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Soil exoenzymes released by microorganisms break down organic matter and are crucial in 26 

regulating C, N and P cycling. Soil pH is known to influence enzyme activity, and is also a 27 

strong driver of microbial community composition; but little is known about how alterations in 28 

soil pH affect enzymatic activity and how this is mediated by microbial communities. To assess 29 

long term enzymatic adaptation to soil pH, we conducted enzyme assays at buffered pH levels 30 

on two historically managed soils maintained at either pH 5 or 7 from the Rothamsted Park 31 

Grass Long-term experiment. The pH optima for a range of exoenzymes involved in C, N, P 32 

cycling, differed between the two soils, the direction of the shift being toward the source soil 33 

pH, indicating the production of pH adapted isoenzymes by the soil microbial community. Soil 34 

bacterial and fungal communities determined by amplicon sequencing were clearly distinct 35 

between pH 5 and soil pH 7 soils, possibly explaining differences in enzymatic responses. 36 

Furthermore, β-glucosidase gene sequences extracted from metagenomes revealed an increased 37 

abundance of Acidobacterial producers in the pH 5 soils, and Actinobacteria in pH 7 soils. Our 38 

findings demonstrate that the pH optimum of soil exoenzymes adapt to long term changes in 39 

soil pH, the direction being dependent on the soil pH shift; and we provide further evidence 40 

that changes in functional microbial communities may underpin this phenomena, though new 41 

research is now needed to directly link change in enzyme activity optima with microbial 42 

communities. More generally, our new findings have large implications for modelling the 43 

efficiency of different microbial enzymatic processes under changing environmental 44 

conditions.  45 

Keywords: enzyme activity, adaptation, liming, carbon degradation, metagenomics, microbial 46 

community 47 

 48 

1. Introduction 49 
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Soil microbes produce exoenzymes to degrade complex plant and soil organic matter (OM) 50 

into smaller compounds, which are then assimilated for growth and metabolism (Allison, 51 

2005). These proteins break down large OM compounds through hydrolytic and oxidative 52 

processes (Burns et al., 2013; German et al., 2011; Sinsabaugh, 2010) and their activity rates 53 

have been hypothesized to be a rate-limiting step in OM decomposition (Bengtson and 54 

Bengtsson, 2007). Enzyme activity is predominantly controlled by temperature and pH which 55 

affect enzyme kinetics through change in substrate binding and stability. In contrast to 56 

intracellular enzymes, the physico-chemical conditions in which exoenzymes operate are 57 

poorly controlled by microorganisms and activity rates are thus influenced by local conditions 58 

(e.g. pH). Thus, to cope with their local environment, microorganisms evolve to produce 59 

different types of enzyme (isoenzyme), resulting in equivalent functionality but with altered 60 

thermodynamic and kinetic properties.  61 

In soil systems, much research has focused on enzyme adaptation to temperature (Allison 62 

et al., 2018; Alvarez et al., 2018; Blagodatskaya et al., 2016; Razavi et al., 2017) due to 63 

concerns on the effects of future climate change on ecosystem processes. The molecular 64 

mechanisms underpinning these adaptations have been studied and are believed to be driven 65 

by conformational flexibility within the enzyme active site or protein surface, which affects 66 

efficiency in relation to enzyme activation energy (Åqvist et al., 2017; Lonhienne et al., 2000). 67 

However, these adaptations also result in various trade-offs between efficiency and enzyme 68 

stability (Åqvist et al., 2017; Zanphorlin et al., 2016); meaning both specific exoenzyme-69 

catalyzed processes as well as other non-specific microbial processes may be affected by a 70 

changing environment. The assessment of soil enzymatic responses to change in temperature 71 

is an active area of research, with some studies suggesting that acclimation can be rapid and 72 

driven by changes in underlying microbial communities (Bradford, 2013; Nottingham et al., 73 
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2019; Wei et al., 2014). Surprisingly there has been limited reporting of enzymatic adaption to 74 

other edaphic properties.  75 

Soil pH is one of the main variables affected by global change through agricultural 76 

intensification, climate change and other polluting events such as acid rain (Goulding, 2016; 77 

Kirk et al., 2010; Slessarev et al., 2016; Tian and Niu, 2015; van Breemen et al., 1983; Wu et 78 

al., 2017). It is well established from laboratory assays that the rate of enzymatic catalytic 79 

reactions is dependent on the pH at which the reactions occur, with the point of maximal 80 

activity known as the pH optimum (Frankenberger & Johanson,1982, German et al., 2011). 81 

Previous studies have demonstrated different pH optima for the same enzyme across widely 82 

differing soil types (Niemi and Vepsäläinen, 2005; Turner, 2010), though the causal role of soil 83 

pH in predicting pH optimum has never been established. Additionally, pH is known to be one 84 

of the main factors affecting soil microbial diversity (Fierer et al., 2017; Griffiths et al., 2011), 85 

yet the relevance of reported changes in communities across pH gradients for soil enzymatic 86 

processes remains unknown. With enzymatic kinetics now being incorporated into recent C 87 

decomposition models (Allison, 2012; Davidson et al., 2012; Wang et al., 2013), we believe 88 

empirical data on the specific role of pH in affecting enzyme kinetic parameters is now 89 

required, since soil pH changes can occur rapidly with unknown acclimation responses. 90 

Furthermore, new understanding of the role of microbes in driving responses is essential to 91 

both increase understanding of acclimation mechanisms, but also potentially provide easily 92 

measurable indicators for model parameterization. 93 

We therefore sought to test soil exoenzymatic adaptation to local pH, by conducting 94 

enzymatic assays at a range of buffered pH levels on soils from the Park Grass long-term 95 

experiment (Rothamsted) in which the same soil type had been maintained at either pH 5 or 7 96 

for over 100 years. Hydrolytic exoenzymes corresponding to major enzymes involved in 97 

organic C, N and P cycling were selected to study. We hypothesize that enzyme pH optimum 98 
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will be affected by ancestral soil pH treatment, with soil exoenzymes from soil pH 5 being 99 

more adapted towards acidic conditions and exoenzymes from soil pH 7 adapted towards more 100 

alkaline conditions. To better understand the microbial community relationships underpinning 101 

exoenzyme activity and pH adaptation, we also sought to assess the change in microbial 102 

community composition (bacteria and fungi) with amplicon sequencing, and functional genes 103 

using a metagenomics sequencing approach. Specifically, we wished to determine whether 104 

change in enzyme activity is associated with change in specific microbial enzyme producers or 105 

adaptation of exoenzymes to environmental conditions.  106 

 107 

2. Materials and methods 108 

2.1  Soil sampling 109 

We took advantage of the unique Park Grass Long-term experiment (Rothamsted, UK; 110 

Macdonald et al., 2018) in which soils have been maintained at either pH 5 or 7. The experiment 111 

originally started in 1856 on permanent pasture to investigate ways of improving hay yields, is 112 

managed with a range of fertilisers and pHs with the hay cut twice a year. Soils cores (0-15 cm 113 

depth, 4 cm Ø) were sampled on the 27th November 2015 in subplots ‘a’ (pH ~ 7) and ‘c’ (pH 114 

~ 5) of the Nil plot 12, which has never received any fertilisers (Storkey et al., 2016). The soil 115 

pH is regularly monitored and controlled by liming, in subplot ‘a’ to reach pH~7 since 1903 116 

(every 4 yr and then every 3 yr from 1976), in subplot ‘c’ to reach pH~5 since 1965 (every 3 117 

yr). However, because the natural soil pH was 5.4-5.6, pH 5.5 plots have only received minimal 118 

liming across the experimental duration to combat natural acidification processes.  119 

 120 

2.2  Basic characterization of bulk soil samples 121 

Gravimetric soil moisture content was determined by drying 15 g of soil at 105 °C for 48 122 

h. All other chemical analyses were performed using sieved (2 mm), air-dried (40 °C) soil. Soil 123 
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pH was measured in H2O (1:5 weight: vol) according to the protocol NF ISO 10390 (2005). 124 

Soil organic carbon C, total N and total P were measured according to CS Technical report No. 125 

3/07 (Emmett et al., 2008). The fingerprint of soil mineralogy was assessed using mid-infrared 126 

(MIR) spectroscopy. Dried soil samples were ball-milled and further dried overnight at 40 °C 127 

to limit interferences with water, without altering OM chemistry. Milled samples were 128 

analyzed using a Nicolet iS10 FT-IR spectrometer (Thermo Fisher Scientific Inc., Madison, 129 

WI, USA). Spectral acquisition was performed by diamond attenuated total reflectance (MIR-130 

ATR) spectroscopy over the spectral range 4,000–650 cm-1, with spectral resolution of 8 cm-1 131 

and 16 scans per replicate. 132 

 133 

2.3 Enzyme assays  137 

Hydrolytic soil exoenzyme activities of phosphatase (PHO, EC number: 3.1.3.1, substrate: 138 

4-MUB-phosphate), β-glucosidase (GLU, EC number: 3.2.1.21, substrate: 4-MUB-β-D-139 

glucopyranoside), acetyl esterase (ACE, EC number: 3.1.1.6, substrate: 4-MUB-acetate) and 140 

leucine-aminopeptidase (LEU, EC number: 3.4.11.1, substrate: L-Leucine-7-AMC) were 141 

measured by fluorogenic methods using methylumbelliferyl (MUB) and 7-amino-4-142 

methylcoumarin (AMC). PHO, GLU, ACE and LEU are involved in phosphorus 143 

mineralization, release of glucose from cellulose, deacetylation of plant compound and 144 

degradation of protein into amino acids, respectively. Enzyme assays were performed 145 

according to Turner (2010) and following German et al. (2011) recommendations for 146 

measuring enzyme activity in soil solution. A range of buffered pH solutions (from 2.5 to 10, 147 

in increments of 0.5) was prepared by adjusting 50 mL of modified universal buffer with 1.0 148 

M HCl and 1.0 M NaOH, at 20°C, then diluting to 100 mL with deionized water. The 149 

corresponding composition for one litter of modified universal buffer was: 12.6g of boric acid, 150 

28g of citric acid, 23.2 g of maleic acid, 24.2 of Trizma base and 39g of NaOH. Note that the 151 
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buffered pH solution was diluted 4-fold in the final assay solution giving a concentration of 152 

each chemical of 25mM. Turner (2010) showed that such a concentration was necessary to 153 

maintain the required pH during the assay. For each sample, a soil slurry was prepared by 154 

adding 20 mL deionized water to 0.5 g of soil (fresh weight), then rotary shaking on a magnetic 155 

plate for 20 min at 28 °C. 10 mL of this soil solution was diluted to 25 mL with deionized water 156 

to give a 1:100 (w/v) soil-to-water ratio. Enzyme reactions were measured in 96-well 157 

microplates containing 50 µL of the specific buffer (25mM), 50 µL of soil slurry (1:400 (w/v) 158 

soil-to-water ratio) and 100 µL of substrate solution (saturated concentration, 200 µM). 159 

Microplates were then incubated in the dark for 3 h at 28 °C, with one fluorometric 160 

measurement every 30 min (BioSpa 8 Automated Incubator) to follow the kinetics of the 161 

reaction. Soil pH values were checked before and after incubation and a small drop of 0.1 to 162 

0.2 pH unit was observed after incubation (3h) which we consider being negligible compared 163 

to the entire pH range evaluated (2.5 to 10). 164 

For each sample, three methodological replicates (sample + buffer + substrate) and a 165 

quenched standard (sample + buffer + 4-MUB or 7-AMC) were used. Quenching curves were 166 

prepared with a serial dilution of 4-MUB solution for different amounts of fluorophore in the 167 

well (3000, 2000, 1000 pmol) (Puissant et al., 2015). For each substrate, a control including 168 

the 4-MUB- or 7-AMC-linked substrate and the buffer solution alone were used to check the 169 

evolution of fluorescence without enzyme degradation over the duration of assay. The 170 

fluorescence intensity was measured using a Cytation 5 spectrophotometer (Biotek) linked to 171 

the automated incubator (Biospa 8, Biotek) and set to 330 and 342 nm for excitation and 450 172 

and 440 nm for emission for the 4-MUB and the 7-AMC substrate, respectively. All enzyme 173 

activities were calculated in nmol of product per minute per g of dry soil and expressed as a 174 

percentage of the total activity measured across the entire pH range (from pH 2.5 to pH 10).  175 

 176 
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2.4 Soil microbial community composition 177 

For sequencing analyses of bacterial and fungal communities, DNA was extracted from 5 178 

replicate soil samples per treatment using 0.25 g of soil and the PowerSoil-htp 96 Well DNA 179 

Isolation kit (Qiagen) according to manufacturer’s protocols. The dual indexing protocol of 180 

Kozich et al. (2013), was used for Illumina MiSeq sequencing of the V3-V4 hypervariable 181 

regions of the bacterial 16S rRNA gene using primers 341F (Muyzer et al., 1993) and 806R 182 

(Youngseob et al., 2005); and the ITS2 region for fungi using primer ITS7f and ITS4r, (Ihrmark 183 

et al., 2012). Amplicon concentrations were normalized using SequalPrep Normalization Plate 184 

Kit (Thermo Fisher Scientific) prior to sequencing on the Illumina MiSeq using V3 chemistry. 185 

Fungal ITS sequences were analysed using PIPITS (Gweon et al., 2015) with default 186 

parameters as outlined in the citation. A similar approach was used for analyses of bacterial 187 

sequences, using PEAR (sco.h-its.org/exelixis/web/software/pear) for merging forward and 188 

reverse reads, quality filtering using FASTX tools (hannonlab.cshl.edu), chimera removal with 189 

VSEARCH_UCHIME_REF and clustering to 97% OTUs with VSEARCH_CLUSTER 190 

(github.com/torognes/vsearch). The Illumina MiSeq sequencing generated in average per 191 

sample 28205 reads for 16S rRNA gene and 40406 for ITS2 region.  192 

 193 

2.5 Metagenome Sequencing 194 

DNA was extracted from 2 g of soil from 4 field replicates for the two pH treatments using 195 

the PowerMax Soil DNA Isolation kit (Qiagen), and subsequently concentrated and purified 196 

using Amicon® ultra filters. Illumina libraries were constructed using the Illumina TruSeq 197 

library preparation kit (insert size < 500- 600 bp) and paired-end sequencing (2 x 150 bp) was 198 

conducted using the Illumna HiSeq 4000 platform. Prior to annotation, Illumina adapters were 199 

removed from raw fastq files using Cutadapt 1.2.1 (Martin, 2011), reads were trimmed using 200 

Sickle (Joshi and Fass, 2011) with a minimum window quality score of 20 and short reads were 201 
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removed (<20 bp). Preliminary analysis was conducted using MGRAST to functionally 202 

annotate with SEED subsystems and taxonomically annotate with refseq. We focused our 203 

analyses on bacterial β-glucosidases, since the bacteria dominate soil metagenomics gene 204 

libraries (Malik et al., 2017) and the β-glucosidases are genetically well characterized enzymes, 205 

known to be important for soil C transformations. For more detailed analyses of β-glucosidase 206 

sequences, all reads from the 8 samples were co-assembled using MEGAHIT (Li et al., 2015) 207 

with a minimum contig length of 1000. Sequences were translated and open reading frames 208 

were predicted using FragGeneScan (Rho et al., 2010). Contigs were assigned CAZY 209 

(Carbohydrate-Active enZYmes) subfamilies (Lombard et al., 2014) using a hmmer search 210 

(Finn et al., 2011) against dbCan2 profiles with an e-value of 1e-15 (Zhang et al., 2018). 211 

Contigs were taxonomically annotated against the NCBI Blast non-redundant protein database 212 

using Kaiju, a fast translated method, which identifies protein-level maximum exact matches 213 

(MEM’s) (Menzel et al., 2016). Regions of contigs annotated as relevant β-glucosidase CAZY 214 

domains (GH1, GH2, GH3, GH5, GH9, GH30, GH39, GH116) were extracted. To identify pH 215 

associations of these sequences, DNA reads from individual samples were mapped back to 216 

assembled contigs using BlastX, and mappings with an identity percentage of < 97% and/or an 217 

e-value of > 0.001 were discarded. Mapping outputs were used to tabulate the abundance of 218 

individual reads from the pH 5 and pH 7 samples forming each contig, and then the multinomial 219 

species classification method (CLAM) (Chazdon et al., 2011) was used to classify contigs with 220 

respect to soil pH designation: generalist- the contig is made up of sequences from both pH 5 221 

and 7 soils; pH specialist- reads making up a contig are predominantly from either pH5 or pH7 222 

soil; or “too rare” whereby the number of reads is too low to reliably classify.  223 

 224 

2.6 Statistical analysis 225 
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The effects of assay pH, soil field pH treatment and their interactions on enzyme kinetics 226 

were assessed by repeated-measures ANOVA. Fixed factors were sampling “assay pH” and 227 

“soil pH”, while soil field replicate was added as a random factor. One-way ANOVA was used 228 

to test the effects of enzymatic pH reaction on soil enzyme relative activity at each pH step 229 

(from 2.5 to 10). Differences in relative abundances of microbial taxa between soil pH 5 and 230 

soil pH 7 were assessed with one-way ANOVA. Assumptions of normality and 231 

homoscedasticity of the residuals were verified visually using diagnostic plots and a Shapiro-232 

Wilk test. To identify soil bacterial and fungal community composition patterns, a principal 233 

component analysis (PCA) based on Hellinger-transformed OTU data was performed 234 

(Legendre and Gallagher, 2001). Permutational multivariate ANOVA (PERMANOVA) was 235 

used to test the effect of soil pH field treatment on soil microbial community composition. All 236 

statistical analyses were performed under the R environment software R 3.6.0 (R Development 237 

Core Team, 2011), using the R packages vegan (Oksanen et al., 2013), ade4 (Dray and Dufour, 238 

2007) and NLME (Pinheiro et al.,2014). Fourier-transform infrared spectroscopy (FTIR) 239 

spectral data were further processed and analyzed using the hyperSpec package (Beleites and 240 

Sergo, 2011), 241 

 242 

3. Results 243 

3.1. Soil characteristics 244 

The pH values of the two soils were confirmed to be consistent with the treatments applied, 245 

with pH measured at 5.5 and 7.5 for the pH 5 and pH 7 plots, respectively. Liming soil from 246 

pH 5 to pH 7 significantly increased by ~20% the total C and N contents (Table 1). Soil 247 

moisture, total P and C: N were not significantly different between soil pH 5 and soil pH 7 248 

(Table 1). Soil infrared mid-infrared spectroscopy was used to fingerprint soil mineralogy and 249 

to assess heterogeneity within and between the two soil pH field treatments. The fingerprints 250 
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confirm that soil mineralogy is consistent within and between pH field treatments 251 

(Supplementary materials, Fig.1). The most prominent feature of the FTIR spectra 252 

corresponded to peaks indicative of phyllosilicate mineral compound absorption (kaolinite) 253 

with peaks at 3696, 3621, 1003, 912, 692 cm-1 (Dontsova et al., 2004). The 774 cm-1 peak is 254 

likely to be an indicator of quartz content and the 1642 cm-1 peak corresponds to the H–O–H 255 

bending band of water (Stuart, 2004, Dontsova et al., 2004). Small differences in peak 256 

amplitude between pH 5 and pH 7 soils are the result of small changes in the relative 257 

concentrations of compounds but overall the two soils presented very similar mineralogy 258 

profiles (according to the peak wavelength positions) which indicates a shared ancestral origin.  259 

 260 

3.2. Soil microbial community composition 261 

The composition of soil bacterial and fungal community determined by amplicon 262 

sequencing (16S rRNA genes and ITS region, respectively) were clearly distinct between soil 263 

pH 5 and pH 7 for both communities (Fig. 1; PERMANOVA: R2 = 0.82, p<0.001 for fungal 264 

community and, R2 = 0.51, p-value: <0.01 for bacterial community). As observed on the PCA 265 

(Fig. 1) and PERMANOVA results, fungal community structure was more affected than the 266 

bacterial community by the liming treatment. Stacked bar plots representing the relative 267 

proportions of microbial phyla demonstrated relatively greater changes in the fungal compared 268 

to the bacterial community from pH 5 to pH 7 (Fig. 2). Basidiomycota was significantly more 269 

abundant at soil pH 5 (83%, p<0.001, Fig. 2) whereas their relative abundance decreased at soil 270 

pH 7 (36%) to the advantage of Ascomycota and Zygomycota taxa (30% and 24% at soil pH 7 271 

compared to 4.5% and 4% at soil pH 5, p<0.01, respectively, Fig. 2). Concerning the bacterial 272 

community, higher relative abundances of the phyla Acidobacteria and Verrucomicrobia were 273 

observed at pH 5 versus pH 7 (22% vs 16%, p=0.02; 26% vs 18%, p<0.01, respectively Fig. 274 
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2). In contrast, a higher relative abundance of Proteobacteria and Actinobacteria phylum was 275 

observed at pH 7 versus pH 5 (33% vs 27%, p=0.01; 11% vs 7%, p:<0.01, respectively Fig. 2).  276 

 277 

3.3. Extracellular enzyme pH optimum assays 278 

The pH of the enzymatic reaction had a highly significant impact on the catalytic efficiency 279 

of all enzymes examined (Fig. 3, Table 2). At extremely low pH (2.5), activity was low or 280 

could not be detected for leucine aminopeptidase and acetate esterase. For each enzyme, 281 

changes in the assay pH strongly impacted the relative enzyme activity with a 15-fold increase 282 

between lowest and highest activity at the pH optimum (Fig. 3). After reaching the optima, the 283 

activity decreased more or less rapidly depending on the assay. Regardless of the initial pH of 284 

the soil, pH optima appeared to be specific to the enzyme studied (Fig. 3). The pH optimum of 285 

leucine aminopeptidase and acetyl esterase enzymes were close to neutrality, with an average 286 

pH optimum at 7.2 and 6.7, respectively (Fig. 3). The pH optima for β-glucosidase enzyme was 287 

acidic with an average of pH 4.3 (Fig. 3). Two pH optima were observed for 288 

phosphomonoesterase, one acidic (pH 5.7) and the other alkaline (pH 10), although the alkaline 289 

optima may not have been fully reached. 290 

Maintaining field soil at either pH 5 or pH 7 for over 100 years had a strong significant 291 

impact on the pH optimum of all enzymes (Table 2). Enzyme pH preference and optima shifted 292 

between acidic and alkaline soil whatever the enzyme considered, though this was more 293 

pronounced for phosphatase, β-glucosidase and acetate esterase compared to leucine-294 

aminopeptidase (mixed model, Table 2). For each enzyme, the optimum pH differed between 295 

the two soils by 0.5 pH units (Fig.3). The interaction between enzymatic assay pH and field 296 

soil pH was significant for each enzyme assayed, indicating that the magnitude of the difference 297 

in enzyme activity between pH 5 and pH 7 soil is dependent upon assay reaction pH (Table 2). 298 

A second optimum at pH 10 was observed for phosphatase and acetyl esterase from pH 7 soil, 299 
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in contrast to little or no activity of these enzymes from pH 5 soil (Fig. 3A, 3D). Similarly, the 300 

relative activity of enzymes from pH 5 soil was always higher to enzymes from pH 7 in acidic 301 

assay conditions (< pH 5.5), while the relative activity of enzymes from pH 7 soil was always 302 

higher than enzymes from pH 5 soil in more alkaline conditions (> pH 7). 303 

 304 

3.4. Soil metagenomics  305 

The amplicon sequencing results revealed large differences in broad taxa between the two 306 

soils of different pH. To determine whether similar shifts were also observed in associated 307 

enzymatic gene sequences, shotgun metagenomes datasets generated from the same soils were 308 

utilized. Analyses of the functional and taxonomic annotations of β-glucosidase related genes 309 

using subsystems annotation revealed greater abundance of sequences from Acidobacteria in 310 

the pH 5 compared to pH 7 soil (15.9% vs 1.9%, p-value: 7.4 x 10-5; Fig.4); and conversely 311 

more Actinobacterial β-glucosidase genes in pH 7 soils (34.6% vs 43.4%, p-value: 6 x 10-3; 312 

Fig.4). We further tested differences in abundance by normalizing to a housekeeping gene 313 

(gyrB), and found significant differences only for Acidobacterial β-glucosidase genes, which 314 

were significantly enriched at pH 5 soil compared with the pH 7 soil, being on average twice 315 

as abundant (Supplementary materials, Fig.2) .  316 

It is, therefore, apparent at the level of broad phyla, large increases of Acidobacterial β-317 

glucosidases in acid soils are associated with the shift in exoenzyme pH optimum . However, 318 

this does not rule out that other phyla may have distinct pH responsive sub clades. To assess 319 

this, we assembled pooled metagenomic sequence reads and extracted contigs containing β-320 

glucosidases following functional classification using CAZY and taxonomic annotation to 321 

RefSeq. β-glucosidase contigs were then classified as pH specialist (pH 5 or 7) or generalist 322 

using a multinomial classification method (CLAM) typically used to classify species’ habitat 323 

preference based on surveyed counts, but here used on the number of reads per individual 324 
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sample from the two treatments mapping to each β-glucosidase contig. The majority of 325 

Acidobacteria sequences were classed as pH 5 specialists, suggesting that not only is there a 326 

higher relative abundance of Acidobacteria β-glucosidase sequences at pH 5 but that the 327 

majority of these sequences appear to be unique to pH 5 soils (Fig. 5). Sequences annotated as 328 

other dominant phyla such as Actinobacteria and Proteobacteria appeared to have a higher 329 

proportion of pH 7 specialist and generalist sequences (supplementary materials, Table 2), 330 

whilst Verrucomicrobia possessed a distinct sub-clade of pH 7 specialist sequences (Fig. 5). 331 

 332 

4. Discussion 333 

4.1 Soil exoenzyme pH optima are adapted toward local pH 334 

The activity of enzymes involved in C, N and P cycles were all found to be strongly 335 

dependent on the pH of the assay. Beta-glucosidase had an acidic pH optimum (pH=4.3), which 336 

is generally observed for glycosidase enzymes (Niemi and Vepsäläinen., 2005; Sinsabaugh et 337 

al., 2008; Turner., 2010), whereas leucine aminopeptidase had a neutral pH optimum (7.2) as 338 

is commonly reported for proteases (Niemi and Vepsäläinen., 2005; Sinsabaugh et al., 2008). 339 

Acetyl esterase pH optima were at pH 7 for both soils studied, also in line with previous 340 

findings (Degrassi et al., 1999; Humberstone and Briggs, 2000). However, source soil pH had 341 

a significant and strong impact on soil exoenzyme pH optimum response curves. For each 342 

enzyme studied, extracellular enzymes originally from pH 5 soil were more adapted towards 343 

acidic pH conditions, whereas pH 7 soil possessed enzymes adapted towards more alkaline 344 

conditions (Fig. 3). Interestingly, the enzymatic pH optima observed in this study did not 345 

correspond exactly to the local soil pH, presumably due to constraints within the active sites 346 

that enable physicochemical function to be maintained. It is possible that the responses 347 

observed are due to the presence of isoenzymes, which have different kinetic properties adapted 348 

toward the local soil pH. Alkaline and acid phosphatases are the most studied example of soil 349 
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isoenzymes (Nannipieri et al., 2011), and our phosphatase pH response curves illustrate this 350 

with a marked bimodal distribution, and extremely low activity for the pH 7 soil compared to 351 

the pH 5 soil, at acidic assay pH. Acetyl esterase also exhibited a bimodal response but only in 352 

the pH 7 soil, which also exhibited a second pH optimum developing at pH 10.  353 

Previous studies have observed different pH optima for the same enzyme across 354 

different soil types (Niemi and Vepsäläinen, 2005; Turner, 2010), though the underlying causes 355 

responsible for this were not identified. Mechanisms proposed include either abiotic 356 

stabilization by soil chemical properties which alter the conformation of the enzyme and thus 357 

kinetics; or differences in the microbes that produce the enzymes. Our experiment, conducted 358 

on the same soil type, provides strong evidence for microbial control, mediated through altered 359 

soil pH. Shifts in enzyme pH optima due to enzyme sorption to different clay types (Leprince 360 

and Quiquampoix, 1996; Ramirez-Martinez and McLaren, 1966; Skujins et al., 1974) was 361 

discounted as IR based soil chemistry fingerprints (incorporating information on clay content) 362 

were very similar between the pH 5 and pH 7 soils (Supplementary materials, Fig.1). Moreover, 363 

the dilution factor used to perform enzyme assays (1:400 soil-to-water ratio) helped to reduce 364 

potential effect of small increases in soil total C content and total N observed between the pH 365 

5 and pH 7 soils. Further strong evidence for biotic mechanisms is provided by the consistent 366 

non-random shift in optima towards the source soil pH and the presence of bi-modal pH 367 

optimum curve indicating clearly the presence of isoenzymes. 368 

 369 

4.2 Potential microbial mechanisms governing exoenzyme local adaptation to pH 370 

Bacterial and fungal communities were found to be clearly distinct between the two pH soils 371 

investigated, as anticipated from previous work in the Park Grass long-term experiment 372 

(Zhalnian et al., 2015; Liang et al., 2015). Such differences in microbial community 373 

composition may be responsible for the production of different versions of the same enzyme 374 
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(Fig. 3). For example, the Acidobacteria phylum has been reported to possess more diverse and 375 

abundant genes encoding for carbohydrate-decomposing enzymes than Proteobacteria (Lladó 376 

et al., 2019; Lladó et al., 2016). To explore this further, we performed metagenomic sequencing 377 

to examine whether the change in enzyme pH preference in the two soils was associated with 378 

differences in functional diversity. Focusing specifically on the β-glucosidase exoenzyme, our 379 

results clearly showed that different proportions of bacterial phyla produced β-glucosidases 380 

across the two soils. Notably, the Acidobacteria contributed more to the β-glucosidase gene 381 

pool in the acid soil, and this contribution was more marked than would be expected from 382 

examining abundances based on housekeeping genes alone. Furthermore, sub clades of 383 

acidobacterial glucosidase were unique in being exclusively found in acid soils, with other 384 

broad taxa possessing both generalist enzymes, and a mix of pH specialized genes for either 385 

acid or neutral pH. This indicates that acidophilic acidobacterial lineages may possess 386 

enzymatic adaptations which underpin their demonstrated competitiveness in acidic soils 387 

(Griffiths et al., 2011), and confirms recent genomic studies which have identified enzyme 388 

production for carbohydrate degradation as a key feature of these organisms (Eichorst et al., 389 

2018).  390 

Our results highlight the utility in linking metagenomics approaches to measures of 391 

specific enzymatic functional traits (pH optimum), with the demonstration of both biodiversity 392 

and functional differentiation caused by manipulated soil pH change. In addition the use of 393 

molecular approaches here adds to the emerging molecular understanding of the biodiversity 394 

of soil enzymes (Berlemont et al., 2013; Heath et al., 2009; Lidbury et al., 2017), and provides 395 

new information on the functional capacity of previously undiscovered soil microbial 396 

biodiversity. However, we cannot empirically prove that differentially abundant enzyme 397 

producers are directly responsible for altered efficiency, since it is currently not possible to 398 

assess the diversity of enzymes functionally active within the laboratory-based assays, or 399 
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indeed the soil. New advanced research is required to determine the relevance of alterations in 400 

enzyme producing organisms for soil processes. With respect to pH effects, further insight 401 

could be achieved through new computational approaches predicting the pH optima based on 402 

amino acid sequence composition (Yan and Wu, 2012; Lin et al., 2013), or in vitro enzyme 403 

testing of novel cultured isolates or expressed metagenomic sequences. We also cannot 404 

discount evolutionary processes acting within non pH responsive taxa contribute to altered soil 405 

pH optima, e.g. through discrete mutations affecting enzyme active sites (Ohara et al., 2014). 406 

Whilst a number of evolutionary adaptations to pH have been documented for bacterial strains 407 

(Harden et al., 2015) there is little information in the literature on specific exoenzyme 408 

adaptations; and whether these result in wider trade-offs with respect to resource acquisition 409 

also remains an open question. Addressing these important questions will bring new 410 

understanding of the microbial ecological mechanisms governing soil biochemical function 411 

under conditions of environmental change; and advances could allow better model 412 

parameterization. Specifically, we highlight that incorporation of enzymatic temperature 413 

acclimation into models has widely been discussed despite many mechanistic uncertainties 414 

(Bradford, 2013; Nottingham et al., 2019; Allison et al., 2018). Our results revealing strong pH 415 

adaptation of both enzymatic optimum activity and producer diversity therefore offers an 416 

important area for further study within a modelling context, since microbial pH responses are 417 

largely predictable (Fierer et al., 2017; Griffiths et al., 2011), and soil pH is highly sensitive to 418 

land use and climatic change. 419 

 420 

Conclusion 421 

We have specifically demonstrated that the pH optimum of soil exoenzymes adapt 422 

towards source soil pH, using soils from a long-term pH manipulation experiment. This was 423 

found for all enzymes tested with implications for understanding the resilience of biochemical 424 
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transformations of carbon, nitrogen and phosphorous across soil systems. Amplicon 425 

sequencing and metagenomic data also demonstrated concurrent shifts in taxonomic and 426 

functional communities with pH governed shifts in pH optima, providing further evidence that 427 

changes in functional microbial communities may underpin pH related change in enzyme 428 

kinetic efficiency. These findings call for more research into the underlying genetic controls of 429 

enzymatic efficiency in relation to pH, as well as deeper ecological understanding of adaptation 430 

mechanisms. More generally, our findings have implications for modelling the efficiency of 431 

different microbial enzymatic processes under changing environmental conditions; and soil pH 432 

change should be considered, alongside previously documented temperature acclimation, in 433 

new carbon models incorporating enzymatic responses to climate change.  434 
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  Units Low pH (5) High pH (7) 

pH (H2O) - 5.5 ± 0.0 a 7.3 ± 0.1 b 

Soil moisture % 30.2 ± 1.1 31.5 ± 1.2 

Total carbon content % 3.0 ± 0.1 b 3.9 ± 0.3 a 

CN ratio - 10.7 ± 0.1  11.0 ± 0.1  

Total nitrogen % 2.8 ± 0.1 b 3.5 ± 0.2 a 

Total phosphorus mg/kg 54.0 ± 12.9  59.3 ± 2.5  

 690 

 691 

Table 1. Effect of soil field pH treatment (soil pH 5 vs soil pH 7) on soil properties. 692 

Values represent the mean (n=5) with the associated standard error (SE). Bold letters indicate 693 

significant differences (p<0.05).  694 

 695 

 696 

Table 2. Effects of pH, soil treatment and interactions of both factors on relative enzyme 697 

activity at different assay pH (mixed model, overall repeated measures ANOVA tests). 698 

 699 

 700 

 701 

 702 

 703 

 704 

  
Assay pH Field soil pH  

Assay pH x field soil 
pH  

F-value P-value F-value P-value F-value P-value 

Leucine amino-peptidase 190.1 <0.001 6.9 0.03 3.42 <0.001 

Phosphatase 89.1 <0.001 51.4 <0.001 44.2 <0.001 

ß-glucosidase 88.4 <0.001 23.4 <0.01 33.7 <0.001 

Acetate esterase 397.2 <0.001 30.9 <0.001 38.4 <0.001 
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FIGURE CAPTIONS 705 

 706 

Fig. 1. Principal component analysis (PCA) ordination of soil bacterial (A) and fungal (B) 707 

communities from grassland soil at either pH 5 or 7. The orange and blue colors correspond to 708 

pH 5 and pH 7 soils, respectively and ellipses indicate 95% confidence interval.  709 

 710 

Fig. 2. Stacked bar plots showing the mean relative proportion of abundant phyla (>0.5 %) for  711 

bacterial (A), and fungal communities (B), in grassland soils maintained long-term at either pH 712 

5 or 7. 713 

 714 

 715 

Fig. 3. pH optima of acetylesterase (A), beta-glucosidase (B), leucine aminopeptidase (C), 716 

phosphomonoesterase (D) from grassland soils maintained at either pH 5 or 7. Activity is 717 

expressed as a percentage of the total activity measured across the entire pH range assayed 718 

(from pH 2.5 to pH 10). The orange and blue lines correspond to pH 5 and soil pH 7 soils, 719 

respectively. Shaded area represents 95% confidence intervals around the trend line using a t-720 

based approximation (LOESS smoothing).   721 

 722 

Fig. 4. Mean abundances of beta-glucosidase genes from different microbial phyla, from MG-723 

RAST annotated metagenomes (SEED Subsystems) from grassland soils maintained at either 724 

pH 5 or 7.  725 

 726 

Fig 4. Detailed taxonomy and pH associations of β-glucosidase sequences assembled from 727 

metagenomes, showing Acidobacterial β-glucosidases are predominantly associated with the 728 

more acid soil. Inner tree and labels depict the taxonomy (from phylum to genus) of β-729 
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glucosidase gene assemblies constructed from pooled metagenomes from the pH 5 and pH 7 730 

soils (n=4). Outer ring shows putative pH associations of each assembled gene, following 731 

tabulation of reads mapped to the contigs from each of the 8 soil metagenomes, and statistical 732 

classification using a multinomial model based on relative abundance across the two soils. 733 

 734 

 735 

 736 

 737 

 738 

 739 
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