
Modelling the earths geomagnetic environment on
Cray machines using PETSc and SLEPc

Nick Brown
EPCC

University of Edinburgh
Bayes Building, Edinburgh

Susan Macmillan
British Geological Survey

The Lyell Centre
Edinburgh

Brian Bainbridge
British Geological Survey

The Lyell Centre
Edinburgh

William Brown
British Geological Survey

The Lyell Centre
Edinburgh

Ciarán Beggan
British Geological Survey

The Lyell Centre
Edinburgh

Brian Hamilton
British Geological Survey

The Lyell Centre
Edinburgh

Abstract—The British Geological Survey’s global geomagnetic
model, Model of the Earth’s Magnetic Environment (MEME),
is an important tool for calculating the earth’s magnetic field,
which is continually in flux. Whilst the ability to collect data
from ground based observation sites and satellites has grown
rapidly, the memory bound nature of the code has proved a
significant limitation in modelling problem sizes required by
modern science. In this paper we describe work done replacing
the bespoke, sequential, eigen-solver with that of the SLEPc
package for solving the system of normal equations. This work
had a dual purpose, to break through the memory limit of the
code, and thus support the modelling of much larger systems, by
supporting execution on distributed machines, and to improve
performance. But when adopting SLEPc it was not just the
solving of the normal equations, but also fundamentally how we
build and distribute the data structures. We describe an approach
for building symmetric matrices in a way that provides good load
balance and avoids the need for close co-ordination between the
processes or replication of work. We also study the memory
bound nature of the code from an irregular memory accesses
perspective and combine detailed profiling with software cache
prefetching to significantly optimise this. Performance and scaling
characteristics are explored on ARCHER, a Cray XC30, where
we achieved a speed up for the solver of 294 times by replacing the
model’s bespoke approach with SLEPc. This work also provided
the ability to model much larger system sizes, up to 100,000 model
coefficients, which is also demonstrated. Some of the challenges of
modelling systems of this large scale are explored, and mitigations
including hybrid MPI+OpenMP along with the use of iterative
solvers are also considered. The result of this work is a modern
MEME model that is not only capable of simulating problem
sizes demanded by state of the art geomagnetism but also acts
as further evidence to the utility of the SLEPc libary.

I. INTRODUCTION

The British Geological Survey (BGS) global geomagnetic
model inversion code, known as the Model of the Earth’s Mag-
netic Environment (MEME) [3], is used to produce various
models of the earth’s magnetic field. Written in Fortran 90,
it is essentially a mathematical model of the earth’s magnetic
field in its average non-disturbed state. The input consists of
millions of data points collected from satellite and ground
observatories on or above the surface of the earth, which

are used to identify the major sources of the magnetic field
which include the core, crust, ionosphere, and magnetosphere.
The magnetic field is then solved for the Gauss coefficients,
which describe the magnetic field as weighting factors for
spherical harmonic functions of a certain degree and order
such as spatial wavelength. Additionally, the Gauss coefficients
have a temporal dependence requiring the solution of weights
for a sixth-order B-spline function. The output is a set of, as
it currently stands, around 10,000 coefficients describing the
spatial and temporal variation of the magnetic field from the
core to near-earth orbit over a period of around 15 years. This
allows a compact representation of the magnetic field.

From this single geomagnetic code, the community pro-
duces a number of models each year both for research and
for non-scientific users. One such model is the International
Geomagnetic Reference Field (IGRF) [1] which is widely
accepted as a standard, low spatial, resolution model of the
earths magnetic field. The IGRF model alone has numerous
users from solar-terrestrial physicists, who use it for their
magnetic coordinate systems, to geomagneticists studying the
history of the earth’s magnetic field over thousands of years
in order to understand the underlying physics generating the
field. Another widely-used model derived from the MEME
code is the World Magnetic Model (WMM) [2] which is used
in civilian and military navigation and positioning systems,
including the vast majority of mobile phones. Other models are
produced annually from the parent MEME model, for instance
providing capabilities such as detailed navigation where very
accurate values of declination are required, or to look at rapid
time variations of the magnetic field for scientific study.

The MEME model has been around for a number of years
and, although partially parallelised, has critical parts which
currently run in a serial fashion, in particular the solution of
the normal equations. This solution of the normal equations
follows a bespoke eigen-solver approach and now the com-
munity wish to study systems much larger than the 10,000
coefficients which the current code is limited to. The serial
portion of the code places significant limitations on scaling

the spatial and temporal resolution of the model. The scientific
impact is significant, as increased resolution means reduced
uncertainties and an improvement in the predicted confidence
levels of the modelled field.

In this paper we describe work done modernising the
MEME model using the PETSc [10] and SLEPc [11] library
to parallelise the solving of the normal equations. In order
to support the distribution of crucial data-structures, which is
required for the scaling of the number of coefficients, new
algorithms and approaches to building distributed symmetric
matrices have been developed. A fundamental driver to this
work was the memory bound nature of the previous model,
both in terms of fitting into available memory, and also
irregular memory accesses which limit cache effectively. In
short, the contributions of this paper are

• The use of SLEPc for very large problem sizes where the
matrix is over 100,000 by 100,000 elements and we are
looking to find the large majority of Eigen values

• A novel approach to building a symmetric matrix in a
distributed fashion which requires minimal co-ordination
and results in good load balance and avoids duplication
of computation

• How the role of software prefetching can assist codes that
rely on irregular accesses, where the hardware prefetchers
and cache organisation does a poor job

The layout of this paper is as follows, in Section II we
describe the background of the code in more detail and related
work including technologies that have been used. In Section
III we discuss our novel approach to distributing the building
of the symmetric matrix across processes in a manner that
provides good load balance and avoid duplicate calculation,
along with concerns around irregular memory access and how
we use software prefetching to mitigate these. In Section IV
we briefly describe the work done integrating the PETSc and
SLEPc toolkits into the code, and then explore the performance
of these in contrast to the previous model in Section V.
Challenges faced and solutions found to scaling the problem
size to large numbers of coefficients are described in Section
VI before drawing conclusions and discussing further work in
Section VII

II. BACKGROUND AND RELATED WORK

A. Previous model performance and scaling
Before solving the normal equations, these need to be built.

This boils down to building a matrix and Right Hand Side
(RHS), and previously, a partial parallelisation of this code
was undertaken with MPI. This concentrated on parallelising
the building of these data structures, but with all other aspects,
such as the solving of the equations, remaining serial. This
previous parallelisation works by allocating the entire normal
equation data structures, i.e. the entire matrix and RHS, on ev-
ery process and decomposing on the input data. Contributions
from each piece of input data are additive, and as such each
process calculates the contributions for its subset of data across
the entire matrix and RHS, before all individual processes’
data is reduced (summed together) at rank 0.

Fig. 1. Domain decomposition of the previous model

Figure 1 illustrates the previous model’s parallelisation in
more detail, where an input data size of n is decomposed
across the processes and it can be seen that the entirety of
the matrix data structure is built locally for the processes’
input data. Whilst the RHS is also build, this is fairly trivial,
and it is the matrix of normal equations which presents the
major difficulty here. Because the entire global matrix has to
be held on each process, the memory limit of the machine is
quickly reached. In Figure 1 this is illustrated by c, which is
the number of model coefficients and determines the size of the
matrix (c by c). The state of the art coefficient size is 10,000,
which results in a matrix of size 10000 by 10000. Bearing
in mind values are double precision, this requires 800MB of
memory per process. The community would like to extend
the model to much larger system sizes, but the amount of
memory required increases as a square of the number of model
coefficients, for instance, increasing to 20,000 coefficients
would require 3.2GB memory per process. This is especially
important because scientists are currently forced to throw away
significant amounts of their input data, one such example being
the EASA SWARM satellites where geomagneticists can only
currently use around five percent of the data points collected
due to the memory limitations of the model. They estimate that
if the model could support 100,000 model coefficients, which
is ten times the number of coefficients that it can currently
handle and a matrix of normal equations a hundred times
larger, they could take advantage of all the data collected by
modern geomagnetic instruments. In addition to the memory
limits, there is also a significant work imbalance between
the processes in building the normal equations and from
experimentation with the previous model we found a 37%
difference in the run time between the slowest and fastest
process.

Figure 2 illustrates performance and scaling of the previous
model on ARCHER, a Cray XC30, for an experiment of
10,000 coefficients and 4.6 million data points. It can be seen
that the solver time is constant, 7200 seconds, irrespective of
parallelism and this is due to its sequential nature. The building
of the normal equations does scale as parallelism increases, but
at 516 cores still takes a significant amount of time. In addition

Fig. 2. Scaling characteristics of the previous model on ARCHER, a Cray
XC30, with a problem size of 10,000 coefficients and 4.3 million input data
points

to the load imbalance, there are other issues causing overhead
with the previous model’s normal equation building, one such
example being the use of MPI P2P communications and then
manually summing up values on the root, rather than an MPI
reduce call, for the normal equation matrix reduction between
processes. An eigen-solve approach is used to solve the normal
equations, where a direct solver finds all the eigenvalues and
eigenvectors, before applying these to the normal equations
RHS to generate the solution. The previous model uses a
bespoke, serial, Givens reduction which is highly stable and
reliable [19], but known to exhibit significant computational
overhead [20].

B. PETSc and SLEPc

The Portable Extensible Toolkit for Scientific Computation
(PETSc) is a is a suite of data structures and routines devel-
oped for the parallel solution of scientific applications mod-
elled by partial differential equations. Not only does PETSc
ship with a variety of highly optimised pre-conditioners and
solvers, there is also extensive support for flexibly selecting
different modes of execution that include running serially,
running over distributed memory machines (using MPI) and
even GPUs.

Whilst PETSc does not come with eigen-solving function-
ality as part of the main distribution, the library itself has
been designed so that it can be used as building blocks by
other libraries. The Scalable Library for Eigenvalue Problem
Computations (SLEPc) sits on-top of PETSc, providing eigen-
solver capability and relying on the PETSc eco-system for
parallelisation, utility functionality and general program flow.
A major benefit of using SLEPc is that the code is still written
in the PETSc style, and the only difference needed is that the
solver created is an eigen-solver in the SLEPc library rather
than PETSc iterative solver. This is important, because not
only does it mean that those familiar with the popular PETSc
package can easily understand the code, but also it should be

fairly trivial, from a code perspective, to swap out the eigen-
solver and replace it with a PETSc iterative solver. The SLEPc
library ships with a number of eigen-solvers including Krylov-
Schur, Arnoldi, Lanczos, GD and Lapack, any of which can
be selected by the user.

Whilst the PETSc library is provided as a module as part of
the Cray Programming Environment, SLEPc is not and needs
to be build specifically. However, it is trivial to build both
of these libraries for the Cray eco-system and actually for
the experiments detailed in Section V, we built both PETSc
and SLEPc specifically. This was because a newer version
of PETSc contained a number of important bug fixes, and
this had not yet been released via Cray’s official programming
environment. Regardless, this still takes advantage of the Cray
scientific libraries and as such we saw a negligible difference
in performance.

There are a number of alternative libraries for solving
the eigen value problem, one such example being Eigen
[12] which is a C++ template library for linear algebra and
supports, amongst many other things, computing eigen value
problems. Whilst this popular library is widely used and has
excellent performance [13], there are two major drawbacks in
the context of the MEME model. Firstly it is not parallelised
beyond threading and as-such unable to take advantage of
distributed memory machines which is a major aspect here
to increasing the number of model coefficients and scientific
utility of the model. Secondly there are no bindings available
for Fortran and it is not realistic to port the whole of the
MEME model over from Fortran 90 to C++.

Another alternative approach for finding the eigenpairs
(eigenvalues and eigenvectors) is the Eigenvalue SoLvers for
Petaflop-Applications (ELPA) [9] library. This package pro-
vides support for finding Eigenvalues and eigenvectors of large
symmetric, Hermitian, matrices. Building on ScaLAPACK,
ELPA provides its own highly efficient parallel implementa-
tions and has been shown to scale well to over 290,000 cores
on a BlueGene/P [9]. The library has bindings for Fortran, but
a disadvantage is that the matrix must be Hermitian and some
future problems that the MEME model will be used to target
do not share this property.

We adopted the PETSc/SLEPc approach because PETSc
is already installed on Cray machines, fairly ubiquitous in
HPC, known to work well and the flexibility provided by
these libraries is important. SLEPc has also been demonstrated
to work well in a variety of application areas including
engineering [4], materials science [5], structural analysis [6],
earth sciences [7] and geomagnetism [8]. This last use-case is
important because it is the same domain as the MEME model
and as such SLEPc has already demonstrated benefit in the
domain of geomagnetism.

III. DISTRIBUTED BUILDING OF THE NORMAL EQUATIONS

Before solving the normal equations these must first be built.
This involves calling user provided procedures which generate
values, specific to the problem the user is looking to model,
that ultimately populate the matrix and RHS data structures.

Fig. 3. Row based decomposition of the matrix for n model coefficients

Fig. 4. The previous model just computes the diagonal and upper elements,
then copies the upper elements into their corresponding lower position

The previous model placed the entirety of the matrix and RHS
data structures on each process, decomposing via the input
data instead. As described in Section II, this significantly limits
the problem size that can be modelled because, as one scales
the number of model coefficients, the size of the matrix and by
extension memory requirements, increase significantly. PETSc
assumes a matrix decomposition based on rows, where a subset
of rows of the matrix and elements of the RHS are held on
each process on each process. Therefore to take advantage
of PETSc, and model larger problem sizes, the approach to
building the normal equations had to change. In fact the
building of the RHS is fairly trivial, so for brevity in this
section we focus on the building of the matrix which is far
more challenging and the PETSc decomposition of the matrix,
by row, is illustrated in Figure 3 for n model coefficients.

The challenge with this approach is that the matrix is in-fact
symmetrical, so only the diagonal and one half of the matrix
actually to be computed. It is trivial in the sequential case,
where no matrix decomposition takes place, to take advantage
of this property. A process simply computes the values for the
diagonal and upper half of the matrix before copying the upper
half to the lower half as illustrated by Figure 4. In previous
version of the model each local process only calculates cell
values for their diagonal and upper parts of the matrix before
communicating these to the root (rank 0). Once the root has
reduced, summed up, the values at each cell of the diagonal
and upper half of the matrix from each process, it copies the
upper values to their corresponding lower value location in
the matrix. Because the building of the matrix and RHS is so
expensive, see Figure 2, being able to limit the amount of data
explicitly computed is an important saving.

When it comes to building the matrix in parallel, the existing
approach of only building the upper and diagonal parts of

Fig. 5. Naive approach of only calculating diagonal and upper matrix points
held locally

Fig. 6. The global number of cells that been to be explicitly calculated, where
n is the matrix size in one dimension (the number of coefficients)

the matrix held on a process as per Figure 5, and then
communicating the upper values to the corresponding process,
is not ideal. The reason for this can be seen in Figure 5,
where there would be a significant amount of load imbalance,
for instance in this example, process zero must calculate 13
points whereas process two only 3 points. Because of the
intensive nature of building the matrix this situation will
result in process 2 spending much of its time idle. Another
approach could be to build all points in the matrix held locally,
irrespective of whether they are in the upper, diagonal or
lower parts of the matrix. This avoids the load imbalance but
because of the symmetry of the matrix, this approach involves
redundant computation, which is especially inefficient due to
the intensive nature of building the matrix. In contrast to the
previous model, significant amounts of additional computation
would be required, all of it redundant.

We therefore decided that a different approach was required
which would naturally balance the load between processes
and avoid redundant computation when building the matrix.
Instead of simply calculating the diagonal and upper parts
of the matrix held on a process, we developed an approach
where processes would build they diagonal elements and
specific upper and lower parts of their matrix, but crucially
without any global duplication of cell calculation when it
comes to symmetry. For instance, if one process is building
the values for a lower cell then there is the guarantee that the
corresponding upper cell value will not be built by the other
process that holds it. For efficiency one of they challenges
here was to do this in a way that would minimise the need
for overarching co-ordination between processes deciding who
builds what.

In our approach we first calculate f, the global number of
cells that must be explicitly calculated based on a matrix of
n by n. This corresponds to a problem size of n coefficients
and Figure 6 illustrates the formula used. Using the example
of Figure 5, the matrix size (n by n) is 36 but f is 21, which
means that whilst there are 36 cells, only 21 values need to be
explicitly calculated and any more would be duplicating work.

Fig. 7. Balanced building of the matrix

For each row of the matrix we then calculate r which is f
divided by n and call this the base number of points per row
that needs to be calculated. Using the example of Figure 6, r
is 3.5 . Once this is calculated, for each row held locally by
the specific process, this process starts at the diagonal element
and calculates values for r grid cells, which might wrap around
from the upper to lower part of the matrix, as illustrated in
Figure 7. If r is a whole number, which effectively means that
n is an odd number, then nothing further is required.

However if r is a fraction, as is the case in Figure 7, an extra
stage is needed. Firstly, for each row held locally the process
will alternate r between the ceiling of r and the floor of r. The
first global row starts with the ceiling of r and each process
determines whether to start with ceiling or floor in reference
to where its first row is in relation to that. Furthermore, if
the number of rows divided by two (e.g. n over 2) is even,
then the ordering of ceiling and floor must be swapped for the
second half of the matrix. This approach is illustrated in Figure
7, where the elements per row alternates between ceiling and
floor because r is a fraction (3.5). Because r divided by two
is not even (6 divided by 2 equals 3), then no swapping of the
order half way through is required.

This algorithm provides the ability to build the matrix
in a way that requires minimal coordination between the
processes determining which cells they explicitly calculate, the
avoidance of any replicated computation and reasonable load
balance. Once local values have been calculated, as per Figure
7, the next step is to then send upper or lower cell values
that the process has computed to the other, corresponding,
process which, due to matrix symmetry, requires that value in
the opposite side of the matrix. Each process calculates both
the number of values to send to, and the number of values to
receive from, every other process. Based on these numbers,
send and receive buffers are pre-allocated, and cell data, once
calculated, is packed into the appropriate send buffer. Once this
has been completed a single non-blocking MPI send and single
non-blocking MPI receive are issued to every other processes
if required (i.e. the number of cells to communicate is greater
than zero). Therefore, for performance, at most there is a single
large message sent and another single large message received,
by each pair of processes.

The packing of the send buffer and sending data is illustrated
in Figure 8. In addition to the double precision cell value
we also send the zero indexed global row and column of

Fig. 8. Sending cell data to corresponding process

Fig. 9. Receiving values and copying them from the receive buffer into the
appropriate matrix cell location

that piece of cell, both of which are integers. Therefore the
communication of a single cell requires 16 bytes, 8 bytes
for the double precision cell value and two 4 byte integers
holding the row and column location. This additional global
coordinate is associated with each data value to ensure the
correct mapping of values to cells on the receiving process. It
also means that the job of the receiver, unpacking the receive
buffer, is trivial because it just needs to translate the global
coordinates to local coordinates and swap the row and columns
round to identify the correct local location to write the cell
value into. This addition of the global cell and row index,
whilst it doubles the size of the message, makes the code
significantly simpler as we do not need to worry about the
explicit ordering of the buffer when packing values as the
receiver obtains the location from the message itself rather
than the cell’s location in the message. As, generally speaking,
for small and medium sized messages the message size in MPI
does not make a huge overall difference to the communication
performance [14], we felt that this was a reasonable design
decision.

The MPI send and receive calls issued by the code are
non-blocking, and whilst the communication is on-going each
process performs local copies of cell values between corre-
sponding upper and lower parts of the matrix that are held on
the same process. For instance, in the example of Figure 6, the
value 2 will be copied on process 0 from the 1st column of
row zero to the zeroth column of row one. Once local copying
is complete MPI waitany calls are issued for the non-blocking
communications and as non-blocking receives complete the
received values are transferred from the receive buffers into
the appropriate local matrix cell. This copying of both local
and received data is illustrated in Figure 9 and once this has
completed the matrix is fully built and the normal equations
are ready to be solved.

A. Improving memory locality

In the original code over 35% of the run time when building
the normal equations was in a procedure which applies a batch
of locally computed normal equations to each elements in the
matrix according to some weight. When we profiled the code
we found that over three quarters of the time spent in this
procedure was due to the CPU stalled waiting for data from
memory and this is due to irregular memory accesses. This
code is sketched in Listing 1, and it can be seen that both for
the matrix array which is being written to and the equations
array that is being read from, the index being used to access
these data structures is indirect. In the case of the matrix array
the first index is based on the ith value held in the dataloc
array and the for equations array the index is based on the ith
value held in the inputdata array. This is problematic when is
comes to caching because, not only are these memory accesses
irregular due to values in the dataloc and inputdata arrays
changing significantly from one location to the next, which
negates taking advantage of bringing in entire cache lines of
data into the cache, but also unpredictable which negates use
of the CPU’s hardware prefetching.

1 do j=1, n
2 do i=1, n
3 matrix(dataloc(i), j)=equations(inputdata(i,j)) +
4 end do
5 end do

Listing 1. Illustration of codes irregular memory access

This is further illustrated in Figure 10, and the table illus-
trates statistics gathered for the code from the CPU’s hardware
counters. The first six rows represent raw hardware counters,
and the last three rows metrics derived from these. The number
of cycles is divided by the number of instructions issued to
produce the cycles per instruction (CPI) and vice-versa the
number of instructions issued is divided by the number of
cycles to determine the number of instructions per cycle. The
total number of resource stalls illustrates the number of cycles
that the front-end of the CPU was stalled, due to running out of
resources, and the Resource stalls (store buffer) is the number
of cycles the front-end of the CPU was stalled due to running
out of store buffer entries. The cycles no instructions are issued
represents the number of cycles where no instructions are
issued to execution units, for whatever reason. This is used, in
conjunction with the number of cycles, to determine the total
percentage of cycles that the CPU is stalled. It can be seen
in Figure 10 that the CPU is idle for many cycles, there are
many front-end resource stalls due to the CPU running out
of store buffers and on average it takes 2.26 cycles to execute
one instruction, or on average every cycle we complete 0.44 of
an instruction. The Ivy Bridge micro-architecture contains five
execution units, so there is a theoretical peak of 5 instructions
per cycle or 0.2 CPI. Reasons for not reaching this theoretical
peak are not just based on memory limitations, for instance
many similar instructions contenting for specific execution
units can have an impact, but still from the other metrics we

Counter description Value
Number of cycles 69,109,605,287

Number of instructions issued 30,451,871,184
Total resource stalls 60,734,999,355

Resource stalls (store buffer) 60,042,957,250
Cycles no instructions are issued 54,243,641,893

L1 cache hits 5,613,708,007
Instructions per cycle 0.44
Cycles per instruction 2.26
Total % cycles stalled 78

Fig. 10. Hardware counter values for irregular memory access

can see that the CPU is stalled for a significant amount of
time and this goes partly to explaining why we are currently
such a long way off the theoretical peak.

However, when it comes to improving this situation the
options are not necessarily simple. This is largely in part
due to the Out-of-Order (OoO) execution nature of modern
CPUs and it is not always clear why the CPU is blocked and
hence the most appropriate mitigation. Bearing in mind OoO
processors, in conjunction with modern memory controllers,
can issue a non-blocking retrieve from main memory and,
whilst this is on-going, keep themselves busy executing later,
non-dependent instructions, out of order, cache misses by
themselves are not necessarily problematic.

Instead one is concerned with delinquent loads, where the
CPU is forced to stall due to the cache miss and, from a micro-
architecture perspective, there are three reasons why the CPU
could stall when a cache miss occurs [15]. Firstly, structural
blockages are when the CPU micro-architecture simply runs
out of resources, such as slots in the reorder buffer or physical
registers. The second reason for delinquent loads are data
blockages which is where instructions that depend on the
loaded data, either directly or indirectly, begin to pile up in
the reservation station and eventually the reservation station
is full and the CPU stalls, effectively because all instructions
which it could issue and execute out of order have some form
of dependency on the data that is being retrieved from main
memory. The third reason that a cache miss can cause the
CPU to stall is due to control dependencies. This is where
branches are dependant on the loaded data and the CPU has
miss predicted a branch due to the missing data. Once an
incorrect branch prediction is recognised, all instructions after
the branch will be flushed once the delinquent load completes
and work done by the CPU whilst the load was in-progress
wasted.

It is important to understand the underlying causes and
nature of these delinquent loads, because approaches such as
software prefetching, which fetches data from main memory
into cache before it is needed, adds additional instructions
and takes up significant amounts of memory bandwidth. As
such, with modern OoO processors, the indiscriminate use
of software prefetching in user code can actually reduce
performance [16]. Based on detailed profiling of the code it

was this single procedure that is by far most impacted by
the irregularity of memory access. From Figure 10 it can
be seen that stalls due to resource limits in the store buffer
were very significant. Once a write is completed it is actually
written to the micro-architecture’s store buffer and the CPU
will continue. From the store buffer the value is written to
the corresponding location in L1 cache, with fetching from a
lower level cache or main memory in to L1 cache performed
if needed. On the Ivy Bridge micro-architecture there are only
36 possible entries in the store buffer (in contrast to 64 in
the load buffer) and in this situation locations that are not in
the L1 cache are being written to so fast that the store buffer
is becoming full and the CPU stalling due to this structural
blockage. From experience, you have to be a little careful
here as quite often the store buffer, with its smaller number of
entries than the load buffer, fills up first and so shows a high
percentage of the overall stalls. If this alone is fixed, then then
often the loading of data then shows a similarly high number
of stalls, as the underlying problem applied to both the storing
and loading of values but effectively the stalling of the loads
was hidden by the stalling on the stores.

To this end we adopted the technique of software pipelining
[17], in conjunction with software prefetching for both the
write and read of Listing 1. This is where the code runs in a
pipelined fashion and required memory location is prefetched,
non-blocking, ahead of time. The idea is that when it comes
to using the data, that is already in the cache and no external
memory access need be issued. This is illustrated in Listing
2 and, once inside the outer loop, we start off by prefetching
the first PREFETCH DISTANCE elements in the matrix and
equations arrays for the value of j (lines 2 to 5). Once this has
completed, we then go into the inner loop, and each iteration of
this inner loop first issues non-blocking prefetch calls for the
matrix and equations values PREFETCH DISTANCE ahead of
i (lines 8 to 11). After this, in that same iteration of the inner
loop, we then write to and read from those already prefetched
variables at the i’th index (line 12). The idea being that, as
we are working with these arrays at line 12, the elements at i
have already been fetched and will be served from the cache.
Prefetching doesn’t impact the correctness at all, so the initial
prefetching for the outer loop at lines 2 to 5 is optional, and
we could do without it, but this does improve performance
because the initial values of i are being prefetched by the
memory controller whilst further prefetching calls are being
issued for larger values of i up to PREFETCH DISTANCE.

1 do j=1, n
2 do i=1, PREFETCH DISTANCE
3 call do prefetch(matrix(dataloc(i), j))
4 call do prefetch(equations(inputdata(i,j)))
5 end do
6 do i=1, n
7 k=i+PREFETCH DISTANCE
8 if (k .le. n) then
9 call do prefetch(matrix(dataloc(k), j))

10 call do prefetch(equations(inputdata(k,j)))

11 end if
12 matrix(dataloc(i), j)=equations(inputdata(i,j)) +
13 end do
14 end do

Listing 2. Illustration of software pipelined procedure for pre-fetching

This is called software pipelining because effectively
we have a two stage pipeline, the first stage running
PREFETCH DISTANCE ahead of i and prefetching data, and
the second stage running at i and taking advantage of the
prefetched data. In fact, the value of PREFETCH DISTANCE,
effectively the gap between the prefetch and the memory
access, is very important [16]. If this is too small then prefetch-
ing is ineffective because the memory access has not yet
completed and the main memory access at line 12 would still
block, if it is too large then there is a danger that the prefetched
data will be flushed from cache before it is used. From
profiling, we found that the optimal PREFETCH DISTANCE
was 16 on ARCHER, although this will vary from architecture
to architecture.

The do prefetch subroutines that we call in Listing 2 uses
the ISO C bindings to wrap Intel’s mm prefetch function and
we instruct this call to prefetch into the L1 cache. The results
of profiling the software pipelining approach is illustrated
in Figure 11, where we can see that the total number of
instructions has increased dramatically for this procedure, over
three times, but crucially the total number of cycles has more
than halved. In contrast to the non-prefetching approach which
averaged 2.26 cycles per instruction, here our CPI is 0.39
(lower is better), and on average 2.53 instructions are executed
every clock cycle (higher is better). This is much closer to
Ivy Bridge’s theoretical maximum of 5 instructions per clock
cycle. From comparing Figures 10 and 11, it can be seen that
the number of cycles stalled is far less and the number of L1
cache hits is four times greater. As such this has reduced the
percentage run time of this procedure by almost three times.

At only two stages, our software pipeline in Listing 2 is
fairly simple. It would of-course be possible to extend this
to a third stage and prefetch the inputdata and dataloc arrays
also. However, from following a similar profiling investigation
we found that, because accesses into these structures follow a
contiguous approach, they already make good use of the cache
and the added instruction count results in a decrease of overall
performance.

IV. SOLVING THE NORMAL EQUATIONS USING PETSC AND
SLEPC

Once the normal equations have been built, the next stage
is to then solve them. The code finds all the eigenpairs
(eigenvalues and associated eigenvectors) of the matrix and
then, for eigenvalues larger than a threshold, applies the
eigenpair to the RHS in combination with some weight. Over
99% of the run time of the previous model is in calculating
the eigenpairs of the matrix, with the application of these once
found to the RHS being trivial. This requirement of finding
all the eigenpairs is somewhat unusual, with many models

Counter description Value
Number of cycles 32,834,830,469

Number of instructions 83,862,040,343
Total resource stalls 1,903,905,993

Resource stalls (store buffer) 629,838,931
Cycles no instructions are issued 1,927,696,028

L1 cache hits 19,907,028,904
Instructions per cycle 2.53
Cycles per instruction 0.39
Total % cycles stalled 5.8

Fig. 11. Hardware counter values using prefetching via software pipelining
approach for mitigating irregular memory access

just focusing in one area of the spectrum. Actually calling
into SLEPc and PETSc, from a code perspective, was fairly
trivial to code up once the normal equations data structures
were distributed correctly. When the code begins we initialise
these frameworks using the appropriate API calls and construct
the distributed data-structures, it is the PETSc library that
determines the decomposition and provides the start and end
matrix rows for each process.

1 call MatCreate(solving communicator, A, ierr)
2 call MatSetType(A, MATMPIAIJ, ierr)
3 call MatSetSizes(A, PETSC DECIDE, PETSC DECIDE,

num bases petsc int, num bases petsc int, ierr)
4 call MatSetFromOptions(A, ierr)
5 call MatSetUp(A, ierr)
6
7 call MatGetOwnershipRange(A,matrix start,matrix end,ierr)
8
9 call MatMPIAIJSetPreallocation(A, matrix num rows,

PETSC NULL INTEGER, num of bases−(matrix end
−matrix .start), PETSC NULL INTEGER, ierr)

10
11 call MatSetValues(A, matrix num rows, start row index,

num columns, start col index, matrix values,
INSERT VALUES, ierr)

12
13
14 call EPSCreate(solving communicator, eps, ierr)
15 call EPSSetOperators(eps, A, PETSC NULL MAT, ierr)
16 call EPSSetDimensions(eps, num bases petsc int,

PETSC DEFAULT INTEGER,
PETSC DEFAULT INTEGER, ierr)

17 call EPSSetFromOptions(eps, ierr)
18
19 call EPSSolve(eps, ierr)
20 call EPSGetConverged(eps, num found, ierr)
21 do i=1,num found
22 call EPSGetEigenvalue(eps, i−1, eigr, eigi, ierr)
23
24 end do

Listing 3. Sketch of PETSc/SLEPc integration

Listing 3 illustrates a sketch of the code used to integrate
PETSc and SLEPc with the model. Between lines 1 and
5 the matrix is created to be of type MPIAIJ, which tells
PETSc that this is a parallel matrix decomposed over the MPI
communicator specified at line 1. At line 7 we determine
the global index of the starting and ending row held on
the local process, and at line 8 memory required for each
processes’ portion of the matrix data structure is allocated.
This preallocation is an optimisation option, and we found that
it was very important for performance when setting values of
the matrix at line 10, as otherwise PETSc allocated memory
lazily which incurs significant overhead. Until this point in
the code, the calls are to the PETSc library directly, and at
line 14 we call into the SLEPc library for the first time to
create an Eigen Problem Solver (EPS) for matrix A (line 15).
The EPSSetDimensions call at line 16 determines how many
eigenvalues to find, and the eigen-solve itself is called at line
19. The number of eigenvalues that the solver actually found
is deduced at line 20, and then between lines 21 and 24 we
extract each eigenvalue and perform work on it which also
involves extracting each processes’s portion of the eigenvector
using the EPSGetEigenvector call which is omitted for brevity.

As described in Section II-B, SLEPc provides numerous
Eigen solvers but after extensive testing we found that, for
this problem the default, Krylov-Schur, solver is most accurate,
with respect to the previous code whose highly stable Givens
reduction was taken as a base line, and fastest too. This
illustrates one of the benefits of the SLEPc and PETSc
libraries, as from a code perspective it is trivial to experiment
with different solvers and configurations. The most important
configuration option we found was to inform SLEPc that the
problem is generalized Hermitian. Effectively it makes the
problem easier to solve and is important because, not only does
this significantly improve performance in comparison with the
default non-Hermitian approach, but also the previous model,
which we take as the ground truth, makes this assumption and-
so the models most closely match in this configuration. We
also experimented with the maximum projected dimension,
which trades off memory usage for redundant computation
when running in parallel. However, this did not make a
significant difference to performance or memory usage.

This raises an important point however, as the MEME model
itself is generic in terms of the specifics of the problem. Future
users, interested in different problems, will inject their own
procedures in for generating the values that feed into the
building of the normal equations. Therefore it is likely that
future users of the code, with their different equations could
benefit from SLEPc solvers and options different to the ones
optimal to this problem. It is important that, the first instance,
these individuals can experiment with different PETSc and/or
SLEPc options via command line arguments.

V. PERFORMANCE AND SCALING

Performance and scaling experiments have been carried out
on ARCHER, a Cray XC30. Nodes have two twelve core
Ivy Bridge processors and most commonly have 64GB RAM.

Fig. 12. Performance comparison of previous and new model with system
size of 10,000 coefficents and 4.3 million data points. The new model is 51
times faster at 1024 nodes than the previous model.

All experiments have been compiled with the Cray compiler
version 8.6.5, PETSc version 3.8.4 and SLEPc version 3.8.3.
In this section we concentrate on a system size of 10,000
coefficients and 4.3 million input data items, contrasting the
performance of our new code using PETSc and SLEPc for
solving the normal equations, against the previous model. The
results of this experiment are illustrated in Figure 12 (run
time, on the vertical, is log scale), where it can be seen
that the performance of the newly developed model is very
significantly faster than that of the previous code up to 1024
nodes (24576 cores) and scales far better.

Figure 13 illustrates the breakdown of timings for the results
in Figure 12 between the normal equation build time and the
solver time (again, vertical axis run time is log scale). It can be
seen that, as expected, the solver time of the previous code is
constant at 28,500 seconds irrespective of the parallelism due
to its sequential nature. The run times for the normal equation
building in the new code, along with the solve are significantly
smaller than that of the previous code. From Figure 13 it
can be seen that the most significant difference in terms of
performance between the two models is in the solver time,
where our new code takes 194 seconds over 4 nodes and
97 seconds over 64 nodes in contrast to 28,500 seconds for
the previous model regardless of parallelism. This represents
a speed up for 294 times and illustrates one of the major
benefits to using SLEPc and PETSc over the bespoke serial
solver in the previous code, both in terms of raw computational
performance and also the ability to leverage parallelism. In
terms of solver performance, 97 seconds over 64 nodes was the
fastest that it ran, with the solver run time slightly increasing
beyond this point, e.g. to 130 seconds over 1024 nodes. This
is because, with 10,000 model coefficients, we are hitting the
limits of strong scaling and the problem size was not big
enough to take advantage of the increased parallelism.

The building of the normal equations is also substantially
faster in the new code compared to the previous code, 26 times
at 1024 nodes. This is a combination of the parallel and serial
optimisations as described in Section III. Whilst the run time

Fig. 13. Amount of run time for solver and building of normal equations
for previous and new code as the number of nodes is scaled. Strong scaling
effects also play a part here, but at the optimal number of nodes (64) the
SLEPc approach is 294 times faster than the previous model’s bespoke solver
and at 1024 nodes our new normal equation building is 26 times faster than
the previous model’s approach.

of this aspect of the code does continue to drop as the number
of nodes increases, with 365 seconds over 1024 nodes being
the fastest, again we are hitting the limits of strong scaling
here as there are diminishing returns as one gets beyond 128
nodes (3072 cores on ARCHER).

A. Result accuracy

Figure 14 illustrates the percentage difference between
results generated by the previous code and the new model
in the experiment of this section. Because we have changed
so significantly how the normal equations are built and solved,
there was a significant question around how the models would
compare. Going into this project we had a target of 0.1% mean
difference between the results of the previous and new model.

Figure 14 contains the minimum, maximum and mean
difference for each different result file generated by the code
(Ffit to XYZfit c(3)) and it can be seen that the mean
difference is well below this 0.1% difference target. The Ffit
and Fobsfit results contain one result for each element, whereas
for the XYZfit, XYZobsfit and XYZfit c results there are
three separate result elements. In the later case we only report
elements 1 and 3 in Figure 14 because element 2 is exactly
equal, a zero percent difference, throughout all the results
between the two models.

The model coefficients of Figure 14 are slightly different
to all the other result file entries in the table. These are
the raw generated coefficients that come directly from the
eigenvalues and vectors, before they are then applied to the
input data to generate the results. The geomagneticists use
them as a sanity check to ensure the results are consistent and
whilst a maximum difference of 43% seems very significant
(especially in comparison to the 0% minimum and 0.048%
mean), it should be noted that all the differences in this
large range represent very tiny numbers smaller than 1e-30.

Metric
Minimum

%difference
Maximum

%difference
Mean

%difference

Ffit 0.000019 0.000053 0.000026
Fobsfit 0.000014 0.000029 0.000019

XYZfit(1) 0.000010 0.034425 0.000091
XYZfit(3) 0.000010 0.312869 0.000204

XYZobsfit(1) 0.000010 0.000081 0.000033
XYZobsfit(3) 0.000010 0.182673 0.000130
XYZfit c(1) 0.000010 0.007966 0.000073
XYZfit c(3) 0.000010 0.011187 0.000085

Model coefficients 0 43 0.048114

Fig. 14. Percentage result difference between results generated by previous
model and new model with experiment of figure 12 over 32 nodes. Whereas
the maximum difference of coefficients seems large, these were all very tiny
numbers and as such had no signifiant impact on the overall results.

After discussion with the geomagneticists it was determined
that, whilst percentage wise these differences might seem
significant, in reality because those numbers are so tiny they
make no significant difference to the overall results.

Generally speaking it surprised us how closely the results
match between the previous model’s Givens reduction ap-
proach and SLEPc. One of the strong reasons for the Given’s
reduction was its stability and perceived accuracy, and we
have shown that actually this can be replaced by a much
faster, parallel method, which has no qualitative impact on
the accuracy of the overall results. This is an important point
because there are significant advantages to SLEPc and, in this
context, we can benefit from these without sacrificing any
degree of accuracy which the geomagneticists were worried
about.

VI. SCALING THE NUMBER OF MODEL COEFFICIENTS

A major limit of the current code was it’s inability to scale
beyond 10,000 model coefficients due to memory limitations.
Having decomposed the matrix and RHS data structures across
processes this limitation has been mitigated. However the
direct eigen-solve in SLEPc requires the allocation of a signif-
icant data structures during this direct solve on each process,
especially when searching for all eigenvalues and vectors as
we require here. Whilst there are options for experimenting
with the maximum projected dimension (which trades off
memory usage and computational recalculation), and replacing
the solver with the MUMPS parallel direct linear solver, from
experimentation we found that these had no impact on the very
large memory usage of SLEPc.

Figure 15 illustrates how the memory usage of the direct
solver grows as the number of model coefficients is increased.
This memory requirement is in addition to other data structures
including the matrix and RHS, and is not parallelisable.
Therefore irrespective of the number of processes, this amount
of memory must be allocated per process and is a very serious
limitation. Bearing in mind most nodes in ARCHER, the Cray
XC30 used for this work, have 64GB RAM in total and 32GB

Number of
coefficients

Direct solve size (MB)
per process

10000 1498
20000 9543
30000 23908
40000 38200
50000 57300
60000 85950
70000 114600

Fig. 15. Memory usage requirements, per process, of direct solver by the
number of coefficients

per NUMA region, ways round this needed to be found. Whilst
there is a trend to increase the amount of memory per node
with more modern machines, memory usage is still a limitation
however as we reach large coefficient sizes.

A. Hybridising the code with OpenMP to address the memory
challenge

Based on the experiments done in Section V, the building
of the normal equations well as we increase the amount of
parallelism. However, the direct solve does not scale quite so
well and experiments on over 16 nodes in Figure 12 only
decreases the run time of the solver slightly, or even increases
it. As the memory limits of the direct solver are on a process by
process basis, we decided to hybridise the code using OpenMP
to reduce the number of processes running per node. Whilst
there has been some work done in PETSc to support hybrid
OpenMP/MPI parallelism [21] this is not particularly mature
and as yet is not included in the main PETSc distribution.
Therefore we just run the solve on a process by process basis.
With OpenMP applied throughout our own code, aspects such
as the building of the normal equations takes advantage of all
the cores using thread level concurrency, but the solving of
these does not. As described in Section II-B, an advantage of
PETSc is that it is trivial to modify configuration options and
as such in the future it will be trivial to change the form of
parallelism by simply selecting a different type of matrix data
structure, if and when hybrid support becomes more mature.

1 !$omp parallel do private(j, dw, il) reduction(+:
rhs norm equations)

2 do j=1, lines in y
3
4 do il=1, number of rows
5 rhs norm equations(il)=rhs norm equations(il)+.....
6 end do
7 end do
8 !$omp end parallel do

Listing 4. Illustration hybridised OpenMP/MPI kernel

Listing 4 sketches the hybrid OpenMP code for one of
the kernels involved in building the normal equations. All
OpenMP calls are loop based directives, and in this instance
we are performing an OpenMP reduction between the threads

Nodes
2 threads

per process
4 threads

per process
6 threads

per process
12 threads
per process

40 119.02 88.05 76.94 66.76
36 118.62 88.89 76.42 71.27
27 117.41 90.94 81.96 77.73
18 124.13 85.55 92.63 83.97
9 140.69 120.6 120.51 138.5
5 208.76 190.75 199.14 244.41
3 369.42 317.71 352.72 414.8

Fig. 16. Total run time changes with respect to threads per process based on
500,000 data points over 8000 coefficients

Nodes
2 threads

per process
4 threads

per process
6 threads

per process
12 threads
per process

40 42.99 29.52 24.59 20.33
36 44.19 30.69 25.86 21.72
27 48.61 34.39 29.69 25.96
18 56.05 41.82 37.28 34.49
9 78.95 64.17 60.55 59.72
5 127.4 109.47 104.34 111.05
3 245.82 189.65 195.11 190.12

Fig. 17. Matrix and RHS building time changes with respect to threads per
process based on 500,000 data points over 8000 coefficients

once local iterations of the loop have completed. As before, the
matrix and RHS data structures are decomposed on a process
by process basis and when building the normal equations,
the input data is split up between the OpenMP threads.
Each thread works on the processes’ data structure chunk but
with a separate subset of the input data to process. This is
important, because it means we can start MPI in funneled
threading mode rather than the much slower multiple mode.
It should also be noted that, due to the non-associativity
of floating point arithmetic, using OpenMP reductions can
generate slightly different results from one threading level to
another. However, this is still well within tolerance and we also
provide additional code to perform the reduction in guaranteed
order, via local variables and explicit addition but with some
minor degradation in performance, if this is critical to the end
user.

We found that utilising threading made a difference to over-
all performance with the model and ran a smaller experiment
than those detailed in Section V, with 500,000 input data items
and 8000 model coefficients. Figure 16 illustrates how the
run time of the model changes with respect to the number
of threads per process for this experiment. For each row, for
instance the 40 nodes row, the overall number of cores remains
unchanged (960 in this case), and with two threads per process
we have 480 process each running over 2 threads, out to twelve
threads per process resulting in 80 processes each with 12
threads. It isn’t as simple as saying one level of threading is
better or worse than another. Instead, it depends heavily on

Nodes
2 threads

per process
4 threads

per process
6 threads

per process
12 threads
per process

40 55.7 44.8 40.29 36.68
36 54.67 43.76 38.72 39.71
27 49.32 42.07 40.4 41.63
18 48.04 29.84 43 39.62
9 42.07 42.19 48.01 68.15
5 61.72 66.64 82.3 122.34
3 103.36 113 144.35 212.99

Fig. 18. Solver time changes with respect to threads per process based on
500,000 data points over 8000 coefficients

Fig. 19. Scaling the number of model coefficients over 40 nodes of ARCHER

the overall amount of parallelism (number of nodes) and it
can be seen that when using 40 nodes the run time can be
almost halved by the simple configuration change of going
from 2 threads per node to 12 threads per node. However
over three nodes going from 2 to 12 threads per node reduces
performance by almost a third.

To break it down further, Figures 17 and 18 show the run
time, for each configuration, for building the normal equations,
and the solver time respectively. Based on the solver run
times it can be seen that we are hitting the limits of strong
scaling with this experiment size as, at small node sizes it is
advantageous to use more parallelism and at larger numbers
of nodes less, for this problem size this factor dominates at
smaller numbers of nodes. For the normal equation building,
irrespective it is advantageous to use more threading where
possible and this is because it reduces the amount of MPI
communications needed, with this problem size this factor
dominates at larger numbers of nodes. As all processes po-
tentially need to communicate with all other processes, this
can be an expensive.

Based on this hybridisation we can now run the new model
with problem sizes much larger than the 10,000 coefficients
that the previous model was limited to. Figure 19 illustrates
an experiment, over 40 nodes of ARCHER, as we scale the
number of model coefficients up to 100,000. There are a

number of caveats and noteworthy points to be highlighted
here. It can be seen that there is a sharp increase in run time at
40,000 coefficients and this is where we had to switch, due to
memory limits, from a process per NUMA region to a process
per node in order to fit into memory. At 50,000 coefficients
we started using the large memory nodes on ARCHER, which
contain 128GB of RAM, and provided some extra headroom
for these runs. In terms of modern computing, 128GB of RAM
isn’t a particularly large amount, and once we reached 70,000
coefficients this memory was exhausted. In order to model
problem sizes of 70,000 coefficients and above, we split the
problem in two when it came to eigen-solving, first finding the
n/2 largest eigenvalues in magnitude and applying these and
their corresponding eigenvectors to the RHS, and then finding
the n/2 smallest eigenvalues in magnitude and applying these
and their corresponding eigenvectors to the RHS. This worked
well, and actually resulted in a slight decrease in run time
because at that stage two smaller solves was faster than one
larger one.

It should be noted that we tried a number of approaches
to finding different portions of the spectrum, such as those
closest to a target and then iteratively increasing the target.
None of these worked very well and the only reliable approach
was to split the solve in two and finding the n/2 largest
and n/2 smallest eigenpairs. In our mind this is the current
limitation of our model and, as it currently stands, when
the problem size reaches a point where the two separate
solves run out of memory, most likely at around 120,000
coefficients on ARCHER further investigations will need to be
performed. There are a number of points to bear in mind here,
in addition to the obvious point that larger amounts of memory
are becoming much more commonplace which mitigate this
issue somewhat. Firstly we are finding all the eigenvalues and
then throwing away the smallest ones beneath a threshold. At
100,000 model coefficients this represents a large number that
are being discarded and, as the direct solver memory usage is
determined by the number of eigenvalues being searched, we
could likely reduce the number of eigenvalues being searched
because of the threshold and improve the situation. Secondly,
as we reached 70,000 coefficients PETSc had to be compiled
with 64 bit matrix indices, this isn’t a problem in itself but
does illustrate the significant size of the matrix and general
problem we are working with here.

B. An iterative vs direct solver approach

We have described the limitations of using SLEPc to find
eigenpairs for large numbers of model coefficients. An alter-
native approach is to move from an eigen-based direct solve
to an iterative solver and as our solver is already calling into
PETSc, this is fairly easy to do from a code perspective. In
fact, in terms of the code, the only change required was to
initialise a PETSc iterative solver via the KSP data structure
and hook this up to our matrix and RHS.

Using the ILU preconditioner and GMRES solver, with a
relative tolerance of 1e-4, Figure 20 illustrates the run time of
the iterative solver over 40 nodes of ARCHER as we scale the

Fig. 20. Performance of the iterative solver as the number of model
coefficients is scaled, running on 40 nodes of ARCHER

problem size. As the iterative solver approach does not suffer
from the memory limitations of the direct solver approach,
we are able to run one process per core (e.g. 960 processes)
for this experiment and that is the configuration which was
used. It can be seen that the run time here is considerably
less than that of the direct solver, for instance 800 seconds
iterative solver time verses 5000 seconds direct solver time in
Figure 19 for a problem size of 60,000 coefficients. We also
have many more options, for instance being able to experiment
with the accuracy and it is highly likely that different users
of the MEME model, with their different problems, would
require different levels of accuracy.

One of the disadvantages of the iterative approach however
is its stability. Up to 10,000 coefficients the results match fairly
closely between an iterative and direct solver approach, within
around 5%. Whilst this is outside the accuracy limit that the
geomagneticists will currently accept, they believe that with
some further work this could be fairly easily reduced and
confidence provided in the results. However, we found that as
we scale the number of model coefficients beyond this point,
the solution becomes less and less accurate and after 60,000
model coefficients the solver starts to diverge. Clearly there
is further work required here to fully understand the impact
that the iterative solver is having on the system and optimal
configuration settings.

VII. CONCLUSION AND FURTHER WORK

In this paper we have explored the use of PETSc and
SLEPc in solving a system of normal equations for modelling
the earth’s magnetic field. We have demonstrated significant
benefits to replacing the bespoke eigen-solver of the previous
MEME model with that provided by SLEPc, and have shown
that, at no qualitative different to the output result accuracy,
very significant improvements in performance are possible by
leveraging this popular library. In terms of problem size, the
new model is capable of modeling systems very significantly
larger than those that were previously attainable. However
when it comes to large numbers of coefficients, and more
generally using SLEPc for finding very many eigenpairs in a

large system, there are caveats and limitations around memory
usage and a number of mitigations are required to work around
these. ARCHER, the XC30 used for this work is over five
years old now and inevitably more modern machines with
larger amounts of memory will be impacted less by this, but
still it is important to bear in mind as scientific ambitions of
this model and use of SLEPc in general will only continue to
grow.

Adopting PETSc and SLEPc has had implications far be-
yond the specific solver itself and we have also described our
approach for building the symmetric matrix of normal equa-
tions in a distributed fashion. We demonstrated an approach
that requires minimal process coordination, gives reasonable
load balance and avoids any replication of computation. Whilst
inter-node performance was a major aspect of this, we also
found that single core performance was significantly limited
by the irregularity of memory access. Careful profiling helped
us understand the problem further and this was then addressed
by the use of software prefetching in conjunction with software
pipelining. We demonstrated significant benefits to both these
approaches and combined the building of the normal equations
is now very significantly faster than in the previous model.

In this paper we have briefly touched on the topic of solving
the normal equations via an iterative approach rather than a
direct eigen-solver. Bearing in mind the challenges around
SLEPC’s memory requirements, this is an important avenue
of further investigation. It is our feeling that, whilst we did
modify the normal equations slightly to make them applicable
to an iterative solver, more generally this is still unstable
and a more fundamental rethink from the geomagneticists is
required to take full advantage of an iterative solver approach.
Nevertheless, we have demonstrated that there is potential
benefit to doing this and, from a code perspective, it is trivial
to switching out the direct solver and replacing it with an
iterative solver.

The use of software prefetching in HPC is still an immature
topic, but it is a useful way of addressing the irregularity
of memory accesses and has the potential to be an im-
portant future approach. A major limitation to this, as it
currently stands, in our new MEME model is the use of the
PREFETCH DISTANCE internal to the code. This is because
the optimal value depends upon the micro-architecture and
as such, profiling is needed on each new machine to provide
performance portability of the model. Previous work [18] has
been done on dynamically tuning this prefetching distance
in an HPC code, and we believe that this would be an
interesting and important avenue of further research in the
MEME model. It is also likely that, as the code executes, the
optimal prefetching distance will changed dynamically and as-
such this approach could result in improved performance more
generally.

ACKNOWLEDGMENTS

This work was funded under the embedded CSE pro-
gramme of the ARCHER UK National Supercomputing Ser-
vice (http://www.archer.ac.uk)

REFERENCES

[1] Thbault, E., Finlay, C.C., Beggan, C.D., Alken, P., Aubert, J., Barrois,
O., Bertrand, F., Bondar, T., Boness, A., Brocco, L. and Canet, E., 2015.
International geomagnetic reference field: the 12th generation. Earth,
Planets and Space, 67(1), p.79.

[2] Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton,
B., Woods, A., Ridley, V., Maus, S. and Thomson, A., 2015. The US/UK
world magnetic model for 2015-2020.

[3] Brown, W., Beggan, C. and Macmillan, S., 2016. Geomagnetic jerks in
the SWARM era.

[4] Garnaud, X., Lesshafft, L., Schmid, P.J. and Chomaz, J.M., 2012. A
relaxation method for large eigenvalue problems, with an application
to flow stability analysis. Journal of Computational Physics, 231(10),
pp.3912-3927.

[5] Dettori, R. and Colombo, L., 2018. THERMAL PROPERTIES OF TPD-
BASED ORGANIC GLASSES. Istituto Lombardo-Accademia di Scienze
e Lettere-Incontri di Studio.

[6] Genoese, A., Genoese, A., Bilotta, A. and Garcea, G., 2014. Buckling
analysis through a generalized beam model including section distortions.
Thin-Walled Structures, 85, pp.125-141.

[7] Marti, P., Calkins, M.A. and Julien, K., 2016. A computationally efficient
spectral method for modeling core dynamics. Geochemistry, Geophysics,
Geosystems, 17(8), pp.3031-3053.

[8] Vidal, J. and Schaeffer, N., 2015. Quasi-geostrophic modes in the Earth’s
fluid core with an outer stably stratified layer. Geophysical Journal
International, 202(3), pp.2182-2193.

[9] Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T.,
Heinecke, A., Bungartz, H.J. and Lederer, H., 2014. The ELPA library:
scalable parallel eigenvalue solutions for electronic structure theory and
computational science. Journal of Physics: Condensed Matter, 26(21),
p.213201.

[10] Balay, S., Gropp, W.D., McInnes, L.C. and Smith, B.F., 1997. Effi-
cient management of parallelism in object-oriented numerical software
libraries. In Modern software tools for scientific computing (pp. 163-
202). Birkhuser, Boston, MA.

[11] Hernandez, V., Roman, J.E. and Vidal, V., 2005. SLEPc: A scalable and
flexible toolkit for the solution of eigenvalue problems. ACM Transactions
on Mathematical Software (TOMS), 31(3), pp.351-362.

[12] Guennebaud, G., Jacob, B., 2010. Eigen v3. [Online]. [10 April 2019].
Available from: http://eigen.tuxfamily.org

[13] Springer, P., Su, T. and Bientinesi, P., 2017, June. HPTT: a high-
performance tensor transposition C++ library. In Proceedings of the 4th
ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming (pp. 56-62). ACM.

[14] Balaji, P., Chan, A., Gropp, W., Thakur, R. and Lusk, E., 2008,
September. Non-data-communication overheads in MPI: analysis on Blue
Gene/P. In European Parallel Virtual Machine/Message Passing Interface
Users Group Meeting (pp. 13-22). Springer, Berlin, Heidelberg.

[15] Karkhanis, T. and Smith, J.E., 2002, May. A day in the life of a data
cache miss. In Workshop on Memory Performance Issues (Vol. 99).

[16] Lee, J., Kim, H. and Vuduc, R., 2012. When prefetching works,
when it doesnt, and why. ACM Transactions on Architecture and Code
Optimization (TACO), 9(1), p.2.

[17] Snchez, J. and Gonzlez, A., 1999. Software data prefetching for software
pipelined loops. Journal of Parallel and Distributed Computing, 58(2),
pp.236-259.

[18] Hadade, I., Jones, T.M., Wang, F. and di Mare, L., 2018, November. Soft-
ware prefetching for unstructured mesh applications. In 2018 IEEE/ACM
8th Workshop on Irregular Applications: Architectures and Algorithms
(IA3) (pp. 11-19). IEEE.

[19] Chen, S., 2014. Reduction of a Symmetrical Matrix to Tridiagonal Form
on GPUs.

[20] Egecioglu, . and Srinivasan, A., 1995. Givens and Householder reduc-
tions for linear least squares on a cluster of workstations.

[21] Lange, M., Gorman, G., Weiland, M., Mitchell, L. and Southern, J.,
2013, June. Achieving efficient strong scaling with PETSc using hybrid
MPI/OpenMP optimisation. In International Supercomputing Conference
(pp. 97-108). Springer, Berlin, Heidelberg.

