1 Threats to seabirds: a global assessment

- 2
- 3

Authors: Maria P. Dias¹*, Rob Martin¹, Elizabeth J. Pearmain¹, Ian J. Burfield¹, Cleo Small², Richard A.
 Phillips³, Oliver Yates⁴, Ben Lascelles¹, Pablo Garcia Borboroglu⁵, John P. Croxall¹

- 6
- 7
- 8 Affiliations:
- 9 ¹ BirdLife International. The David Attenborough Building, Pembroke Street Cambridge CB2 3QZ UK
- 10 ² BirdLife International Marine Programme, RSPB, The Lodge, Sandy, SG19 2DL
- ³ British Antarctic Survey. Natural Environment Research Council, High Cross, Madingley Road,
- 12 Cambridge CB3 0ET, UK
- 13 ⁴ Centre for the Environment, Fishery and Aquaculture Science, Pakefield Road, Lowestoft, NR33, UK
- ⁵ Global Penguin Society, University of Washington and CONICET Argentina. Puerto Madryn U9120,
- 15 Chubut, Argentina
- 16 * Corresponding author: Maria Dias, <u>maria.dias@birdlife.org</u>. BirdLife International. The David
- 17 Attenborough Building, Pembroke Street Cambridge CB2 3QZ UK. Phone: +44 (0)1223 747540
- 18
- 19

20 Acknowledgements

- 21 We are very grateful to Bartek Arendarczyk, Sophie Bennett, Ricky Hibble, Eleanor Miller and Amy
- 22 Palmer-Newton for assisting with the bibliographic review. We thank Rachael Alderman, Pep Arcos,
- 23 Jonathon Barrington, Igor Debski, Peter Hodum, Gustavo Jimenez, Jeff Mangel, Ken Morgan, Paul Sagar,
- 24 Peter Ryan, and other members of the ACAP PaCSWG, and the members of IUCN SSC Penguin Specialist
- 25 Group (Alejandro Simeone, Andre Chiaradia, Barbara Wienecke, Charles-André Bost, Lauren Waller, Phil
- 26 Trathan, Philip Seddon, Susie Ellis, Tom Schneider and Dee Boersma) for reviewing threats to selected
- 27 species. We thank also Andy Symes, Rocio Moreno, Stuart Butchart, Paul Donald, Rory Crawford,
- 28 Tammy Davies, Ana Carneiro and Tris Allinson for fruitful discussions and helpful comments on earlier
- 29 versions of the manuscript. This work was supported by the International Climate Initiative (IKI) of the
- 30 German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety
- 31 (BMUB), by the Royal Society for the Protection of Birds (RSPB) and by the Cambridge Conservation
- 32 Initiative (CCI) Collaborative Fund for Conservation.
- 33

34 Threats to seabirds: a global assessment

35

36

37 Abstract

We present the first objective quantitative assessment of the threats to all 359 species of seabirds, 38 39 identify the main challenges facing them, and outline priority actions for their conservation. We applied 40 the standardised Threats Classification Scheme developed for the IUCN Red List to objectively assess 41 threats to each species and analysed the data according to global IUCN threat status, taxonomic group, 42 and primary foraging habitat (coastal or pelagic). The top three threats to seabirds in terms of number 43 of species affected and average impact are: invasive alien species, affecting 165 species across all the 44 most threatened groups; bycatch in fisheries, affecting fewer species (100) but with the greatest 45 average impact; and climate change/severe weather, affecting 96 species. In addition to impacting 86% of globally threatened species, these three top threats also affect 81% of the species currently classified 46 47 as Near Threatened or as Least Concern but declining. Reversing these three threats would benefit two-48 thirds of all species and c. 380 million individual seabirds (c. 45% of the total global seabird population). 49 Most seabirds (c. 70%), especially globally threatened species, face multiple threats. For albatrosses, 50 petrels and penguins in particular (the three most threatened groups of seabirds), it is essential to 51 tackle both terrestrial and marine threats to reverse declines. As the negative effects of climate change 52 are harder to mitigate, it is vital to compensate by addressing other major threats that often affect the 53 same species, such as invasive alien species and bycatch, for which proven solutions exist. 54

- 55 **Keywords:** conservation; globally threatened species; human impacts; marine birds.
- 56

57 **1. Introduction**

58

59 Seabirds are one of the most threatened groups of birds (Croxall et al., 2012; BirdLife International, 60 2018a). They are also regarded as good indicators of the health of marine ecosystems (Piatt and 61 Sydeman, 2007; Parsons et al., 2008), and have a key role in marine ecosystems, with an overall 62 consumption of biomass of the same order of magnitude as global fisheries landings (Brooke, 2004; 63 Curvet el., 2011). They are used and are accounted as a second are accounte

- 63 Cury et al., 2011). They occur across all oceans, from coastal areas to the high seas, and are easier to 64 study than most other marine animals because they are readily visible at sea and depend on land to
- breed, allowing for a better understanding of their population trends and of their threats.

66 The latest assessment of the global threat status of seabirds, using the International Union for 67 Conservation of Nature (IUCN) Red List criteria, revealed that 31% of all seabird species are globally 68 threatened (i.e. Critically Endangered, Endangered or Vulnerable; 110 of 359 species), and another 11% 69 (40 species) are Near Threatened (NT) (BirdLife International, 2018b; Figure A1, Appendix 3). 70 Additionally, almost half of all species (47%) have declining population trends (BirdLife International, 71 2018b). Some of the drivers of these declines are threats faced at the colonies, such as invasive alien 72 species (Spatz et al., 2014, 2017), whereas others operate at sea, including incidental mortality 73 (bycatch) in fisheries, and overfishing (Žydelis et al., 2009; Anderson et al., 2011; Grémillet et al., 2018). 74 Most previous reviews of threats to seabirds have focused on the causes of declines of specific groups, 75 e.g. albatrosses (Phillips et al., 2016), petrels (Rodríguez et al., 2019), penguins (Borboroglu and 76 Boersma, 2013; Trathan et al., 2015), or on the impact of a single threat, e.g. longline or gillnet bycatch 77 (Anderson et al., 2011, Žydelis et al., 2009). The only global review to date was based on data up to 78 2010 and focused only on globally threatened seabirds (Croxall et al., 2012). However, to understand 79 the conservation status of this group worldwide, it is important to assess the anthropogenic and natural 80 pressures affecting all species, since many relatively abundant and widespread species of Least Concern 81 on the IUCN Red List are now also in decline (e.g. Little Auk Alle alle, Fort et al., 2013; Chinstrap Penguin 82 Pygoscelis antarcticus, Korczak-Abshire et al., 2012; Arctic Tern Sterna paradisaea, Burnham et al., 83 2017).

84 We present the results of the first quantitative review of the threats affecting all seabird 85 species globally. We used data from more than 900 publications and a standardised assessment 86 approach (the IUCN Red List Threats Classification Scheme; IUCN, 2012; Salafsky et al., 2008), aiming 87 to: a) identify the main ongoing drivers of population declines of seabirds globally; b) provide the first 88 systematic appraisal of the overall impacts of each threat on multiple species; c) quantify the number of 89 individual seabirds exposed to each threat; and d) highlight some of the challenges and priority actions 90 needed and to improve the conservation status of seabirds.

91

92 **2. Materials and Methods**

93

94 **2.1. Selection and categorisation of species**

95 We followed the taxonomy used by BirdLife International for the IUCN Red List (del Hoyo et al., 2014; 96 BirdLife International, 2018b) and considered seabirds to be those species for which a large proportion 97 of the population rely on the marine environment for at least part of the year (Croxall et al., 2012). This 98 criterion was met by 359 extant species (list available at BirdLife International, 2018b and in Appendix 99 1). We grouped species based on taxonomy: albatrosses; large petrels and shearwaters; gadfly petrels 100 (genera Pterodroma and Pseudobulweria); storm-petrels; other small petrels; penguins; auks; skuas; 101 terns; gulls; frigatebirds and tropicbirds; gannets and boobies; cormorants and pelicans; sea ducks and 102 allies; phalaropes (Appendix 1). We also split species into "pelagic" and "coastal" based on the 103 definition provided by Croxall et al. (2012): "pelagic seabirds" are those that primarily use marine deep 104 water (typically >200 m in depth), or neritic, continental shelf water; and "coastal seabirds" are those 105 that primarily use inshore waters (typically <8 km from the shoreline; see Appendix 1). The global

population trend of each species was also used in some analyses (using two categories: declining versus
 stable/increasing/unknown; BirdLife International, 2018b).

109 **2.2. Data sources and threats classification**

108

110 For the first time, threats were systematically assessed for all 359 seabird species. We undertook a 111 detailed review of the seabird threat data, held by BirdLife International, which are used to support the 112 global status assessment of bird species for the IUCN Red List (BirdLife International, 2018b), and the consistency of threat scoring between species was rigorously checked. We collected data through a 113 114 combination of expert consultation (in collaboration with the respective seabird IUCN Species Survival 115 Commission (SSC) Specialist Groups) and a comprehensive bibliographic search for studies reporting 116 threats to each seabird species. In a first stage, we consulted summary species accounts published in 117 the Handbook of the Birds of the World Alive (HBW Alive, 2018), supplemented by regional accounts 118 from the Birds of North America (BNA online, 2018), New Zealand Birds Online (NZ Birds Online, 2018) 119 and the Australian Government Species Profile and Threats Database (Department of the Environment 120 and Energy, 2018). Secondly, we conducted searches in Web of Knowledge and Google Scholar, first 121 using the *species name* (scientific name and common name separately) + "threat", and then using the *species name* and each threat named in the results of the preceding search. For species listed 122 123 under the Agreement on the Conservation of Albatrosses and Petrels (ACAP), the ACAP Secretariat and 124 relevant working groups reviewed the revised threat codings, and for penguins, the IUCN SSC Penguin 125 Specialist Group performed this role, allowing the incorporation of additional literature and 126 unpublished data. Overall, information from over 900 publications (each referenced to the appropriate 127 species in the factsheets available on the BirdLife Data Zone; BirdLife International, 2018b) was used to 128 revise the 'threats' texts that form part of the IUCN Red List factsheets and assessments (BirdLife 129 International, 2018b).

Threats were classified using the IUCN Red List Threats Classification Scheme version 3.2 (Salafsky et al., 2008; IUCN, 2012). This scheme defines threats as "the proximate human activities or processes that have impacted, are impacting, or may impact the status of the taxon being assessed. Direct threats are synonymous with sources of stress and proximate pressures" (IUCN, 2012). In other words, and in the context of this study, a threat is a human activity or other process that affects the current conservation status of a species by causing a population or range reduction.

136 Each threat was coded initially using the IUCN Red List Threats Classification Scheme, down to 137 Level 3 (the most detailed classification level) where possible (IUCN, 2012). For each threat, we 138 assessed: 1) timing (i.e. ongoing; past but likely to return; past and unlikely to return; future); 2) scope 139 (i.e. the proportion of the total population affected: minority (<50%); majority (50-90%); whole (>90%)); 140 and 3) severity (i.e. the rate of population decline caused by the threat within its scope: very rapid; 141 rapid; slow but significant; negligible; causing/could cause fluctuations) (IUCN, 2012 and Table 1). Each 142 threat at the most detailed level can be recorded only once against a species, with the exception of 143 'Invasive & other problematic species, genes & diseases', for which an entry for each problematic 144 species is possible. As one threat can have different timing and severity across the range of a species, 145 the following convention was applied: 'Ongoing' threats were prioritised over 'Future' threats, which 146 were prioritised over 'Past' threats. Hence, a slow, ongoing reduction was coded in preference to a 147 rapid, past reduction. Stresses, which are the mechanism by which a threat directly or indirectly 148 impacts the species, such as species mortality or ecosystem degradation, were also recorded as part of 149 the IUCN threat assessment approach (IUCN, 2012). Further relevant detail beyond that required for 150 the IUCN assessment was also noted when available, in particular the type of fishing gear and the scale 151 of the fishery (small versus large) associated with the impact of bycatch. Overall, this process resulted in 152 the compilation of 1,637 records of threats to 359 seabird species.

The IUCN Red List Threats Classification Scheme was developed to be applied across all species of plants, animals and fungi, and thus often lacks resolution when applied to a specific group. For example, bycatch and overfishing, two frequent threats to seabirds (Croxall et al., 2012), are allocated the same threat code under the IUCN scheme (Level 1 = Biological Resource Use, Level 2 = Fishing &

- 157 harvesting aquatic resources, and Level 3 = Unintentional effects). We therefore refined the threats
- classification by splitting: 1) "Biological resource use" into: "Bycatch", "Overfishing", "Disturbance", 158
- 159 "Hunting/trapping" and "Logging & wood harvesting"; 2) "Invasive and other problematic species,
- 160 genes & diseases" into "Invasive alien species" and "Diseases"; 3) "Agriculture & aquaculture" into
- 161 "Agriculture" and "Aquaculture"; and 4) "Light pollution" from "Pollution" (see Appendix 2 for a more detailed explanation). We assumed the same impact score of "bycatch" and "overfishing" for species
- 162 163 affected by both (n=34), as it was not possible to distinguish their relative impacts (see above). The final
- 164 list of threats considered in the analyses (Table A2.1, Appendix 2) was thus a combination of the
- 165 original IUCN Red List classification of Level 1 threats (IUCN, 2012), modified as indicated above (see
- 166 also Table A2.2, Appendix 2).

168 2.3. Data analysis

- 169 All the analyses (except where noted otherwise) considered only threats that were coded to the timing 170 category "ongoing", with a known and non-zero scope and severity. We also analysed the threats
- 171 separately for "pelagic" and "coastal" species, and for specific groups of seabirds (see section 2.1.
- 172 above). For these latter analyses, we distinguished terrestrial threats (e.g. invasive alien species,
- 173 disturbance at colonies) from marine threats (e.g. overfishing, bycatch). Climate change/severe
- 174 weather was considered in a separate category; see Table A2.2, Appendix 2 for more details on threats
- 175 classified as marine or terrestrial). We estimated the impact of each ongoing threat on each species by
- 176 multiplying the mean scope (the proportion of the population affected; see Table 1) by the mean
- 177 severity (Table 1; Garnett et al., 2018), and categorised these into four levels, from "low" to "very high"
- 178 (Table 1). For threats with multiple coding per species (see above), we used the highest value of impact. 179 We also calculated the overall impact of each threat by summing the impact scores across all species.
- 180 Finally, we estimated the total number of birds (T) exposed to each threat (i) by summing the
- 181 product of the global abundance of each species affected by the threat, and the scope of the threat,
- 182

$$T_i = \sum_{sp=1}^n A_{sp} * S_{i,sp}$$

183 where A=abundance of species sp, S=scope of the threat i to species sp. The global abundance of each 184 species was extracted from the IUCN Red List database (BirdLife International, 2018b) by multiplying 185 the number of mature individuals (available for 95% of the species) by 1.5, to account for the number of 186 non-breeders in the population (Brooke, 2004). In order to address the uncertainty associated with this 187 estimate (given the large range of most estimates of abundance and of the values of scope – see Table 1), we applied a bootstrap approach (1,000 repetitions), by selecting random values within the intervals 188 189 of abundance (i.e. between the minimum and maximum abundance) and scope (i.e. a random value 190 between the minimum and maximum scope for each category – see Table 1) of each species, from 191 which we derived a 95% confidence interval. These analyses were carried out separately for species 192 classified as: 1) globally threatened; 2) Near Threatened and Least Concern with a declining trend and 193 3) Least Concern with a non-declining trend.

194

3. Results 195

196

197 3.1. Threats to all seabird species

198 Invasive alien species, bycatch, hunting/trapping, climate change/severe weather and disturbance are 199 the ongoing threats affecting most seabird species, with each affecting more than a fifth of all species 200 (Figure 1 and Table 2). Pollution, overfishing and problematic native species also affect many seabird 201 species (more than 50 each; Figure 1). Bycatch, invasive alien species, overfishing and climate 202 change/severe weather are the threats causing highest impacts on average (Figure 1 and Table 2). The

- 203 impacts of hunting/trapping and disturbance are relatively low by comparison (Figure 1 and Table 2); in 204
- contrast, diseases and natural system modifications have high impacts on the few species affected (15 205 and 10 species, respectively; Figure 1). Invasive alien species have the highest overall impact (i.e. the

- sum of all impacts on all species affected by this threat), followed by bycatch and climate
- 207 change/severe weather (Table 2).

We estimate that more than 170 million individual birds (> 20% of all seabirds) are currently exposed to the individual impacts of bycatch, invasive alien species and climate change/severe weather (Figure 2), and that together more than 380 million (c. 45% of all seabirds) are exposed to at least one of these three threats.

Overall, 301 (84%) of the 359 seabird species are impacted by at least one ongoing threat.
About 70% of these are affected by at least two threats and 46% by at least three threats (n=301). On
average, each seabird species is affected by three ongoing threats (2.85±0.12, range=1-11, n=301).

215

222

3.2. Threats to globally threatened species

The 110 globally threatened seabird species are largely affected by the same threats highlighted above - invasive alien species, bycatch, climate change/severe weather, hunting/trapping and overfishing (Figure 3 and Table 2; see also Figure A2 in Appendix 3). Problematic native species are also a major threat for globally threatened species, both pelagic and coastal. Disturbance is the threat affecting most coastal species, along with hunting/trapping, although mainly with medium or low impact (Figure 3).

- 223 **3.3. Threats to Near Threatened and declining Least Concern species**
- Invasive alien species, climate change/severe weather, bycatch and hunting/trapping are also the
 threats affecting the highest number of Near Threatened (NT) and Least Concern (LC) species with a
 declining trend; each affects >30% of the species in this group (Figure A3 in Appendix 3).
- The populations of these species comprise nearly half of all individual seabirds in the world (45%-47%); about half of birds exposed to some of the major threats (especially bycatch, climate change/severe weather and invasive alien species) are NT and declining LC (Figure 2); 81% of the species currently NT or LC with declining trends are impacted by at least one of these three threats.
- 231232 3.4. Threats to groups of seabirds
- The major threats to particular groups of highly threatened species are indicated in Figure 4 (see also Figure A4, Appendix 3, for the percentage of threatened species per group). Albatrosses are particularly affected by bycatch (90% of species). In addition, around half of albatross species (13 of 22) are affected by at least one terrestrial threat, mostly invasive alien species but also diseases, which have a high impact (Table 3), and over one-third are affected by climate change/severe weather.
- More than 80% of penguin species are affected by climate change/severe weather (a higher proportion than any other seabird group). Marine threats such as overfishing, bycatch and pollution also have large impacts on several species of penguins (Figure 4). The main threats at colonies are invasive alien species, problematic native species and disturbance, albeit with lower estimated impacts on average. Around half of the penguin species suffer medium, high or very high impacts from both marine and terrestrial threats (marine – pollution or overfishing; terrestrial – usually problematic native species; Table 3).
- Invasive alien species and bycatch are also important threats for large petrels and shearwaters
 (eight species are affected by both these threats; Table 3), as is light pollution (Figure 4). Cormorants
 and pelicans are also impacted by a combination of several terrestrial (including invasive alien species
 and problematic native species) and marine threats (bycatch, overfishing and pollution; Figure 4 and
 Table 3). In contrast, gadfly petrels and storm-petrels are almost exclusively impacted by terrestrial
- threats, particularly by invasive alien species (and light pollution in the case of gadfly petrels; Figure 4).
- 251

252 **3.5. Invasive alien species**

253 Rats *Rattus* spp. and cats *Felis catus* are the invasive alien species impacting the highest number of

- 254 seabird species (more than 100 and 90, respectively; Figure 5). Sixty-three seabird species (38% of those
- affected by invasive alien species) are impacted by both rats and cats. Mice (*Mus* spp. and *Peromyscus*
- 256 *maniculatus*) affect a smaller number of species (22, of which 20 are Procellariiformes albatrosses,
- 257 large petrels & shearwaters, gadfly petrels, prions and storm-petrels), but often with high severity.

259 **3.6. Bycatch**

Large-scale fisheries are causing declines of most species affected by bycatch (> 80), whereas < 40
 species are affected by small-scale fisheries; Figure 6). The average impacts (scope and severity) of large
 and small-scale fisheries are, however, similar (Figure 6). Gillnet fisheries affect more species than

- 263 longlining and trawl fisheries; these last two gear types have, however, a greater impact in terms of
- 264 both average severity and scope (Figure 6).
- 265

266 **3.7. Climate change and severe weather**

Climate change/severe weather impacts seabirds mostly due to habitat shifting and alteration, and
 temperature extremes (almost 40 species are affected by each of these threats, and with relatively high
 scope; Figure 7). Storms/flooding impact more than 20 species of seabirds, and with lower scope

270 (Figure 7).

Species impacted by climate change are also affected by three other threats on average
(2.99±0.2; mean ± SE), including invasive alien species (52%), bycatch (43%), and c. 30% by each of
overfishing, hunting/trapping and/or pollution (Figure A5, Appendix 3). For only 11% of seabird species
is climate change/severe weather the only threat.

275

276 **4. Discussion**

277

This is the first comprehensive analysis to use consistent, objective criteria to assess the threats to all
359 seabird species worldwide. We found that invasive alien species, bycatch and climate
change/severe weather are the top three threats to seabirds in terms of the number of species affected
(165, 100 and 96, respectively; Figure 1), overall impacts (Table 2), and the estimated total number of
individual birds potentially affected (Figure 2). Hunting/trapping and disturbance also affect many

species (97 and 73, i.e. 27% and 20%, respectively), but with a low impact on average; conversely,
overfishing has a relatively high impact on fewer species (54, i.e. 15%).

285 A comparison with the threat assessment made in 2010 is possible for globally threatened 286 species (Croxall et al., 2012), despite minor changes in the list of species, and some differences in 287 methods (e.g. checks for consistency in scoring threats across groups were not made in the previous 288 study). Our results confirm the persistence of top threats such as invasive alien species and climate 289 change/severe weather, which still affect a similar number of species (Figure 8). Threats related to 290 fishing have increased since the previous assessment, with bycatch now impacting 50 rather than 40, 291 and overfishing 22 rather than 10 globally threatened species (Figure 8). This is partly due to better 292 understanding of the impacts of gillnet fisheries on seabirds (Žydelis et al., 2009; Crawford et al., 2017), 293 especially coastal species such as sea ducks (Žydelis et al., 2009), including some species which have 294 recently been uplisted to globally threatened (e.g. Long-tailed Duck Clangula hyemalis, Horned Grebe 295 Podiceps auritus). The relevance of overfishing has also increased, both in pelagic and coastal species 296 (e.g. penguins and cormorants; e.g. Crawford et al., 2015; Trathan et al., 2015). In contrast, the threat 297 from marine pollution has decreased, now affecting 23 rather than 30 globally threatened species. The 298 threat from pollution is largely related to oil spills, a well-known and conspicuous threat to seabirds 299 during the 1970s and 1980s. Oil spill events has decreased greatly in recent decades (Roser, 2018), with 300 a consequent predictable reduction of its impact on seabirds when compared with the situation at the 301 end of the last century (Camphuysen, 1998; Clark, 1984).

The top threats currently affecting globally threatened species largely coincide with those affecting NT and LC species with declining trends (Table 2 and Figures A2 and A3, Appendix 3), which represent one third of all species, and half the total number of individual seabirds. Therefore, tackling the current major problems faced by globally threatened species will also reduce the exposure of hundreds of millions of other (currently non-threatened) seabirds to these threats (Figure 2).

308 4.1. Major threats on land

- 309 Our study highlighted that invasive alien species, particularly rats and cats, are the major threat to
- seabird species globally. Therefore, eradication or control of rodents and cats is the major priority in
- terms of conservation of seabirds at their colonies (Phillips et al., 2016; Spatz et al., 2017; Holmes et al.,
- 312 2019; Rodríguez et al., 2019) along with enhanced biosecurity measures to prevent re-invasion or new
- 313 introductions (particularly for sites in proximity to human habitation) and, if necessary and where
- feasible, post-eradication restoration to provide habitat suitable for recruiting additional seabirds to
- now-safe sites (Borrelle et al., 2018). The frequent co-occurrence of rats and cats poses an additional
- 316 challenge in requiring simultaneous eradication (Zavaleta et al., 2001; Rayner et al., 2007).
- 317 Hunting/trapping at colonies is the second major threat on land in terms of number of species 318 affected, and the top threat to coastal globally threatened species. This is a well-known issue (Chen et 319 al., 2009; Gaston and Robertson, 2010; Merkel et al., 2014, 2016; Phillips et al., 2016), and needs to be 320 addressed in close collaboration with local communities and authorities. Hunting/trapping can also 321 occur at sea (Bugoni et al., 2008; Alfaro-Shigueto et al., 2016; Frederiksen et al., 2016), although impacts are poorly known (Phillips et al., 2016). Disturbance is also a relevant threat in terms of number 322 of species affected globally, and coastal globally threatened species are particularly affected (Figure 3). 323 324 Disturbance of seabirds at their colonies can lead to reduced breeding success (Giese, 1996; Bolduc and 325 Guillemette, 2003; Watson et al., 2014) or even to permanent abandonment of the site (Carney and 326 Sydeman, 1999). The increase of ecotourism activities can pose an additional challenge (Palacios et al., 327 2018), which is nonetheless solvable by implementing the necessary regulations to control the access to 328 important seabird colonies (Ellenberg et al., 2006).
- Other relevant threats on land are light pollution (affecting mostly gadfly petrels, large petrels/shearwaters and storm-petrels (Rodríguez et al., 2017, 2019), problematic native species (especially for cormorants/pelicans, storm-petrels and penguins) and diseases (affecting mostly albatrosses and penguins). These threats also have some known and implementable solutions, such as avoidance or minimization of light sources (especially during fledging periods in high-risk areas; Gineste et al., 2017; Rodríguez et al., 2017), artificial nests for problematic native species competing for nesting burrows (Bolton et al., 2004), and vaccination against diseases in critical cases (Bourret et al., 2018).

337 4.2. Major threats at sea

- We confirmed that bycatch is still a major threat to albatrosses, large petrels/shearwaters and penguins 338 339 (Trathan et al., 2015; Phillips et al., 2016), and found that large-scale fisheries are driving declines in 340 more than twice as many species as small-scale fisheries (Figure 6). Although the average impacts 341 (scope and severity) of large and small-scale fisheries seem to be similar, impacts from small-scale 342 fisheries are generally less well-known (Lewison et al., 2004; Chuenpagdee et al., 2006; Soykan et al., 343 2008). Longline and trawl fisheries involve the gear types with greatest impact in terms of both average 344 severity and scope (especially for albatrosses and large petrels/shearwaters; Tuck et al., 2001; Barbraud 345 et al., 2009).
- 346 Many studies have shown that bycatch in longlining and trawl fisheries can be mitigated 347 effectively with the implementation of operational and technical measures. Depending on the 348 characteristics of the fishery, location, season and associated at-risk seabird species, single measures 349 can be effective, such as discard management or bird-scaring lines on trawl vessels (Bull, 2007; Pierre et 350 al., 2012; Maree et al., 2014; Tamini et al., 2015) and hook-shielding devices in pelagic longline vessels 351 (Sullivan et al., 2018). However, measures used in combination are most effective, such as night setting, 352 bird-scaring lines and weighted branch lines for longline vessels (Brothers et al., 1999; ACAP, 2017a, 353 2017b, 2017c; Domingo et al., 2017; Paterson et al., 2017).
- Many Regional Fisheries Management Organisations (RFMOs), and some national fisheries bodies in areas with high bycatch rates, have adopted regulations that seek to minimize bycatch (Anderson et al., 2011; Gilman, 2011; Phillips et al., 2016). The challenge, however, is ensuring practical implementation of the measures and compliance with the regulations, which requires industry-specific solutions and support to ensure validity of the measures and avoid cross-taxa effects (Gilman et al., 2005; Melvin et al., 2019). Gillnet fisheries are thought to affect more species (Figure 6), especially diving seabirds such as sea ducks and auks (Žydelis et al., 2009). However, and in contrast with the

situation for the fishing gears mentioned above, solutions for gillnet bycatch remain elusive and should
be regarded as research priorities (but see Mangel et al., 2018; Melvin et al., 1999).

Overfishing is also a top marine threat. It affects fewer species than other top threats, but with considerably greater impact (Figures 1, 2, Table 2). Overfishing is the main cause of decline of 24 species (e.g. Bank Cormorant *Phalacrocorax neglectus* and Cape Cormorant *Phalacrocorax capensis*; Crawford et al., 2008, 2015); and is often associated with bycatch (more than 60% of the species

- 367 impacted by overfishing are also affected by bycatch). Tackling the problem of overfishing may involve
- the creation of Marine Protected Areas (Hyrenbach et al., 2000; Lascelles et al., 2012), including no-take
- zones (seasonal or permanent) in some critical cases (Daunt et al., 2008; Pichegru et al., 2010).
- 370 However, it chiefly requires the effective implementation of ecosystem-based management of forage-
- fisheries within the context of wider, multi-stakeholder Marine Spatial Planning (Ardron et al., 2008).
- 372

4.3. Scope and scale of management approaches

374 Many seabird species are impacted by both marine and terrestrial threats, and a subset of these (72 375 species, including 38 globally threatened species and 20 NT) have at least one marine and one 376 terrestrial threat of medium or higher impact. For example, 27 species are impacted by both invasive 377 alien species and bycatch (particularly albatrosses and large petrels/shearwaters, but also some auks 378 and sea ducks; Table 3). Half of the penguin and auk species face a terrestrial and a marine threat with 379 a medium to very high impact (usually invasive alien species or problematic native species and 380 pollution; Table 3). The co-occurrence of medium or high impact terrestrial and marine threats 381 emphasises the need for "ridge to reef" approaches (Rude et al., 2016; IUCN, 2018), whereby 382 management plans aiming to protect seabird species and their habitats should necessarily include 383 measures to address threats both on land and at sea. The appropriate measures at sea depend on the 384 species and the relevant spatial scales of their foraging ranges: whereas short-ranging species such as 385 cormorants and some penguin species benefit most from site-based forms of protection (e.g. well-386 managed Marine Protected Areas), wide-ranging species such as albatrosses, petrels and shearwaters 387 will also require measures at the larger scale (even Large Marine Ecosystem; Sherman et al., 2003), 388 particularly in relation to effective fisheries management, notably bycatch regulations (Oppel et al., 389 2018).

390

408

391 4.4. Climate change

392 Most of the top threats already mentioned (invasive alien species, bycatch, hunting/trapping, 393 disturbance and overfishing) have known and tested solutions, at least in principle and in part. Climate 394 change/severe weather are different in that there is limited prospect of direct mitigation of most of the 395 main known or potential impacts. These include changes in oceanographic processes (resulting in 396 declining in food availability around colonies), increased frequency of extreme weather events, 397 inundation of colonies due to sea level rise or severe rainfall storms, or increased occurrence and 398 virulence of avian pathogens (reviewed by Grémillet and Boulinier, 2009; Barbraud et al., 2012; 399 Sydeman et al., 2012; Phillips et al., 2016). Translocations (and managed retreat) are a possibility in 400 some cases (Deguchi et al., 2014; Miskelly et al., 2009), but challenging to execute for many species,

401 due to the high costs and logistical difficulties.

Nevertheless, we show that most species (89%) affected by climate change/severe weather are also affected by other threats (3.37 ± 0.2 threats on average ± SE), whose impacts are of the same order of magnitude. The most frequent threats co-occurring with climate change/severe weather are invasive alien species, bycatch, overfishing and hunting/trapping (Figure A5, Appendix 3). This emphasises the crucial importance of addressing effectively these other major threats in order to compensate for the negative impacts of climate change.

409 **4.5. Emerging threats**

The problem of marine plastics, which is global and increasing (Ryan et al., 2009; Kühn et al., 2015), and

- 411 expected to affect virtually all seabird species in a few decades (Wilcox et al., 2015), is not yet identified
- as a cause of seabird population declines, with only one report so far of plastics causing a significant

impact at this level (Flesh-footed Shearwater Ardenna carneipes; Lavers et al., 2014). This threat is
predicted to have a higher impact on small, highly pelagic species (such as storm-petrels, prions and
auklets; Wilcox et al., 2015; Roman et al., 2019), whose population sizes and demography are mostly
unknown, indicating the difficulty in understanding the real impact of plastics at population levels.
However, this problem is recent and so a delay would be expected before population impacts become
evident for long-lived species, such as most seabirds.

The occurrence and virulence of avian pathogens is also likely to increase, especially at high latitudes, due to the enhanced spread of ectoparasites as a consequence of a warmer climate and to increasing human presence at seabird colonies (Grémillet and Boulinier, 2009; Uhart et al., 2018).

422 Offshore wind farming (classified here as "Energy production & mining") is another fast-423 growing issue with potential high impacts on seabirds (Furness et al., 2013), but still with limited 424 information regarding the consequences for seabirds at the population level (Green et al., 2016). This 425 threat is expected to affect mostly coastal species such as divers, scoters, terns and shags (Garthe and 426 Hüppop, 2004), especially via displacement (Furness et al., 2013; Cook et al., 2018). However, highly 427 mobile species can also be at particular risk, due to the cumulative impact resultant from multiple 428 windfarms located across the species distributional range (Busch and Garthe, 2018)

429 Finally, we anticipate that in a few decades overfishing may become an even more widespread 430 and serious problem for seabirds, including even the more pelagic species. The number of globally 431 threatened species affected by overfishing has more than doubled since the previous assessment based 432 on data collected up to 2010 (Croxall et al., 2012). Depletion of food resources is already regarded as 433 the major cause of decline of 24 species (Table 2), and pressures on stocks of currently exploited coastal 434 forage-fish species are certain to intensify, to the likely detriment of seabirds (Grémillet et al., 2018). In 435 addition, this problem has the potential to increase with the transition of more fisheries to lower 436 trophic levels (Pauly et al., 1998), especially those targeting mesopelagic species (St. John et al., 2016). 437 Mesopelagic fishes, an important part of the diet of many pelagic seabirds (Watanuki and Thiebot, 438 2018), are the most abundant marine vertebrates (Irigoien et al., 2014) and remain largely unexploited 439 commercially due to the currently low profitability of fishing deep-water species, especially on the high-440 seas (St. John et al., 2016; Webb et al., 2010). This situation may soon change due to investment in new 441 fishing technologies, along with the increasing demand for these resources from the aquaculture 442 industry (St. John et al., 2016), with potentially serious implications for their current natural consumers 443 (including seabirds).

445 **5. Conclusions**

446

444

447 Our analysis shows that invasive alien species, bycatch and climate change are the top three threats 448 affecting seabirds globally. Together these threats affect two-thirds of seabird species and hundreds of 449 millions of individuals. Hunting/trapping and disturbance affect many species, but with lower impacts, 450 whereas overfishing affects comparatively few species, but with higher impacts. The relative importance of these top threats was largely consistent across different taxonomic groups of seabirds, 451 452 and when considering only globally threatened species or only NT and declining LC species. 453 Multiple threats often affect the same species; consequently: a) management approaches 454 tackling simultaneously both marine and terrestrial threats are essential to reverse the declining trend 455 of numerous threatened seabird species; b) the negative effects of climate change can be greatly 456 alleviated by addressing other top threats such as invasive alien species and bycatch, for which 457 implementable proven solutions are largely available. However, even for invasive alien species and 458 bycatch, there are substantial challenges to overcome. For invasive alien species, many of the priority 459 eradications (Holmes et al., 2019) for islands uninhabited by humans have been completed. Therefore,

the focus will increasingly shift to islands with human populations and to mainland areas, both posingsubstantial problems in relation to mortality of non-target species and control of invasive alien species

461 (as opposed to rapid eradication), which likely require complex, long-term and costly initiatives, even

463 where inherently feasible (Phillips, 2010; Oppel et al., 2011).

464 Technical solutions to gillnet bycatch have proven hard to develop; in most longline and trawl 465 fisheries compliance with recommended mitigation regulations remains limited (Phillips et al., 2016). 466 Use of remote-recording electronic devices to monitor compliance may be essential to making 467 progress. Seabirds are increasingly impacted by overfishing, especially coastal species. Theoretically, 468 effective ecosystem-based management of marine resources around important seabird colonies can 469 mitigate problems for these particular species, but also requires that effective plans and processes are 470 in place to monitor and enforce compliance. Such potentially effective management systems remain 471 elusive (except at very small scales) anywhere in the world, even within the Economic Exclusive Zones 472 of most developed countries. They are conspicuously absent from the high seas, and radical reform of 473 the RFMOs responsible for such management as does exist is long overdue. 474

Given the continuing deterioration in the conservation status of seabirds, and the increased number and severity of threats confronting them, there is an urgent need to identify and implement practical action to tackle threats to species and sites where feasibility and priority coincide. As seabirds are amongst the best indicators of the status of marine systems, the outlook for the global oceans is not encouraging. However, progress in addressing pollution (Roser, 2018), invasive alien species (Jones et al., 2016) and bycatch (Maree et al., 2014) shows what can be done; effective management of threats in key areas on land and at sea is now the great challenge.

481

482 Acknowledgements

483 We are very grateful to Bartek Arendarczyk, Sophie Bennett, Ricky Hibble, Eleanor Miller and Amy 484 Palmer-Newton for assisting with the bibliographic review. We thank Rachael Alderman, Pep Arcos, 485 Jonathon Barrington, Igor Debski, Peter Hodum, Gustavo Jimenez, Jeff Mangel, Ken Morgan, Paul Sagar, 486 Peter Ryan, and other members of the ACAP PaCSWG, and the members of IUCN SSC Penguin Specialist 487 Group (Alejandro Simeone, Andre Chiaradia, Barbara Wienecke, Charles-André Bost, Lauren Waller, Phil 488 Trathan, Philip Seddon, Susie Ellis, Tom Schneider and Dee Boersma) for reviewing threats to selected 489 species. We thank also Andy Symes, Rocio Moreno, Stuart Butchart, Paul Donald, Rory Crawford, 490 Tammy Davies, Ana Carneiro and Tris Allinson for fruitful discussions and helpful comments on earlier 491 versions of the manuscript. This work was supported by the International Climate Initiative (IKI) of the 492 German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety 493 (BMUB), by the Royal Society for the Protection of Birds (RSPB) and by the Cambridge Conservation 494 Initiative (CCI) Collaborative Fund for Conservation.

495

496 **References**

- 497 ACAP, 2017a. ACAP Review and Best Practice Advice for Reducing the Impact of Demersal Longline
 498 Fisheries on Seabirds.
- ACAP, 2017b. ACAP Review and Best Practice Advice for Reducing the Impact of Pelagic and Demersal
 Trawl Fisheries on Seabirds.
- ACAP, 2017c. ACAP Review and Best Practice Advice for Reducing the Impact of Pelagic Longline
 Fisheries on Seabirds.
- Alfaro-Shigueto, J., Mangel, J., Valenzuela, K., Arias-Schreiber, M., 2016. The intentional harvest of
 waved albatrosses Phoebastria irrorata by small-scale offshore fishermen from Salaverry port,
 Peru. Pan-American Journal of Aquatic Sciences 11, 70–77.
- Anderson, O., Small, C., Croxall, J., Dunn, E., Sullivan, B., Yates, O., Black, A., 2011. Global seabird
 bycatch in longline fisheries. Endangered Species Research 14, 91–106.
 https://doi.org/10.3354/esr00347
- Ardron, J., Gjerde, K., Pullen, S., Tilot, V., 2008. Marine spatial planning in the high seas. Marine Policy
 32, 832–839. https://doi.org/10.1016/j.marpol.2008.03.018
- Arnold, J.M., Brault, S., Croxall, J.P., 2006. Albatross Populations In Peril: A Population Trajectory For
 Black-Browed Albatrosses At South Georgia. Ecological Applications 16, 419–432.
 https://doi.org/10.1890/03-5340

- Barbraud, C., Delord, K., Marteau, C., Weimerskirch, H., 2009. Estimates of population size of white chinned petrels and grey petrels at Kerguelen Islands and sensitivity to fisheries. Animal
 Conservation 12, 258–265. https://doi.org/10.1111/j.1469-1795.2009.00248.x
- Barbraud, C., Rolland, V., Jenouvrier, S., Nevoux, M., Delord, K., Weimerskirch, H., 2012. Effects of
 climate change and fisheries bycatch on Southern Ocean seabirds: a review. Marine Ecology
 Progress Series 454, 285–307. https://doi.org/10.3354/meps09616
- 520 BirdLife International, 2018a. State of the world's birds: taking the pulse of the planet. BirdLife 521 International, Cambridge, UK.
- BirdLife International, 2018b. IUCN Red List for birds [WWW Document]. URL http://www.birdlife.org
 (accessed 10.9.18).
- BNA online, 2018. Explore | Birds of North America Online [WWW Document]. URL
 https://birdsna.org/Species-Account/bna/home (accessed 1.8.19).
- Bolduc, F., Guillemette, M., 2003. Human disturbance and nesting success of Common Eiders:
 interaction between visitors and gulls. Biological Conservation 110, 77–83.
 https://doi.org/10.1016/S0006-3207(02)00178-7
- Bolton, M., Medeiros, R., Hothersall, B., Campos, A., 2004. The use of artificial breeding chambers as a
 conservation measure for cavity-nesting procellariiform seabirds: a case study of the Madeiran
 storm petrel (Oceanodroma castro). Biological Conservation 116, 73–80.
 https://doi.org/10.1016/S0006-3207(03)00178-2
- Borrelle, S.B., Boersch-Supan, P.H., Gaskin, C.P., Towns, D.R., 2018. Influences on recovery of seabirds
 on islands where invasive predators have been eradicated, with a focus on Procellariiformes.
 Oryx 52, 346–358. https://doi.org/10.1017/S0030605316000880
- Bourret, V., Gamble, A., Tornos, J., Jaeger, A., Delord, K., Barbraud, C., Tortosa, P., Kada, S., Thiebot, J. B., Thibault, E., Gantelet, H., Weimerskirch, H., Garnier, R., Boulinier, T., 2018. Vaccination
 protects endangered albatross chicks against avian cholera. Conservation Letters 11, e12443.
 https://doi.org/10.1111/conl.12443
- 540 Brooke, M. de L., 2004. The food consumption of the world's seabirds. Proc Biol Sci 271, S246–S248.
- Brothers, N., Cooper, J., Løkkeborg, S., 1999. The incidental catch of seabirds by longline fisheries:
 worldwide review and technical guidelines for mitigation (FAO Fisheries Circular No. 937). FAO,
 Rome.
- Bugoni, L., Neves, T.S., Leite, N.O., Carvalho, D., Sales, G., Furness, R.W., Stein, C.E., Peppes, F.V.,
 Giffoni, B.B., Monteiro, D.S., 2008. Potential bycatch of seabirds and turtles in hook-and-line
 fisheries of the Itaipava Fleet, Brazil. Fisheries Research 90, 217–224.
 https://doi.org/10.1016/j.fishres.2007.10.013
- 548Bull, L.S., 2007. Reducing seabird bycatch in longline, trawl and gillnet fisheries. Fish and Fisheries 8, 31–54956. https://doi.org/10.1111/j.1467-2979.2007.00234.x
- Burnham, K.K., Burnham, J.L., Konkel, B.W., Johnson, J.A., 2017. Significant decline observed in Arctic
 Tern Sterna paradisaea population in northwest Greenland. Seabird 30, 39–50.
- Busch, M., Garthe, S., 2018. Looking at the bigger picture: the importance of considering annual cycles
 in impact assessments illustrated in a migratory seabird species. ICES J Mar Sci 75, 690–700.
 https://doi.org/10.1093/icesjms/fsx170
- Camphuysen, K.J., 1998. Beached bird surveys indicate decline in chronic oil pollution in the North Sea.
 Marine Pollution Bulletin 36, 519–526. https://doi.org/10.1016/S0025-326X(98)80018-0
- 557 Carney, K.M., Sydeman, W.J., 1999. A Review of Human Disturbance Effects on Nesting Colonial
 558 Waterbirds. Waterbirds: The International Journal of Waterbird Biology 22, 68–79.
 559 https://doi.org/10.2307/1521995
- Chen, S., Chang, S., Liu, Y., Chan, S., Fan, Z., Chen, C., Yen, C., Guo, D., 2009. A small population and
 severe threats: status of the Critically Endangered Chinese crested tern Sterna bernsteini. Oryx
 43, 209–212. https://doi.org/10.1017/S0030605308001142
- 563 Chuenpagdee, R., Liguori, L., Palomares, M.L., Pauly, D., 2006. Bottom-up, global estimates of small 564 scale marine fisheries catches.

- 565Clark, R.B., 1984. Impact of oil pollution on seabirds. Environmental Pollution Series A, Ecological and566Biological 33, 1–22. https://doi.org/10.1016/0143-1471(84)90159-4
- 567 Cook, A.S.C.P., Humphreys, E.M., Bennet, F., Masden, E.A., Burton, N.H.K., 2018. Quantifying avian
 avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine
 569 Environmental Research 140, 278–288. https://doi.org/10.1016/j.marenvres.2018.06.017

Crawford, R., Ellenberg, U., Frere, E., Hagen, C., Baird, K., Brewin, P., Crofts, S., Glass, J., Mattern, T.,
Pompert, J., Ross, K., Kemper, J., Ludynia, K., Sherley, R., Steinfurth, A., Suazo, C., Yorio, P.,
Tamini, L., Mangel, J., Bugoni, L., Jiménez Uzcátegui, G., Simeone, A., Luna-Jorquera, G.,
Gandini, P., Woehler, E., Pütz, K., Dann, P., Chiaradia, A., Small, C., 2017. Tangled and drowned:
a global review of penguin bycatch in fisheries. Endangered Species Research 34, 373–396.
https://doi.org/10.3354/esr00869

- Crawford, R.J.M., Cockcroft, A.C., Dyer, B.M., Upfold, L., 2008. Divergent trends in bank cormorants
 Phalacrocorax neglectus breeding in South Africa's Western Cape consistent with a
 distributional shift of rock lobsters Jasus lalandii. African Journal of Marine Science 30, 161–
 166. https://doi.org/10.2989/AJMS.2008.30.1.16.466
- Crawford, R.J.M., Makhado, A.B., Whittington, P.A., Randall, R.M., Oosthuizen, W.H., Waller, L.J., 2015.
 A changing distribution of seabirds in South Africa—the possible impact of climate and its
 consequences. Front. Ecol. Evol. 3. https://doi.org/10.3389/fevo.2015.00010
- 583 Croxall, J.P., Butchart, S.H.M., Lascelles, B., Stattersfield, A.J., Sullivan, B., Symes, A., Taylor, P., 2012.
 584 Seabird conservation status, threats and priority actions: a global assessment. Bird
 585 Conservation International 22, 1–34. https://doi.org/10.1017/S0959270912000020
- Cury, P.M., Boyd, I.L., Bonhommeau, S., Anker-Nilssen, T., Crawford, R.J.M., Furness, R.W., Mills, J.A.,
 Murphy, E.J., Österblom, H., Paleczny, M., Piatt, J.F., Roux, J.-P., Shannon, L., Sydeman, W.J.,
 2011. Global Seabird Response to Forage Fish Depletion—One-Third for the Birds. Science 334,
 1703–1706. https://doi.org/10.1126/science.1212928
- Daunt, F., Wanless, S., Greenstreet, S.P.R., Jensen, H., Hamer, K.C., Harris, M.P., 2008. The impact of the
 sandeel fishery closure on seabird food consumption, distribution, and productivity in the
 northwestern North Sea. Can. J. Fish. Aquat. Sci. 65, 362–381. https://doi.org/10.1139/f07-164
- Deguchi, T., Suryan, R.M., Ozaki, K., Jacobs, J.F., Sato, F., Nakamura, N., Balogh, G.R., 2014.
 Translocation and hand-rearing of the short-tailed albatross Phoebastria albatrus: early
 indicators of success for species conservation and island restoration. Oryx 48, 195–203.
 https://doi.org/10.1017/S0030605313000094
- del Hoyo, J., Collar, N.J., Christie, D.A., Elliott, A., Fishpool, L.D.C., 2014. HBW and BirdLife International
 Illustrated Checklist of the Birds of the World. Volume 1: Non-passerines, Lynx Edicions and
 BirdLife International. ed. Barcelona, Spain and Cambridge, UK, Barcelona, Spain and
 Cambridge, UK.
- 601Department of the Environment and Energy, 2018. Species Profiles (SPRAT) [WWW Document]. URL602http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl (accessed 1.8.19).
- Domingo, A., Jiménez, S., Abreu, M., Forselledo, R., Yates, O., 2017. Effectiveness of tori line use to
 reduce seabird bycatch in pelagic longline fishing. PLOS ONE 12, e0184465.
 https://doi.org/10.1371/journal.pone.0184465
- Ellenberg, U., Mattern, T., Seddon, P.J., Jorquera, G.L., 2006. Physiological and reproductive
 consequences of human disturbance in Humboldt penguins: The need for species-specific
 visitor management. Biological Conservation 133, 95–106.
 https://doi.org/10.1016/j.biocon.2006.05.019
- Fort, J., Moe, B., Strøm, H., Grémillet, D., Welcker, J., Schultner, J., Jerstad, K., Johansen, K.L., Phillips,
 R.A., Mosbech, A., 2013. Multicolony tracking reveals potential threats to little auks wintering in
 the North Atlantic from marine pollution and shrinking sea ice cover. Diversity and Distributions
 19, 1322–1332. https://doi.org/10.1111/ddi.12105
- Frederiksen, M., Descamps, S., Erikstad, K.E., Gaston, A.J., Gilchrist, H.G., Grémillet, D., Johansen, K.L.,
 Kolbeinsson, Y., Linnebjerg, J.F., Mallory, M.L., McFarlane Tranquilla, L.A., Merkel, F.R.,
 Montevecchi, W.A., Mosbech, A., Reiertsen, T.K., Robertson, G.J., Steen, H., Strøm, H.,

617 Thórarinsson, T.L., 2016. Migration and wintering of a declining seabird, the thick-billed murre Uria lomvia, on an ocean basin scale: Conservation implications. Biological Conservation 200, 618 619 26–35. https://doi.org/10.1016/j.biocon.2016.05.011 Furness, R.W., Wade, H.M., Masden, E.A., 2013. Assessing vulnerability of marine bird populations to 620 621 offshore wind farms. Journal of Environmental Management 119, 56–66. 622 https://doi.org/10.1016/j.jenvman.2013.01.025 623 Garnett, S.T., Butchart, S.H.M., Baker, G.B., Bayraktarov, E., Buchanan, K.L., Burbidge, A.A., Chauvenet, 624 A.L.M., Christidis, L., Ehmke, G., Grace, M., Hoccom, D.G., Legge, S.M., Leiper, I., Lindenmayer, D.B., Loyn, R.H., Maron, M., McDonald, P., Menkhorst, P., Possingham, H.P., Radford, J., Reside, 625 A.E., Watson, D.M., Watson, J.E.M., Wintle, B., Woinarski, J.C.Z., Geyle, H.M., 2018. Metrics of 626 627 progress in the understanding and management of threats to Australian birds. Conservation 628 Biology 0. https://doi.org/10.1111/cobi.13220 629 Garthe, S., Hüppop, O., 2004. Scaling possible adverse effects of marine wind farms on seabirds: 630 developing and applying a vulnerability index. Journal of Applied Ecology 41, 724–734. https://doi.org/10.1111/j.0021-8901.2004.00918.x 631 632 Gaston, A.J., Robertson, G.J., 2010. Trends in the harvest of Brünnich's guillemots Uria lomvia in Newfoundland: effects of regulatory changes and winter sea ice conditions. Wildlife Biology 16, 633 634 47-55. https://doi.org/10.2981/09-020 635 Giese, M., 1996. Effects of human activity on adelie penguin Pygoscelis adeliae breeding success. Biological Conservation 75, 157–164. https://doi.org/10.1016/0006-3207(95)00060-7 636 637 Gilman, E., Brothers, N., Kobayashi, D.R., 2005. Principles and approaches to abate seabird by-catch in 638 longline fisheries. Fish and Fisheries 6, 35–49. https://doi.org/10.1111/j.1467-639 2679.2005.00175.x 640 Gilman, E.L., 2011. Bycatch governance and best practice mitigation technology in global tuna fisheries. Marine Policy 35, 590–609. https://doi.org/10.1016/j.marpol.2011.01.021 641 642 Gineste, B., Souquet, M., Couzi, F.-X., Giloux, Y., Philippe, J.-S., Hoarau, C., Tourmetz, J., Potin, G., Le 643 Corre, M., 2017. Tropical Shearwater population stability at Reunion Island, despite light 644 pollution. J Ornithol 158, 385–394. https://doi.org/10.1007/s10336-016-1396-5 645 Green, R.E., Langston, R.H.W., McCluskie, A., Sutherland, R., Wilson, J.D., 2016. Lack of sound science in assessing wind farm impacts on seabirds. Journal of Applied Ecology 53, 1635–1641. 646 647 https://doi.org/10.1111/1365-2664.12731 Grémillet, D., Boulinier, T., 2009. Spatial ecology and conservation of seabirds facing global climate 648 649 change: a review. Marine Ecology Progress Series 391, 121–137. 650 https://doi.org/10.3354/meps08212 651 Grémillet, D., Ponchon, A., Paleczny, M., Palomares, M.-L.D., Karpouzi, V., Pauly, D., 2018. Persisting 652 Worldwide Seabird-Fishery Competition Despite Seabird Community Decline. Current Biology 28, 4009–4013.e2. https://doi.org/10.1016/j.cub.2018.10.051 653 HBW Alive, 2018. Handbook of the Birds of the World Alive | HBW Alive [WWW Document]. URL 654 655 https://www.hbw.com/ (accessed 1.8.19). Holmes, N.D., Spatz, D.R., Oppel, S., Tershy, B., Croll, D.A., Keitt, B., Genovesi, P., Burfield, I.J., Will, D.J., 656 657 Bond, A.L., Wegmann, A., Aguirre-Muñoz, A., Raine, A.F., Knapp, C.R., Hung, C.-H., Wingate, D., 658 Hagen, E., Méndez-Sánchez, F., Rocamora, G., Yuan, H.-W., Fric, J., Millett, J., Russell, J., Liske-Clark, J., Vidal, E., Jourdan, H., Campbell, K., Springer, K., Swinnerton, K., Gibbons-Decherong, L., 659 660 Langrand, O., Brooke, M. de L., McMinn, M., Bunbury, N., Oliveira, N., Sposimo, P., Geraldes, P., 661 McClelland, P., Hodum, P., Ryan, P.G., Borroto-Páez, R., Pierce, R., Griffiths, R., Fisher, R.N., 662 Wanless, R., Pasachnik, S.A., Cranwell, S., Micol, T., Butchart, S.H.M., 2019. Globally important 663 islands where eradicating invasive mammals will benefit highly threatened vertebrates. PLOS 664 ONE 14, e0212128. https://doi.org/10.1371/journal.pone.0212128 665 Hyrenbach, K.D., Forney, K.A., Dayton, P.K., 2000. Marine protected areas and ocean basin 666 management. Aquatic Conservation: Marine and Freshwater Ecosystems 10, 437–458. https://doi.org/10.1002/1099-0755(200011/12)10:6<437::AID-AQC425>3.0.CO;2-Q 667

- Irigoien, X., Klevjer, T.A., Røstad, A., Martinez, U., Boyra, G., Acuña, J.L., Bode, A., Echevarria, F.,
 Gonzalez-Gordillo, J.I., Hernandez-Leon, S., Agusti, S., Aksnes, D.L., Duarte, C.M., Kaartvedt, S.,
 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature
 Communications 5. https://doi.org/10.1038/ncomms4271
- IUCN, 2018. Ridge to Reef [WWW Document]. URL https://www.iucn.org/theme/water/our work/current-projects/ridge-reef (accessed 9.9.18).
- IUCN, 2012. Threats Classification Scheme (Version 3.2) [WWW Document]. URL
 http://www.iucnredlist.org/technical-documents/classification-schemes/threats-classification scheme. (accessed 10.9.18).
- Jones, H.P., Holmes, N.D., Butchart, S.H.M., Tershy, B.R., Kappes, P.J., Corkery, I., Aguirre-Muñoz, A.,
 Armstrong, D.P., Bonnaud, E., Burbidge, A.A., Campbell, K., Courchamp, F., Cowan, P.E.,
 Cuthbert, R.J., Ebbert, S., Genovesi, P., Howald, G.R., Keitt, B.S., Kress, S.W., Miskelly, C.M.,
 Oppel, S., Poncet, S., Rauzon, M.J., Rocamora, G., Russell, J.C., Samaniego-Herrera, A., Seddon,
 P.J., Spatz, D.R., Towns, D.R., Croll, D.A., 2016. Invasive mammal eradication on islands results
 in substantial conservation gains. Proc Natl Acad Sci U S A 113, 4033–4038.
 https://doi.org/10.1073/pnas.1521179113
- Korczak-Abshire, M., Chwedorzewska, K.J., Wąsowicz, P., Bednarek, P.T., 2012. Genetic structure of
 declining chinstrap penguin (Pygoscelis antarcticus) populations from South Shetland Islands
 (Antarctica). Polar Biol 35, 1681–1689. https://doi.org/10.1007/s00300-012-1210-7
- Kühn, S., Bravo Rebolledo, E.L., van Franeker, J.A., 2015. Deleterious Effects of Litter on Marine Life, in:
 Bergmann, M., Gutow, L., Klages, M. (Eds.), Marine Anthropogenic Litter. Springer International
 Publishing, Cham, pp. 75–116.
- Lascelles, B.G., Langham, G.M., Ronconi, R.A., Reid, J.B., 2012. From hotspots to site protection:
 Identifying Marine Protected Areas for seabirds around the globe. Biological Conservation,
 Seabirds and Marine Protected Areas planning 156, 5–14.
 https://doi.org/10.1016/j.biocon.2011.12.008
- Lavers, J.L., Bond, A.L., Hutton, I., 2014. Plastic ingestion by Flesh-footed Shearwaters (Puffinus
 carneipes): Implications for fledgling body condition and the accumulation of plastic-derived
- 696 chemicals. Environmental Pollution 187, 124–129.
- 697 https://doi.org/10.1016/j.envpol.2013.12.020
- Lewison, R.L., Crowder, L.B., Read, A.J., Freeman, S.A., 2004. Understanding impacts of fisheries bycatch
 on marine megafauna. Trends in Ecology & Evolution 19, 598–604.
 https://doi.org/10.1016/j.tree.2004.09.004
- Mangel, J.C., Wang, J., Alfaro-Shigueto, J., Pingo, S., Jimenez, A., Carvalho, F., Swimmer, Y., Godley, B.J.,
 2018. Illuminating gillnets to save seabirds and the potential for multi-taxa bycatch mitigation.
 Royal Society Open Science 5, 180254. https://doi.org/10.1098/rsos.180254
- Maree, B.A., Wanless, R.M., Fairweather, T.P., Sullivan, B.J., Yates, O., 2014. Significant reductions in mortality of threatened seabirds in a South African trawl fishery: Reduced seabird mortality in trawl fishing. Animal Conservation 17, 520–529. https://doi.org/10.1111/acv.12126
- 707Melvin, E.F., Dietrich, K.S., Suryan, R.M., Fitzgerald, S.M., 2019. Lessons from seabird conservation in708Alaskan longline fisheries. Conservation Biology 0. https://doi.org/10.1111/cobi.13288
- Melvin, E.F., Parrish, J.K., Conquest, L.L., 1999. Novel Tools to Reduce Seabird Bycatch in Coastal Gillnet
 Fisheries. Conservation Biology 13, 1386–1397. https://doi.org/10.1046/j.1523 1739.1999.98426.x
- Merkel, F., Boertmann, D., Falk, K., Frederiksen, M., Johansen, K., Labansen, A.L., Linnebjerg, J.F.,
 Mosbech, A., Sonne, C., 2016. Why is the last Thick-billed Murre Uria lomvia colony in central
 West Greenland heading for extinction? Bird Conservation International 26, 177–191.
 https://doi.org/10.1017/S0959270915000040
- Merkel, F., Labansen, A.L., Boertmann, D., Mosbech, A., Egevang, C., Falk, K., Linnebjerg, J.F.,
 Frederiksen, M., Kampp, K., 2014. Declining trends in the majority of Greenland's thick-billed
 murre (Uria lomvia) colonies 1981–2011. Polar Biol 37, 1061–1071.
- 719 https://doi.org/10.1007/s00300-014-1500-3

- Miskelly, C.M., Taylor, G.A., Gummer, H., Williams, R., 2009. Translocations of eight species of burrow nesting seabirds (genera Pterodroma, Pelecanoides, Pachyptila and Puffinus: Family
 Procellariidae). Biological Conservation 142, 1965–1980.
 https://doi.org/10.1016/j.biocon.2009.03.027
- NZ Birds Online, 2018. Home page | New Zealand Birds Online [WWW Document]. URL
 http://nzbirdsonline.org.nz/ (accessed 1.8.19).
- Oppel, S., Beaven, B.M., Bolton, M., Vickery, J., Bodey, T.W., 2011. Eradication of Invasive Mammals on
 Islands Inhabited by Humans and Domestic Animals: *Mammal Eradications on Inhabited Islands*.
 Conservation Biology 25, 232–240. https://doi.org/10.1111/j.1523-1739.2010.01601.x
- 729 Oppel, S., Bolton, M., Carneiro, A.P.B., Dias, M.P., Green, J.A., Masello, J.F., Phillips, R.A., Owen, E., 730 Quillfeldt, P., Beard, A., Bertrand, S., Blackburn, J., Boersma, P.D., Borges, A., Broderick, A.C., 731 Catry, P., Cleasby, I., Clingham, E., Creuwels, J., Crofts, S., Cuthbert, R.J., Dallmeijer, H., Davies, 732 D., Davies, R., Dilley, B.J., Dinis, H.A., Dossa, J., Dunn, M.J., Efe, M.A., Fayet, A.L., Figueiredo, L., 733 Frederico, A.P., Gjerdrum, C., Godley, B.J., Granadeiro, J.P., Guilford, T., Hamer, K.C., Hazin, C., 734 Hedd, A., Henry, L., Hernández-Montero, M., Hinke, J., Kokubun, N., Leat, E., Tranquilla, L.M., 735 Metzger, B., Militão, T., Montrond, G., Mullié, W., Padget, O., Pearmain, E.J., Pollet, I.L., Pütz, K., 736 Quintana, F., Ratcliffe, N., Ronconi, R.A., Ryan, P.G., Saldanha, S., Shoji, A., Sim, J., Small, C., 737 Soanes, L., Takahashi, A., Trathan, P., Trivelpiece, W., Veen, J., Wakefield, E., Weber, N., Weber, 738 S., Zango, L., Daunt, F., Ito, M., Harris, M.P., Newell, M.A., Wanless, S., González-Solís, J.,
- 739 Croxall, J., 2018. Spatial scales of marine conservation management for breeding seabirds.
 740 Marine Policy 98, 37–46. https://doi.org/10.1016/j.marpol.2018.08.024
- Palacios, M.G., D'Amico, V.L., Bertellotti, M., 2018. Ecotourism effects on health and immunity of
 Magellanic penguins at two reproductive colonies with disparate touristic regimes and
 population trends. Conserv Physiol 6. https://doi.org/10.1093/conphys/coy060
- Parsons, M., Mitchell, I., Butler, A., Ratcliffe, N., Frederiksen, M., Foster, S., Reid, J.B., 2008. Seabirds as
 indicators of the marine environment. ICES J Mar Sci 65, 1520–1526.
 https://doi.org/10.1093/icesjms/fsn155
- Paterson, J.R.B., Yates, O., Holtzhausen, H., Reid, T., Shimooshili, K., Yates, S., Sullivan, B.J., Wanless,
 R.M., 2017. Seabird mortality in the Namibian demersal longline fishery and recommendations
 for best practice mitigation measures. Oryx 1–10. https://doi.org/10.1017/S0030605317000230
- Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres, F., 1998. Fishing Down Marine Food Webs.
 Science 279, 860–863. https://doi.org/10.1126/science.279.5352.860
- Phillips, R.A., 2010. Eradications of invasive mammals from islands: why, where, how and what next?
 Emu, in: http://dx.doi.org/10.1071/MUv110n4_ED SARAÇA. pp. 1–7.
- Phillips, R.A., Gales, R., Baker, G.B., Double, M.C., Favero, M., Quintana, F., Tasker, M.L., Weimerskirch,
 H., Uhart, M., Wolfaardt, A., 2016. The conservation status and priorities for albatrosses and
 large petrels. Biological Conservation 201, 169–183.
 https://doi.org/10.1016/j.biocon.2016.06.017
- Piatt, I., Sydeman, W., 2007. Seabirds as indicators of marine ecosystems. Marine Ecology Progress
 Series 352, 199–204. https://doi.org/10.3354/meps07070
- Pichegru, L., Grémillet, D., Crawfor, R.J.M., Ryan, P.G., 2010. Marine no-take zone rapidly benefits
 endangered penguin. Biology Letters 6, 498–501. https://doi.org/10.1098/rsbl.2009.0913
- Pierre, J.P., Abraham, E.R., Richard, Y., Cleal, J., Middleton, D.A.J., 2012. Controlling trawler waste
 discharge to reduce seabird mortality. Fisheries Research 131–133, 30–38.
 https://doi.org/10.1016/j.fishres.2012.07.005
- Rayner, M.J., Hauber, M.E., Imber, M.J., Stamp, R.K., Clout, M.N., 2007. Spatial heterogeneity of
 mesopredator release within an oceanic island system. PNAS 104, 20862–20865.
 https://doi.org/10.1073/pnas.0707414105
- Rodríguez, A., Arcos, J.M., Bretagnolle, V., Dias, M.P., Holmes, N.D., Louzao, M., Provencher, J., Raine,
 A.F., Ramírez, F., Rodríguez, B., Ronconi, R.A., Taylor, R.S., Bonnaud, E., Borrelle, S.B., Cortés, V.,
 Descamps, S., Friesen, V.L., Genovart, M., Hedd, A., Hodum, P., Humphries, G.R.W., Le Corre,
 M., Lebarbenchon, C., Martin, R., Melvin, E.F., Montevecchi, W.A., Pinet, P., Pollet, I.L., Ramos,

772 R., Russell, J.C., Ryan, P.G., Sanz-Aguilar, A., Spatz, D.R., Travers, M., Votier, S.C., Wanless, R.M., Woehler, E., Chiaradia, A., 2019. Future Directions in Conservation Research on Petrels and 773 774 Shearwaters. Front. Mar. Sci. 6. https://doi.org/10.3389/fmars.2019.00094 775 Rodríguez, A., Holmes, N.D., Ryan, P.G., Wilson, K.-J., Faulquier, L., Murillo, Y., Raine, A.F., Penniman, 776 J.F., Neves, V., Rodríguez, B., Negro, J.J., Chiaradia, A., Dann, P., Anderson, T., Metzger, B., 777 Shirai, M., Deppe, L., Wheeler, J., Hodum, P., Gouveia, C., Carmo, V., Carreira, G.P., Delgado-778 Alburqueque, L., Guerra-Correa, C., Couzi, F.-X., Travers, M., Corre, M.L., 2017. Seabird 779 mortality induced by land-based artificial lights. Conservation Biology 31, 986–1001. 780 https://doi.org/10.1111/cobi.12900 781 Roman, L., Bell, E., Wilcox, C., Hardesty, B.D., Hindell, M., 2019. Ecological drivers of marine debris 782 ingestion in Procellariiform Seabirds. Scientific Reports 9, 916. https://doi.org/10.1038/s41598-783 018-37324-w 784 Roser, M., 2018. Our World in Data - Oil Spills [WWW Document]. URL https://ourworldindata.org/oil-785 spills (accessed 9.9.18). 786 Rude, J., Minks, A., Doheny, B., Tyner, M., Maher, K., Huffard, C., Hidayat, N.I., Grantham, H., 2016. 787 Ridge to reef modelling for use within land-sea planning under data-limited conditions. Aquatic 788 Conservation: Marine and Freshwater Ecosystems 26, 251–264. 789 https://doi.org/10.1002/aqc.2548 790 Ryan, P.G., Moore, C.J., van Franeker, J.A., Moloney, C.L., 2009. Monitoring the abundance of plastic 791 debris in the marine environment. Philos Trans R Soc Lond B Biol Sci 364, 1999–2012. 792 https://doi.org/10.1098/rstb.2008.0207 793 Salafsky, N., Salzer, D., Stattersfield, A.J., Hilton-Taylor, C., Neugarten, R., Butchart, S.H.M., Collen, B., 794 Cox, N., Master, L.L., O'connor, S., Wilkie, D., 2008. A Standard Lexicon for Biodiversity 795 Conservation: Unified Classifications of Threats and Actions. Conservation Biology 22, 897–911. 796 https://doi.org/10.1111/j.1523-1739.2008.00937.x 797 Sherman, K., Ajayi, T., Anang, E., Cury, P., Freon, M.P., Hardman-Mountford, N.J., Ibe, C.A., Koranteng, K.A., McGlade, J., Nauen, C.C., 2003. Suitability of the large marine ecosystem concept. 798 799 Fisheries research 64, 197–204. 800 Soykan, C.U., Moore, J.E., Zydelis, R., Crowder, L.B., Safina, C., Lewison, R.L., 2008. Why study bycatch? 801 An introduction to the Theme Section on fisheries bycatch. Endangered Species Research 5, 91-802 102. https://doi.org/10.3354/esr00175 Spatz, D.R., Holmes, N.D., Reguero, B.G., Butchart, S.H.M., Tershy, B.R., Croll, D.A., 2017. Managing 803 804 Invasive Mammals to Conserve Globally Threatened Seabirds in a Changing Climate: 805 Threatened seabird conservation on islands. Conservation Letters 10, 736–747. 806 https://doi.org/10.1111/conl.12373 807 Spatz, D.R., Newton, K.M., Heinz, R., Tershy, B., Holmes, N.D., Butchart, S.H.M., Croll, D.A., 2014. The 808 Biogeography of Globally Threatened Seabirds and Island Conservation Opportunities: Seabird 809 Conservation Opportunities. Conservation Biology 28, 1282–1290. 810 https://doi.org/10.1111/cobi.12279 St. John, M.A., Borja, A., Chust, G., Heath, M., Grigorov, I., Mariani, P., Martin, A.P., Santos, R.S., 2016. A 811 812 Dark Hole in Our Understanding of Marine Ecosystems and Their Services: Perspectives from the Mesopelagic Community. Front. Mar. Sci. 3. https://doi.org/10.3389/fmars.2016.00031 813 Sullivan, B.J., Kibel, B., Kibel, P., Yates, O., Potts, J.M., Ingham, B., Domingo, A., Gianuca, D., Jiménez, S., 814 815 Lebepe, B., Maree, B.A., Neves, T., Peppes, F., Rasehlomi, T., Silva-Costa, A., Wanless, R.M., 816 2018. At-sea trialling of the Hookpod: a "one-stop" mitigation solution for seabird bycatch in 817 pelagic longline fisheries. Animal Conservation 21, 159–167. https://doi.org/10.1111/acv.12388 818 Sydeman, W., Thompson, S., Kitaysky, A., 2012. Seabirds and climate change: roadmap for the future. Marine Ecology Progress Series 454, 107–117. https://doi.org/10.3354/meps09806 819 820 Tamini, L.L., Chavez, L.N., Góngora, M.E., Yates, O., Rabuffetti, F.L., Sullivan, B., 2015. Estimating 821 mortality of black-browed albatross (Thalassarche melanophris, Temminck, 1828) and other 822 seabirds in the Argentinean factory trawl fleet and the use of bird-scaring lines as a mitigation measure. Polar Biol 38, 1867–1879. https://doi.org/10.1007/s00300-015-1747-3 823

- Trathan, P.N., Borboroglu, P.G., Boersma, D., Bost, C.-A., Crawford, R.J.M., Crossin, G.T., Cuthbert, R.J.,
 Dann, P., Davis, L.S., De La Puente, S., Ellenberg, U., Lynch, H.J., Mattern, T., Pütz, K., Seddon,
 P.J., Trivelpiece, W., Wienecke, B., 2015. Pollution, habitat loss, fishing, and climate change as
 critical threats to penguins: Primary Threats to Penguins. Conservation Biology 29, 31–41.
 https://doi.org/10.1111/cobi.12349
- Tuck, G.N., Polacheck, T., Croxall, J.P., Weimerskirch, H., 2001. Modelling the impact of fishery by catches on albatross populations. Journal of Applied Ecology 38, 1182–1196.
 https://doi.org/10.1046/j.0021-8901.2001.00661.x
- Uhart, M.M., Gallo, L., Quintana, F., 2018. Review of diseases (pathogen isolation, direct recovery and antibodies) in albatrosses and large petrels worldwide. Bird Conservation International 28, 169– 196. https://doi.org/10.1017/S0959270916000629
- Watanuki, Y., Thiebot, J.-B., 2018. Factors affecting the importance of myctophids in the diet of the world's seabirds. Mar Biol 165, 79. https://doi.org/10.1007/s00227-018-3334-y
- Watson, H., Bolton, M., Monaghan, P., 2014. Out of sight but not out of harm's way: Human
 disturbance reduces reproductive success of a cavity-nesting seabird. Biol Conserv 174, 127–
 133. https://doi.org/10.1016/j.biocon.2014.03.020
- Webb, T.J., Berghe, E.V., O'Dor, R., 2010. Biodiversity's Big Wet Secret: The Global Distribution of
 Marine Biological Records Reveals Chronic Under-Exploration of the Deep Pelagic Ocean. PLOS
 ONE 5, e10223. https://doi.org/10.1371/journal.pone.0010223
- Wilcox, C., Van Sebille, E., Hardesty, B.D., 2015. Threat of plastic pollution to seabirds is global,
 pervasive, and increasing. Proceedings of the National Academy of Sciences 112, 11899–11904.
 https://doi.org/10.1073/pnas.1502108112
- Zavaleta, E.S., Hobbs, R.J., Mooney, H.A., 2001. Viewing invasive species removal in a whole-ecosystem
 context. Trends in Ecology & Evolution 16, 454–459. https://doi.org/10.1016/S01695347(01)02194-2
- 849Žydelis, R., Bellebaum, J., Österblom, H., Vetemaa, M., Schirmeister, B., Stipniece, A., Dagys, M., van850Eerden, M., Garthe, S., 2009. Bycatch in gillnet fisheries An overlooked threat to waterbird851populations. Biological Conservation 142, 1269–1281.
- 852 https://doi.org/10.1016/j.biocon.2009.02.025
- 853
- 854

855 Tables

856

- Table 1: System for scoring impact of threats (from Garnett et al., 2018). Values within parentheses
- 858 represent the percentage of the total population affected (scope) and the known or likely rate of
- 859 population decline caused by the threat over three generations (severity). Impact values are the
- average of the product of the extremes of scope and severity in each interval
- 861 (mean[min(scope)*min(severity)/100, max(scope)*max(severity)/100])

Scope/Severity	Very Rapid	Rapid	Slow but Significant	Negligible
	Declines	Declines	Declines or Causing/Could	Declines (<5%)
	(>30%)	[20-30%]	cause fluctuations [5-20%[
	63	23.5	11.8	2.9
Whole (>90%)	Very high	High	Medium	Low
	51.6	17.9	9.7	2.4
Majority [50-90%]	Very high	High	Medium	Low
	24.9	7.4	4.8	1.2
Minority (<50%)	High	Medium	Medium	Low

Table 2: Summary of the top threats (impacting more than 20% of the species or having an high overall impact) affecting: all seabird species; only globally

865 threatened species; only Near Threatened (NT) species and Least Concern (LC) species with declining trends. N species: number of species affected; N species

866 main threat: number of species for which the threat is the main cause of decline (i.e. highest impact); Mean impact (± SE): mean impact on the species affected

by the threat; Overall impact: sum of the impact scores across all species. Threats are listed in descending order of the overall impact on all species.

		All species	(n=359)		Globally threatened species (n=110)			NT and LC species (declining) (n=119)		
Threats	N	N species	Mean	Overall	Ν	Mean	Overall	N	Mean	Overall
inicats	species	main threat ¹	impact	impact	species	impact	impact	species	species impact imp	
Invasive alien species	165	107	8.6 ± 0.8	1419.29	73	12.14 ± 1.64	885.89	62	6.12 ± 0.61	379.36
Bycatch	100	70	9.05 ± 0.97	904.66	50	11.78 ± 1.77	589.00	36	6.68 ± 0.75	240.62
Climate change/severe weather	96	63	8.07 ± 0.47	774.92	37	9.88 ± 0.80	365.53	43	7.44 ± 0.67	319.89
Overfishing	54	24 ²	8.49 ± 1.25	458.25	22	11.89 ± 2.81	261.49	19	6.79 ± 0.83	129.09
Hunting/trapping	97	38	4.05 ± 0.6	392.71	27	6.05 ± 1.98	163.37	35	4.03 ± 0.50	141.18
Disturbance	73	25	3.40 ± 0.36	248.31	26	4.23 ± 0.63	110.09	28	3.37 ± 0.57	94.36

¹ – Some species can have more than one threat as the main cause of decline; 2 – Excluding species for which overfishing and bycatch are both indicated as the

869 major threat

- Table 3: Seabird groups affected by both terrestrial and marine threats (excluding the ones related
- to the climate change; see methods) with medium, high or very high impact*, and most frequent
- 872 interactions (only shown are those affecting >2 species).

Group	N species with terrestrial and marine threats	Most frequent interactions terrestrial - marine	Number of species affected
Albatrosses	13 (59%)	Invasive alien species - Bycatch	10
		Diseases - Bycatch	3
Penguins	9 (50%)	Problematic native species - Pollution	4
		Invasive alien species - Pollution	3
		Problematic native species - Overfishing	3
		Hunting/trapping - Pollution	3
Auks	11 (46%)	Invasive alien species - Pollution	6
		Invasive alien species - Bycatch	3
		Disturbance - Pollution	3
Large petrels and	13 (34%)	Invasive alien species - Bycatch	8
shearwaters		Invasive alien species - Overfishing	3
Sea ducks and allies	10 (33%)	Hunting/trapping - Pollution	7
		Hunting/trapping - Bycatch	4
		Invasive alien species - Bycatch	3
Cormorants and pelicans	6 (18%)	Problematic native species - Overfishing	3

* only included groups with at least five species with at least one terrestrial and one marine threat

All species

876 877 Figure 1: Ongoing threats to all seabird species (ordered by the number of species affected). Left y 878 axis: total number of species affected; Right y axis: average impact ± SE. Values atop bars indicate the percentage of species affected (n=359). 879

880

Figure 2: Estimated total number of seabirds exposed to each threat. Error bars represent the 95%

885 confidence intervals (see methods). Values atop bars indicate percentage of total number of

886 seabirds affected.

887

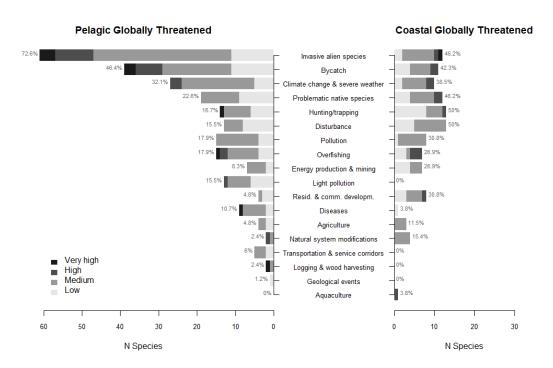
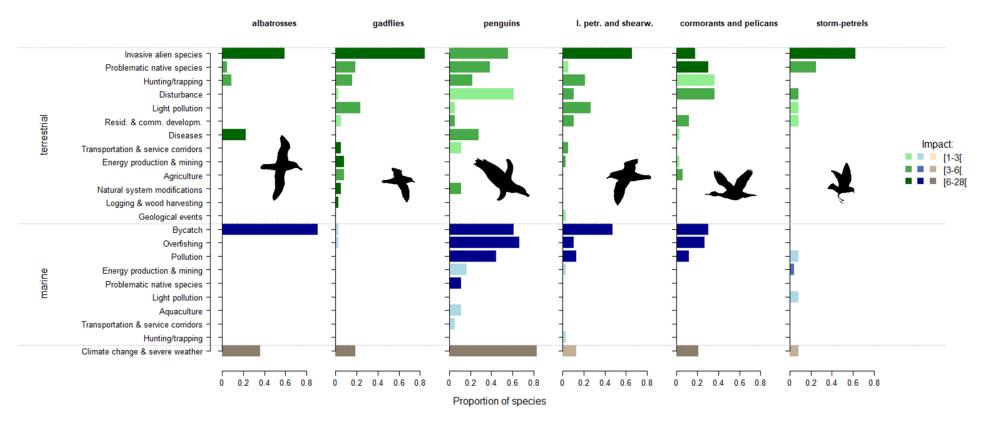
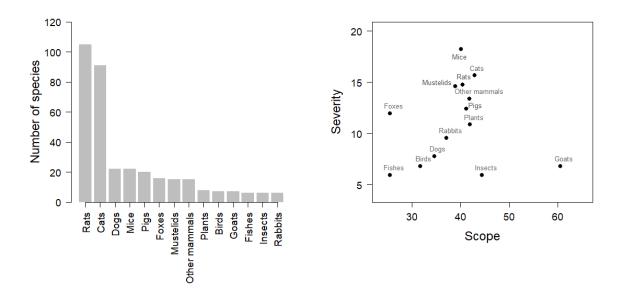




Figure 3: Ongoing threats to pelagic (n=84) and coastal (n=26) globally threatened seabirds; valuesatop bars indicate percentage of species affected.

- Figure 4: Main threats (split into marine and terrestrial) by group of seabird species (only groups with more than 30% of species classified as globally
- 897 threatened are shown; see also Figure A4 in Appendix 3). In column headings, *l. petr. and shearw*. = large petrels and shearwaters.

899 Figure 5: Left panel: number of seabird species affected by different invasive alien species. Right

900 panel: mean scope and severity of different invasive alien species. Only invasive alien species901 affecting more than 5 seabird species are represented.

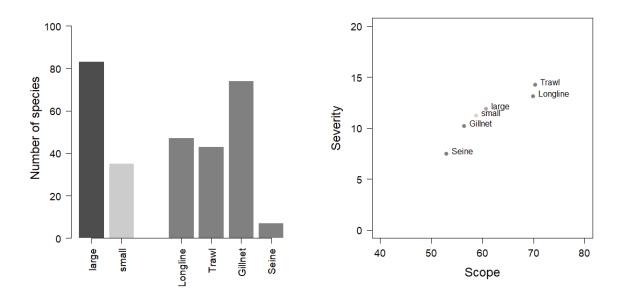


Figure 6: Left panel: Number of seabird species affected by fisheries (large vs small and different
gear types). Right panel: mean scope and severity of large- and small-scale fisheries and of different
fishing gear types.

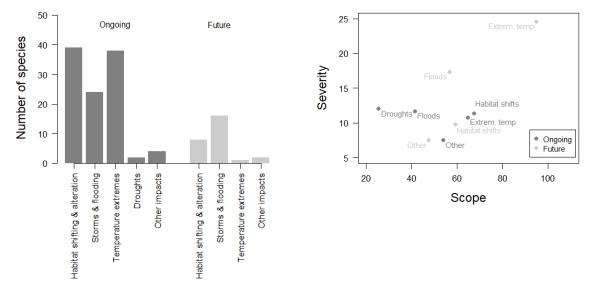
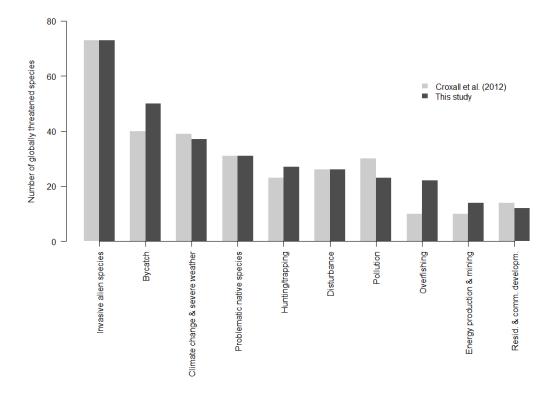



Figure 7: Left panel: Number of seabird species affected by different "level-2 threats" coded for the
 threat "climate change/severe weather" (see Table A2.2, Appendix 2). Right panel: mean scope and

911 severity of level 2 threats classified under climate change/severe weather.

912

- 914 Figure 8: Comparison between the number of globally threatened seabird species affected by each
- 915 threat as reported by Croxall et al. (2012) and found in this study. Only threats mentioned in both
- 916 studies are shown.

918 Appendix 1: List of seabird species considered in the analysis

919 The list follows the taxonomy adopted by BirdLife International (2018). 2018 IUCN Red List Category: LC = Least Concern, NT = Near Threatened, VU =

920 Vulnerable, EN = Endangered, CR = Critically Endangered, CR(PE) = Critically Endangered (Possibly Extinct), DD = Data Deficient. The classification into

921 Coastal and Pelagic is based on Croxall et al. (2012)

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Anseriformes	Anatidae	Aythya marila	Greater Scaup	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Bucephala clangula	Common Goldeneye	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Bucephala islandica	Barrow's Goldeneye	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Clangula hyemalis	Long-tailed Duck	VU	Coastal	sea ducks and allies
Anseriformes	Anatidae	Histrionicus histrionicus	Harlequin Duck	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Melanitta americana	Black Scoter	NT	Coastal	sea ducks and allies
Anseriformes	Anatidae	Melanitta deglandi	White-winged Scoter	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Melanitta fusca	Velvet Scoter	VU	Coastal	sea ducks and allies
Anseriformes	Anatidae	Melanitta nigra	Common Scoter	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Melanitta perspicillata	Surf Scoter	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Melanitta stejnegeri	Siberian Scoter	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Mergus merganser	Goosander	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Mergus serrator	Red-breasted Merganser	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Polysticta stelleri	Steller's Eider	VU	Coastal	sea ducks and allies
Anseriformes	Anatidae	Somateria fischeri	Spectacled Eider	NT	Coastal	sea ducks and allies
Anseriformes	Anatidae	Somateria mollissima	Common Eider	NT	Coastal	sea ducks and allies
Anseriformes	Anatidae	Somateria spectabilis	King Eider	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Tachyeres brachypterus	Falkland Steamerduck	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Tachyeres leucocephalus	White-headed Steamerduck	VU	Coastal	sea ducks and allies
Anseriformes	Anatidae	Tachyeres patachonicus	Flying Steamerduck	LC	Coastal	sea ducks and allies
Anseriformes	Anatidae	Tachyeres pteneres	Magellanic Steamerduck	LC	Coastal	sea ducks and allies

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Charadriiformes	Alcidae	Aethia cristatella	Crested Auklet	LIST CATEGOLY	Pelagic	auks
Charadriiformes	Alcidae	Aethia psittacula	Parakeet Auklet	LC	Pelagic	auks
Charadriiformes	Alcidae	Aethia pusilla	Least Auklet	LC	Pelagic	auks
Charadriiformes	Alcidae	Aethia pygmaea	Whiskered Auklet	LC	Pelagic	auks
Charadriiformes	Alcidae	Alca torda	Razorbill	NT	Pelagic	auks
Charadriiformes	Alcidae	Alle alle	Little Auk	LC	Pelagic	auks
Charadriiformes	Alcidae	Brachyramphus brevirostris	Kittlitz's Murrelet	NT	Pelagic	auks
Charadriiformes	Alcidae	Brachyramphus marmoratus	Marbled Murrelet	EN	Pelagic	auks
Charadriiformes	Alcidae	Brachyramphus perdix	Long-billed Murrelet	NT	Pelagic	auks
Charadriiformes	Alcidae	Cepphus carbo	Spectacled Guillemot	LC	Pelagic	auks
Charadriiformes	Alcidae	Cepphus columba	Pigeon Guillemot	LC	Pelagic	auks
Charadriiformes	Alcidae	Cepphus grylle	Black Guillemot	LC	Pelagic	auks
Charadriiformes	Alcidae	Cerorhinca monocerata	Rhinoceros Auklet	LC	Pelagic	auks
Charadriiformes	Alcidae	Fratercula arctica	Atlantic Puffin	VU	Pelagic	auks
Charadriiformes	Alcidae	Fratercula cirrhata	Tufted Puffin	LC	Pelagic	auks
Charadriiformes	Alcidae	Fratercula corniculata	Horned Puffin	LC	Pelagic	auks
Charadriiformes	Alcidae	Ptychoramphus aleuticus	Cassin's Auklet	NT	Pelagic	auks
Charadriiformes	Alcidae	Synthliboramphus antiquus	Ancient Murrelet	LC	Pelagic	auks
Charadriiformes	Alcidae	Synthliboramphus craveri	Craveri's Murrelet	VU	Pelagic	auks
Charadriiformes	Alcidae	Synthliboramphus hypoleucus	Guadalupe Murrelet	EN	Pelagic	auks
Charadriiformes	Alcidae	Synthliboramphus scrippsi	Scripps's Murrelet	VU	Pelagic	auks
Charadriiformes	Alcidae	Synthliboramphus wumizusume	Japanese Murrelet	VU	Pelagic	auks
Charadriiformes	Alcidae	Uria aalge	Common Murre	LC	Pelagic	auks
Charadriiformes	Alcidae	Uria Iomvia	Thick-billed Murre	LC	Pelagic	auks
Charadriiformes	Laridae	Creagrus furcatus	Swallow-tailed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Hydrocoloeus minutus	Little Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus argentatus	European Herring Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus atlanticus	Olrog's Gull	NT	Coastal	gulls

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Charadriiformes	Laridae	Larus atricilla	Laughing Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus audouinii	Audouin's Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus belcheri	Belcher's Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus brunnicephalus	Brown-headed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus cachinnans	Caspian Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus californicus	California Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus canus	Mew Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus cirrocephalus	Grey-headed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus crassirostris	Black-tailed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus delawarensis	Ring-billed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus dominicanus	Kelp Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus fuliginosus	Lava Gull	VU	Coastal	gulls
Charadriiformes	Laridae	Larus fuscus	Lesser Black-backed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus genei	Slender-billed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus glaucescens	Glaucous-winged Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus glaucoides	Iceland Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus hartlaubii	Hartlaub's Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus heermanni	Heermann's Gull	NT	Coastal	gulls
Charadriiformes	Laridae	Larus hemprichii	Sooty Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus hyperboreus	Glaucous Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus ichthyaetus	Pallas's Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus leucophthalmus	White-eyed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus livens	Yellow-footed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus maculipennis	Brown-hooded Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus marinus	Great Black-backed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus melanocephalus	Mediterranean Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus michahellis	Yellow-legged Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus modestus	Grey Gull	LC	Coastal	gulls

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Charadriiformes	Laridae	Larus novaehollandiae	Silver Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus occidentalis	Western Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus pacificus	Pacific Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus philadelphia	Bonaparte's Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus pipixcan	Franklin's Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus ridibundus	Black-headed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus schistisagus	Slaty-backed Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus scoresbii	Dolphin Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Larus smithsonianus	Arctic Herring Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Pagophila eburnea	Ivory Gull	NT	Coastal	gulls
Charadriiformes	Laridae	Rhodostethia rosea	Ross's Gull	LC	Coastal	gulls
Charadriiformes	Laridae	Rissa brevirostris	Red-legged Kittiwake	VU	Coastal	gulls
Charadriiformes	Laridae	Rissa tridactyla	Black-legged Kittiwake	VU	Coastal	gulls
Charadriiformes	Laridae	Saundersilarus saundersi	Saunders's Gull	VU	Coastal	gulls
Charadriiformes	Laridae	Xema sabini	Sabine's Gull	LC	Coastal	gulls
Charadriiformes	Scolopacidae	Phalaropus fulicarius	Red Phalarope	LC	Coastal	phalaropes
Charadriiformes	Scolopacidae	Phalaropus lobatus	Red-necked Phalarope	LC	Coastal	phalaropes
Charadriiformes	Stercorariidae	Catharacta antarctica	Brown Skua	LC	Pelagic	skuas
Charadriiformes	Stercorariidae	Catharacta chilensis	Chilean Skua	LC	Pelagic	skuas
Charadriiformes	Stercorariidae	Catharacta maccormicki	South Polar Skua	LC	Pelagic	skuas
Charadriiformes	Stercorariidae	Catharacta skua	Great Skua	LC	Pelagic	skuas
Charadriiformes	Stercorariidae	Stercorarius longicaudus	Long-tailed Jaeger	LC	Pelagic	skuas
Charadriiformes	Stercorariidae	Stercorarius parasiticus	Arctic Jaeger	LC	Pelagic	skuas
Charadriiformes	Stercorariidae	Stercorarius pomarinus	Pomarine Jaeger	LC	Pelagic	skuas
Charadriiformes	Laridae	Anous minutus	Black Noddy	LC	Coastal	terns
Charadriiformes	Laridae	Anous stolidus	Brown Noddy	LC	Coastal	terns
Charadriiformes	Laridae	Anous tenuirostris	Lesser Noddy	LC	Coastal	terns
Charadriiformes	Laridae	Chlidonias albostriatus	Black-fronted Tern	EN	Coastal	terns

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Charadriiformes	Laridae	Chlidonias niger	Black Tern	LC	Coastal	terns
Charadriiformes	Laridae	Gelochelidon macrotarsa	Australian Gull-billed Tern	LC	Coastal	terns
Charadriiformes	Laridae	Gelochelidon nilotica	Common Gull-billed Tern	LC	Coastal	terns
Charadriiformes	Laridae	Gygis alba	Common White Tern	LC	Coastal	terns
Charadriiformes	Laridae	Gygis microrhyncha	Little White Tern	LC	Coastal	terns
Charadriiformes	Laridae	Hydroprogne caspia	Caspian Tern	LC	Coastal	terns
Charadriiformes	Laridae	Larosterna inca	Inca Tern	NT	Coastal	terns
Charadriiformes	Laridae	Onychoprion aleuticus	Aleutian Tern	VU	Coastal	terns
Charadriiformes	Laridae	Onychoprion anaethetus	Bridled Tern	LC	Coastal	terns
Charadriiformes	Laridae	Onychoprion fuscatus	Sooty Tern	LC	Coastal	terns
Charadriiformes	Laridae	Onychoprion lunatus	Grey-backed Tern	LC	Coastal	terns
Charadriiformes	Laridae	Anous albivitta	Grey Noddy	LC	Coastal	terns
Charadriiformes	Laridae	Anous cerulea	Blue Noddy	LC	Coastal	terns
Charadriiformes	Laridae	Sterna dougallii	Roseate Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sterna forsteri	Forster's Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sterna hirundinacea	South American Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sterna hirundo	Common Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sterna paradisaea	Arctic Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sterna repressa	White-cheeked Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sterna striata	White-fronted Tern	NT	Coastal	terns
Charadriiformes	Laridae	Sterna sumatrana	Black-naped Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sterna trudeaui	Snowy-crowned Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sterna virgata	Kerguelen Tern	NT	Coastal	terns
Charadriiformes	Laridae	Sterna vittata	Antarctic Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sternula albifrons	Little Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sternula antillarum	Least Tern	LC	Coastal	terns
Charadriiformes	Laridae	Sternula balaenarum	Damara Tern	VU	Coastal	terns
Charadriiformes	Laridae	Sternula lorata	Peruvian Tern	EN	Coastal	terns

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Charadriiformes	Laridae	Sternula nereis	Fairy Tern	VU	Coastal	terns
Charadriiformes	Laridae	Sternula saundersi	Saunders's Tern	LC	Coastal	terns
Charadriiformes	Laridae	Thalasseus bengalensis	Lesser Crested Tern	LC	Coastal	terns
Charadriiformes	Laridae	Thalasseus bergii	Greater Crested Tern	LC	Coastal	terns
Charadriiformes	Laridae	Thalasseus bernsteini	Chinese Crested Tern	CR	Coastal	terns
Charadriiformes	Laridae	Thalasseus elegans	Elegant Tern	NT	Coastal	terns
Charadriiformes	Laridae	Thalasseus maximus	Royal Tern	LC	Coastal	terns
Charadriiformes	Laridae	Thalasseus sandvicensis	Sandwich Tern	LC	Coastal	terns
Gaviiformes	Gaviidae	Gavia adamsii	Yellow-billed Loon	NT	Coastal	sea ducks and allies
Gaviiformes	Gaviidae	Gavia arctica	Arctic Loon	LC	Coastal	sea ducks and allies
Gaviiformes	Gaviidae	Gavia immer	Common Loon	LC	Coastal	sea ducks and allies
Gaviiformes	Gaviidae	Gavia pacifica	Pacific Loon	LC	Coastal	sea ducks and allies
Gaviiformes	Gaviidae	Gavia stellata	Red-throated Loon	LC	Coastal	sea ducks and allies
Pelecaniformes	Pelecanidae	Pelecanus occidentalis	Brown Pelican	LC	Coastal	cormorants and pelicans
Pelecaniformes	Pelecanidae	Pelecanus onocrotalus	Great White Pelican	LC	Coastal	cormorants and pelicans
Pelecaniformes	Pelecanidae	Pelecanus thagus	Peruvian Pelican	NT	Pelagic	cormorants and pelicans
Phaethontiformes	Phaethontidae	Phaethon aethereus	Red-billed Tropicbird	LC	Pelagic	frigatebirds and tropicbirds
Phaethontiformes	Phaethontidae	Phaethon lepturus	White-tailed Tropicbird	LC	Pelagic	frigatebirds and tropicbirds
Phaethontiformes	Phaethontidae	Phaethon rubricauda	Red-tailed Tropicbird	LC	Pelagic	frigatebirds and tropicbirds
Podicipediformes	Podicipedidae	Podiceps auritus	Horned Grebe	VU	Coastal	sea ducks and allies
Podicipediformes	Podicipedidae	Podiceps cristatus	Great Crested Grebe	LC	Coastal	sea ducks and allies
Podicipediformes	Podicipedidae	Podiceps grisegena	Red-necked Grebe	LC	Coastal	sea ducks and allies
Podicipediformes	Podicipedidae	Podiceps nigricollis	Black-necked Grebe	LC	Coastal	sea ducks and allies
Procellariiformes	Diomedeidae	Diomedea amsterdamensis	Amsterdam Albatross	EN	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Diomedea antipodensis	Antipodean Albatross	EN	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Diomedea dabbenena	Tristan Albatross	CR	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Diomedea epomophora	Southern Royal Albatross	VU	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Diomedea exulans	Wandering Albatross	VU	Pelagic	albatrosses

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Procellariiformes	Diomedeidae	Diomedea sanfordi	Northern Royal Albatross	EN	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Phoebastria albatrus	Short-tailed Albatross	VU	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Phoebastria immutabilis	Laysan Albatross	NT	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Phoebastria irrorata	Waved Albatross	CR	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Phoebastria nigripes	Black-footed Albatross	NT	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Phoebetria fusca	Sooty Albatross	EN	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Phoebetria palpebrata	Light-mantled Albatross	NT	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche bulleri	Buller's Albatross	NT	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche carteri	Indian Yellow-nosed Albatross	EN	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche cauta	Shy Albatross	NT	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche chlororhynchos	Atlantic Yellow-nosed Albatross	EN	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche chrysostoma	Grey-headed Albatross	EN	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche eremita	Chatham Albatross	VU	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche impavida	Campbell Albatross	VU	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche melanophris	Black-browed Albatross	LC	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche salvini	Salvin's Albatross	VU	Pelagic	albatrosses
Procellariiformes	Diomedeidae	Thalassarche steadi	White-capped Albatross	NT	Pelagic	albatrosses
Procellariiformes	Procellariidae	Pseudobulweria aterrima	Mascarene Petrel	CR	Pelagic	gadflies
Procellariiformes	Procellariidae	Pseudobulweria becki	Beck's Petrel	CR	Pelagic	gadflies
Procellariiformes	Procellariidae	Pseudobulweria macgillivrayi	Fiji Petrel	CR	Pelagic	gadflies
Procellariiformes	Procellariidae	Pseudobulweria rostrata	Tahiti Petrel	NT	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma alba	Phoenix Petrel	EN	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma arminjoniana	Trindade Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma atrata	Henderson Petrel	EN	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma axillaris	Chatham Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma baraui	Barau's Petrel	EN	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma brevipes	Collared Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma cahow	Bermuda Petrel	EN	Pelagic	gadflies

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Procellariiformes	Procellariidae	Pterodroma caribbaea	Jamaican Petrel	CR(PE)	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma cervicalis	White-necked Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma cookii	Cook's Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma defilippiana	Masatierra Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma deserta	Desertas Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma externa	Juan Fernandez Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma feae	Cape Verde Petrel	NT	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma gouldi	Grey-faced Petrel	LC	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma hasitata	Black-capped Petrel	EN	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma heraldica	Herald Petrel	LC	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma hypoleuca	Bonin Petrel	LC	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma incerta	Atlantic Petrel	EN	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma inexpectata	Mottled Petrel	NT	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma lessonii	White-headed Petrel	LC	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma leucoptera	White-winged Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma longirostris	Stejneger's Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma macroptera	Great-winged Petrel	LC	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma madeira	Zino's Petrel	EN	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma magentae	Magenta Petrel	CR	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma mollis	Soft-plumaged Petrel	LC	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma neglecta	Kermadec Petrel	LC	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma nigripennis	Black-winged Petrel	LC	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma phaeopygia	Galapagos Petrel	CR	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma pycrofti	Pycroft's Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma sandwichensis	Hawaiian Petrel	EN	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma solandri	Providence Petrel	VU	Pelagic	gadflies
Procellariiformes	Procellariidae	Pterodroma ultima	Murphy's Petrel	NT	Pelagic	gadflies
Procellariiformes	Procellariidae	Ardenna bulleri	Buller's Shearwater	VU	Pelagic	large petrels and shearwaters

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Procellariiformes	Procellariidae	Ardenna carneipes	Flesh-footed Shearwater	NT	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Ardenna creatopus	Pink-footed Shearwater	VU	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Ardenna gravis	Great Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Ardenna grisea	Sooty Shearwater	NT	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Ardenna pacifica	Wedge-tailed Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Ardenna tenuirostris	Short-tailed Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Calonectris borealis	Cory's Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Calonectris diomedea	Scopoli's Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Calonectris edwardsii	Cape Verde Shearwater	NT	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Calonectris leucomelas	Streaked Shearwater	NT	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Fulmarus glacialis	Northern Fulmar	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Fulmarus glacialoides	Southern Fulmar	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Macronectes giganteus	Southern Giant Petrel	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Macronectes halli	Northern Giant Petrel	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Procellaria aequinoctialis	White-chinned Petrel	VU	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Procellaria cinerea	Grey Petrel	NT	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Procellaria conspicillata	Spectacled Petrel	VU	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Procellaria parkinsoni	Black Petrel	VU	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Procellaria westlandica	Westland Petrel	EN	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus assimilis	Little Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus auricularis	Townsend's Shearwater	CR	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus bailloni	Tropical Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus bannermani	Bannerman's Shearwater	EN	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus bryani	Bryan's Shearwater	CR	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus elegans	Subantarctic Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus gavia	Fluttering Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus heinrothi	Heinroth's Shearwater	VU	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus huttoni	Hutton's Shearwater	EN	Pelagic	large petrels and shearwaters

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Procellariiformes	Procellariidae	Puffinus Iherminieri	Audubon's Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus mauretanicus	Balearic Shearwater	CR	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus nativitatis	Christmas Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus newelli	Newell's Shearwater	CR	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus opisthomelas	Black-vented Shearwater	NT	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus persicus	Persian Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus puffinus	Manx Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus subalaris	Galapagos Shearwater	LC	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Puffinus yelkouan	Yelkouan Shearwater	VU	Pelagic	large petrels and shearwaters
Procellariiformes	Procellariidae	Aphrodroma brevirostris	Kerguelen Petrel	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Bulweria bulwerii	Bulwer's Petrel	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Bulweria fallax	Jouanin's Petrel	NT	Pelagic	small petrels
Procellariiformes	Procellariidae	Daption capense	Cape Petrel	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Halobaena caerulea	Blue Petrel	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pachyptila belcheri	Slender-billed Prion	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pachyptila crassirostris	Fulmar Prion	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pachyptila desolata	Antarctic Prion	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pachyptila macgillivrayi	MacGillivray's Prion	EN	Pelagic	small petrels
Procellariiformes	Procellariidae	Pachyptila salvini	Salvin's Prion	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pachyptila turtur	Fairy Prion	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pachyptila vittata	Broad-billed Prion	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pagodroma nivea	Snow Petrel	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pelecanoides garnotii	Peruvian Diving-petrel	EN	Pelagic	small petrels
Procellariiformes	Procellariidae	Pelecanoides georgicus	South Georgia Diving-petrel	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pelecanoides magellani	Magellanic Diving-petrel	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Pelecanoides urinatrix	Common Diving-petrel	LC	Pelagic	small petrels
Procellariiformes	Procellariidae	Thalassoica antarctica	Antarctic Petrel	LC	Pelagic	small petrels
Procellariiformes	Oceanitidae	Fregetta grallaria	White-bellied Storm-petrel	LC	Pelagic	storm-petrels

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Procellariiformes	Oceanitidae	Fregetta maoriana	New Zealand Storm-petrel	CR	Pelagic	storm-petrels
Procellariiformes	Oceanitidae	Fregetta tropica	Black-bellied Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Oceanitidae	Garrodia nereis	Grey-backed Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates castro	Band-rumped Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates furcatus	Fork-tailed Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates homochroa	Ashy Storm-petrel	EN	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates hornbyi	Ringed Storm-petrel	DD	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates leucorhous	Leach's Storm-petrel	VU	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates macrodactylus	Guadalupe Storm-petrel	CR(PE)	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates markhami	Markham's Storm-petrel	DD	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates matsudairae	Matsudaira's Storm-petrel	VU	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates melania	Black Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates microsoma	Least Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates monorhis	Swinhoe's Storm-petrel	NT	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates monteiroi	Monteiro's Storm-petrel	VU	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates pelagicus	European Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates tethys	Wedge-rumped Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Hydrobatidae	Hydrobates tristrami	Tristram's Storm-petrel	NT	Pelagic	storm-petrels
Procellariiformes	Oceanitidae	Nesofregetta fuliginosa	Polynesian Storm-petrel	EN	Pelagic	storm-petrels
Procellariiformes	Oceanitidae	Oceanites gracilis	White-vented Storm-petrel	DD	Pelagic	storm-petrels
Procellariiformes	Oceanitidae	Oceanites oceanicus	Wilson's Storm-petrel	LC	Pelagic	storm-petrels
Procellariiformes	Oceanitidae	Oceanites pincoyae	Pincoya Storm-petrel	DD	Pelagic	storm-petrels
Procellariiformes	Oceanitidae	Pelagodroma marina	White-faced Storm-petrel	LC	Pelagic	storm-petrels
Sphenisciformes	Spheniscidae	Aptenodytes forsteri	Emperor Penguin	NT	Pelagic	penguins
Sphenisciformes	Spheniscidae	Aptenodytes patagonicus	King Penguin	LC	Pelagic	penguins
Sphenisciformes	Spheniscidae	Eudyptes chrysocome	Southern Rockhopper Penguin	VU	Pelagic	penguins
Sphenisciformes	Spheniscidae	Eudyptes chrysolophus	Macaroni Penguin	VU	Pelagic	penguins
Sphenisciformes	Spheniscidae	Eudyptes moseleyi	Northern Rockhopper Penguin	EN	Pelagic	penguins

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Sphenisciformes	Spheniscidae	Eudyptes pachyrhynchus	Fiordland Penguin	VU	Pelagic	penguins
Sphenisciformes	Spheniscidae	Eudyptes robustus	Snares Penguin	VU	Pelagic	penguins
Sphenisciformes	Spheniscidae	Eudyptes schlegeli	Royal Penguin	NT	Pelagic	penguins
Sphenisciformes	Spheniscidae	Eudyptes sclateri	Erect-crested Penguin	EN	Pelagic	penguins
Sphenisciformes	Spheniscidae	Eudyptula minor	Little Penguin	LC	Pelagic	penguins
Sphenisciformes	Spheniscidae	Megadyptes antipodes	Yellow-eyed Penguin	EN	Pelagic	penguins
Sphenisciformes	Spheniscidae	Pygoscelis adeliae	Adélie Penguin	LC	Pelagic	penguins
Sphenisciformes	Spheniscidae	Pygoscelis antarcticus	Chinstrap Penguin	LC	Pelagic	penguins
Sphenisciformes	Spheniscidae	Pygoscelis papua	Gentoo Penguin	LC	Pelagic	penguins
Sphenisciformes	Spheniscidae	Spheniscus demersus	African Penguin	EN	Pelagic	penguins
Sphenisciformes	Spheniscidae	Spheniscus humboldti	Humboldt Penguin	VU	Pelagic	penguins
Sphenisciformes	Spheniscidae	Spheniscus magellanicus	Magellanic Penguin	NT	Pelagic	penguins
phenisciformes	Spheniscidae	Spheniscus mendiculus	Galapagos Penguin	EN	Pelagic	penguins
Suliformes	Phalacrocoracidae	Gulosus aristotelis	European Shag	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo atriceps	Imperial Shag	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo bougainvilliorum	Guanay Cormorant	NT	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo campbelli	Campbell Shag	VU	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo carunculatus	Rough-faced Shag	VU	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo chalconotus	Stewart Shag	VU	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo colensoi	Auckland Shag	VU	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo magellanicus	Rock Shag	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo onslowi	Chatham Shag	CR	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Leucocarbo ranfurlyi	Bounty Shag	VU	Coastal	cormorants and pelicans
uliformes	Phalacrocoracidae	Leucocarbo verrucosus	Kerguelen Shag	LC	Coastal	cormorants and pelicans
uliformes	Phalacrocoracidae	Microcarbo coronatus	Crowned Cormorant	NT	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Microcarbo melanoleucos	Little Pied Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Nannopterum auritus	Double-crested Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Nannopterum brasilianus	Neotropical Cormorant	LC	Coastal	cormorants and pelicans

Order	Family	Scientific name	Common name	2018 IUCN Red List Category	Pelagic / coastal	Group
Suliformes	Phalacrocoracidae	Nannopterum harrisi	Flightless Cormorant	VU	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax capensis	Cape Cormorant	EN	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax capillatus	Japanese Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax carbo	Great Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax featherstoni	Pitt Shag	EN	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax fuscescens	Black-faced Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax fuscicollis	Indian Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax neglectus	Bank Cormorant	EN	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax nigrogularis	Socotra Cormorant	VU	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax punctatus	Spotted Shag	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Phalacrocorax varius	Great Pied Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Poikilocarbo gaimardi	Red-legged Cormorant	NT	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Urile pelagicus	Pelagic Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Urile penicillatus	Brandt's Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Phalacrocoracidae	Urile urile	Red-faced Cormorant	LC	Coastal	cormorants and pelicans
Suliformes	Fregatidae	Fregata andrewsi	Christmas Frigatebird	CR	Pelagic	frigatebirds and tropicbirds
Suliformes	Fregatidae	Fregata aquila	Ascension Frigatebird	VU	Pelagic	frigatebirds and tropicbirds
Suliformes	Fregatidae	Fregata ariel	Lesser Frigatebird	LC	Pelagic	frigatebirds and tropicbirds
Suliformes	Fregatidae	Fregata magnificens	Magnificent Frigatebird	LC	Pelagic	frigatebirds and tropicbirds
Suliformes	Fregatidae	Fregata minor	Great Frigatebird	LC	Pelagic	frigatebirds and tropicbirds
Suliformes	Sulidae	Morus bassanus	Northern Gannet	LC	Pelagic	gannets and boobies
Suliformes	Sulidae	Morus capensis	Cape Gannet	EN	Pelagic	gannets and boobies
Suliformes	Sulidae	Morus serrator	Australasian Gannet	LC	Pelagic	gannets and boobies
Suliformes	Sulidae	Papasula abbotti	Abbott's Booby	EN	Pelagic	gannets and boobies
Suliformes	Sulidae	Sula dactylatra	Masked Booby	LC	Pelagic	gannets and boobies
Suliformes	Sulidae	Sula granti	Nazca Booby	LC	Pelagic	gannets and boobies
Suliformes	Sulidae	Sula leucogaster	Brown Booby	LC	Pelagic	gannets and boobies
Suliformes	Sulidae	Sula nebouxii	Blue-footed Booby	LC	Pelagic	gannets and boobies

				2018 IUCN Red	Pelagic /	
Order	Family	Scientific name	Common name	List Category	coastal	Group
Suliformes	Sulidae	Sula sula	Red-footed Booby	LC	Pelagic	gannets and boobies
Suliformes	Sulidae	Sula variegata	Peruvian Booby	LC	Pelagic	gannets and boobies

References

926 BirdLife International, 2018. IUCN Red List for birds. URL http://www.birdlife.org (accessed 10.12.18).

927 Croxall, J.P., Butchart, S.H.M., Lascelles, B., Stattersfield, A.J., Sullivan, B., Symes, A., Taylor, P., 2012. Seabird conservation status, threats and priority

928 actions: a global assessment. Bird Conservation International 22, 1–34. https://doi.org/10.1017/S0959270912000020

930 Appendix 2: List of threats considered in the analyses (Table A.2.1.), and correspondence with the original IUCN Red List

931 threats classification scheme (IUCN, 2012) (Table A.2.2.)

932

Table A2.1. List of threats considered in the study. Adapted from IUCN (2012) and Salafsky et al. (2008).

Threat	IUCN Level 1	Source	Description (adapted from Salafsky et al. 2008)
Agriculture	Agriculture & Aquaculture	Terrestrial	Threats from farming and ranching as a result of agricultural expansion and intensification, including silviculture
Aquaculture	Agriculture & Aquaculture	Marine	Threats from farming as a result of aquaculture and mariculture expansion and intensification (e.g. marine & freshwater aquaculture)
Bycatch	Biological Resource Use	Marine	Threats from the unintentional effects of the consumptive use of "wild" biological resources resulting in direct mortality or loss of reproductive output
Climate change & severe weather	Climate Change & Severe weather	-	Long-term climatic changes that may be linked to global warming and other severe climatic or weather events outside the natural range of variation that could eliminate a vulnerable species or habitat
Diseases	Invasive & Other Problematic Species, Genes & Diseases	Terrestrial or marine ¹	Threats from non-native and native pathogens/microbes that have or are predicted to have harmful effects on biodiversity following their introduction, spread and/or increase in abundance
Disturbance	Biological Resource Use, Human Intrusions & Disturbance	Terrestrial or marine ¹	Threats from human activities that alter, destroy and disturb habitats and species associated with non-consumptive uses of biological resources
Energy production & mining	Energy Production & Mining	Terrestrial or marine ¹	Threats from production of nonbiological resources
Geological events	Geological Events	Terrestrial	Threats from catastrophic geological events
Hunting/trapping	Biological Resource Use	Terrestrial or marine ¹	Threats from consumptive use of "wild" biological resources including deliberate harvesting effects; also persecution or control of specific species
Invasive alien species	Invasive & Other Problematic Species, Genes & Diseases	Terrestrial	Threats from non-native plants or animals that have or are predicted to have harmful effects on biodiversity following their introduction, spread and/or increase in abundance
Light pollution	Pollution	Terrestrial or marine ¹	Threats from excess energy (light)
Logging & wood harvesting	Biological Resource Use	Terrestrial	Threats from harvesting trees and other woody vegetation for timber, fibre, or fuel
Natural system modifications	Natural System Modifications	Terrestrial	Threats from actions that convert or degrade habitat in service of "managing" natural or seminatural systems, often to improve human welfare

Threat	IUCN Level 1	Source	Description (adapted from Salafsky et al. 2008)
Overfishing	Biological Resource Use	Marine	Threats from unintentional effects of consumptive use of "wild" biological resources resulting in resource competition or indirect impacts on the ecosystem
Pollution	Pollution	Terrestrial or marine ¹	Threats from introduction of exotic and/or excess materials or energy (except light) from point and nonpoint sources
Problematic native species	Invasive & Other Problematic Species, Genes & Diseases	Terrestrial	Threats from native plants or animals that have or are predicted to have harmful effects on biodiversity following their sprea and/or increase in abundance
Residential & commercial development	Residential & Commercial Development	Terrestrial	Human settlements or other non-agricultural land uses with a substantial footprint
Transportation & service corridors	Transportation & Service Corridors	Terrestrial or marine ¹	Threats from long, narrow transport corridors and the vehicles that use them including associated wildlife mortality

934 ¹ Classification into terrestrial or marine made case by case, based on the references consulted (e.g. terrestrial if occurring on land, marine if at sea)

Table A2.2. Correspondence between the threats considered in the analyses (see A2.1.) and the original IUCN Red List threats classification scheme (IUCN, 2012)

Threat	IUCN Level 1	IUCN Level 2	IUCN Level 3	Source	Notes
		Annual & Perennial Non-Timber Crops	Shifting Agriculture, Small-holder Farming, Agro-Industry Farming, Scale Unknown/Unrecorded	Terrestrial	
Agriculture	Agriculture & Aquaculture	Wood & Pulp Plantations	Small-holder Plantations, Agro-Industry Plantations, Scale Unknown/Unrecorded	Terrestrial	
		Livestock Farming & Ranching	Nomadic Grazing, Small-Holder Grazing, Ranching or Farming, Agro-Industry Grazing, Ranching or Farming, Scale Unknown/Unrecorded	Terrestrial	
Aquaculture	Agriculture & Aquaculture	Marine & Freshwater Aquaculture	Subsistence/Artisanal Aquaculture, Industrial Aquaculture, Scale Unknown/Unrecorded	Marine	
Bycatch	Biological Resource Use	Fishing & Harvesting Aquatic Resources	Unintentional effects: subsistence/small scale (species being assessed is not the target) [harvest], Unintentional effects: large scale (species being assessed is not the target) [harvest]	Marine	stress="species mortality"
		Droughts			
Climate change & severe weather	Climate Change & Severe	Habitat Shifting & Alteration	[No level 3 threats under Climate Change & Severe Weather]		
	Weather	Other Impacts			
		Storms & Flooding			
		Temperature Extremes			
		Invasive non-native/alien species/diseases	Unspecified Species, Named Species	Terrestrial	species=any kind of disease
	Invasive & Other	Problematic native species/diseases	Unspecified Species, Named Species	Terrestrial	species=any kind of disease
Diseases	Problematic Species, Genes & Diseases	Problematic species/disease of unknown origin	Unspecified Species, Named Species	Terrestrial, marine (algal blooms)	species=any kind of disease
		Viral/prion-induced diseases	Named "Species" (Disease), Unspecified "Species" (Disease)	Terrestrial	
		Diseases of unknown cause		Terrestrial	
Disturbance	Biological Resource Use	Fishing & Harvesting Aquatic Resources	Unintentional effects: subsistence/small scale (species being assessed is not the target) [harvest], Unintentional effects: large scale (species being assessed is not the target) [harvest]	Marine	

Threat	IUCN Level 1	IUCN Level 2	IUCN Level 3	Source	Notes
	Human intrusions & disturbance	Work & Other Activities		Terrestrial	
		Mining & Quarrying		Marine	
Energy production & mining	Energy production & mining	Oil & Gas Drilling		Marine	
d mining		Renewable Energy		Marine	
	Coological events	Avalanches/Landslides		Terrestrial	
Geological events	Geological events	Volcanoes		Terrestrial	
		Fishing & Harvesting Aquatic Resources	Persecution/Control	Marine	
Hunting/trapping	Biological Resource Use	Hunting & Collecting Terrestrial Animals	Intentional use (species being assessed is the target), Persecution/Control, Unintentional effects (species being assessed is not the target)	Terrestrial, marine ¹	
Invasive alien species	Invasive & Other Problematic Species, Genes & Diseases	Invasive Non-Native/Alien Species/Diseases	Unspecified Species, Named species	Terrestrial	species=any non-disease
Light pollution	Pollution	Excess Energy	Light Pollution	Terrestrial, marine ¹	
		Gathering Terrestrial Plants	Unintentional effects (species being assessed is not the target)	Terrestrial	
Logging & wood harvesting	Biological Resource Use	Logging & Wood Harvesting	Unintentional effects: subsistence/small scale (species being assessed is not the target) [harvest], Unintentional effects: large scale (species being assessed is not the target) [harvest]	Terrestrial	
Natural system modifications	Natural System Modifications	Dams & Water Management/Use	Abstraction of Surface Water (agricultural use), Abstraction of Surface Water (domestic use), Abstraction of Surface Water (unknown use), Dams (size unknown), Large Dams	Terrestrial	
		Fire & Fire Suppression	Increase in Fire Frequency/Intensity, Trend Unknown/Unrecorded	Terrestrial	
Overfishing	Biological Resource Use	Fishing & Harvesting Aquatic Resources	Unintentional effects: subsistence/small scale (species being assessed is not the target) [harvest], Unintentional effects: large scale (species being assessed is not the target) [harvest]	Marine	stress="indirect ecosystem effects" or "competition"
		Agricultural & Forestry Effluents	Herbicides and Pesticides, Nutrient Loads	Terrestrial	
Pollution	Pollution	Domestic & Urban Waste Water	Type Unknown/Unrecorded	Terrestrial	
		Garbage & Solid Waste		Terrestrial	

Threat	IUCN Level 1	IUCN Level 2	IUCN Level 3	Source	Notes
		Industrial & Military Effluents	Oil Spills, Seepage from Mining, Type Unknown/Unrecorded	Terrestrial, marine (oil spills)	
Problematic native species	Invasive & Other Problematic Species, Genes & Diseases	Problematic Native Species/Diseases	Unspecified Species, Named Species	Terrestrial	
Residential & Residential &	Commercial & Industrial Areas		Terrestrial		
commercial	Commercial	Housing & Urban Areas		Terrestrial	
development	Development	Tourism & Recreation Areas		Terrestrial	
		Roads & Railroads		Terrestrial	
Transportation & service corridors	Transportation & Service Corridors	Shipping Lanes		Marine	
	contuors	Utility & Service Lines		Terrestrial	

937 ¹ Classification of terrestrial or marine made case by case, based on the references consulted (e.g. terrestrial if occurring at the colony, marine if at-sea)

938

939 **References**

940 IUCN, 2012. Threats Classification Scheme (Version 3.2) [WWW Document]. URL http://www.iucnredlist.org/technical-documents/classification-

941 schemes/threats-classification-scheme. (accessed 10.9.18).

942 Salafsky, N., Salzer, D., Stattersfield, A.J., Hilton-Taylor, C., Neugarten, R., Butchart, S.H.M., Collen, B., Cox, N., Master, L.L., O'connor, S., Wilkie, D., 2008. A

943 Standard Lexicon for Biodiversity Conservation: Unified Classifications of Threats and Actions. Conservation Biology 22, 897–911.

944 https://doi.org/10.1111/j.1523-1739.2008.00937.x

Appendix 3: Supporting figures

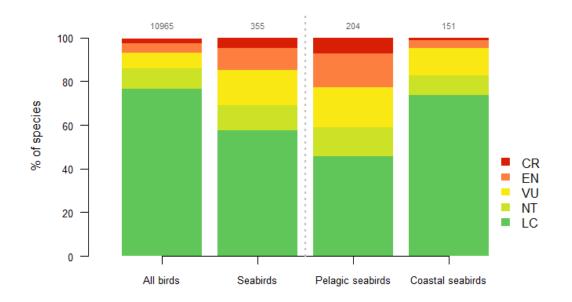
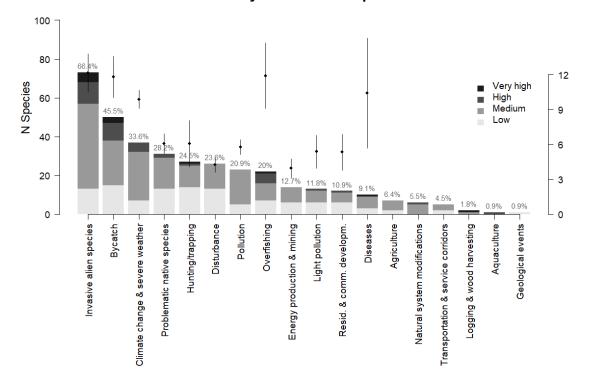
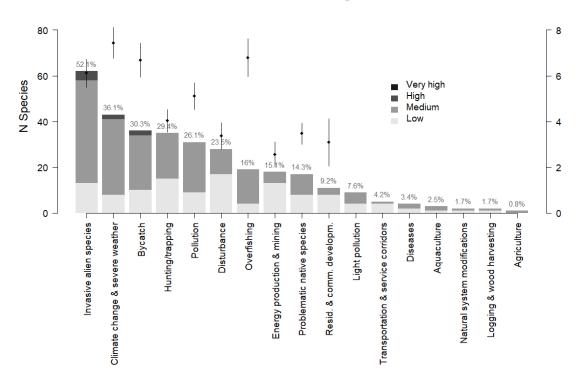




Figure A1: IUCN Red List status of all extant bird species, all seabirds, and pelagic and coastal seabird species (based on BirdLife International, 2018). Values atop bars indicate the number of species (species classified as "Data Deficient" (56, including 4 seabird species (all pelagic) are not shown). CR = Critically Endangered; EN = Endangered; VU = Vulnerable; NT = Near Threatened; LC = Least Concern.

Globally Threatened Species

Figure A2: Ongoing threats to globally threatened seabird species (Critically Endangered, Endangered or Vulnerable). Left y axis: total number of species affected; Right y axis: average impact ± SE. Values atop bars indicate the percentage of species affected (n=110).

NT and declining LC

Figure A3: Ongoing threats to Near Threatened (NT) and declining Least Concern (LC) seabird species. Left y axis: total number of species affected; Right y axis: average impact ± SE. Values atop bars indicate the percentage of species affected (n=119).

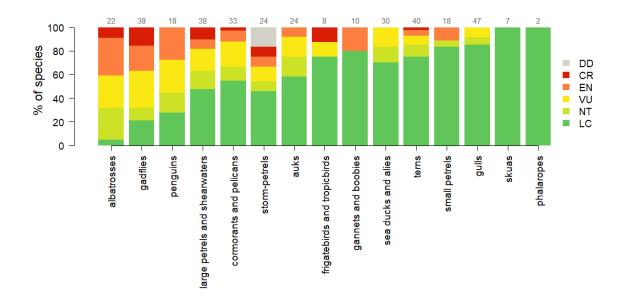


Figure A4: IUCN Red List status for each group of seabird species. Values atop bars indicate the number of species per group. DD = Data Deficient; CR = Critically Endangered; EN = Endangered; VU = Vulnerable; NT = Near Threatened; LC = Least Concern.

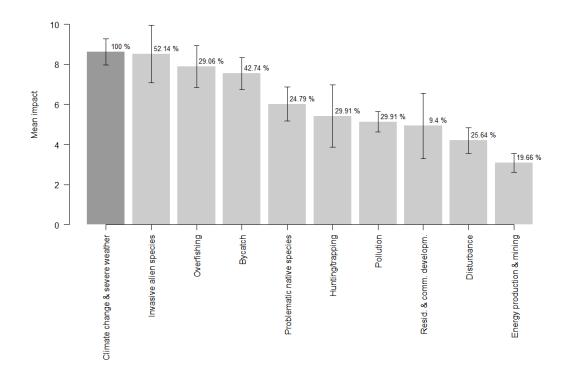


Figure A5: Mean impact (± EP) of threats co-occurring with climate change/severe weather (% indicate the percentage of species affected both by climate change/severe weather and each threat; only threats affecting more than 10 species are indicated)

References

BirdLife International, 2018. IUCN Red List for birds [WWW Document]. URL http://www.birdlife.org (accessed 10.12.18).