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Abstract—We use an unsupervised classification tech-
nique (i.e. Gaussian mixture modeling or GMM) to iden-
tify ocean regions with similar balances between processes
that determine the surface budget of dissolved inorganic
carbon. GMM objectively locates sub-populations in the
distribution of carbon budget terms. We use a simple
four-class description and find regimes that are broadly
consistent with classical theoretical frameworks. Class
1 covers 24% of ocean surface area and corresponds
to highly productive areas with strong vertical mixing,
wind-driven open ocean upwelling, and absorption of
atmospheric carbon dioxide. Class 2 covers 8% of ocean
surface area and corresponds to regions of especially
weak productivity. Class 3 covers 16% of ocean surface
area and corresponds to wind-driven coastal and equa-
torial upwelling. Finally, class 4 covers the remaining
52% of ocean surface area and corresponds to the rela-
tively unproductive subtropical gyres, which are typically
characterized by downwelling and low surface nutrient
concentrations. We argue that GMM may be a useful
method for comparing biogeochemical regimes between
climate models.

I. MOTIVATION

The global ocean is a critical part of Earth’s climate
system, in part because it absorbs atmospheric carbon
dioxide from fossil fuel burning, cement production,
and biomass burning, thereby slowing the rate of sur-
face warming. At present, the ocean absorbs between
20 to 35 percent of anthropogenic CO2 emissions [1],
[2], [3]. The ocean’s ability to transport carbon from
the near-surface ocean into the deep interior, where it
is out of contact with the atmosphere, is sometimes
referred to as the ocean carbon pump. Broadly speaking,
this pump consists of two components: the solubility
pump and the biological pump. The solubility pump

Corresponding author: D. Jones, dannes@bas.ac.uk 1British
Antarctic Survey, NERC, UKRI, Cambridge, UK 2School of Earth
and Atmospheric Sciences, Georgia Institute of Technology, Atlanta,
GA, USA

is a consequence of the global overturning circulation,
whereby atmospheric carbon is more readily absorbed
by cold, high latitude waters and subducted into the
interior ocean via deep convection. The biological pump
is a consequence of ocean ecology, by which carbon
is transferred from a dissolved inorganic carbon (DIC)
pool in the surface ocean to an organic carbon pool.
Some fraction of this organic carbon is respired back
to DIC throughout the water column, and a small
fraction ultimately reaches the seabed. The net result is
a vertical transfer of DIC away from the surface ocean
into the deep interior, where it is out of contact with
the atmosphere and unable to directly affect surface
climate.

The processes that govern the surface carbon budget
display considerable spatial variability. For example,
air-sea gas exchange is highly nonuniform, due to
spatial variability in mixed layer depths, near-surface
winds, and carbonate chemistry parameters [4], [5].
Biological productivity varies based on the nutrient
distribution and other ecological factors [6]. Physical
transport, which controls the ocean solulbility pump, is
also spatially variable as the ocean’s global overturning
circulation is set by bathymetry, surface forcing, and
internal dynamics, which all have their own spatial
patterns. The rate of change of the surface carbon
concentration is set by the residual of these processes.
Our present understanding of the surface carbon budget
relies on classical theoretical frameworks that describe
balances between these processes. As a complement to
existing expertise-driven approaches, it may be useful to
develop a suite of alternative methods by which we can
characterize the surface carbon budget. Unsupervised
learning may offer such a possibility. In unsupervised
learning, one applies a classification algorithm to an
unlabeled dataset, and the algorithm attempts to identify
sub-populations in the data distribution [7]. To the
extent that such methods can be shown to be robust
and objective, they could be useful for comparing
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biogeochemical regimes in different climate models,
which are sometimes difficult to compare directly due
to systematic biases [8].

In this note, we apply Gaussian mixture modeling,
an unsupervised classification method, to the surface
carbon budget derived from a numerical circulation
and biogeochemistry model. We find that the surface
carbon budget can be described using four different
classes that roughly correspond to regimes found in
classical theoretical frameworks. We briefly discuss the
possibility of using unsupervised learning to compare
climate models.

II. METHODS

Here we describe the ocean circulation and biogeo-
chemistry model that we used to evaluate the surface
carbon budget. We also describe the unsupervised learn-
ing method (i.e. Gaussian mixture modeling) that we
applied to the surface carbon budget.

A. Ocean biogeochemistry model

To quantify the steady state global ocean surface
carbon budget, we use a coarse resolution ocean circu-
lation and biogeochemistry model [9]. The numerical
model is an instance of MITgcm (http://mitgcm.org/,
[10], [11]) with a simple biogeochemistry component
[12]. The biogeochemistry package uses six tracers:
DIC, alkalinity, PO4, dissolved organic phosphorous,
oxygen, and iron. The export of biological carbon out
of the surface is calculated as a function of available
light, PO4, and iron. The model uses a fixed grid with a
horizontal resolution of 2.8◦×2.8◦ in latitude-longitude
and 23 vertical levels with gradually increasing cell
thickness, with relatively thin cells in the the rapidly-
changing surface and thicker cells in the relatively qui-
escent interior. Unresolved transport is parameterized
using an isopycnal thickness diffusion scheme with a
uniform diffusivity of 1000 m2/s [13]. We also impose
along-isopycnal diffusion at the same rate [14], and
mixed-layer processes are parameterized using the K-
Profile Parameterization (KPP) scheme [15]. Vertical
diffusivity is set to 0.3× 10−4 m2/s in the upper 2000
m and increases to 10−4 m2/s in the interior ocean
following an arctangent profile [16]. The Arctic is not
included in this model, in part due to convergence issues
with latitude-longitude grids near the poles. The model
was spun up for 1000 years and then run for another
100 years for evaluation. We average the last 10 years
of the simulation in order to construct the steady state
budget.

We evaluate the steady state surface carbon budget
in the top 185 m of the model domain. The budget can
be expressed as follows:

0 =− u · ∇HC −−w∂C

∂z
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(
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)
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where C is the dissolved inorganic carbon concentra-
tion, u is the horizontal velocity vector, ∇H is the
horizontal component of the gradient operator, w is the
vertical velocity, z is the depth coordinate, K is the
diffusivity tensor, Kz is the vertical component of the
diffusivity tensor, and ∆pCO2 is the air-sea difference
in partial pressure of CO2. The terms on the RHS of
equation (1) represent the processes of horizontal ad-
vection, vertical advection, horizontal diffusion, vertical
diffusion, air-sea gas exchange, freshwater flux, and
biological sources and sinks of DIC, respectively. In
terms of model diagnostics, the unresolved, parameter-
ized fluxes are contained in the diffusive terms of the
budget.

B. Gaussian mixture modeling

Gaussian mixture modeling (GMM) attempts to rep-
resent the density of data in an abstract space as a linear
combination of multi-dimensional Gaussian functions
[17]. A GMM is “trained” by adjusting the means and
covariances of the Gaussian functions. GMM has been
applied to ocean temperature and salinity data in order
to identify different “profile types” in different ocean
regions [18], [19].

We follow the method of [20], wherein each term
of the steady-state, two-dimensional barotropic vorticity
budget equation is used as a feature for unsupervised
classification; each term/feature represents a different
physical process. The result of their classification analy-
sis is a robust, algorithmically defined global geography
of ocean dynamical regimes [20]. In our application,
we use each term of the surface carbon budget in
equation (1) as a feature for classification analysis;
in doing so, we represent the distribution of data in
a seven-dimensional abstract feature space. At every
2.8◦×2.8◦ model grid cell, there is a value for each of
the seven terms of equation (1). The vector of budget
term values from a grid cell is used as a single seven-
dimensional “observation” in the clustering analysis.
We weight each grid cell by its ocean surface area. We
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do not standardize the budget term values beforehand,
as we want the terms to retain their relative magnitudes.
This should not affect the GMM fitting procedure, as
the covariances of the Gaussian functions are generally
allowed to scale as needed to fit the data.

The total number of classes N is a free parameter in
GMM. Although one can use statistical tests to estimate
the value of N with the highest likelihood relative to
an overfitting “penalty” term (e.g. Bayesian Information
Criterion or BIC), one can also use N as a description
of the complexity of the statistical model. A simple
statistical model with small N will likely be easier to
interpret than a complex statistical model with large
N . In this way, a range of GMM models with different
N constitutes a model hierarchy, and one may be able
to learn about the system under investigation based on
how it changes as one adds or removes sources of
complexity [21].

We use the Scikit-learn machine learning package in
Python to carry out the classification analysis [22]. We
use the expectation-maximization algorithm to deter-
mine the means and covariances of the Gaussians that
have the highest probability of correctly representing
the steady-state budget data as a linear combination
of multi-dimensional Gaussian functions. We use the
“full” covariance type to allow the Gaussians to change
their orientations and covariances in any way that
increases the overall probability of the distribution. We
use every ocean grid cell from the numerical model,
which is 4447 data points (or “observations”) in total.
Once the GMM has been trained, we use it to assign a
class label to each grid cell. Specifically, GMM assigns
to each grid cell a probability distribution across all of
the classes, and it assigns each grid cell to the class
with the maximum posterior probability.

III. RESULTS

In our implementation of GMM, each class broadly
represents a different distribution of balances in the
terms of equation (1). Specifically, each of the four
seven-dimensional Gaussians can be described by a set
of means (a seven-dimensional vector) and covariances
(a tensor) across the different processes. For simplicity,
we only show the means of the classes (Figure 1). We
see that there are classes with less biological productiv-
ity (e.g. class 2), and classes with more biological pro-
ductivity (e.g. class 1), corresponding to a large export
of DIC from the surface waters. Note that these mean
values do not necessarily represent every observation in
a given class; they are means of the Gaussian functions

Fig. 1. Each class features a different balance distribution across
the terms of the surface carbon budget. Here we plot the means
of the four multi-dimensional Gaussian functions used to statisti-
cally model the data density. The terms are horizontal advection
(H. Adv.), vertical advection (V. Adv.), horizontal diffusion (H.
Diff.), vertical diffusion (V. Diff.), air-sea gas exchange (Gasex.),
freshwater flux (FWF), and biological sources and sinks of carbon
(Bio).

Fig. 2. The surface area occupied by each class, relative to the total
ocean surface area.

used to represent the data. The surface area occupied
by each class is shown in Figure 2.

Here we describe the GMM classes and the classical
theoretical frameworks to which they approximately
correspond. Despite the fact that GMM was not given
any information about the latitude-longitude locations
of the grid cells, it is still able to identify spatially
coherent regimes in the surface carbon budget (Figure
3). Along with the distribution across processes (Figure
1), the spatial distribution of the labels helps in our
attempt to interpret the classes. Class 1 corresponds
to the highly productive open ocean, which is dom-
inated by wintertime convection and mixing, seen in
the term balance as vertical diffusion (Figure 1). Class
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Fig. 3. GMM produces spatially coherent regimes for the surface
carbon budget, despite the fact that it is not given any information
about the location of the grid cells. Here we show the labels assigned
by GMM to each grid cell. Regions with no data are masked out
in white.

2 corresponds to relatively isolated patches of low
productivity. Class 3 features wind-driven upwelling, as
evidenced by the larger values of the advective terms.
Both coastal and open ocean wind-driven upwelling
can bring nutrients to the surface, where they can
enable primary productivity and encourage the export
of carbon out of the surface layer. This class is possibly
the high nutrient low chlorophyll regime, which features
relatively shallow mixed layer depths and (typically)
iron limited productivity [23]. Finally, class 4 corre-
sponds to the relatively unproductive gyres and tropics.
The subtropical gyres are typically characterized by low
local values of productivity, although they may still
contribute significantly to the global carbon budget due
to their large size [24]. Low productivity in the sub-
tropical gyres is typically explained as a result of large-
scale downwelling due to the wind-driven convergence
of surface waters, which prevents productivity-enabling
nutrients from reaching the surface waters [25]. Overall,
the carbon distribution appears to reflect the nutrient
budget, i.e. biological productivity is high in regions
where upwelling can supply nutrients to the surface and
low in regions where downwelling suppresses surface
nutrient availability.

For each seven-dimensional observation of the steady
state budget terms at a grid cell, GMM calculates a
probability distribution across all four Gaussians. It
labels each grid cell based on the Gaussian with the
highest posterior probability. The maximum posterior
probability is a measure of confidence in GMM’s as-
signment of a grid cell to a class and can be used to
characterize boundaries between classes. In this appli-
cation, we find that the maximum posterior probability
values are high (≥ 90%) in the tropics and subtropics,

Fig. 4. Posterior probabilities can be used to identify transition
regions between classes or where simple characterization of the class
type is difficult. Regions with no data are masked out in white.

with somewhat lower values between classes in the
Southern Ocean. This may simply reflect the complex
spatial structure of the classes in the Southern Ocean,
which features numerous transition regions.

IV. DISCUSSION

In general, using budget terms as inputs to an un-
supervised learning algorithm allows us to interpret
clustering results in terms of balances between pro-
cesses, representing an important link between data-
derived results and the process-based physical and
biogeochemical understanding that underpins much of
modern oceanography. This approach may offer a viable
bridge between machine learning methods and more
traditional approaches.

We use four classes in this example implementation
of GMM for ease of interpretation. Based on the BIC
score, we could improve the overall likelihood of the
GMM by increasing the number of classes to some-
where between 14-19 (see appendix). Although this
would enhance the ability of the GMM to statistically
describe the data density, it could decrease our ability to
understand the results in terms of existing conceptual
frameworks. The tradeoff between accuracy of repre-
sentation and interpretability is a familiar contrast in
ocean modeling. One strategy for dealing with this
contrast is to use a hierarchical approach, in which we
try to learn about a system by comparing models with
different levels of complexity [21]. In terms of GMM,
this would amount to changing the maximum number
of classes and comparing results.

GMM as applied to budget terms may be a useful
method for comparing different climate models, for
example the ensemble members of the Climate Model
Intercomparison Project [8]. These models often fea-
tures biases with respect to each other, but they display
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similar physical and biogeochemical regimes charac-
terized by balances between processes. Unsupervised
learning may offer a set of methods for objectively
identifying these regimes in different models; the prop-
erties of the objective regimes could be compared, as
opposed to comparing different geographical regions,
which are often chosen using crude and somewhat
arbitrary latitude-longitude boxes.

One limitation of this study is the relatively coarse
resolution of the model; an application of GMM to a
high-resolution biogeochemical state estimate like B-
SOSE would be a welcome extension to this study [26].
We have also not thoroughly explored the many alter-
native unsupervised classification methods avalable, in-
cluding DBSCAN and variational Bayesian approaches.

APPENDIX

Here we present additional information about the
GMM classification results. BIC tends to increase as
the likelihood of the statistical model increases with the
total number of classes N , but that tendency is offset by
a penalty term which discourages overfitting. Usually,
one would choose the value of N with the minimum
value of BIC, if the goal is to create a detailed statistical
description of the dataset. The BIC mean score reaches
a minimum at 19 classes, although the error suggests
that the minimum could be between 14-19 (Figure
5(a)). In order to examine the distinctiveness of the
clusters, we use two complementary dimensionality
reduction techniques. First, we use principal component
analysis (PCA) to project the data onto three PC axes
that together explain 91% of the variance (52% PC1,
29% PC2, and 10% PC3). Projections of the principal
components into 2D space show that class 1, which
corresponds to the highly productive open ocean, is
reasonably distinct from the others (Figure 5(b-d)).
Class 2 is tightly clustered around the origin, which is
consistent with the low values of the flux terms that
characterize this class. Next, although classes 3 and
4 have some overlap around the origin, they do have
distinct structures in PC space, with class 3 showing a
larger spread along the PC1 axis.

For an alternative view on the distinctiveness of
the classes, we employ t-SNE, a technique for explor-
ing structures in high-dimensional data [27]. The t-
SNE technique creates two-dimensional “maps” from
high-dimensional data using non-linear transformations.
It has a tunable parameter called “perplexity” which
roughly corresponds to the attention paid to local ver-
sus global aspects of the data in feature space (see
https://distill.pub/2016/misread-tsne/ for details). As we

Fig. 5. Additional clustering diagnostics. (a) Mean and standard
deviation of BIC scores from 25 independent instances of GMM
for each value of N . (b-d) Reduced dimensionality view using a
three-component PCA, viewed as three different projections onto
2D space. (e-h) Reduced dimensionality view using t-SNE for
perplexity values of 5, 30, 50, and 100, respectively. The axes are
the arbitrary t-SNE dimensions. Color values correspond to those
in Figure 3.

increase perplexity, we see class 1 emerge as a distinct
feature. Classes 2-4 have some considerable regions of
overlap, but classes 3 and 4 have some distinct lobes
above and below the class 1 cluster.
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