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Abstract Submarine groundwater discharge could impact the transport of critical solutes to the ocean.
However, its driver(s), significance over geological time scales, and geographical coverage are poorly
understood. We characterize a submarine groundwater seep from the continental slope off northern Norway
where substantial amount of meteoric water was detected. We reconstruct the seepage history from textural
relationships and U‐Th geochronology of authigenic minerals. We demonstrate how glacial‐interglacial
dynamics have promoted submarine groundwater circulation more than 100 km offshore and result in high
fluxes of critical solutes to the ocean. Such cryosphere‐hydrosphere coupling is likely common in the
circum‐Arctic implying that future decay of glaciers and permafrost in a warming Arctic is expected to
attenuate such a coupled process and thus decreases the export of critical solutes.

Plain Language Summary Occurrence of meteoric groundwater (freshwater originated from
precipitation such as rain and snow) in the global ocean is an unexpected but seemingly common
phenomenon. Here, we report evidence for meteoric groundwater flow at ~800‐mwater depth from the coast
of northern Norway. Dating of the chemically formed carbonate rocks on the seafloor, an oxidation product
of methane, reveals that the groundwater flow was strongest when large ice sheets occupied the nearby
shelf. Our results confirm the temporal and geographical scales of meteoric groundwater flow in the Arctic
region and highlight its impact on carbon cycling and ocean chemistry.

1. Introduction

Submarine groundwater discharge (SGD) is defined as the discharge of subground fluids across the land‐
ocean interface that includes a freshwater component (fSGD hereafter) and a recirculated saline ground-
water (sSGD hereafter; Taniguchi et al., 2002). Offshore occurrence of freshwater, which may or may not
discharge across the land‐ocean interface, has also been highlighted recently (e.g., Post et al., 2013).
Global estimates suggest that SGD could have a substantial impact on ocean chemistry by conveying trace
elements (Charette et al., 2016; Church, 1996; Moore, 1996) and nutrients (Rodellas et al., 2015) from con-
tinental shelf sediments to the open oceans. Despite the low water flux of fSGD compared to global river
runoff (a few percent at most; Zektser & Loaiciga, 1993; Berner & Berner, 2012; Zhou et al., 2019), its
impact on the global geochemical cycle is evident. In addition, SGD in the Arctic has been proposed as
one of the processes that transports methane to fjords (Lecher, 2017) and continental shelf environments
(Frederick & Buffett, 2016; Lecher et al., 2016), where methane can escape to the atmosphere and result
in considerable greenhouse effect. Despite the significance of SGD, our knowledge of its control mechan-
isms is limited. In the circum‐Arctic off Norway, Canada, and Alaska, as well as the Laptev Sea and the
Greenland shelf (Figure 1a) where numerous glaciations with episodes of massive ice sheets grounded on
the continental shelves occurred over the last 2.7 million years, the dynamics of glaciers and permafrost
have been speculated to influence the groundwater flow (DeFoor et al., 2011; Person et al., 2003; Siegel
et al., 2014). However, despite these model‐based assessments, cryosphere‐regulated SGD in the geological
past has not been confirmed nor are the temporal/spatial scales of such a process in the Arctic region
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clear (Post et al., 2013). Such a gap in knowledge requires immediate attention given the expected
warming of the Arctic Ocean (Overland et al., 2014) and associated feedbacks from permafrost decay
and glacier retreat on the water cycle.

We report data from a seep at ~800 m below sea level (bsl) on the Lofoten‐Vesterålen (LV) continental slope
off northern Norway (Figure 1b), where fSGD occurs and meteoric water is transported to the near seafloor
sediments. The timing and duration of fSGD are determined through the U‐Th dating of authigenic carbo-
nates. Such age information provides a critical constraint on factors controlling the strength of fSGD in the
LV seep. We integrate our findings from the LV seep with additional pore fluid data around Svalbard and the
circum‐Arctic (Figure 1a). We estimate the fluxes of groundwater, methane, and critical solutes from the LV
seep through their corresponding pore fluid profiles. Our findings provide a new constraint in the under-
standing of how cryosphere impact the subsurface groundwater flow and thus the associated solute fluxes
to the oceans.

Figure 1. (a) Bathymetry of the circum‐Arctic Ocean and locations of reported offshore freshwater and/or fSGD. Stars mark the locations investigated in this study.
The three orange squares mark the locations where local meteoric water data are shown in Figure 2 (NÅ: Ny Ålesund; IF: Isfjorden; LT: Lista). 1 = AKB: Alaska
Kasitsna Bay (Lecher et al., 2016); 2 = CSM: Canning seafloor mound (Hart et al., 2011; Pohlman et al., 2011); 3 = CSS: Chukchi Sea shelf (Korea Institute of
Geoscience andMineral Resources, 2016); 4 = CBS: Canadian Beaufort Sea (Lecher et al., 2016; Paull et al., 2015); 5 = LSS: Laptev Sea shelf (Charkin et al., 2017); 6
= YP: Yamal Peninsula (Semenov et al., 2019); 7 = HF: Hornsund fjord (this study). 8 = SGHM: Storfjordrenna gas hydrate mounds (this study); 9 = LV:
Lofoten‐Vesterålen seep (this study); 10 = VP: Vøring Plateau (Aagaard et al., 1989); 11 = NB: Nordbreigrunnen (Storrø, 2012); 12 = GS: Greenland shelf (DeFoor
et al., 2011); 13 = CF: Cambridge fjord (Hay, 1984). (b) Detailed bathymetry of the Lofoten‐Vesterålen continental margin. The red line marks the seismic profile
shown in Figure S1. The yellow squares mark our study region, LV seep, and another freshwater seep, Nordbreigrunnen (NB), ~7 km offshore (Storrø, 2012).
Detailed coring locations from the LV seep are shown in Figure S2. (c) A seafloor image from the LV seep with outcrops of horizontal‐bedded Eocene sandstones. (d)
A scanning electron microscope backscatter image showing that authigenic barite grew first around the detrital quartz (Qz) and feldspar (Fsp) grains with the pore
space filled by texturally younger Mg calcite.
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2. Site Descriptions

The LV continental margin offshore northern Norway is a rift margin consisting of three segments (Lofoten,
Vesterålen, and Andøya) separated by two transfer zones (Jennengga and Vesterålen; Tsikalas et al., 2001).
The result of such rifting is a series of basins and ridges along the LV continental margin (Blystad et al.,
1995). Extensive glacial erosion has resulted in very thin to no Quaternary sediment cover over the ridges,
where Tertiary and Cretaceous formations are exposed (Tasrianto & Escalona, 2015; Henstra et al., 2017;
Figure S1 in the supporting information). Along the continental margin, there are 15 canyons located ~80
km northwest from the Lofoten archipelago with a few of them incised deeply into the Cenozoic sedimen-
tary succession (Rise et al., 2013). Termination of a mafic body formed during the Eocene continental
breakup (Breivik et al., 2017) was observed beneath these canyons (Figure S1). Seafloor exploration of two
relatively small canyons (not included in Rise et al., 2013; Figures 1b and S2 from the supporting informa-
tion) with a remotely operated vehicle (ROV) reveal variably lithified, horizontal‐bedded sandstone of likely
Eocene age (K. Dybkjær, Apr 2019, personal communication) outcropping along the canyon walls at ~800 m
bsl (Figure 1c and Table S1 from the supporting information). Abundant microbial mats and seafloor crusts
cemented by authigenic sulfates and carbonates (Figure 1d) occur in areas where poorly lithified and coarse‐
grained strata are exposed (Figure 1c; Sen et al., 2019). Push cores up to 40 cm in length (Table S1 and Figure
S2) were recovered by the ROV frommicrobial mats fringed with siboglinid worms and an area without sea-
floor bacterial mats (P171‐021; Figure S2).

In addition to the LV seep, we document the presence of meteoric water from two locations offshore
Svalbard: (1) The Storfjordrenna gas hydrate mounds (SGHMs in Figure 1a) are circular seafloor mounds
with a radius of a few hundred meters rising ~10 m above the seafloor south of Svalbard (~380 m bsl).
These mounds were investigated for their shallow gas hydrate deposits and intensive methane leakage to
the bottom water (Hong et al., 2017; Hong et al., 2018). (2) The Hornsund fjord (HF in Figure 1a) is a 25‐
km‐long and 10‐km‐wide fjord at the southwestern tip of Spitsbergen. Water depth ranges between roughly
140 to 220 m bsl with the entrance of the fjord being the shallowest. Release of methane from the sediments
into the water column has been previously documented with the Hornsund fracture zone as the proposed
fluid migration pathway (Damm et al., 2005).

3. Materials and Methods

The sediment cores and seafloor carbonate crusts from the LV seep were collected by ROVÆgir 6000 during
the NGU 1710 cruise onboard R/V G.O. Sars in 2017 (Figure S2). The sediment core, CAGE15‐2‐911GC
(Table S1), was recovered from one of the most active Storfjordrenna GHMs (Panieri et al., 2015). The sedi-
ment cores HH16‐1217GC and HH16‐1219GC were collected from the Hornsund fjord during a joint cruise
between Korea (Korea Polar Research Institute) and Norway (the Arctic University of Norway, UiT) with
R/V Helmer Hanssen in 2016. Details of the recovered HH16‐1217GC and HH16‐1219GC cores were docu-
mented by Forwick et al. (2017). All the methods for the sampling/analyses of pore fluid, solid phases (total
organic carbon and seafloor crusts) and headspace gases are given in the supporting information.

4. Results and Discussions
4.1. The Presence and Impact of fSGD from the LV Seep

Pore fluid recovered from the LV seep is characterized by low δ18O and δD values (as low as −1.7‰ and
−7.9‰, respectively) that are 1.9‰ and 10.8‰ lower than the values from bottom seawater (Figures 2a
and S4 for the depth profiles). For most of the LV cores, we detected up to 15% lower chloride concentra-
tion compared to the bottom seawater (Figure 2b) with a few samples from P1710‐052 having chloride
content as low as 235 mM (Figure 3). Dehydration of clay minerals is known to release 18O‐enriched
and 2H‐depleted freshwater from the interlayer sites of the minerals (Kastner et al., 1991; Sheppard &
Gilg, 1996; Dählmann & De Lange, 2003; Hensen et al., 2004; Table S2 from the supporting information).
Gas hydrate concentrates heavy isotopes (18O and 2H) in the lattice (Maekawa, 2004); dissociation of
hydrate therefore releases freshwater enriched in both 18O and 2H (Tomaru et al., 2006; Table S2).
Neither process can explain the 18O‐ and 2H‐depleted pore fluid that is fresher than seawater from the
LV sites. Both anaerobic oxidation of methane (AOM) and microbial methanogenesis fractionate only
hydrogen isotopes when oxidizing methane to water (or reducing methane for microbial
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methanogenesis; Valentine et al., 2004; Holler et al., 2009; Table S2). Spatial and temporal variations in
seawater isotopic composition can also be ruled out due to the much smaller differences among water
masses (1.5‰ for δ18O and 6‰ for δD from Figure 2a; Voelker et al., 2015) and the higher δ18O
isotopic values of seawater by 0.4‰ to 0.6‰ during the Last Glacial Maximum (Adkins et al., 2002).
The correspondence between our pore fluid data and the three meteoric water lines (Figure 2a)
suggests a significant contribution of meteoric water to the pore fluid.

From the dissolved boron profiles, we estimated linear velocities of water migration to be between 0.1 and
0.25 m/year (Figure 3) with water fluxes ranging between 0.063 and 0.195 m3/m2/year (see the supporting
information for details). The estimated water fluxes are similar to those from the locations with comparable
water depths such as North Slope Alaska, NE coastal Gulf of Mexico, and Sagami Bay Japan (Taniguchi
et al., 2002, and references therein). Despite the significant fSGD revealed by our results, the pore fluid com-
prises primarily seawater. The high chloride content in the pore fluid (Figures 2b and 3) can be explained by
the significant seawater contribution (i.e., sSGD) due to the seawater‐freshwater exchange in aquifers
(Taniguchi et al., 2002). The fluid exchange across sediment‐water interface as a result of tidal pressure
was also proposed to explain the large sSGD contribution (Moore & Wilson, 2005), which is, however, not
applicable to LV seep due to the great water depth.

Abundant boron, lithium, and bariumwere transported by groundwater resulting in the high concentrations
detected in the pore fluid from the LV seep (Figure 3 and Figure S4 from the supporting information).
Notably, the pore fluid contains up to 1 mM of barium (Figure 3), 1 to 3 orders of magnitude higher than
the values previously reported (Nähr & Bohrmann, 1999; Solomon & Kastner, 2012; Torres et al., 2002).
Primary barium sources include rivers (Guay & Falkner, 1998), hydrothermal venting (Von Damm et al.,
1985), sedimentary barite dissolution (Solomon & Kastner, 2012), and alteration of mafic igneous rocks
(Humphris & Thompson, 1978). Given the local geology of the LV area and the occurrence of a mafic body
(Figure S1), barium leaching from igneous rocks is the most likely explanation for such high concentrations.

Figure 2. The presence of meteoric water as inferred from the stable isotopes of the pore fluid as well as the concentrations of dissolved chloride (Cl−) and sodium
(Na+). (a) Stable oxygen and hydrogen isotopic ratios of pore fluid from the four locations: LV seep, Storfjordrenna gas hydrate mounds (GHMs), Hornsund fjord
and Vøring plateau (Aagaard et al., 1989; see Figure 1a for locations). These data overlap with three local meteoric water lines from mainland Norway (Lista)
and Svalbard (Isfjorden and Ny Ålesund; see Figure 1a for locations). The meteoric water lines were derived based on the regressions from the isotopic composition
of precipitation since 1960 (International Atomic Energy Agency, 2018). The raw data used for regression and the comparison with our pore fluid isotopic com-
positions are shown in Figure S3 from the supporting information. The red cross marks the ranges of isotopic values for different water masses (Voelker et al., 2015)
with the center depicts the values for local bottom water. (b) A cross plot of dissolved sodium and chloride concentrations of seven cores from the LV seep. We
detected chloride and sodium concentrations as low as 235 and 330 mM, respectively, from core P1710‐52 (Figure 3). These anomalous data are however not
included in (b) as they were not measured from the same sample due to the low yield of porewater from this core.
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The abundant dissolved calcium and silica as well as the low magnesium and potassium concentrations in
the pore fluid (Figures S4 and S5 from the supporting information) are consistent with the interaction
between pore fluid and mafic rocks (Aagaard et al., 1989). The lithium‐based geochemical thermometer
(Kharaka & Mariner, 1989) suggests equilibrium temperature between 19 and 32 °C (Table S3). When
assigning the subsurface temperature derived from a 3‐D thermal model in the region (Maystrenko,
Gernigon, 2018), this range of temperature corresponds well to the depth of the observed mafic body (~1 km,
Figure S1). We acknowledge the large uncertainties of the geochemical thermometers which may
underestimate the temperature by 80% in extreme cases (Ferguson et al., 2009). However, our estimated
equilibrium temperature of fluid is supported by the 3–5‰ lighter δ11B signal measured (Figure 3),
indicating desorption of boron from clay minerals with elevated subsurface temperature. For example,
You et al. (1996) demonstrated that an initial 38 °C heating of pelagic marine sediments could result in up
to 10‰ decrease in the δ11B value of the solution.

Figure 3. Pore fluid methane, sulfate, boron, and chloride concentration profiles with two selected sites with δ11B signatures. Gray dash lines mark the seawater
concentrations of sulfate, boron, and chloride. Note the different scale of chloride concentration for P1710‐52. The analytical uncertainties for sulfate and barium
concentrations as well as δ11B are smaller than the symbols.
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High concentrations of methane were detected at the sediment‐water interface in a few cores (Figure 3) that
we propose were produced locally through microbial methanogenesis in the shallow subsurface. The high
ammonium concentration (up to 1.13 mM), 13C‐depleted isotopic signature of methane (−80.3‰ to
−115.9% Vienna Pee Dee belemnite), and the downcore decrease in total organic carbon content
(Figures S5 to S7 from the supporting information) suggest in situ microbial organoclastic methanogenesis
in the cored depths. The produced methane stimulates AOM (Boetius et al., 2000), which is responsible for
the rapid decline in sulfate concentration (Figure 3). The alkalinity production through AOM (Figure S5)
promotes authigenic carbonate (Mg‐calcite and aragonite) precipitation (Figure 1d) as suggested by their
low δ13C (−49.6‰ to −64.3‰ Vienna Pee Dee belemnite; Table S4 from the supporting information).

4.2. The Mechanism Regulating fSGD at the LV Seep

The fSGD at the LV seep may be explained by (1) modern circulation of groundwater from the Lofoten archi-
pelago or even mainland Norway as proposed by Maystrenko, Broenner, et al. (2018) for the freshwater seep
from Nordbreigrunnen (NB in Figure 1) or (2) past groundwater circulation as a consequence of glacial‐
interglacial dynamics (e.g., DeFoor et al., 2011; Person et al., 2003; Siegel et al., 2014). Here, we argue for
the latter since our investigations of the seafloor authigenic carbonate crusts suggest that the seepage at
the LV seep has been active, and likely stronger, in the geological past. Through microscopic inspection,
we observed authigenic barite precipitated around the detrital mineral grains with carbonates formed in
the pore space among these barite‐coated grains (Figure 1d). Such textural relationship suggests that precipi-
tation of barite preceded the formation of the 13C‐depleted carbonates. Precipitation of authigenic barite
occurs at the sediment depthwhere porefluid sulfate is nearly exhausted and dissolved barium concentration
starts to increase (Torres et al., 1996). The appearance of abundant authigenic barite in the seafloor crusts
(Figure 1d) suggests such interface was closer to the sediment‐water interface in the past than the modern
depth between 6 and 15 cm bsf as inferred from the pore fluid profiles (Figure 3). The shallower depth of
authigenic barite formation indicates higher dissolved barium flux as a result of greater fSGD in the past.
The U‐Th ages of the texturally later carbonates provide constraints for the timing of fSGD. The ages are
mostly younger than ~22 ka BP (kilo years before 1950) with a few significant older ages from ~50 to 81 ka
BP (Figure 4a and Table S5 from the supporting information). In addition, 12 out of 15 of the ages correspond
to periods when the volume of theNEEurasian ice sheets was decreasing or relatively small (i.e., deglaciation
and interglacial periods; Figure 4a). These dating results confirm that fSGD has been active at least over the
last 22 ka. Though it is difficult to completely exclude, modern groundwater infiltration (e.g., Befus et al.,
2017; Jasechko et al., 2017) as the sole cause for the observed water isotopic signal is unlikely.

We propose that, during the Last Glacial Maximum, the great pressure contrast between land and ocean as a
result of the 900‐m‐thick glacier (Patton et al., 2016) and 120 m lower sea level (Waelbroeck et al., 2002) cre-
ated the hydraulic pressure for the meltwater at the base of glaciers to infiltrate into the exposed permeable
strata and flowed toward the ocean (Figure 4b). This could likely occur at the top of the basement high where
erosion by ice sheet was the most intensive, for example, Røst High that is ~30 km east of the LV seeps
(Figures 4b and 4c). The results of shallow drilling and seismic data from the LV margin indicate the occur-
rence of interbedded strata of Tertiary sandstone/conglomerate and mudstone with variable permeability
(Hansen et al., 1992; Henstra et al., 2017; Tasrianto & Escalona, 2015; Tsikalas et al., 2001), which are the
most likely conduits for the observed fSGD. The fine‐grained interbed in this Tertiary bed potentially serves
as the confined layer that maintains the overpressure condition and guides the groundwater flow. Indeed,
the findings of interbedded Eocene sandstone/mudstone exposed on the flanks of the LV canyons
(Figure 1c) with methane seepage related microbial colonies associating with coarse‐grained strata (Sen et
al., 2019) support this conclusion. The fracture zone observed beneath the LV seep from the seismic profile
(Figure S1) also provides the pathway for fluid to migrate from the Paleocene‐Miocene strata. Similar
cryosphere‐controlled SGD were documented from the Greenland shelf (DeFoor et al., 2011) and Atlantic
continental shelf offshore the northeastern United States (Person et al., 2003) with freshwater flow two
orders of magnitude faster than what we estimated from the LV seep at present day. Under the conditions
of decaying glaciers and rising sea level, the strength of such water circulation decreased as the gradient
of hydraulic head could not be maintained (Figure 4c). It has been shown that the retreat of the subsurface
freshwater front was not homogenous but occurred over several thousand years for a distance of 100 km,
with pockets of freshwater still present far offshore 15 ka after the deglaciation (Siegel et al., 2014).
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4.3. Implications of the circum‐Arctic Ocean fSGD

From the observations of pore fluid and authigenic minerals at the LV seep, we argue that the fSGD with
significant contribution from meteoric water could occur over geological time scales and extend to the mod-
ern continental slope. This interpretation is consistent with the modeling work, which also highlights the
importance of specific geological conditions as the reason for the presence of SGD so far offshore (Michael
et al., 2016). Occurrence of meteoric freshwater is likely common in the formerly glaciated Norwegian con-
tinental margin as suggested by the low δ18O and δD values of pore fluid from Storfjordrenna GHM and
Hornsund fjord, as well as from Vøring Plateau (Ocean Drilling Program Sites 642 and 643; Aagaard
et al., 1989; Figures 2a and Figure S3). By compiling existing observations of fSGD and offshore freshwater
occurrence from the literatures (Figure 1a), we conclude that such observations are common in the circum‐

Arctic Ocean. Jasechko (2016) showed that the lower δ18O value in Pleistocene groundwater compared to
Holocene groundwater from higher latitude toward the North Pole reflects both the greater Rayleigh distil-
lation effect in the cooler Pleistocene polar air masses and the greater contribution from the glacier‐sourced
groundwater around the major ice sheet in the Northern Hemisphere. Future work is needed to examine
whether similar glacial‐interglacial perturbation can explain the occurrence of freshwater and/or fSGD in
the circum‐Arctic Ocean, as we demonstrated for the LV seep.

The feedback between cryosphere and hydrosphere not only controls the seawater‐freshwater interface but
also influences carbon cycling and ocean chemistry. The estimated methane flux from the LV seep based on
the measured methane concentration and present water velocity ranges from 3.5 to 30.0 μmole/cm2/year

Figure 4. Timing and the proposed flow path for the freshwater component submarine groundwater discharge (fSGD) as
a result of glacial‐interglacial dynamics at the Lofoten‐Vesterålen (LV) seep. (a) Variation of NE Eurasian ice sheet volume
from Svendsen et al. (2004) (gray shaded area corresponding to the left y axis) was compared with our U‐Th ages
derived from authigenic carbonates (note the wide range of dates from sample 007 which is unusual). Most of the ages
correspond to deglaciation and interglacial periods. (b, c) Proposed flow path for fSGD during glaciation and present.
Subsurface geology was adapted from Tasrianto and Escalona (2015) withmodifications according to Tsikalas et al. (2001),
Henstra et al. (2017), and the seismic profile Figure S1. We propose that the Tertiary sandstone layers (orange beds in the
Paleocene‐Miocene strata), that are exposed on the seafloor in the canyon (Figure 1c), serve as the conduit for fSGD
with the fine‐grained interbeds (yellow beds in Paleocene‐Miocene strata) serve as the confined layers. The thick ice sheet
and lower sea level (e.g., in panel b) provide the hydraulic motivation for a greater fSGD. In the present day, higher
sea level and the disappearance of the ice sheet results in a smaller fSGD with substantial seawater contribution as
indicated by the high chloride content in the pore fluid (Figure 2b).
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(Table S6 from the supporting information). These fluxes are comparable to the methane flux calculated
from Prins Karls Forland, west of Svalbard, as a result of gas hydrate dissociation 6–8 ka ago (Wallmann
et al., 2018). If we assume the pore fluid is saturated with methane, the flux can be as high as 875
μmole/cm2/year (Table S6) or comparable to the estimation frommethane gas bubbling in the water column
from Prins Karls Forland (Sahling et al., 2014). The high methane concentrations detected at the sediment‐
water interface (Figure 3) suggest the saturated capacity of AOM and active methane escape to the bottom
water enhanced by fSGD. Such a methane transport process has been largely overlooked (James et al.,
2016) and warrants future research to assess its regional significance. The present advective flux of barium
toward the depth of sulfate‐methane transition at the LV seep is 2.4–7.1 μmole/cm2/year (Table S6) or com-
parable to the benthic fluxes measured elsewhere (McManus et al., 1998). For elements such as boron and
lithium, the present advective fluxes to the bottomwater are as high as 17.6 and 0.7 μmole/cm2/year, respec-
tively (Table S6). At places where thick ice sheets are still present, such as Greenland and Antarctica
(Uemura et al., 2011), future glacier retreat is expected to impact the fluxes of methane and other solutes
due to the similar hydrological driver as observed along the eastern Norwegian Sea.

5. Conclusions

We have documented fSGD from the LV continental slope with discharges of meteoric water and critical
solutes. The U‐Th ages of authigenic seep carbonates indicate that fSGD has been active since at least
22,000 years ago.We propose that the strength of fSGD is controlled by the hydraulic head contrast reflecting
the advance/retreat of glaciers onto the continental shelf and sea level fluctuations during the glacial‐
interglacial periods. By integrating the LV results with additional pore fluid data around the Svalbard archi-
pelago and the circum‐Arctic Ocean, we propose that the presence of offshore freshwater and/or fSGD is a
common phenomenon in the Arctic Ocean and contributes significant amounts of critical solutes to
the ocean.
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