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Abstract

Soil moisture monitoring is a fundamental process to enhance agricultural outcomes and to

protect the environment. The traditional methods for measuring moisture content in the

soil are laborious and expensive, and therefore there is a growing interest in developing

sensors and technologies which can reduce the effort and costs. In this work, we propose

to use an autonomous mobile robot equipped with a state‐of‐the‐art noncontact soil

moisture sensor building moisture maps on the fly and automatically selecting the most

optimal sampling locations. We introduce an autonomous exploration strategy driven by

the quality of the soil moisture model indicating areas of the field where the information is

less precise. The sensor model follows the Poisson distribution and we demonstrate how to

integrate such measurements into the kriging framework. We also investigate a range of

different exploration strategies and assess their usefulness through a set of evaluation

experiments based on real soil moisture data collected from two different fields. We

demonstrate the benefits of using the adaptive measurement interval and adaptive

sampling strategies for building better quality soil moisture models. The presented method

is general and can be applied to other scenarios where the measured phenomena directly

affect the acquisition time and need to be spatially mapped.
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1 | INTRODUCTION

Management of water resources is of considerable concern in

different parts of the world, with many areas facing prolonged

droughts, while others experience devastating floods. The availability

of water in the soil is essential for vegetation. In an agricultural

setting, crop health depends greatly on soil moisture. It is precisely

for this reason that soil moisture monitoring is key to improving

agricultural processes. Perhaps the most obvious advantage of

technologies for obtaining high‐resolution soil moisture maps is that

they would enable highly efficient irrigation planning, for example,

providing an accurate estimate of the quantity of water that should

be put into a field and its required spatial distribution across the field.

Soil moisture is typically assessed either by a direct but lengthy

procedure involving collecting physical soil samples followed by lab

measurements, or by hand‐held instruments used to measure moisture

indirectly through proxies such as surface tension (manometers), or

changes in soil conductivity (e.g., time‐domain reflectometry; Noborio,

2001). All of these methods are very laborious, time‐consuming and

expensive. Recent advances in sensing technology introduced a new,

noncontact method for measuring soil moisture using fast neutron

detectors (Zreda, Desilets, Ferr, & Scott, 2008). The neutrons are
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generated by cosmic rays and are reflected from the soil. The reflected

neutron count is directly proportional to soil moisture content. Such

sensors were successfully deployed at static locations covering large

areas of land (Evans et al., 2016) but also as high‐resolution variants with

a reduced field of view and increased sensitivity (Schrön et al., 2017).

The most common method for creating soil moisture maps is to use

data that are manually collected at predetermined locations in the field

and extrapolate the expected measurements for unvisited regions using

kriging or Gaussian process regression (Matheron, 1963; Williams &

Rasmussen, 2006). This is a costly and laborious process, especially in the

case of soil moisture monitoring, where the methods and instruments

used to take measurements across the field require a high amount of

labor and postprocessing. For this reason, there is a growing interest in

developing instruments and methodologies to help reduce the effort and

costs while improving the quality of the resulting soil moisture models.

In this work, we propose to use an autonomous mobile robot

equipped with a noncontact soil moisture sensor that builds soil moisture

maps on the fly and automatically selects the most optimal sampling

locations. The robot is guided by an autonomous exploration strategy

driven by the quality of the soil moisture model (i.e., kriging variance [KV])

which indicates areas of the field where the information is less precise,

improving overall model quality. The employed fast neutron counting

sensors provide a special category of measurements in which the

acquisition time directly depends on the intensity of the phenomenon: In

our case, the sensor registers more neutrons in drier soils. We model the

sensor using the Poisson distribution and use a special kriging variant for

this type of measurements. As a result, the exploration strategy plans not

only the optimal sampling location but also the required acquisition time

at each sampling location.

The contributions of this work are as follows:

• Application of a novel fast neutron counting sensor for robotic‐
assisted spatial mapping of soil moisture;

• Integration of the Poisson measurement model into the kriging

estimation and exploration framework, which devises optimal

spatial locations and measurement intervals, improving the

resulting moisture models;

• Evaluation and validation of the proposed framework on data

collected from two different field environments.

The remainder of the paper is structured as follows: Section 2

presents related work in soil moisture surveying and robotic exploration,

followed by Section 3, which details our approach to Poisson kriging (PK)

and exploration for soil moisture mapping using a mobile robot. The

experimental framework is presented in Section 4, followed by results

and their analysis in Section 5, and final conclusions in Section 6.

2 | RELATED WORK

Robotic environmental monitoring applications have attracted a lot

of attention in the last few years (Dunbabin & Marques, 2012). One

of the advantages of using robots for environmental modeling and

monitoring is that they can build models on the fly. At the same time,

many authors have discussed how to use the model itself to plan new

observations for data acquisition that improve the overall model. For

example, Kerry, Oliver, and Frogbrook, (2010) demonstrated that

kriging semivariograms are highly useful for sampling planning in

precision agriculture. They proposed to use ancillary information to

estimate a semivariogram and thus determine the spatial frequency

of sampling based on the semivariogram parameters.

Other researchers (Oliver & Webster, 1986) propose the

generation of an initial set of samples to obtain a semivariogram

that can be extrapolated to find new sample positions. B. Marchant

and Lark (2007) proposed an adaptive approach for optimizing

reconnaissance surveys. They sampled at preplanned positions and

calculated the probability density function of the sampling density

required for the main survey in a Bayesian framework. If the

requirements were not met, the number and location of observations

within further phases were selected to reduce the uncertainty of the

required sampling density. However, the effort required to survey a

soil variable and simultaneously build and analyze the variance of the

kriging model of the soil meant that these authors stopped short of

planning the entire sampling procedure based on kriging models.

Robots, on the other hand, are able to create and update

models of their operational environments through robotic ex-

ploration. A common approach is to plan trajectories that

completely cover the area assuming some prior knowledge of the

environment (Rodias et al., 2017). Other well‐known exploration

techniques drive the robot towards unmapped areas of the

environment. For example, greedy approaches such as Koenig,

Tovey, and Halliburton (2001) drive the robot towards the nearest

location where new information can be gained. In frontier‐based
exploration (Yamauchi, 1997), the robot is driven towards the

boundary between the known and unknown parts of the environ-

ment, while information‐driven “next‐best‐view” methods use

reward functions to predict the utility of an unexplored location

(Pulido Fentanes, Zalama, & Gomez‐Garcia‐Bermejo, 2011).

Authors like O’Callaghan and Ramos (2011); Vasudevan, Ramos,

Nettleton, and Durrant‐Whyte (2009) propose the use of environ-

mental representations that are based in Gaussian processes, they

argue that these representations overcome many of the limitations

of occupancy grid maps such as scale and provide information

about model quality which can be extremely useful for robotic

exploration (Jadidi, Miró, Valencia, & Andrade‐Cetto, 2014).
Many authors have proposed informative path planning (IPP)

techniques for modeling physical phenomena with an unknown spatial

distribution. These techniques address how to plan a path that

maximizes sensor information (Binney, Krause, & Sukhatme, 2013)

and can be classified into two approaches: Those that depend only on a

priori information about the environment (Hollinger & Sukhatme, 2013)

and adaptive sampling techniques that can be modified depending on

the observations made (Sadat, Wawerla, & Vaughan, 2015). Yang, Keat

Gan, and Sukkarieh (2013) propose to use a Gaussian process to model

the occupancy of a cluttered environment and use Randomly‐exploring
Random Trees to guarantee a collision‐free full exploration of the
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environment. Martinez‐Cantin, de Freitas, Doucet, and Castellanos,

(2007) propose to use Gaussian process variance to plan paths that

increase robot knowledge of the environment whilst minimizing

position uncertainty. In Ghaffari Jadidi, Valls Miro, and Dissanayake

(2019) an approach to generate dense maps using incremental

information gathering is proposed, in this work the authors present a

framework that uses an automatic stopping criteria based on

information gain versus information gathering cost and simultaneously

considers the uncertainty of the robots position and environment

model to plan the robot trajectory.

Some authors have opted to use IPP to model different variables

to plan robot actions. For example, Gao et al. (2018) propose the use

of an informative sampling technique to minimize the total distance

traveled by a fleet of phenotyping robots. To do this, they model the

environment using Gaussian processes and use the model variance to

plan the most informative paths for the fleet. R. Marchant and Ramos

(2014) use Gaussian processes to plan the paths that guarantee both

to observe the phenomenon of interest and improve the modeling of

the same phenomenon for environmental monitoring applications

such as ozone concentration across the USA. More recently, Popovic

et al. (2017) proposed an adaptive IPP methodology to map green

biomass in an agricultural setting.

Other authors have chosen to use OK to model in‐field
phenomena. Glaser, Schaefer, and Burgard (2018) use it to model

soil properties perceived with a multispectral camera, and then use

the resulting model to improve the robot localization. Diggle, Tawn,

and Moyeed (1998) demonstrated that using kriging methods

designed for Gaussian variables with Poisson processes can over‐
smooth the data and underestimate the spatial extremes of the

intensity, for this reason, they proposed a new distributional

framework which allows embedding nonlinear data in a linear kriging

methodology. An alternative solution for this problem (Goldberg,

Williams, & Bishop, 1998; Kersting, Plagemann, Pfaff, & Burgard,

2007) is to use Gaussian processes that model variables and its

incertitude as independent Gaussian processes, these methods are

known as heteroscedastic Gaussian process regression.

Within the kriging family, Kim and Shell (2014) proposed

augmentation of OK to enable modeling of ocean current dynamics

which they use for adaptive path planning in the field in ocean multi‐
robot scenarios. Pulido Fentanes, Gould, Duckett, Pearson, and

Cielniak (2018a) proposed a robotic exploration methodology aimed

at building soil condition maps using ordinary KV as a reward

function for exploration. The current work builds upon this approach

to model soil moisture measured with a novel sensor that does not

follow a normal distribution. To achieve this we combine PK with a

kriging‐based exploration methodology.

3 | METHODOLOGY

In this work, we propose a kriging‐based exploration pipeline for

agricultural mobile robots to facilitate efficient mapping of soil

moisture. The framework combines a unique sensor model, an online

spatial mapping component and an exploration strategy to guide the

robot to the next best sampling location.

We consider a special category of measurements which are based

on counting, and hence follow a Poisson distribution. An inherent

property of such measurements is that their uncertainty directly

depends on the length of the measurement interval. In our scenario,

we use a robot‐mounted soil moisture sensor (see Section 3.1) which

counts low energy neutrons as a proxy for soil moisture. Therefore,

the soil moisture level will affect the amount of time the robot

spends at each sampling location. For the spatial mapping, we use a

version of ordinary kriging (OK) which incorporates measurements

following a Poisson distribution (see Section 3.3). We use the KV as a

reward function for the exploration strategy to plan the optimal

location for each subsequent measurement. Section 3.4 discusses the

different exploration strategies that have been applied in this work.

The original kriging framework was presented in our previous

work for mapping soil compaction (Pulido Fentanes et al., 2018a). In

this paper, we generalize and extend the approach to take into

account measurements following a Poisson distribution. This results

in exploration strategies which not only consider the optimal

sampling location but also adjust the measurement duration for

each reading to ensure a high‐quality model.

3.1 | Soil moisture measurement using a cosmic‐ray
sensor

The main sensor used in this work is based on measuring fast

neutrons, which are generated by cosmic rays and reflected from the

soil (Zreda et al., 2008). The intensity of the reflected neutrons is

affected by the hydrogen in the soil, and hence provides an indication

of the soil moisture content. A neutron detector is a tube containing a

gas that can convert thermal neutrons into detectable electrons by

ionization. Since the detectors are sensitive to fast neutrons only, the

low energy neutrons (after colliding with the hydrogen atoms) are not

counted. As a result, a higher neutron count means more fast neutrons

and corresponds to dryer soil. To improve the sensitivity of the

detector to fast neutrons, a polyethylene shield is used as a moderator.

Several correction procedures need to be applied on the acquired

neutron counts (which we refer to as the raw neutron count Nraw) to

account for variations in background cosmic‐ray intensity, atmo-

spheric pressure, and humidity (Evans et al., 2016). The reference

values for the corrections are established during a calibration

procedure which requires reference soil moisture values to be

established by direct soil moisture measurements using traditional

equipment. The correction factors include:

• Cosmic‐ray intensity:

=F
C
C

,C
0 (1)

where C is the measured neutron count rate (from the nearest

monitoring station) and C0 is the value measured during

calibration.

124 | PULIDO FENTANES ET AL.



• Pressure:

= [ ( − )]F P Pexp ,P 0β (2)

where P is the measured barometric pressure (using a barometer), P0

is an arbitrary reference value (e.g., 1,010 hPA) and β is the

barometric pressure coefficient established during calibration.

• Humidity:

= + ( − )F Q Q1 0.00054 ,Q 0 (3)

where Q is the measured humidity (derived from temperature

measurements) and Q0 is the average humidity during calibration.

The corrected neutron count Ncrr is obtained by multiplying the

raw neutron counts by the correction factors:

= ⋅ ⋅ ⋅N N F F F .P Q Ccrr raw (4)

Ncrr can then be used to calculate volumetric water content

(VWC), which provides the final measure of the soil moisture. Since in

this paper we mainly work with the corrected neutron counts Ncrr, we

refer the interested readers to Evans et al. (2016) for further detail of

the exact conversion procedure.

The summarized methodology for measuring soil moisture has

been used successfully by Evans et al. (2016), who have established

a network of soil moisture monitoring stations in the UK covering

an area of 12 ha. Although this coverage is useful for large scale soil

moisture assessment, its application to individual fields in agricul-

ture is limited. To achieve higher spatial resolutions, we have

employed a high‐sensitivity version of the sensor consisting of 12

neutron detectors with a bespoke polyethylene shield to limit the

detection footprint of the sensor to approximately 10 m. The sensor

mounted on our agricultural mobile robot Thorvald can be seen in

Figure 3.

3.2 | Poisson distribution measurements and
sampling regime

Our soil moisture sensor provides the corrected neutron counts Ncrr.

The appropriate probabilistic model for modeling count data and

events is the Poisson distribution, with parameter λ representing the

average count rate over a period of 10 s. However, the uncertainty σ

in the measurement depends directly on total neutron count over the

measurement time, and is calculated as follows:

=
N

N
.crr

crr
σ (5)

Figure 1 shows the histogram reading and the evolution of

the λ and σ parameters for the same measurement over time.

Figure 1 shows how the standard error and variance decrease

(a) (b)

F IGURE 1 An example measurement from the cosmic‐ray sensor (a) distribution of fast neutron counts, (b) evolution of the count rate and
measurement uncertainty over time, black dots denote 1 out of 20 sensor readings for illustrative purposes [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Measurement uncertainty σ over time for different λ

values and sample thresholds for the adaptive measurement interval
regime [Color figure can be viewed at wileyonlinelibrary.com]
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over time, meaning that readings with longer duration achieve

higher quality.

The sampling regime is the criterion used to decide how long each

measurement should last. In this scenario, the quality of the

measurement is directly correlated to the number total number of

observed events (Ncorr). For this reason, we propose to use two

different methodologies using fixed measurement intervals (FMI), in

which each measurement lasts for a predetermined amount of time,

or adaptive measurement intervals (AMIs), under which each

measurement will last until a minimum level of quality is obtained.

This paper compares both regimes and analyses what happens to the

exploration process with each sampling regime, and more specifically,

what is their effect on the final model quality.

The AMIs regime uses a threshold typically defined in terms of mσ

(see Equation (5)) to determine the duration of a measurement. In

practice, this means that in this case, the robot will stay at each

location until the normalized standard error falls below a predeter-

mined percentage of the total amount of counts, so that the robot

will stay longer in places were the count rates are lower (or the soil is

wetter in this scenario) and spend less time in locations with higher

count rates.

Figure 2 illustrates the evolution of the normalized standard

error ( mσ ) over time for different rates (λ), where the dashed lines

indicate thresholds that can be used for this sampling regime, the

time at which the threshold lines intersect the standard error lines,

represents the point at which the measurement is considered

complete. This guarantees a maximum incertitude limit for each

measurement which adapts to the actual neutron rate forcing the

robot to stay longer at places where the rate of events is lower

than usual or to leave as soon as possible in places with higher

rates.

3.3 | Poisson kriging

OK has proven to be an effective method for interpolating spatial

data when the data’s main source of error is intrinsic to the

measurement technique, for example, when it depends on the

precision of an instrument. However, when the variance of the

measurement depends on the phenomenon itself, as in the case of

events that can be modeled using a Poisson distribution, OK does not

have a way to incorporate the different variances from each data

point.

For this reason, different authors have proposed specific

implementations of kriging methods that deal with data that is not

normally distributed. Monestiez, Dubroca, Bonnin, Durbec, and

Guinet (2006) presented a kriging methodology to model whale

populations using data from observers on ferries and cargo ships,

which can be modeled using a Poisson distribution. This approach is

known as PK and has since been used to model phenomena as

diverse as Cancer mortality (Goovaerts & Gebreab, 2008, Feb 04)

and gamma‐ray spectral mapping (Reinhart, 2013). For this reason,

we have chosen this methodology for the current work.

PK provides an estimate ˆ ( )Z x0 for a variable Z at unknown

location x0 while assuming a constant unknown mean over its

neighborhood, although in this case the observations ( )Z xi are

dependent on some underlying mean count rate and the amount of

time spent at each location. The estimate is a weighted linear

combination of the available observation = ( )z Z xi i and the amount

of time spent at each location ti from a set of locations xi . The

estimator is thus described as follows:

∑ˆ ( ) = = …
=

Z z i nx , 1, , ,
i

n

i
w
t0

1

i

i
(6)

where ∑ =
=

w 1i
n

i1 to ensure unbiased estimates. To correctly

estimate the values at x0 the weights = [ … ]w ww , , n
T

1 must be

calculated. This can be achieved by solving the PK system, which is a

linear system of +n 1 equations.

∑ + + = = …
=

ˆw C w C i nfor 1, , ,
j

n

ij ij i
m
t ix

0
i 0μ (7)

where Cij is the covariance of the observed values, Cix0 is the

covariance at the prediction location x0, and μ is a Lagrange factor

which ensures the optimal solution. Finally, m̂ is estimated from the

data as a weighted average of the count rates, where the weights

correspond to the observation times.

F IGURE 3 The Thorvald robot equipped with a cosmic‐ray sensor during data collection at an airfield at the Lincolnshire Aviation Heritage
Center in East Kirkby, UK (left); a wheat stubble field near Volos, Greece (right) [Color figure can be viewed at wileyonlinelibrary.com]
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Once this system is solved, the estimated values at a location x0

can be found using Equation (6), and the associated variance of the

prediction 2σ can be calculated using the same equation as in OK

∑( ) =
=

wx C .
i

n

i ix
2

0

1
0σ (8)

3.3.1 | Semivariogram

In empirical scenarios, it is possible to use a semivariogram created

from the real‐world data to express the relation between locations

and estimate the weights for each observation. However, unlike

OK, in this case, it is necessary to account also for the observation

times for each data point. For this reason PK uses a weighted

variogram estimator, which takes into account the different

observation times

( ))(∑ˆ ( ) =
( ) +

− − ˆ ∼h
N h

t t

t t
z
t

z

t
m I

1

2
,

i j

n
i j

i j

i

i

j

j
d h

,

2

ijγ (9)

where h is the distance between points i and j, m̂ is the same mean as

in Equation (7) and ∼Id hij is a gating function that takes a value of 1

when i and j are roughly distance h apart, and 0 otherwise. ( )N h is a

normalizing factor calculated as follows:

∑( ) =
+

∼N h
t t

t t
I .

i j

n
i j

i j
d h

,
ij (10)

The semivariograms ( )hγ can take multiple forms but are

generally characterized by an equation that can be parameterized.

We use the following Gaussian semivariogram model in our work:

⎜ ⎟( ) = + ( − )
⎛

⎝
⎜ − ⎛

⎝
− ⎞

⎠

⎞

⎠
⎟h p p p

h

p
1 exp ,0 2 0

2

1
2

γ (11)

with the following three parameters: nugget p0, range p1 and sill p2

(Pulido Fentanes, Gould, Duckett, Pearson, & Cielniak, 2018b).

The parameters for this equation are automatically fitted from

the semivariogram of the sampled data using the soft L1 norm

minimization scheme (Murphy, 2018).

3.4 | Exploration strategies

Our proposal is to use the variance of the kriging (KV) process

(see Equation (8)) as a measurement of information gain. The use of

KV as a reward function for robotic exploration has been previously

studied in (Pulido Fentanes et al., 2018a, 2018b). In this work, we

compare some well‐known exploration strategies and how they

interact with the sampling regime. The methods to be tested can be

classified into next‐best‐view (NBV) and adaptive sampling methods.

In addition, we also added a random strategy where the next

sampling location is randomly chosen from a set of unexplored cells,

which serves as a baseline for comparisons.

3.4.1 | Next‐best‐view

NBV methods update the environment model every time a new

sample is acquired and then choose a new location depending on the

distribution of the KV across the field. Location selection is done

using one of the following strategies:

• Greedy: The next sampling point is the point with the highest KV in

the set of candidate locations.

• Monte Carlo: A set of candidate sampling locations is generated

each time, and each candidate location is allocated a weight

depending on its KV. The next sampling location is selected

randomly, but in a way that guarantees that the probabilities are

distributed according to the weight of each candidate.

3.4.2 | Adaptive sampling

This strategy generates an initial plan that is modified depending on

the reward function after each model update. In this case, the robot

plans an initial sampling regime based on a random trajectory and a

mission time horizon, which depends on the minimum expectations of

measurements to be made in each case. Every new sample taken is

used to update the model, which is used to remove sampling points

with low KV, so the targets whose KV is below the overall KV mean

of the model are removed, afterwards, as many new points as

necessary to meet the minimum expectation of measurements in the

remaining mission time are added by choosing new candidates using

a Monte Carlo method. Finally, a new route is re‐planned through the

new set of points using a traveling salesman problem algorithm.

4 | EXPERIMENTAL FRAMEWORK

4.1 | Hardware setup

Our experimental setup consists of an autonomous mobile robot

Thorvald (Grimstad & From, 2017) equipped with a custom‐made,

high‐sensitivity soil moisture sensor based on fast neutron counting

principle manufactured by Hydroinnova (see Figure 3). The 12

neutron detectors are accompanied by temperature and humidity

sensors which are used for providing the corrected neutron counts

every 10 s. The sides and top of the sensor are shielded by using a

50‐mm polyethylene shield to limit the detection footprint of the

sensor to 10m. The total weight of the sensor is around 300 kg.

The sensor is interfaced with the robot through an Ethernet link. The

robot is controlled through an in‐built PC running Linux OS and

Robot Operating System. The platform is equipped with a GNSS

sensor, which enables robot localization and geotagging of the

collected data samples. The navigation component uses a graph‐
based representation, allowing the robot to move between a

predetermined set of waypoints.
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4.2 | Datasets

Evaluating the performance of robotic exploration strategies is

inherently difficult and previous work in that domain often relies on

simulated experiments (e.g., Santos, Krajnik, Pulido Fentanes, &

Duckett, 2016). In our case, we propose to use the “surrogate” models

of soil moisture, based on data collected from two real fields with the

described equipment. We used the collected data in off‐line “simula-

tions” to compare different exploration strategies and understand

their overall performance. Simulations using a surrogate model are a

useful tool to compare exploration methods (Pulido Fentanes et al.,

2011, 2018a), providing the “ground truth” for the exploration results.

The two data collection sites include an airfield at the Lincoln-

shire Aviation Heritage Center in East Kirkby, UK and a wheat

stubble field near Volos, Greece. Both fields were prepared in such a

way so that they had equal parts of dry and wetland. Such an

arrangement enabled us to systematically test the effectiveness of

kriging‐driven exploration strategies under a significant gradient

between dry and wet areas akin to a step response.

The airfield site (see Figure 4) features a hard border between

the grass field and concrete airstrip. Since concrete contains low

levels of hydrogen, the airstrip provides a perfect replacement for

dry conditions (5% VWC). The data collection took part in March

2018 and, therefore, the grass field was in a relatively wet condition

(20% VWC). Thirteen measurement locations were selected along a

parallel line to the wet/dry border at 1, 2, 4, 8, 15, and 30m away

from the border on both sides and a single point at the border itself.

The measurement interval for all the points was set to 10min.

The wheat stubble field in Greece (see Figure 4) covered a

rectangular area of approximately 7 ha. The data collection took part in

June 2018 under dry weather conditions. To create a wet area, the field

was irrigated before data collection resulting in a wet/dry border with

VWC of 18% for the dry part and 24% for the wet area, representing a

fairly low gradient between the two parts. The whole field meshed into a

grid of 72 sampling locations with a spatial resolution of ×30 30 m. The

measurement interval for all the points was set to 10min.

Both datasets were used to create a set of testing models which were

used to verify multiple hypotheses presented in Section 5. Each one of

F IGURE 4 Location and layout of two data collection sites: An airfield (0.3 ha) at the Lincolnshire Aviation Heritage Center in East Kirkby,
UK (left); a wheat stubble field (7 ha) near Volos, Greece (right) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 The high‐gradient synthetic model generated from the airfield (a), the simulated model (b), and the validation model generated
from the wheat stubble field (c) [Color figure can be viewed at wileyonlinelibrary.com]
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these testing models has neutron rates as inputs for the measurement

model which were then extrapolated across the testing area using OK.

This way an estimated rate can be produced for every location on the

field. This extrapolated rate is used as λ to produce simulated counts that

follow the Poisson distribution (as seen in Figure 3) every 10 s (real

sensor’s update rate) at every cell in the environment, resulting in high‐
density models used as a reference. The models include:

• Synthetic model is based on real sensor rates recorded from the

airfield (see Figure 8). To obtain these rates the sensor was left for

4 hr at the center of both wet and dry areas, using that data two

synthetic models representing a high and low gradient between

wet and dry soil were generated. The high‐gradient synthetic

(HGS) model was generated from the highest recorded rates in

both readings, which were 2.5 and 5.0 counts/s for the wet and dry

parts, respectively. The low‐gradient synthetic (LGS) model

represents the average values for both readings which were 3.0

and 4.0 counts/s for the wet and dry halves, respectively.

• Simulated model is based on the real data recorded in the airfield

and extrapolated into multiple lines covering a rectangular area

(see Figure 9). To generate this model data from 10min sensor

readings at 13 different data points was used, all data points were

captured in a straight line at the center of the field perpendicular

to the division between both areas, six readings were made at 30,

15, 8, 4, 2, and 1m from the center of the field into each half and

one additional reading at the center of the field. These readings

were copied into four additional parallel lines 10m apart evenly

spaced across the field.

• Validation model in which the real data from the wheat stubble field

is used (see Figure 10). This model represents the most realistic

soil moisture conditions and is used to validate the proposed

algorithms.

F IGURE 6 High‐gradient synthetic scenario. Comparison of different sampling regimes and exploration strategies: (a) Measurement and
travel times, (b) Number of samples taken. Average results over 30 runs with, error bars representing standard deviation for each case [Color
figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 7 High‐gradient synthetic scenario. Comparison of performance for methods using fixed versus adaptive measurement interval in
terms of (a) travel distance and (b) mean square error. Average results over 30 runs, shaded areas represent standard deviation for each case
[Color figure can be viewed at wileyonlinelibrary.com]
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The cells size for both synthetic and simulated models based on the

airfield dataset was 1m2 and for the validation model 25m2. The cell

size values were chosen considering the size of the environment and the

computational cost; in both cases, the kriging model calculation and

candidate location evaluation and the selection were kept under 10 s on

an 8‐core Intel i7‐3770 CPU with 16GB of RAM running Ubuntu 16.04.

To indicate the overall variability of soil moisture in each model,

we also present the estimated parameters for the Gaussian

semivariogram model used for their generation:

• HGS model: p0 = 25.29, p1 = 69.32, and p2 = 316.36;

• LGS model: =p 4.040 , =p 69.321 , and p2= 50.61;

• Simulated model: p0 = 20.56, p1 = 21.71, and p2 = 29.44;

• Validation model: p0 = 0.67, p1 = 144.14, and p2 = 2.76.

5 | EXPERIMENTS

To evaluate our framework, we have devised a set of experiments to

test multiple hypotheses. First, the robot will focus on sampling the area

with the highest uncertainty, that is, the border between the soil and

concrete parts of the field and borders of the field. Second, we want to

verify how much does the rate difference between the wet/dry parts of

the field influence the exploration process (we call this a step response).

Finally, we want to analyze the different impact of having an FMI and an

AMI which warrants a minimum measurement uncertainty before

moving on to the next sampling point. Because our sensor follows the

Poisson distribution model, we believe that the robot will require less

time to sample the dry area of the field as it would have observed a

higher number of events in the same time reducing the measurement σ .

(a) (b)

F IGURE 8 Comparison of performance of long fixed measurement interval and adaptive measurement interval in synthetic scenarios

low‐gradient synthetic and high‐gradient synthetic in terms of (a) distance, and (b) mean square error. Average results over 30 runs, shaded
areas represent standard deviation for each case [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 9 Simulated scenario. Comparison of performance for methods using fixed versus adaptive measurement interval in terms of
(a) travel distance, and (b) mean square error. Average results over 30 runs, shaded areas represent standard deviation for each case [Color
figure can be viewed at wileyonlinelibrary.com]
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The simulated robot was set to travel at 0.6m/s, similar to the speed of

the actual robot used for data collection.

The results presented in this section were obtained using 30

simulated runs over the testing models presented in Section 4.2. The

performance of the exploration methods presented in this section is

evaluated in terms of traveled distance and model error. For assessing

the quality of the resulting model, we compare the model produced

against the surrogate model used for the exploration. To compare any

two resulting models A and B we use mean square error (MSE)

∑= ( − )
=

n
A BMSE

1
,

i

n

i i
1

2 (12)

where Ai and Bi are the corresponding cells in the generated model B

and the surrogate model A, and n is the total number of cells in both

matrices. Variogram estimation requires a number of initial samples

and hence the kriging results are not immediately available at the

beginning of the exploration process. This is manifested with graphs

representing the model quality starting at times different than 0 in all

figures presented in the following sections.

5.1 | FMI versus AMI

To compare the influence of the sampling regime on the exploration

process, all strategies were tested in the synthetic experimental

setup following four different sampling regimes: two FMI and two

AMI experiments. For the FMI case, one experiment was set to

10‐min intervals (FMI‐long) and the other 1–5min intervals

(FMI‐short). For the AMI case, one experiment was set to a 2.5%

measurement σ threshold (AMI‐long) and the other one to a 3%

threshold (AMI‐short). Short and long cases should have comparable

measurement times between them. The stopping criteria was the

mission time which was set for the synthetic and simulated models to

2 hr and for the validation to 4 hr.

Figure 6 shows the impact that different strategies and sampling

regimes have over the amount of time the robot spends gathering

data and the total amount of samples it can gather within the

specified constraints. The sampling regime plays a much bigger role in

how the robot spends its time between reading and travel than the

exploration strategy, hence the choice of sampling regime is critical

to the performance.

Figure 7a shows that the total distance driven in the HGS scenario

depends mainly on the measurement time. This was predictable given

that the amount of time that the robot spends reading data is inversely

proportional to the amount of time the robot spends navigating from

one location to another. In Figure 7b it can be seen that AMI regimes

lead to faster convergence than their FMI counterparts.

AMI strategies achieve better quality in shorter times because

they can optimize the sampling time and drive exploration consider-

ing the conditions of the field (e.g., the robot will spend less time in

drier places as it will observe a higher number of events and achieve

higher levels of confidence for the readings). These gains are highly

dependant on the variability of the soil moisture in the field, for

example, in a predominantly wet field the gains from adaptive

sampling interval strategies will be less noticeable. To verify this

hypothesis, this analysis was also performed in a simulation with a

lower gradient between the wet and dry parts (LGS model).

Figure 8 shows a comparison of both sampling regimes in synthetic

scenarios with different gradients. The difference in performance

between both regimes is relatively low in the scenario with the lower

gradient (LGS). However, the traveled distance, for the adaptive

strategy is slightly higher in both cases, indicating that sampling

regimes are not important for controlling the traveled distance and

that this is a factor that is mainly driven by the exploration strategy.

Figure 9 presents a comparison between both sampling regimes in

the simulated model. Comparing these results to the ones obtained with

the synthetic model (Section 5.1), it is possible to see that the results are

(a) (b)

F IGURE 10 High‐gradient synthetic scenario. Performance for different strategies using adaptive measurement intervals in terms of (a)
distance, and (b) mean square error. Average results over 30 runs, shaded areas represent standard deviation for each case [Color figure can be

viewed at wileyonlinelibrary.com]
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almost identical in all cases. This indicates that, despite the fact that

variability in the simulated model is just slightly higher than in the LGS

scenario, the sampling regime has an influence over the variability of the

results. In particular, FMI regimes are much more unstable than their

adaptive counterparts indicating that it is generally preferable to use an

AMI regime as it is more stable with medium gradients.

5.2 | Comparison of the exploration strategies

To verify the influence of different exploration strategies over

the exploration process, we ran a series of simulations with four

different strategies namely: Random, Greedy, Monte Carlo, and

Adaptive Sampling. In all cases, we used AMI as the measurement

interval regime to isolate the effects of the exploration strategy

only.

Figure 10 shows the performance of the different exploration

strategies indicating their high influence on the distance traveled by

the robot. In particular, it can be noticed that an adaptive sampling

strategy achieves models that are slightly worse than those resulting

from other strategies. This trade‐off is a result of shorter travel

distances and can indicate that this strategy might compare better in

larger fields than those considered in this scenario, due to the fact

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

F IGURE 11 High‐gradient synthetic model. Exploration outputs and robot trajectories. The kriging output (top row) and variance (bottom
row) for the (a,e) full model, (b,f) Random, (c,g) Greedy, (d,h) Monte Carlo, and (e,j) Adaptive sampling strategies [Color figure can be viewed at
wileyonlinelibrary.com]

(a) (b)

F IGURE 12 Simulated scenario. Performance for different strategies using adaptive measurement intervals in terms of (a) distance and (b)
mean square error. Shaded areas represent standard deviation over 30 runs [Color figure can be viewed at wileyonlinelibrary.com]
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that long travel distances can translate into a significant amount of

time not spent on gathering data.

Figure 11 presents the outputs of the exploration result for the

HGS model. The figure shows the resulting models for a field after

2 hr of autonomous exploration with the trajectories followed by

the robot. One interesting thing is that the greedy strategy drives

the robot mostly to the edges of the field. This is mainly because the

kriging methods are better at interpolation than extrapolation, so

the highest variances are always around the limit areas. This has the

advantage that it can drive the model’s variance down very quickly.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

F IGURE 13 Simulated model: exploration outputs and robot trajectories. The kriging output (top row) and variance (bottom row) for the
(a,f) full model, (b,g) Random, (c,h) Greedy, (d,i) Monte Carlo, and (e,j) Adaptive sampling strategies [Color figure can be viewed at

wileyonlinelibrary.com]

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

F IGURE 14 Validation model. Exploration outputs and robot trajectories. The kriging output (top row) and variance (bottom row) for the (a, f) full

model, (b,g) Random, (c,h) Greedy, (d,i) Monte Carlo, and (e,j) Adaptive sampling strategies [Color figure can be viewed at wileyonlinelibrary.com]
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It might also mean, however, that it can miss relevant in‐field
information. In comparison, the adaptive sampling took samples

that were evenly distributed across the field but visited them in a

more organized way producing much smoother and shorter

trajectories.

To verify these findings we performed the same test on the

simulated airfield scenario. Figure 12 shows that the performance of

the different strategies is similar to that exhibited in Figure 10. This

indicates that the behavior of each strategy is consistent and does

not tend to vary much across testing scenarios.

The outputs (see Figure 13) show again that greedy strategies

follow very long paths and outer sampling points contrasting to the

adaptive sampling method which follows a more balanced approach,

that seems to linger around areas that are either drier or wetter than

usual. The Monte Carlo approach shows an interesting behavior, it

appears to be going back and forwards around the border between

the grass and concrete, this seems to be because there higher

variances around the border area, however, the paths are very

random and this increases the traveling distance. In that sense, the

adaptive sampling strategy has a big advantage over Monte Carlo

because it follows the same principle for choosing targets but at the

same time, it reduces travel distance.

5.3 | Validation on the surrogate model

To validate the methodology, several experiments were executed

simulating an exploration task of 4 hr. Figure 14 presents the

resulting models for four experiments using different exploration

strategies and AMI as the sampling regime.

It is possible to see by simple visual inspection that the resulting

models do not reflect perfectly the reference validation model. We

believe that this is mainly due to two factors: First, the gradient

between wet and dry parts in this environment was very low

affecting the resulting KV leading to less effective sampling. And

F IGURE 15 Validation scenario. Comparison of different sampling regimes and exploration strategies (a) measurement and travel times (b)
number of samples taken. Average results over 30 runs with, error bars representing standard deviation over 30 runs [Color figure can be
viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 16 Validation scenario. Performance for different strategies using adaptive measurement intervals in terms of (a) distance and (b)
mean square error. Shaded areas represent standard deviation over 30 runs [Color figure can be viewed at wileyonlinelibrary.com]
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second, the size of the environment limits how many samples per

hectare the robot can achieve. This means in practice that the maps

had much lower resolution than the validation model, hence each

sample represents a much broader area.

Figure 15 shows the impact the different strategies and sampling

regimes have over the number of measurements the robot can take

and the distribution of the time spent taking measurements against

the time spent traveling between locations. Comparing these results

to those in the smaller field (see Figure 7) it can be seen that the

difference in the amount of samples captured using adaptive

sampling with respect to the other strategies increases as well as

the percentage of time spent capturing data.

The performance of the exploration strategies in terms of

traveled distance and model error in the validation scenario is

aligned with the results in the synthetic and simulated scenarios (see

Figure 16). One special case is the adaptive sampling strategy that

seems to have results that are more consistent in this scenario than

in the HGS case. This could be a further indication that this method

performance improves comparatively to other strategies as the field

size grows. Overall, the validation model resembles the low‐gradient
synthetic LGS scenario where all methods converged quickly but with

a high degree of variability (relatively high standard deviation of

MSE) especially for strategies such as monte‐carlo MC or random

which are not information‐driven.
It is worth noting that all the strategies‐generated models whose

wetter areas and dryer areas correspond to those of the validation

model. Also, the soil moisture maps produced to provide a very good

estimation of the areas where water deficit and concentration are in

the field. Most likely, the miss‐alignment between the validation

model and the model outcome could have been overcome by having a

longer mission. The fact that the resulting model can discriminate

wet and dry areas in such a short time (the validation model required

more than 60 hr of work) is very encouraging.

6 | CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an exploration framework for autonomous

mobile robots equipped with a soil moisture sensor to create high‐quality
soil moisture maps. The sensor is a novel device based on fast neutron

counting which enables noncontact measurements of soil moisture. Such

a class of sensors can be modeled by the Poisson distribution and we

demonstrated how to integrate such measurements into the kriging

framework. We also investigated a range of different exploration

strategies and assessed their usefulness in different scenarios. The

proposed framework was evaluated on a range of datasets based on real

soil moisture data collected from two different fields.

One of the important findings of the paper is the fact that the

sampling regime’s contribution to the overall exploration process is highly

dependant on the characteristics of the field. In fields with high variability

and less uniform distribution of soil moisture, the use of AMI shows

significant improvements in model quality compared with a fixed

measurement time regime. We also demonstrated that adaptive sampling

strategies guarantee lower navigation times and allocate more time

obtaining samples leading to more consistent and faster‐converging
models compared with the nonadaptive strategies. This might be

especially important in large fields where traveling takes a significant

proportion of the exploration time. Greedy methods tend to sample the

outer border of the environments, which is where the KV is usually

higher. They tend to miss localized patches, although their overall model

quality is comparable. For small fields with uniform soil moisture

distributions, these might be preferable exploration strategies.

Although the presented framework was demonstrated for the soil

moisture mapping, it is a general approach which can be used to map

other soil properties such as compaction, chemical composure, and so

forth. It is a framework that would be particularly suitable in scenarios

where the measured phenomena directly affect the acquisition time and

need to be spatially mapped. This includes applications such as rainfall

measurements, people and animal counting, gas detection and so forth.

One of the follow‐up questions arising from this research is if changing

the time measurement regime on the fly could improve the resulting

models even further. Future work could also address the additional path

planning constraints caused by the layout of typical agricultural fields

which feature soil beds and rows and utilizing information based

stopping criteria such as the one proposed in (Ghaffari Jadidi et al.,

2019) instead of standard mission times as in the current framework.

Finally, the framework will be extended to map multiple soil properties

at the same time.

It is worth noting that whilst this work addressed the study of

Poisson KV as a reward function for exploration, other types of

Gaussian processes such as heteroscedastic Gaussian process

regression (e.g., Kersting et al., 2007) models both the spatial

distribution of soil moisture and its noise dependant incertitude and

could also be applied to this case. For this reason, the study of

different modeling methodologies performance for soil properties

mapping and exploration is an interesting line for future work.
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