns in the dynamics and storage of C belowground are

less well characterised. To address this, we used a reciprocal litter transplant experiment

to assess litter decomposition and soil respiration under distinct litter types in forested

or converted habitats in Panama, Central America, and in Sabah, Malaysian Borneo.

The converted habitats comprised a large clearing on the Panama Canal and oil palm

plantation in Borneo; forested habitats comprised a 60-year old secondary forest in

Panama and a disturbed forest in Borneo that was selectively logged until 2008. In

each habitat, we installed mesocosms and litterbags with litter collected from old-growth

forest, secondary forest or an introduced species: Elaeis guineensis in Borneo and

Saccharum spontaneum in Panama. We measured litter mass loss, soil respiration, and

soil microbial biomass during nine months at each site. Decomposition differed markedly

between habitat types and between forest vs. introduced litter, but the decay rates

and properties of old-growth and secondary forest litters in the forest habitats were

remarkably similar, even across continents. Slower decomposition of all litter types in

the converted habitats was largely explained by microclimate, but the faster decay of

introduced litter was linked to lower lignin content compared to the forest litter. Despite

marked differences in litter properties and decomposition, there was no effect of litter

type on soil respiration or microbial biomass. However, regardless of location, litter type,

and differences in soil characteristics, we measured a similar decline in microbial activity

and biomass in the absence of litter inputs. Interestingly, whereas microbial biomass

and soil respiration increased substantially in response to litter inputs in the forested

habitats and the converted habitat in Panama, there was little or no corresponding
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increase in the converted habitat in Borneo, indicating that soil recovery capacity had

declined substantially in oil palm plantations. Overall, our results suggest that litter inputs

are essential to preserve key soil processes, but litter diversity may be less important,

especially in highly disturbed habitats.

Keywords: litter decomposition, litter traits, soil microbial biomass, soil respiration, plant-soil interactions,

secondary tropical forest, land-use change, forest conversion

INTRODUCTION

Intact tropical forests are one of the largest terrestrial carbon (C)
sinks; they sequester an estimated 1.1 ± 0.3 Pg C y−1 (Malhi,
2010) and tropical forests contain c. 55% of the terrestrial organic
C stock (Pan et al., 2011), making them an essential part of
the global C balance. However, disturbance from anthropogenic
activity is jeopardising the C sink potential of tropical forests
(Lal, 2005; Don et al., 2011; Dent et al., 2013; Laurance et al.,
2014). Worldwide, tropical deforestation is responsible for the
release of 1.7 Pg C per year and logging and land cover change
are responsible for 25% of anthropogenic carbon dioxide (CO2)
emissions (Le Quéré et al., 2018); in 2014, deforestation and
forest degradation were responsible for tree cover loss amounting
to 24 million hectares (Global Forest Watch, 2018). Between
2000 and 2005, widespread forest degradation turned tropical
forests into C sources instead of sinks (Bruun et al., 2009; Malhi,
2010; Dent et al., 2013; Laurance et al., 2014) and degraded
or secondary forests now represent 60% of tropical rainforests
(Hansen et al., 2013; Laurance et al., 2014). Forest degradation
and conversion also affect carbon storage belowground: direct
conversion from primary forest to agricultural land results in
losses of 20–30% of soil organic carbon (SOC) and secondary
forests store an estimated 9% less C in soils than primary forests
(Don et al., 2011), which is cause for concern as tropical forests
contain c. 30% of the global soil C stocks (Stockmann et al., 2013).
Currently the main drivers of tropical deforestation are cattle
ranching, forestry products, oil palm, soya plantations, and cereal
crops (Pendrill et al., 2019). The drivers of tropical deforestation
and forest degradation differ by region. For example in Central
and South America, conversion to pastures plays a key role
(Armenteras et al., 2017), whereas in Southeast Asia, most of the
degradation happens because of conversion of forest to croplands
(Reynolds et al., 2011; Wilcove et al., 2013), in particular oil
palm plantations.

A substantial amount of C in tropical forests is stored
belowground and the conversion of forest to non-forested land-
use can dramatically reduce belowground C stocks (Scharlemann
et al., 2014). During forest conversion, soil disturbance releases
stored C as CO2 to the atmosphere, and soil C is also lost through
increased surface run off and erosion with reduced vegetative

cover (Guillaume et al., 2015; Tesfaye et al., 2016). The lack
of a closed canopy in converted habitats also reduces plant C

inputs and alters the microclimate at the forest floor, which can

limit decomposition processes (Lorenzo et al., 2014) and soil
C storage (Powers, 2004). Forest disturbance can also alter soil
C dynamics and storage by modifying the microclimate and
tree community composition. Undisturbed old-growth tropical

forests are generally characterised by slow-growing plant species
that are more shade-tolerant and have greater belowground
biomass and structural stability (Dent et al., 2013). By contrast,
young secondary forests are composed primarily of pioneer tree
species that are fast-growing, tolerant to sunlight and have high
foliar nutrient concentrations that are better adapted to the
drier microclimate (Swaine and Whitmore, 1988). Aboveground
woody biomass in the secondary forests of Sabah, Malaysia,
is only one third that of the old-growth forest (Riutta et al.,
2018) and greater canopy openness after disturbance increases
the amount of direct sunlight reaching the understorey, which
in turn increases the variation in air and soil temperature,
as well as soil water content (Dechert et al., 2004; Wright,
2005; Houghton, 2012). Such changes in species composition
and the abiotic conditions on the forest floor will affect the
decomposition processes underpinning soil C dynamics and
storage by altering the quality and quantity of plant litter inputs
and the environment for microbial decomposers.

Litterfall is one of the most important sources of organic
matter in forest ecosystems and plays a key role in C and nutrient
cycling (Vitousek, 1984; Attiwill and Adams, 1993; Adachi et al.,
2006; Sayer and Tanner, 2010). Litter inputs provide resources
to soil microbial decomposers and, during decomposition, plant-
available nutrients such as nitrogen (N) are released and organic
C is stored in the soil (Gougoulias et al., 2014). Lower soil
microbial activity has been linked to decreases in sources of
organic matter and declines in aboveground plant diversity (Van
Der Heijden et al., 2008). These interactions between plants and
soil organisms are a key part of the soil C cycle. Changes in the
properties of the litter could affect the ability of the soil microbes
to decompose the litter. However, it is not clear how changes in
the nature of the organic matter provided to the microbes affects
them and their C cycling abilities (Hättenschwiler et al., 2005;
Fanin et al., 2011; Marichal et al., 2011). Therefore, we should
seek to understand if and how degradation of forest habitats
affects carbon cycling in the tropics, so that action can be taken
to increase their sustainability.

Understanding the functional interactions between plant
litter inputs and soil processes that control soil C storage is
essential to determine the links between changes in biodiversity
and ecosystem function (Isbell et al., 2011; Handa et al.,
2014), such as C accumulation and retention during forest
degradation. Many decomposition studies have been carried out
using litterbags with specific litter mixtures from chosen plant
species (Hättenschwiler et al., 2005, 2011). Such standardised
litter mixtures can be broadly representative of temperate
forests with low species diversity, but this approach is less
appropriate for capturing the high diversity of tropical forests
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(Hättenschwiler et al., 2005). Furthermore, although soil CO2

efflux is commonly used to assess microbial activity in different
habitats, very few field studies in tropical forests have combined
controlled decomposition experiments with measurements of
CO2 efflux to assess whether soil or litter characteristics are
the main drivers of litter decomposition (Ayres et al., 2009). In
this context, mesocosm experiments are a useful tool because
they allow targeted experimental manipulations under field
environmental conditions while minimising soil disturbance
(Laird-Hopkins et al., 2017). Hence, mesocosms can be used
to measure CO2 efflux (i.e., soil respiration) over the soil and
decomposing litter mixtures to assess the relative importance of
soil properties and leaf litter composition (Ayres et al., 2009) for
soil microbial activity.

We established a cross-continental mesocosm experiment
under field conditions to assess the effect of plant litter and soil
properties on soil C dynamics and decomposition processes in
the tropics. The experiment aimed to identify general patterns
on two different continents, which have experienced high rates of
deforestation: one study site was located in the Stability of Altered
Forest Ecosystems (SAFE) project in Sabah, Malaysian Borneo
(Ewers et al., 2011) and the other in the Barro Colorado National
Monument (BCNM) in Panama. At each site, the mesocosm
experiment used reciprocal litter treatments to establish how
different litter mixtures, representing varying degrees of forest
degradation, affect soil C dynamics in forested and converted
habitats. We aimed to test the following hypotheses:

1) Soil microbial activity (decomposition and soil respiration)
will be lower in the converted than the forest habitats as
a result of a more exposed environment, which creates
microclimatic conditions unfavourable to decomposition.

2) After accounting for microclimate, the differences in litter
decomposition, soil respiration, andmicrobial biomass among
sites and experimental treatments will be attributable to
differences in litter properties and soil organic matter content.

3) Due to the low inputs of plant material to the soil in
converted habitats, litter treatments will have a relatively
greater influence on soil respiration and microbial biomass in
converted habitats compared to forest habitats.

METHODS

Study Sites and Habitats
To assess common patterns in different tropical regions, we
conducted our study at two experimental field sites, one in Sabah,
Malaysian Borneo and one in Panama, Central America. The
climate inMalaysian Borneo is wet tropical with average monthly
rainfall of 164.1 ± 24.34 mm, which mainly falls during the wet
season from November to March, and there is a mild dry season
from April to October; average monthly temperature is 32.5 ±

0.67◦C1. The soils at the study site are classed as Ultisols (USDA
classification; Riutta et al., 2018).

The climate in Panama is classed as wet tropical with
average monthly rainfall of 213 ± 52.8mm, most of

1https://en.climate-data.org/ (accessed July 15, 2019).

which falls during the rainy season between April and
November and a dry season from December to March;
average monthly temperature is 25.8 ± 0.5◦C1. The soil at
the study sites is classed as an Oxisol (USDA classification)
with a pH of 4.5–5.0 and low phosphorus availability
(Sayer and Tanner, 2010; Wright et al., 2011).

The experiments each lasted ninemonths andwere carried out
over two years: the Malaysian experiment was set up in March
2015 and the Panamanian experiment started in October 2016.
The specific climate conditions during the experimental period
at each study site are summarised in Table 1.

In Malaysia, our experiment was conducted within the SAFE
project in Sabah, Malaysian Borneo, which was designed as
a long-term landscape-scale experiment to assess changes in
biodiversity and ecosystem function as a result of anthropogenic
activity (Ewers et al., 2011). The SAFE project covers an area of 32
km2 including secondary forest, watersheds and first generation
oil palm plantations between 10 and 17 years old. In Panama,
the experiment was set-up within the Barro Colorado Nature
Monument (BCNM), administered by the Smithsonian Tropical
Research Institute. The BCNM covers 47 km2 and includes old-
growth forest, secondary forest in various stages of regeneration,
as well as disturbed habitats and grassland along the banks of the
Panama Canal. The study sites are henceforth referred to as SAFE
and BCNM.

Our experiments focused on two habitats types: forest habitat
and converted habitat. At SAFE, the forest habitat was a
hardwood forest that was partially logged in the 1970s, and
again between 1990 and 2008 (Ewers et al., 2011; Riutta
et al., 2018), and the converted habitat consisted of oil
palm plantations planted in 1998, 2001, and 2005; the palm
fronds in the oil palm plantations are placed in piles in
systematic locations as opposed to layered over the soil surface
like natural litterfall from trees. At BCNM, the equivalent
habitats were a 60 year-old secondary forest growing on
previously cultivated land and the converted habitat was a
clearing on the edge of Gatun Lake, part of the Panama

TABLE 1 | Comparison of study sites for a mesocosm experiment comparing soil

properties, litter decomposition, and soil respiration in forested and converted

sites in Malaysian Borneo and Panama, Central America, where SAFE is the

Stability of Altered Forest Ecosystems project in Malaysian Borneo and BCNM is

the Barro Colorado Nature Monument in Panama.

Malaysian Borneo (SAFE) Panama (BCNM)

Coordinates 4◦66′N 117◦56′E 9◦11′N 79◦82′W

Soil type (USDA) Ultisols Oxisol

Soil pH 4.0–6.5 4.5–5.0

Study period Mar–Nov 2015 Oct 2016–Jun 2017

Air temperature Mean 28.1 ± 0.2◦C 26.9 ± 0.7◦C

Min. 22.4◦C 22.8◦C

Max. 38.3◦C 31.0◦C

Monthly rainfall (mm) Mean 164.1 ± 24.3mm 231.0 ± 89.7 mm

Min. 45.0mm 8.6 mm

Max. 343.0mm 835.9 mm
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Canal, that has been maintained as grassland by mowing since
the 1960s.

Experimental Design
We assessed the influence of litter type on litter decomposition
and soil respiration at both sites and habitats using an in situ
mesocosm experiment with four litter treatments: old-growth
(primary) forest litter, secondary forest litter, introduced litter,
and a bare soil control with no litter inputs (Figure 1).

For the SAFE experiments, the old-growth forest litter was
collected fromMaliau Basin (intact primary forest) the secondary
forest litter was collected from the study sites in logged forest,
and the introduced litter was oil palm fronds (Elaeis guineensis
Jacq.), a palm species from western Africa. At BCNM, the old-
growth forest litter was collected from nearby >300-year old
forest, the secondary forest litter was collected from the 60 year
old forest at the study site and the introduced litter was wild
sugar cane (Saccharum spontaneum L.), which originates from
Asia and is found in open and disturbed habitats along the
PanamaCanal. Freshly fallen litter at each forest site was collected
from the surface of the litter layer, whereas introduced litter
was cut from the plants according to common site management
practices. All litter types were air-dried to constant weight
at 40◦C.

In each habitat, we established six blocks of mesocosms. The
mesocosms were made of PVC pipe (20 cm diameter and 13 cm
length), sunk into the ground to 3 cm depth; all mesocosms
were placed at least 1m away from trees and 1.5m away from
palms. Each block consisted of one mesocosm for each of the
four treatments to allow for destructive sampling after 9 months.
Consequently, the experiment comprised 96 mesocosms in total
(2 sites × 2 habitats × 6 blocks × 4 treatments; Figure 1). Each

mesocosm received 16 g of litter, the equivalent of the mean litter
standing crop in the forest sites in SAFE, which was calculated
from six samples collected close to the experimental blocks in the
forest sites.

We measured decomposition rates using litterbags containing
16 g of each litter mixture. The bags were made of 1.4mm mesh
and measured 18 × 18 cm to give an equivalent surface area to
the mesocosms. At both sites, two bags of each litter type were
placed in each replicate block and one bag of each litter type was
harvested from each block after six and nine months, giving 144
bags in total (2 sites × 2 habitats × 6 blocks × 3 treatments × 2
timepoints). The litter was carefully removed from the bags and
gently rinsed under running water to remove soil particles; the
samples were then dried to constant weight at 40◦C and weighed
to determine mass loss.

Field Measurements
Soil respiration (i.e., CO2 efflux) was measured monthly over
the mesocosms using an infrared gas analyser with a soil
chamber attachment. At SAFE the measurements were taken
with an EGM-4 infrared gas analyser and an SRC-1 soil chamber
(PP systems, Amesbury, USA), using a custom-made adaptor
(20 cm diameter and 5 cm height). At BCNM we used a Li-
8100 soil survey system with a 20 cm Survey Chamber (Li-Cor
Biosciences, Lincoln, Nebraska, USA). The two systems give
highly comparable values for soil respiration with similar errors
(Pumpanen et al., 2004). At both sites, soil temperature and
soil water content were recorded during each soil CO2 efflux
measurement c. 0.5m from the mesocosm; soil temperature
was measured at 0–10 cm depth using a traceable thermometer
(Fisherbrand, Hampton, FL, USA) and soil water content was
measured at 0–6 cm depth using a soil moisture sensor, with

FIGURE 1 | Schematic diagram illustrating the set-up of a mesocosm experiment carried out in Malaysia and Panama, showing the two habitat types: forest and

converted habitat, the six replicate blocks and the four litter treatments: old-growth forest, secondary forest, introduced species, and no litter (bare soil control).
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general mineral soil calibration (SM150T, Delta-T Devices,
Cambridge, UK).

To characterise the soils at each site, we collected five soil
cores from each block at the start of the experiments in March
2015 (SAFE) and November 2016 (BCNM). The soil cores were
mixed to form one composite sample per block, air-dried at 40◦C,
and then stored in resealable polyethylene bags until chemical
analysis. To assess changes in soil properties after nine months,
we collected two soil cores from the centre of the mesocosm
and composited them to give one replicate sample per block,
treatment, and habitat. All soil samples were collected at 0–
10 cm using a 3-cm diameter punch corer. Samples for analysis
of soil microbial biomass were refrigerated for seven days. The
remaining material was air-dried at 40◦C. Subsamples of dried
soil and litter were subsequently ground with a ball mill (Mixer
Mill 400, Retsch, Haan, Germany) for chemical analyses.

Laboratory Analyses
Total C and N in litter and soil samples were analysed by high
temperature combustion gas chromatography (Vario El III C/N
analyser, Elementar, Stockport, UK) using 30mg of soil and
15mg of litter. Soil extractable phosphorus (P) and potassium
(K) were analysed by spectrometry after extraction using the
modified Morgan’s method, and litter P, K, calcium (Ca), and
magnesium (Mg) concentrations nutrients were analysed by
ICP-OES spectrometry after nitric acid digest at a commercial
laboratory (SAC consulting, SRUC, Aberdeen, Scotland).

We determined microbial biomass C and N after fumigation
extraction (Vance et al., 1987 with modifications by Jones
and Willett, 2006) using paired 8-g subsamples of fresh soil.
Briefly, one subsample per pair was fumigated with ethanol-
free amylene-stabilised chloroform for 24 h and both subsamples
were then extracted with 40mL 0.5M K2SO4, centrifuged and
filtered through pre-washed filter paper (Whatman 42 R© or
equivalent). The extracts were analysed for total organic C
and total N by combustion after nine-fold dilution (TOC-L
combustion analyser coupled with a TNM-L unit, Shimadzu
Corp, Kyoto, Japan). Microbial biomass C and N were calculated
from the difference between non-fumigated and fumigated
samples without correction.

We determined acid detergent fibre (ADF) and lignin (ADL)
in litter samples by hot extraction (Van Soest et al., 1991) in
two steps using a fibre analysis system (FibertecTM 8000, FOSS,
Hilleroed Denmark). To measure ADF, the litter samples (1 g
dry weight) were placed in a glass crucible with 1 g of celite and
the samples were washed in boiling acid detergent solution for
1 h, rinsed with deionised water (dH2O), soaked in acetone for
5min, and drained. The samples were dried at 105◦C for 12 h
and then weighed; total ADF was calculated by subtracting the
weight of the remaining material from the original sample weight
(after correction with blanks). To determine acid detergent lignin
(ADL), the material remaining after ADF extraction was soaked
in H2SO4 for 3 h and washed with hot dH2O until acid-free. The
remaining material was dried at 105◦C for at least 5 h and then
ashed in a furnace at 525◦C for 3 h. The lignin content (ADL)
was calculated by subtracting the final weight of the sample

from the weight of total extracted fibre (ADF) (after correction
with blanks).

Data Analysis
We calculated the litter decay rate (k) for each litter type, habitat
and site according to Olson (1963) (Equation 1):

ln

(

X

X0

)

= −kt (1)

where: t is time in years since the bags were placed in the field, X0

is the initial litter dry mass and X is litter dry mass at collection.
We used log response ratios (RR) to the calculate effect sizes

for the litter treatments and make direct comparisons of soil
respiration and soil microbial biomass between sites and habitats.
We calculated the RR for soil respiration for each litter treatment
per block and month and the RR for soil microbial biomass per
block at the end of the experiment using Equation (2):

RR = ln

(

Rx

Rct

)

(2)

where Rx is the value in litter treatment and Rct is the value from
the corresponding bare soil control.

All statistical analyses were conducted in R version 3.5.1 (R
Core Team, 2018) using the lme4 package for linear mixed
effects models (Bates et al., 2014). Data were transformed where
necessary to meet modelling assumptions.We used linear models
(lm function) to assess differences among habitats in initial
soil properties, the influence of litter treatment and habitat on
litter decay rates and microbial biomass, and the relationships
between soil respiration, microbial biomass, and litter decay
rates. We assessed the influence of specific litter properties on
decay rates across all litter types and both locations using linear
regressions; visual inspection of the data revealed that many
litter properties were correlated and we thus selected properties
known to influence decomposition in tropical forests (lignin, N,
P, and K content). We assessed the effects of habitat and litter
treatment on soil respiration, temperature and water content,
as well as the RR of soil respiration using linear mixed effects
models (lmer function) with habitat, litter treatment, site and
their interactions as fixed effects, and block and month as
random effects. The minimum adequate model was identified by
sequentially dropping terms, using AIC and p-values to check for
model improvement (Pinheiro and Bates, 2000). The final models
were compared to appropriate null models using likelihood
ratio tests and the model fit was assessed using diagnostic plots
(Crawley, 2007). Where we found no effects of individual litter
treatments, we conducted a second set of analyses assessing the
general influence of litter inputs on soil respiration andmicrobial
biomass in the different habitats by comparing the mean values
across all litter treatments to the bare soil controls.

For linear models, we give the F-statistic with degrees of
freedom, and for linear mixed effects models we give the chi-
squared (χ2) value for the comparison to the relevant null model.
We report significant terms at p< 0.01 andmarginally significant
trends at p < 0.1.
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RESULTS

Soil and Litter Properties
Although soil properties differed between sites (Table 2), there
were no general trends in soil properties among habitats. At
BCNM, total soil C and N content in the forest habitat were
significantly higher than in the converted habitat, with almost
twice the amount of C and N at 0–10 cm depth, but there were
no differences in soil C and N content among habitats at SAFE
(Table 2). The models that best explained total soil C and N
included habitat, country and their interaction [Soil C: F(3, 20)
= 32.13, p < 0.001; soil N: F(3, 20) = 23.87, p < 0.001]. There
was no significant difference between habitats for extractable P,
extractable K or soil pH at either site (Table 2).

The forest litters were similar between forest types and sites.
By contrast, although the introduced litters had similar C content
across sites, the introduced litter at SAFE had nearly double the
N content of the introduced litter at BCNM and the lignin: N
ratio was more than twice as high (Table 3). The forest litter
had slightly higher C content than introduced litter at BCNM
but not at SAFE (Table 3). However, the lignin content and
lignin: N ratios of the forest litters were substantially higher than
the introduced species at both sites (Table 3). The P content
of the introduced litter was almost twice as high as the forest
litter at both sites, whereas the K content of introduced litter
was higher than the forest litter at BCNM, but not at SAFE.
Decay rates increased with litter P (R2 = 0.59, p = 0.045)
and litter K content (R2 = 0.73, p = 0.019) but decreased
with increasing lignin content (R2 = 0.84, p = 0.006) and the
lignin: N ratio best explained litter decay rates (R2 = 0.86,
p= 0.005; Table 3).

Regardless of litter type, litter decomposition was significantly

slower in the converted habitat than in the forest habitat at both

sites (Figure 2). The decay rate k of the litter types reflected
the differences in litter properties between introduced and forest

litter: the introduced litters (k = 1.93 ± 0.24 at SAFE and 2.83

± 0.22 at BCNM) decomposed faster than the forest litters (k

= 0.93 ± 0.13 at SAFE and 1.12 ± 0.11 at BCNM) regardless
of habitat. Overall, litter decay rates were higher at BCNM than
SAFE (Table 2) and hence, the model that best explained the

decay rate included country, litter type and habitat, but not their
interactions [F(4, 61) = 35.4, p < 0.001].

Soil Respiration and Microbial Biomass

Soil respiration was significantly higher in the forest habitats
than the converted habitats at both sites (Figure 3). Although
soil respiration from the mesocosms was higher in all
litter treatments compared to the bare soil controls, there
were no significant differences in respiration among litter
types (Supplementary Table S1; Supplementary Figure S1).
Subsequent comparison of mesocosms with and without litter
inputs revealed significantly higher soil respiration in the
mesocosms with litter compared to bare soil in both habitats and
at both sites, although soil respiration from the litter treatments
at BCNM was lower than the controls during the dry season
(months 4–7, Figure 3). The final model for soil respiration
therefore included habitat, litter input and their interaction
(χ2 = 49.16, p < 0.001).

Microbial biomass C and N were significantly greater
in BCNM than in SAFE regardless of habitat (Figure 4;
Supplementary Table S2). At both sites, microbial biomass C
was significantly higher in the forest habitat (SAFE: 121 ± 16
µg g−1 and BCNM: 443 ± 18 µg g−1) than in the converted
habitat (SAFE: 65 ± 10 µg g−1 and BCNM: 186 ± 15 µg g−1).
There was no discernible effect of individual litter treatments, as
microbial biomass did not differ among mesocosms containing
introduced litter or forest litter (Supplementary Figure S2). The
mesocosms with litter inputs had greater microbial biomass C
than the bare soil controls in the converted habitat at BCNM
(Figure 5). The model that best explained microbial biomass
C therefore included litter input, habitat, site and the site
× habitat interaction [F(5, 71) = 16.53, p < 0.001]. Microbial
biomass N was also significantly higher in the forest habitats
than the converted habitats but there was no influence of
litter treatments or litter inputs (Figure 5). The model that
best explained microbial biomass N therefore included only
habitat and site [F(6, 79) = 79.92, p < 0.001]. Analysis of
the response ratios (RR) for soil respiration and microbial
biomass revealed that, contrary to our third hypothesis, the
response of soil respiration to litter inputs was smaller in the

TABLE 2 | Initial soil properties (0–10 cm depth) for tropical forest and converted habitats in Malaysian Borneo and Panama, showing total soil carbon (C) and nitrogen (N)

concentrations, extractable phosphorus (P), and potassium (K) and soil pH, and soil C to N (C:N) ratios, where SAFE is the Stability of Altered Forest Ecosystems Project

in Sabah, Malaysian Borneo and BCNM is the Barro Colorado National Monument, Panama, Central America; means ± standard errors are shown for n = 6; different

superscript letters denote significant differences between habitat types at p < 0.05.

Forest habitat Converted habitat

Malaysia (SAFE) Panama (BCNM) Malaysia (SAFE) Panama (BCNM)

Soil pH 4.98 (±0.42) 5.12 ± 0.10 4.77 ± 0.19 5.42 ± 0.29

Total C (% dry weight) 1.44 (±0.15) 5.67 ± 0.23a 1.88 ± 0.50 3.03 ± 0.36b

Total N (% dry weight) 0.25 (±0.01) 0.57 ± 0.03a 0.31 ± 0.03 0.04 ± 0.04b

C:N 5.72 (±0.48) 10.03 ± 0.32 5.73 ± 0.97 10.04 ± 1.14

Extractable P (mg kg−1) 5.73 (±1.97) 4.89 ± 0.78 6.58 ± 2.71 4.30 ± 0.88

Extractable K (mg kg−1 ) 595.18 (±179.42) 804.64 ± 133.75 456 ± 58.9 748.48 ± 143.59
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TABLE 3 | Characteristics of leaf litter from forest habitats or introduced species used in parallel litter decomposition experiments at SAFE in Malaysian Borneo and

BCNM in Panama, showing litter carbon (C) and nitrogen (N) content, carbon to nitrogen ratio (C:N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), total

fibre and lignin content, and lignin to nitrogen ratio (lignin:N); chemical analyses were conducted on composite litter samples and mean decay rates were calculated for

each litter type across all habitats; percentages are given on a dry mass basis.

Litter type Introduced Secondary forest Primary forest

Property/Site SAFE BCNM SAFE BCNM SAFE BCNM

Decay rate (k) 1.93 ± 0.2 2.83 ± 0.2 0.96 ± 0.2 1.11 ± 0.1 0.91 ± 0.2 1.14 ± 0.1

C (%) 44.7 45.3 44.7 49.2 46.3 49.9

N (%) 1.89 1.15 1.17 1.30 1.38 1.80

C:N ratio 23.6 39.2 38.2 37.2 33.5 27.4

P (%) 0.13 0.11 0.06 0.05 0.06 0.06

K (%) 0.86 1.38 0.76 0.34 0.27 0.26

Fibre (%) 19.6 22.0 31.4 32.3 35.3 33.0

Lignin (%) 4.97 1.53 17.21 16.90 17.50 21.00

Lignin:N 2.63 1.33 14.7 13.0 12.7 11.7

Lignin:P 38.2 13.9 277.5 318.9 301.7 333.3

Ca (%) 0.62 0.38 0.66 1.28 1.26 1.56

Mg (%) 0.37 0.13 0.26 0.25 0.29 0.27

Zn (mg kg−1) 19.3 29.2 19.0 32.0 18.7 40.5

FIGURE 2 | Mass loss during decomposition of three litter types in (A,C) converted habitats and (B,D) forest habitats at BCNM in Panama and SAFE in Malaysian

Borneo, respectively. The experiment took place from March to November 2015 at SAFE and from October 2016 to June 2017 at BCNM. Decomposition was

measured after 6 and 9 months, where blue squares with dot dashed lines represent introduced litter, orange circles with solid lines represent secondary forest litter

and red triangles with dashed lines represent old-growth forest litter; means ± standard errors are shown for n = 6.

converted than the forest habitats across both sites (χ2 = 6.23,
p = 0.012) and there was no difference in the response of
soil microbial biomass to litter inputs between converted and
forest habitats.

Across sites and habitats, there was no relationship between
litter decomposition and soil respiration or microbial biomass
but mean soil respiration increased with microbial biomass C (R2

= 0.91, p < 0.001) and N (R2 = 0.92, p < 0.001; Figure 5).
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FIGURE 3 | Patterns of soil temperature (top panel), soil water content (second panel) and soil respiration (CO2 efflux; bottom panels) in tropical forest (circles) or

converted habitats (triangles) at SAFE in BCNM in Panama and at SAFE in Malaysian Borneo; soil respiration was measured over mesocosms with litter inputs (orange

solid lines) and without litter (grey dashed lines). The experiment took place from March to November 2015 at SAFE and from October 2016 to June 2017 at BCNM;

means and standard errors are shown for n = 24 per time point for soil temperature and soil water content, and for n = 6 per time point for soil respiration.
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FIGURE 4 | Soil microbial biomass (A,B) carbon (C) and (C,D) nitrogen (N) at

0–10 cm depth in mesocosms with either bare soil (grey) or with litter (orange)

after nine months of decomposition in a tropical forest and a converted habitat

at BCNM in Panama (A,C) and at SAFE in Malaysian Borneo (B,D). Boxes

denote the 25th and 75th percentiles and median lines are given for n = 6,

whiskers indicate values up to 1.5 × the interquartile range, and dots

indicate outliers.

DISCUSSION

One of the most important changes during forest conversion and
forest disturbance is the reduction in plant inputs, which has a
substantial impact on soil C dynamics. Our study demonstrated
that although decomposition rates differed markedly among
litter types, introduced litter and forest litter had a similar
influence on soil respiration and microbial biomass in two
distinct tropical regions. Hence, the presence of litter per se was
more important for maintaining soil processes than litter quality
or diversity. Despite differences in soil properties and respiration
rates between sites, habitat type had the greatest influence over
litter decomposition and microbial activity due to the changes in
the microclimate after deforestation. However, our experiment

FIGURE 5 | The relationship between mean soil respiration and microbial

biomass (A) carbon (C) or (B) nitrogen (N) in tropical forest (circles) or

converted habitats (triangles) at SAFE in Malaysian Borneo (pale blue symbols)

and BCNM in Panama (dark blue symbols); showing mean values for each

litter treatment (bare soil, introduced, secondary forest or primary forest litter),

site, and habitat (n = 4).

demonstrates the potential for litter inputs to maintain or rapidly
restore soil processes in converted habitats.

Habitat and Microclimate Influenced
Decomposition Processes
As expected, the distinct microclimate between forest and
converted habitats had a substantial influence on litter
decomposition and soil respiration, which supports our
first hypothesis. At both sites, almost 80% of the litter had
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decomposed after nine months in the forested habitats but
<60% had decomposed in the converted habitats (Figure 2)
and soil respiration was consistently higher in the forest
habitats (Figure 3). A similar decline in decomposition in
degraded tropical forests was also found in an experiment in
China, in which open deforested land had significantly lower
decomposition rates than old-growth and regenerating forests
(Paudel et al., 2015) and similar patterns were found in Sabah
(Both et al., 2017). The lower rates of decay and soil respiration
in the converted habitats can be explained by a combination
of lower soil nutrient content (Table 1), greater variation in
soil temperature and water content (Figure 3), and lower soil
microbial biomass (Figures 4, 5) compared to the forest habitat.
Previous studies suggest that the presence of trees is essential
for microbial activity (Salimon et al., 2004; Sotta et al., 2006;
Schwendenmann et al., 2007; Vasconcelos et al., 2008), not only
by providing substrate and shade, but also because plant litter
acts as a buffer for variation in soil water and temperature at
the surface (Sayer, 2006; Paudel et al., 2015). Tree cover in the
converted habitats was sparse: the palms in the plantation in
SAFE were planted between 6 and 9m apart and trees were
almost entirely absent in the converted habitat at BCNM. Hence,
the lack of a closed canopy in the converted habitats likely
resulted in rapid desiccation of the litter on the soil surface,
providing a less stable environment for micro-organisms (Zhang
and Zak, 1995; Yang et al., 2017) and slowing decomposition
(Powers, 2004).

We observed similar responses of decomposition, soil
respiration andmicrobial biomass to habitat type and litter inputs
across sites on different continents, despite substantial differences
in site characteristics. The distinct temporal patterns of soil
respiration between sites can be largely explained by seasonality.
BCNM experiences a strong dry season from January to April
and accordingly, soil temperature in the converted habitat was
much higher than in the forested habitat during particularly
dry months, whereas soil water content was higher during the
rainy season (Figure 3). Hence, both rapid desiccation during
the dry season and waterlogging during the wet season may have
slowed decomposition and reduced respiration in the converted
habitat. By contrast, at SAFE the dry and wet seasons were not
as distinctive but soil temperature in the converted habitats at
SAFE was still consistently higher due to the lack of canopy cover,
and although soil water content did not differ substantially from
the forest habitat during the study, it was more variable in the
converted habitat (Figure 3).

Besides the clear differences in habitat microclimate, the lower
microbial biomass and nutrient availability of the converted
habitats compared to the forest habitats is likely to have directly
limited decomposition processes at both sites. In addition,
faster mass loss at BCNM compared to SAFE can be explained
by higher soil nutrient concentrations and microbial biomass
at BCNM. Micro-organisms are essential for decomposition
processes and decay rates are related to the abundance of
organisms capable of breaking down the litter (Coûteaux et al.,
1995), lower microbial biomass therefore often results in lower
rates of decomposition (Singh and Gupta, 1977). Although
we found no clear relationship between litter decay rates and

microbial biomass across sites and habitats, we only measured
microbial biomass at the end of the study, and there may have
been a stronger relationship in the early stages of decomposition.
Other studies have found that deforestation and the conversion to
agriculture or grasslands significantly reduces soil C, soil N, and
microbial biomass which in turn alter decomposition processes
(Dinesh et al., 2003, 2004; Gomez-Acata et al., 2014). Another
key difference between converted and forest habitats is the loss
of faunal diversity in the former, especially invertebrate diversity
(Fitzherbert et al., 2008). This could have further retarded litter
decomposition because invertebrates play an essential role in the
initial break-down of leaf litter, which increases the surface area
and increases accessibility to soil microbes (Barajas-Guzmán and
Alvarez-Sánchez, 2003; Ashford et al., 2013; García-Palacios et al.,
2016).

Litter Decay Rates Are Related to Litter
Properties
The properties and decay rates (k) of forest litter were remarkably
similar across the two sites on different continents and, as
we hypothesised, the substantial differences in decomposition
rates between the introduced and forest litters at both sites
were explained by litter properties, in particular lignin content
and the lignin: N ratio. The lignin content of litter is a
good indicator of resource quality for microbial decomposers
(Ordoñez et al., 2009; Hättenschwiler et al., 2011), and numerous
studies demonstrate that litter with low lignin content or low
lignin: N ratio decomposes rapidly (Hirobe et al., 2004; Kalbitz
et al., 2006; Coq et al., 2011). In our study, litter K and, to
a lesser extent, P were more important than N content in
explaining decay rates. The introduced species had higher litter
P and K content, which may be important for decomposition
processes because tropical forests are widely acknowledged to
be limited by P availability (Hättenschwiler and Jørgensen,
2010; Wright et al., 2011; Camenzind et al., 2018) and K can
promote cellulose decomposition (Kaspari et al., 2008). Hence,
the distinct properties of the introduced species litters, which
were both characterised by low lignin: N ratios as well as high
P and K concentrations (Table 3), could make them an attractive
resource tomicrobial decomposers, resulting inmuchmore rapid
decomposition than the forest litter mixtures.

The similarity in litter properties, decay rates and mass loss
of the two types of forest litters across both sites suggests
that although litter diversity plays a key role in decomposition
processes in tropical forests, species identity is less important.
Recent work has found mixed evidence for non-additive effects
in simple litter mixtures in tropical plantations, whereby
only mixtures with the most functionally distinct litter types
decomposed slower than expected (Kerdraon et al., 2019). A
litter decomposition experiment in a 60-year old stand of
the same study forest in BCNM found that natural mixed
litter decomposed more slowly than a mixture of the three
dominant pioneer species at the site, but was similar to a
more diverse mixture with litter from three old-growth and
three pioneer species (Laird-Hopkins et al., 2017). This suggests
that the decomposition of litter from dominant tree species
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is not necessarily representative of decomposition processes in
highly diverse tropical forests, and that non-additive effects
may be more complex that in temperate systems, because
microbial decomposers are adapted to functionally diverse
litter inputs (Kerdraon et al., 2019). In our study, the old-
growth and secondary forest mixtures had very similar litter
characteristics and decay rates at both study sites, indicating that
the secondary forest litter has the same functional characteristics
and a similar influence on soil C dynamics as old-growth
forest litter, despite differences in tree species composition.
The striking similarities in litter properties and decay rates
between forest habitats and between countries indicates that
changes in tree species composition by forest disturbance may
have little influence on soil C dynamics unless there is a
fundamental shift in the functional characteristics of mixed plant
litter inputs.

Litter Inputs, Microbial Biomass, and Soil
Function
In contrast to our second hypothesis, and despite marked
differences in litter properties and decay rates between
introduced litter and forest litter, we observed no effect of
litter type on soil respiration or microbial biomass in either
habitat type at either site. Given that decay rates are driven
by litter properties (Hättenschwiler et al., 2005; Cortez et al.,
2007), we expected to detect differences in soil respiration
measured directly above the decomposing litter mixtures.
Although it is possible that the magnitude or duration of our
litter treatments was insufficient to detect the effects of litter
properties on soil respiration or microbial biomass, previous
work has demonstrated clear responses of soil respiration to
experimental litter mixtures over the same time-frame (Kerdraon
et al., 2019). Furthermore, the differences in soil respiration
and microbial biomass between mesocosms with or without
litter demonstrate a measurable influence of litter presence
(Figure 5). It is possible that the litter mixtures had a greater
influence on microbial biomass during the early stages of
decomposition; however, soil samples taken from an additional
set of mesocosms after six months (SAFE only, data not shown)
also showed no differences in microbial biomass among litter
treatments, and soil respiration rates did not differ consistently
among litter types during the first three months of the study
(Supplementary Figure S1).

The importance of aboveground litter inputs for maintaining
key soil processes (Sayer, 2006) is demonstrated in our study
by the higher soil respiration with litter inputs and the decline
in microbial biomass C and N in the forest habitats after nine
months of litter exclusion at both sites (Figure 4). Given the low
plant inputs to the soil in the converted habitats, we hypothesised
that the response of soil respiration and microbial biomass
to the litter treatments would be greater than in the forest
habitats. We found little evidence to support this hypothesis
as microbial biomass in the converted habitat only responded
to litter inputs at BCNM, and the response of soil respiration
was lower in converted habitats. Soil organic matter content is
important for sustaining microbial biomass and activity (Reeves,

1997; García-Orenes et al., 2010; Xu et al., 2018) and the lower
soil C content we measured at SAFE (Table 1) likely explains
why soil respiration and microbial biomass were lower in both
habitats at SAFE compared to BCNM, and underpins the strong
relationship between microbial biomass and soil respiration
(Figure 5). Although soil respiration increased with litter inputs
in the converted habitats at both sites (Figure 3), microbial
biomass did not respond to litter inputs in the converted
habitat at SAFE (Figure 4). It is therefore conceivable that soil
microbial communities in the oil palm plantations were so
substrate-limited that our litter treatments were only sufficient
to stimulate activity and turnover, but not to boost growth.
Although beyond the scope of the present study, shifts in
microbial communities and substrate use efficiency in response to
altered plant inputs and microclimate in the converted sites may
explain the differences between habitats as well as the similarities
across sites.

Previous studies at SAFE have noted that specialised forest
microbial communities were missing from oil palm plantations
(Lee-Cruz et al., 2013; Van Straaten et al., 2015), which could
indicate that the soil microbes present in the oil palm habitat
may not be capable of processing more complex and diverse
forest leaf litter. However, microbial biomass did not increase
with the addition of any litter type, including oil palm litter, which
indicates that soil microbial communities in oil palm plantations
are constrained by more than just litter quality. In addition,
herbicide application to prevent understorey plant growth in the
oil palm plantations could have also played a role by eliminating
some microbial taxa (Perucci et al., 2000) and further reducing
plant inputs. By contrast, the soil microbial community in the
converted habitat at BCNM was able to respond to greater
substrate availability by increasing both activity (soil respiration)
and growth (biomass), suggesting that inputs from herbaceous
plants have helped maintain soil functioning, despite minimal
aboveground litterfall. Management of oil palm plantations in
other areas includes soil amendment with empty fruit bunches,
a waste product from palm oil extraction, which improves soil
fertility and functioning (Tao et al., 2018). In our study, the strong
influence of aboveground litter on soil respiration and microbial
biomass, regardless of habitat, species diversity, or litter type, is
encouraging because it suggests that soil functioning in converted
habitats could be maintained to a certain degree by simple litter
inputs (Pauli et al., 2014; Teuscher et al., 2016).

CONCLUSIONS

Our study highlights the importance of aboveground litter inputs
for maintaining soil processes in disturbed forests and converted
habitats. Our findings reveal a disconnect between the substantial
influence of litter properties on decomposition rates and the
much smaller effect of distinct litter types on soil respiration
and microbial biomass. Overall, our litter transplant experiments
showed the same responses of forest and converted habitats
to litter inputs on two different continents, and remarkably
similar patterns of litter decomposition. Whereas, the altered
microclimate in the converted habitats explained the lower rates
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of decomposition and soil respiration compared to the forest
habitats, the response of microbial activity to litter inputs in the
converted habitats suggests that the presence of leaf litter as a
source of organic matter is essential to maintain soil processes
in degraded forest ecosystems.
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