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Abstract
Background:Nitrogen dioxide (NO2) poses substantial public health risks in large cities globally.
Concentrations ofNO2 shows high spatial variation, yet intra-urbanmeasurements ofNO2 inChinese
cities are sparse. The size of Chinese cities and shortage of some datasets is challenging for high spatial
resolutionmodelling. The aimherewas to combine advantages of dispersion and land-use regression
(LUR)modelling to simulate population exposure toNO2 at high spatial resolution for health burden
calculations, in the examplemegacity of Guangzhou.Methods:Ambient concentrations ofNO2

simulated by theADMS-Urban dispersionmodel at 83 ‘virtual’monitoring sites, selected to span both
the range ofNO2 concentration andweighting by population density, were used to develop a LUR
model of 2017 annual-meanNO2 across Guangzhou at 25m×25m spatial resolution.Results:The
LURmodel was validated against both the 83 virtual sites (adjR2: 0.96, RMSE: 5.48 μgm−3; LOOCV
R2: 0.96, RMSE: 5.64 μgm−3) and, independently, against available observations (n=11,R2:: 0.63,
RMSE: 18.0 μgm−3). Themodelled population-weighted long-term average concentration ofNO2

across Guangzhouwas 52.5 μgm−3, which contributes an estimated 7270 (6960−7620) attributable
deaths. Reducing concentrations in exceedance of the China air quality standard/WHOair quality
guideline of 40 μgm−3 would reduceNO2-attributable deaths by 1900 (1820–1980).Conclusions:We
demonstrate a general hybridmodellingmethod that can be employed in other cities inChina to
model ambientNO2 concentration at high spatial resolution for health burden estimation and
epidemiological study. By running the dispersionmodel with alternativemitigation policies, new LUR
models can be constructed to quantify policy effectiveness onNO2 population health burden.

1. Introduction

It is expected that by 2025 roughly 70% of the
global population will live in urban areas (United
Nations 2014). China is at the forefront of this trend of
rapid economic development and urbanisation, which
has led to the emergence of megacities (>10 million
people) and megacity clusters and concomitant
problemsofpoor air quality (Chan andYao2008,Wang

and Hao 2012, Cohen et al 2017, Sun and Zhou 2017,
Airvisual 2019).

Nitrogen dioxide (NO2) is a key urban air pollu-
tant with well-documented public health impacts.
Exposure to ambient NO2 is associated with increased
mortality (WHO2013, Faustini et al 2014, Crouse et al
2015). It is also linked to respiratory symptoms such as
bronchitis, asthma and reduced lung-function growth
in children, and to cardiovascular and Alzheimer’s
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disease (Brunekreef and Holgate 2002,Weinmayr et al
2010, Chiusolo et al 2011, Luo et al 2016, Yan et al
2016, Anenberg et al 2018).

Ambient concentrations of NO2 in many Chinese
cities exceed the air quality standard (Ministry of
Environmental Protection 2018a). The predominant
sources of NO2 are road traffic, other combustion pro-
cesses in domestic, commercial and industrial settings,
including cooking, and (where relevant) shipping (Fu
et al 2017, Liu et al 2017, Ding et al 2018, Zheng et al
2018a). Due to the widespread sources and relatively
short lifetime of NO2, its concentrations are strongly
spatially varying (Beirle et al 2011, Cyrys et al 2012,
Gurung et al 2017). The China National Environ-
mental Monitoring Centre has implemented a nation-
wide monitoring network for routine measurements
of ambient NO2 (and other pollutants), but despite the
increase in the number of monitoring sites across
China in recent years, air quality monitoring networks
cannot provide the highly spatially resolved con-
centration fields needed to accurately evaluate the
population health burden of exposure to NO2. Mea-
surements also cannot provide the data needed to eval-
uate future mitigation scenarios that address the
challenges of reducing population exposure toNO2.

Instead, modelling approaches are needed. Urban-
scale air pollution models fall into two basic categories:
dispersion models (Visscher 2013), and land-use regres-
sion (LUR)models (Briggs et al 1997, Jerrett et al 2005).
A dispersion model strives to accurately simulate the
fundamental physical–chemical processes in the atmos-
phere from emission source to all selected receptor loca-
tions, whilst a LUR model establishes significant
predictor variables for concentrations at known loca-
tions and uses the statistical relationship to estimate con-
centrations at all other locations. However, modelling
NO2 concentrations in China is challenging as the
detailed input data required for modelling that exist for
Western cities are much more limited for Chinese cities
(He et al 2018). Chinese cities are large in both popula-
tion number and geographical area comparedwith cities
in Europe and North America (United Nations 2017),
and are also characterised by high population density: an
average of 5000per km2 inurban areaswith apopulation
>500 000, which is almost double that for EU cities
(2900 per km2) and triple that for North American cities
(1600 per km2) (Demographia 2019). The lack of a full
suite of input data is a particular challenge for dispersion
models, as is the computational demandof running such
amodel over the size of a typical Chinese city. LURmod-
els are more flexible in terms of data requirement but
can generally only be used to estimate long-term-average
pollutant concentration fields, and they lack predictive
capability. The lack of measurement data and difficulty
in modelling limit epidemiological studies and health
impact assessments in China (Cao et al 2011, Gu et al
2017, Sun andZhou2017,Huang et al 2018, Li et al2018,
Lin et al2018, Ji et al2019).

In this work, we demonstrate a practical approach
to simulating annual-average concentrations of NO2

inChinesemegacities in whichwe combine the advan-
tages of both dispersion and LUR modelling (Mölter
et al 2010). We use an urban dispersion model to
simulate annual-average NO2 concentrations at stra-
tegically chosen ‘virtual’ sites. This network of virtual
measurements is then used to develop an LUR model
to estimate NO2 concentrations over the whole region
at 25 m×25 m resolution, from which mortality
health burdens can be calculated. A particular advan-
tage of this approach is that it can be used to derive
spatially-resolved LUR models for future scenarios
that are rooted in process-based dispersion model
simulations of those scenarios. Here we demonstrate
ourmethodology for the example Chinesemegacity of
Guangzhou, which is the third largest city in China.
We use our hybridmodel to estimate the scale of long-
term health burden currently existing in Guangzhou
due to the spatially varyingNO2 concentrations.

2.Method

2.1. Study design
The city of Guangzhou is located on the north side of the
Pearl RiverDelta (figure 1). It has a total area of 7434 km2

and a population of 14 million, divided into six districts
(Conghua, Guangzhou city centre, Huaxian, Nansha,
Panyu, andZengcheng) (table 1). Concentrations ofNO2

are measured at 11 sites (figure 1). The workflow for this
study is shown in figure 2. The ADMS-Urban dispersion
model v4.1 (CERC 2017) was used to derive NO2

concentrations at 83 additional strategically-selected
receptors locations across Guangzhou, which were then
used to develop an LUR model for NO2 concentrations
across thewhole city.

2.2. TheADMS-urbanmodel
The ADMS-Urban dispersion model v4.1 (Carruthers
et al 1994, CERC 2017) is a widely-used (McHugh et al
1997, Carruthers et al 2000, Di Sabatino et al 2007,
Righi et al 2009) quasi-Gaussian model for simulating
dispersion in the atmosphere of continuous releases
from a range of explicit sources in an urban area. The
NOx–NO2 chemistry is simulated using the 8-reaction
set of Venkatram et al (1994) that includes reactions
with ozone and hydrocarbons. This General Reaction
Set has been thoroughly evaluated against measure-
ments (see e.g. Tonnesen and Jeffries 1994, Venkatram
et al 1994, Chaney et al 2011, Carruthers et al 2017).
Surface deposition is included in the model. The
sources of data used for the ADMS-urban dispersion
modelling of NO2 concentrations atmonitor locations
and at the virtual sites in this study are given in
supplementary information (SI) table S2. Gridded
emissions of NOx and VOCs for the year 2016 were
obtained from the Multi-resolution Emission Inven-
tory for China (Zheng et al 2018a) and downscaled to
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4 km×4 km horizon resolution using various spatial
proxies (Geng et al 2017, Zheng et al 2018b). Shipping
emissions were taken from MarcoPolo-Panda for the
year 2014 (MarcoPolo-Panda 2017). Amap of the total
NOx emissions is shown in SI figure S1. Motorway,
trunk, primary, secondary, and tertiary roads, as
defined by OpenStreetMap, were explicitly modelled
as road sources (OpenStreetMap 2018). Emissions
from roads were calculated by assigning total on-road
traffic emissions to the explicitly modelled roads
according to road type and total length of each road, as
described in SI sectionA.

Wind speed and direction at 10 m above the
ground, and cloud cover were obtained from
ECMWF-ERA5 (ECMWF 2019). Background con-
centrations of NO2, NOx, and O3 were obtained from
the Copernicus Atmosphere Monitoring Service

(CAMS) (ECMWF 2019). As the prevailing wind
direction in Guangzhou is from the northeast (SI
figure S2), the background site for pollutant con-
centrations for the model was chosen to be a rural
location to the northeast of the model domain (SI
figure S3). The model was evaluated using the NO2

concentrations at the 11 monitoring sites shown in
figure 1.

2.3. Selection of theADMS-urban virtual receptor
sites
As themain purpose ofmodellingNO2 concentrations
is to estimate NO2 where people live, the virtual sites
were primarily selected to be proportionally located
across the residential areas of Guangzhou. The six
districts have a large range in population (table 1) so
site selection was first stratified across the six districts

Figure 1. (A)The location ofGuangzhou inChina. (B), (C)The locations of the 11NO2monitoring sites and 83 virtual receptor sites
for the dispersionmodelling, whichwere stratified into the six districts of Guangzhou indicated by the boundaries. The labels on the
maps are theGuangzhou codes for themonitoring sites; additional site location description is provided in supplementary information
table S1, available online at stacks.iop.org/ERL/14/124019/mmedia.Map tiles by StamenDesign (2019), under CCBY 3.0. Data by
OpenStreetMap, underODbL.

Table 1.Population of each district, the number of residential and roadside sites selected and the number residential sites also satisfying the
definition of roadside site.

District Population No. of residential sites

No. of residential sites alsofitting roadside

definition

No. of roadside

sites

Conghua 596 816 3 0 1

Guangzhou city centre 7909 399 37 1 6

Huaxian 916 916 4 1 2

Nansha 110 923 1 0 1

Panyu 1986 223 10 0 5

Zengcheng 1120 186 5 0 2
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so as to ensure that sites in the virtual network were
located across the full domain area. Centroids of each
cell of population data (100 m×100 m) (Worldpop
2015)were extracted as potential virtual receptor sites.
Three types of virtual sites were defined for each
district so as also to span the range in anticipated NO2

concentration:

• Background site: centroid of the population cell with
greatest distance to the nearest road.

• Roadside sites: centroids of the population cells with
a distance to nearest road of nomore than 5 m.

• Residential sites: centroids of the population cells
with the highest population density.

In each district, residential sites were selected first,
with number of residential sties proportional to the
relative proportion of the total Guangzhou population
in that district (the specific number is given in table 1).
One residential site in two districts also fitted the defi-
nition of roadside site (see table 1), but these were
retained under the category of residential. All other
sites that satisfied the definition of roadside site (17
across the six districts, table 1) were selected as recep-
tor locations within the roadside site category. A back-
ground site was selected in each district. An additional
overarching criterion was a minimum distance of
300 m between any pair of sites in each district to
ensure that all sites were distributed across the range of
localities in the study area. The locations of the 83 sites
are shown in figure 1. ADMS-Urbanwas used to simu-
late annual-mean NO2 concentrations at these loca-
tions at a height of 1.5 m.

2.4. LURmodel predictor variables
Sources of data used to develop the LUR model are
given in SI table S2. Potential predictor variables (SI
table S5) for the LUR model were chosen based on
expectation that emission sources, dispersion, and
physical geographymay contribute to NO2 concentra-
tion variation in urban areas (ESCAPE 2008). The
inclusion of different buffer sizes allows for potential
different influences of a predictor variables over
different distances from the receptor (Su et al 2009,
Beelen et al 2013).

Road lengths in a buffer had to be used as surro-
gates for traffic flow and fleet composition, as neither
of these data are publicly available for Guangzhou. The
variables of number of people and artificial (i.e. non-
natural) area within a buffer do not directly affect NO2

concentration, but they are indirectly related to road
transport emissions and to domestic, industrial and
electrical generation emissions which contribute to
total NOx emission in Guangzhou (SI figure S4). Dis-
tance to nearest port and its derivatives were included
as non-buffer variables to account for the impacts of
shipping, Guangzhou is close to the South China Sea,
and is a major port, with ship activities significantly
contributing to total NOx emissions in the southern
part of the model domain (Liu et al 2016, Johansson
et al 2017) (SI figure S4). A maximum distance of
35 000 mwas specified for the distance to port variable
as the dispersion modelling at the virtual sites indi-
cated that NO2 concentration decreased to urban
background level at this distance from nearest port as
shown in SIfigure S5.

Green, i.e. not built-up, areas are assumed tomiti-
gate NO2 concentration since they are not sources of
NO2 and also act as areas over which NO2

Figure 2. Schematic of the integration of ADMS-Urbanmodel results into an LURmodel. Themethodology for selection of the 83
receptor locations is described in the text.
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concentrations disperse and dilute (and deposit),
hence the a priori direction of effect of the green area
variable is negative (Jim and Chen 2008). Coordinates
and altitude were included to reflect physical geo-
graphy influence and wind speed and direction
proxies.

2.5. LURmodel development and validation
A stepwise multiple regression approach was used to
select the potential predictor variables tomaximise the
adjusted percentage explained variance (R2) and
minimise the root mean square error (RMSE)
(ESCAPE 2008). First, all predictor variables were
individually regressed against the dependent variable
data (annual-mean NO2 concentrations modelled by
ADMS-urban at the 83 receptor sites). The predictor
variable which explained the most NO2 concentration
variation (highest R2) and with a coefficient in the
a priori-defined direction (SI table S5) formed the
initial model. The univariate linear regression process
was repeated with the remaining variables. A variable
with the highest increase in adjustedR2was added into
the initial model if it met the following criteria: (1) the
increase in adjusted R2 was greater than 0.01; (2) the
coefficients of this variable and the variables already in
the model were in accord with the a priori-defined
direction. This process was repeated until no further
variable satisfied the criteria. In the final step, variables
with p-value greater than 0.1 were removed from the
model starting from the variable with highest p-value.

Tests were then performed to check multi-
collinearity and influential observations. Multi-
collinearity in the variables was checked using Variance
Inflation Factor (VIF). VariableswithVIF values greater
than three were removed from the model. Extreme
values or many zero values in a variable data can skew
the final model and this can be indicated by Cook’s dis-
tance >1. In this study, no observation was removed.
The model was validated using both the measurement
and virtual site concentration data.

2.6.Health burden calculation
Calculation of total premature deaths from concentra-
tions of NO2 followed the methodology described by
Walton et al (2015). We used the association with all-
cause mortality of 2.45% (95% CI: 2.34%, 2.58%) per
10 μgm−3 elevation of NO2 reported by Zhang et al
(2011). This health risk coefficient was used since it was
derived from data in Shenyang, a province in China.
The number of deaths in 2017 in Guangzhou was
60 900 (Guangzhou Statistics Bureau 2018). The popu-
lation data (100m×100m) was resampled to the
resolution of the concentration map (25m×25m).
The population-weighted average concentration (E) for
NO2 across the whole of Guangzhou was calculated as
follows

å= ( )E
Pop

C Pop
1

1
i

i i

where Ci and Popi are the concentration and the
number of people in each cell i of the concentra-
tionmap.

The attributable deaths from exposure to ambient
NO2 in Guangzhou was calculated by multiplying the
attributable fraction by number of all-cause deaths
(equations (2)–(4)), whereRR refers to relative risk

= ( )( )/RR 1.0245 , 2E 10

= -( ) ( )/RR RRAF 1 , 3

= ´
( )

Attributable death the number of deaths AF.
4

3. Results

3.1. ADMS-urbanmodel validation
The ADMS-Urban model showed good statistical
performance against the annual-mean NO2 concentra-
tions at the 11 monitoring sites in Guangzhou
(figure 3(A)). The model explains 72% of the spatial
variation in the measured NO2, with an RMSE of
17.7 μgm−3, albeit with a tendency to overpredict NO2

concentrations (MB=11.2 μgm−3, NMB=0.22). A
likely explanation for the general overprediction is that
the precise height of each monitoring site is unknown.
The only information provided to us is that they range
in elevation from 2 to 20m, which is consistent with
anecdotal information that pollutant monitoring sites
in Chinese cities are often situated on tops of buildings,
and thus at higher elevation (whereNO2 concentrations
would be lower) than the receptor height used in the
model. The greatestmodel overprediction at site 1354A
(figure 3(A)) is likely explained by the fact that this site is
located in a park in the city centre and is surrounded by
dense vegetation whose effects on NO2 concentration
(through dispersion, deposition, and temperature
reduction) are not sufficiently captured by the model.
As the distance to nearest road for all 11 monitoring
sites is greater than 5m, the observed data can not verify
the model for roadside locations where highest NO2

concentrations are anticipated, but at the other end of
the concentration range the model predicted well the
background site 1355A which is located in an area of
natural land cover (Maofengshan). It is also important
to recognise that the observational data have uncer-
tainty. Measurement errors have been reported pre-
viously in China but more recent literature indicates
that data is more reliable since 2013 (Yuyu et al 2012,
Ghanem and Zhang 2014, Stoerk 2016). The monitor-
ing specification HJ654-2013 (Ministry of Environ-
mental Protection 2018b) also specifies detailed
calibration procedures for each instrument such as zero
and scale noises, error of indication, zero and span drifts
tests. However, overestimation of NO2 concentrations
using instruments based on the chemiluminescence
method (TEI Model 42i from Thermo Fisher Scientific
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Inc., USA) ranged from 6% to 280% depending on the
composition of the oxidation products ofNOx has been
reported (Xu et al 2013). It has not been feasible to
robustly quantify uncertainty for the NO2 measure-
ments in Guangzhou within the scope of this study, as
documentation of the processes applied for data quality
control and assurance (QA/QC) and the operating
principles at each monitoring site is not publicly
available.

3.2.Hybrid LURmodel and validation
The final LUR model contained three variables
(table 2): pop_5000 (the number of people within a
5000 mbuffer) sq_dis_port (the squared distance to the
nearest port), and all_len_25 (the length of all type of
roads within a 25 m buffer). The three variables
respectively represent the influence of people (indir-
ectly related to residential, industrial, and traffic
emission, and inversely related to green space),
shipping emissions, and traffic emissions. Table 3

summarizes the results of hybrid LUR model evalua-
tion against both the 83 virtual sites and the 11
monitoring sites and figure 3(B) shows the scatter plot
for the LUR model predictions at the 11 monitoring
sites.

Against the 83 virtual sites, LOOCV evaluation
shows the hybrid LURmodel explains 96% of the spa-
tial variation of NO2 concentration with an RMSE of
5.64 μgm−3. The NO2 concentrations at the monitor-
ing site provide an additional evaluation of the hybrid
LURmodel independent of the NO2 data used to con-
struct themodel (table 3 and figure 3(B)). For this plot,
R2=0.63 and MB=9.08 μg m−3, which corre-
sponds to a NMB of 18.2%. These statistical uncer-
tainties seem reasonable for intra-urban modelling/
mapping of a domain of this size and with the paucity
of detailed emissions data to support modelling.
Figure 3(B) shows that the hybrid model slightly over-
estimates NO2 concentrations, which as discussed ear-
lier is likely the consequence of the model predicting
NO2 concentration at 1.5 m height, which is lower
than the height of most monitoring sites (2–20 m).
Closer inspection of figure 3(B) shows that the model
generally over-predicts more at locations with higher
NO2 concentrations which can be rationalised because
these are the locations most affected by local traffic
emissions for which there is insufficiently detailed
input data. As noted above, it is also important to
recognise that there is uncertainty in the observed
values.

Figure 3. (A)DispersionmodelNO2 concentrations versus observedNO2 concentrations. (B)Hybrid LUR anddispersionmodelNO2

concentrations versus observedNO2 concentrations.

Table 2.The final LURmodel variables and their coefficients and standard errors.

Variable Definition Coefficient Standard error

Intercept / 33.09 1.77

pop_5000 Number of people within a 5000 mbuffer ´ -2.875 10 5 ´ -1.087 10 6

sq dis port_ _ Squared distance to the nearest port - ´ -9.543 10 9 ´ -1.832 10 9

all_len_25 Length of all type of roadswithin a 25 mbuffer ´ -6.362 10 2 ´ -1.261 10 2

Table 3. LURmodel performance evaluated by training (R2 and
RMSE), LOOCV (R2 andRMSE), and observation (R2 andRMSE).

Evaluationmethod R2

RMSE

(μgm−3)

Using 83 virtual sites 0.96 5.48

LOOCVusing 83 virtual sites 0.96 5.64

Usingmeasurement at 11monitoring

sites

0.63 18.0
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3.3. Concentrationmap andhealth burden
calculation
Figure 4 shows the spatial distribution of annual-mean
NO2 concentration across Guangzhou in 2017.
Modelled concentrations vary between 21.5 μgm−3 in
the most rural areas in the north of the domain to
99.7 μg m−3 in the most polluted district of Guangz-
hou city centre. The map indicates that, as expected,
concentrations of NO2 are highest on road links,
particularly those with heavy traffic as shown on the
expanded map of the city centre. The model NO2

concentration show high values at the boundary of
Nansha, which is likely due to shipping (SI figure S4).
The population-weighted annual-mean concentration
of NO2 across Guangzhou is 52.5 μg m−3. Even
this population-weighted concentration exceeds the
Chinese air quality standard and WHO guideline of
40 μg m−3 (WHO 2006, Ministry of Environmental
Protection 2012), but figure 4 indicates that, in large
areas of Guangzhou, concentrations of NO2 are
substantially in excess of this value.

The modelled number of deaths attributable to
long-term exposure toNO2 inGuangzhou in 2017was
7270 (6960–7620; range based only on the 95% CI for
the health risk coefficient). For comparison, the total
number of deaths from road-traffic accidents in
Guangzhou was 847 in 2015 (Guangzhou Municipal
Public Security Bureau 2016). Approximately 60% of
people in Guangzhou experienced NO2 concentration
above the China air quality standard/WHO guideline
of 40 μg m−3. The air quality plan (2016–2025) pub-
lished by the Guangzhou government to combat air
pollution problems sets the target of meeting the NO2

air quality standard of 40 μgm−3 by 2020 (Guangzhou
Government 2017). Ourmodel predicts that if all areas
with NO2 concentrations greater than 40 μgm

−3 were
reduced to the air quality standard, the number of lives
saved would be 1900 (1820–1980) compared to the
2017 estimate.

4.Discussion

Compared to LUR, dispersion modelling has the
advantage of grounding simulations of pollutant
concentrations for different scenarios in a process-
based simulation of the controlling processes; but the
approach requires detailed input data on emissions
(e.g. emission inventories), meteorological para-
meters, and background concentrations, which are
currently not fully available/accessible in most cities
in China. Aleksankina et al (2018, 2019) have investi-
gatedmodel uncertainties in relation to emission input
data in detail, highlighting that atmospheric chemistry
transport models show relatively robust responses to
changes in emission input data. LUR is an efficient
modelling approach, but in areas with limited mon-
itoring sites such as Guangzhou, with only 11 mon-
itoring sites, the selected variables may overfit the
model and hence cause bias in health-effect estimates
(Basagaña et al 2012). LUR is also limited tomodelling
measured air pollutants and cannot predict air pollu-
tant concentrations under potential future emissions
scenarios. However, despite the disadvantages men-
tioned above, LUR is relatively cheap and easy to
implement; and once input datasets are assembled,

Figure 4.The final hybrid dispersion-LURmodel ofNO2 concentrations inGuangzhou. Themost polluted district is Guangzhou city
centre. NO2 concentrations are higher at locations around the road links, industrial areas, and close to the ports (in the southern part
of themodel domain).
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LUR models can be readily adapted to new ‘measure-
ment’ data without needing to consider complex
physicochemical processes.

The challenge of high spatial resolution air pollu-
tion modelling has driven integrated data and model-
ling approaches (Johnson et al 2010, Beevers et al 2012,
Hao et al 2016, Yang et al 2017, Hood et al 2018, Xue
et al 2019). For megacities of large area like Guangz-
hou, without additional monitoring data, our solution
for simulation of an NO2 concentration map has been
to derive a hybrid modelling approach that uses a vir-
tual network of receptor locations for dispersion and
LUR modelling. This approach gives flexibility to
choose the input sites (such as weighting towards resi-
dential population (around 60%of the receptors are in
Guangzhou city centre) and number of sites (83 recep-
tor sites). It also takes less time to generate a high-reso-
lution map over a large domain compared with
dispersion modelling only. In this hybrid approach,
dispersion modelling is used to conduct scenario ana-
lysis and LUR is used for interpolating the spatial
trends. This approach can be easily used to derive con-
centration maps to calculate health burdens (includ-
ing for future scenarios) or for epidemiological
studies.

There are of course uncertainties, as for any mod-
elling approach. Even though we have sought to play
to the strengths of the available data for Guangzhou,
data accessibility and quality are generally an issue for
China (He et al 2018). For example, detailed industrial
emissions as point sources for the dispersion model
are not accessible in Guangzhou. Similarly, detailed
traffic flow and speed are not available, hence road
length was used as a proxy in the LUR model. Also
daily vehicle NOx emissions on different road types in
Beijing had to be used to estimate emissions on differ-
ent roads in Guangzhou. Since detailed land-use data
are not available, satellite observation derived data
Globeland30 were used (Globeland30 2010). It is
extremely difficult to get access to monitoring data in
Guangzhou; several websites provide real time data
(Aqicn 2019, CNEMC 2019), but historical data are
not available for download from official sites and the
detailed location and environment of the monitoring
sites are unclear. State-controlled sites were used in
this study, but no information about monitoring site
heights was available other than they range in elevation
from 2 to 20 m. The quality of monitoring data is
unknown. ADMS requires concentrations of NO and
NO2 background concentrations but only NO2 was
reported at each monitoring site, therefore ECMWF-
CAMS re-analysis data was used for the boundary
concentration. No roadside monitoring sites were
available, so neither the dispersion nor the LURmodel
simulations could be validated at highest NO2 con-
centrations. Since the LUR model used ADMS-Urban
modelled concentrations as input, the hybrid model
inevitably transmits any bias in the dispersion model-
ling to the finalmodel.

In terms of the health burden calculation, detailed
census data is not available and UNmodelled popula-
tion data (Worldpop 2015)were used instead. A health
risk coefficient from a single-pollutantmodel was used
which may overestimate the actual effects due to NO2

(COMEAP 2018).

5. Conclusions

Given the current challenges related to data availabil-
ity, accessibility and quality in Chinesemegacities, and
their large spatial area, a single model struggles to
provide high spatio-temporal resolution air pollution
maps for the whole city. In this work, a combined
dispersion and LUR model approach to simulate
annual average NO2 for health burden assessments
was demonstrated for the megacity of Guangzhou.
Ambient concentrations of NO2 simulated by the
ADMS-Urban dispersion model at 83 ‘virtual’ mon-
itoring sites, selected to span both the range of NO2

concentration and weighting by population density,
were used to develop a highly spatial resolved LUR
model. To our knowledge, this is the first attempt to
apply this approach to maximise the advantages of
both modelling approaches and to overcome data
shortcomings in relation to data availability in China.
This method can be employed in other cities in China,
or globally, to model ambient NO2 concentration at
high spatial resolution to investigate the effectiveness
of potential mitigation policies. The dispersion model
simulates the effect of different emissions scenarios on
concentrations at the network of receptor locations,
from which LUR modelled maps are constructed to
estimate future concentrations and health burdens
across thewhole domain.

Acknowledgments

BaihuiqianHe is grateful for studentship funding from
the China Scholarship Council and the University of
Edinburgh. We thank Kate Johnson and Xiaodan Hu
for their contributions towards this research. The
work of Stefan Reis was supported by the UK Natural
Environment Research Council (NERC) National
Capability award NE/R000131/1 (Sustainable Use of
Natural Resources to Improve Human Health and
Support Economic Development, SUNRISE). BH, SR
andMRH conceived the aims andmethodology of the
research. LY and QH assembled and advised on
Guangzhou emissions inventories. BH and KHH
assembled additional datasets. BH, with some assis-
tance from KHH, undertook the modelling, mapping
and calculations. BH prepared material for the paper
and drafted the text. MRH and SR supplied additional
writing and interpretation. All authors commented on
and approve thefinalmanuscript.

8

Environ. Res. Lett. 14 (2019) 124019



Data availability statement

Any data that support the findings of this study are
openly available at DOI (https://datashare.is.ed.ac.
uk/handle/10283/3420).

ORCID iDs

BaihuiqianHe https://orcid.org/0000-0003-
1994-4151
MathewRHeal https://orcid.org/0000-0001-
5539-7293
KamillaHHumstad https://orcid.org/0000-0003-
1017-2191
Liu Yan https://orcid.org/0000-0001-9101-5168
StefanReis https://orcid.org/0000-0003-
2428-8320

References

Airvisual 2019WorldMost PollutedCountries in 2018—PM2.5

Ranking |AirVisual [WWWDocument](https://airvisual.
com/world-most-polluted-countries)(Accessed: 9
April 2019)

AleksankinaK,HealMR,Dore A J, VanOijenMandReis S 2018
Global sensitivity and uncertainty analysis of an atmospheric
chemistry transportmodel: the FRAMEmodel (version
9.15.0) as a case studyGeosciModelDev 11 1653–64

AleksankinaK, Reis S, VienoMandHealMR2019Advanced
methods for uncertainty assessment and global sensitivity
analysis of a Eulerian atmospheric chemistry transportmodel
Atmos. Chem. Phys. 19 2881–98

Anenberg SC et al 2018 Estimates of the global burden of ambient
PM2.5, Ozone, andNO2 on asthma incidence and emergency
roomvisitsEnviron. Health Perspect. 126 107004

Aqicn 2019中国空气污染:实时空气质量指数地图(ChinaAir
Pollution: Real-timeAirQuality IndexMap) [WWW
Document](https://aqicn.org/map/china/cn/#@g/39.
5901/88.9673/5z) (Accessed: 23April 2019)

BasagañaX et al 2012 Effect of the number ofmeasurement sites on
land use regressionmodels in estimating local air pollution
Atmos. Environ. 54 634–42

BeelenR et al 2013Development ofNO2 andNOx land use
regressionmodels for estimating air pollution exposure in 36
study areas in Europe—the ESCAPE projectAtmos. Environ.
72 10–23

Beevers SD, KitwiroonN,WilliamsML andCarslawDC2012One
way coupling of CMAQand a road source dispersionmodel
forfine scale air pollution predictionsAtmos. Environ. 59
47–58

Beirle S, BoersmaKF, Platt U, LawrenceMGandWagner T 2011
Megacity emissions and lifetimes of nitrogen oxides probed
from space Science 333 1737–9

BriggsD J, Collins S, Elliott P, Fischer P, KinghamS, Lebret E,
Pryl K, VanReeuwijkH, SmallboneK andVanDerVeenA
1997Mapping urban air pollution usingGIS: a regression-
based approach Int. J. Geogr. Inf. Sci. 11 699–718

Brunekreef B andHolgate 2002Air pollution and health Lancet 360
1233–42

Cao J, YangC, Li J, ChenR, ChenB,GuDandKanH2011
Association between long-term exposure to outdoor air
pollution andmortality in China: a cohort study J. Hazard.
Mater. 186 1594–600

CarruthersD J, EdmundsHA, Lester A E,McHughCA and
Singles R J 2000Use and validation of ADMS-Urban in
contrasting urban and industrial locations Int. J. Environ.
Pollut. 14 364

CarruthersD J,HolroydR J,Hunt J CR,WengWS, Robins AG,
ApsleyDD, ThomsonD J and Smith FB 1994UK-ADMS: a
new approach tomodelling dispersion in the earth’s
atmospheric boundary layer J.Wind Eng. Ind. Aerod. 52
139–53

CarruthersD J, Stocker J R, Ellis A, SeatonMDand Smith S E 2017
Evaluation of an explicit NOx chemistrymethod in
AERMOD J. AirWasteManag. Assoc. 67 702–12

CERC2017ADMS-UrbanUser Guide [WWWDocument]
(https://cerc.co.uk/environmental-software/assets/data/
doc_userguides/CERC_ADMS-Urban4.1.1_User_Guide.
pdf) (Accessed: 21May 2019)

ChanCK andYaoX 2008Air pollution inmega cities inChina
Atmos. Environ. 42 1–42

ChaneyAM,CryerD J,Nicholl E J and Seakins PW2011NOand
NO2 interconversion downwind of two different line sources
in suburban environmentsAtmos. Environ. 45 5863–71

ChiusoloM et al 2011 Short-term effects of nitrogen dioxide on
mortality and susceptibility factors in 10 ItalianCities: the
Epiair studyEnviron.Health Perspect. 119 1233–8

CNEMC2019实时数据-中国环境监测总站(Real-time data-
ChinaNational EnvironmentalMonitoringCenter) [WWW
Document](http://cnemc.cn/sssj/)(Accessed: 23April 2019)

CohenA J et al 2017 Estimates and 25 year trends of the global
burden of disease attributable to ambient air pollution: an
analysis of data from theGlobal Burden ofDiseases Study
2015 Lancet 389 1907–18

COMEAP2018 Associations of Long-TermAverageNitrogen
DioxidewithMortality, UKDepartment ofHealth
Committee on theMedical Effects of Air Pollutants. PHE
report no. 2018238 (https://assets.publishing.service.gov.
uk/government/uploads/system/uploads/attachment_
data/file/734799/COMEAP_NO2_Report.pdf)

CrouseDL et al 2015Ambient PM2.5, O3, andNO2 exposures and
associations withmortality over 16 years of follow-up in the
CanadianCensusHealth and Environment Cohort
(CanCHEC)Environ.Health Perspect. 123 1180–6

Cyrys J et al 2012Variation ofNO2 andNOx concentrations
between andwithin 36 European study areas: Results from
the ESCAPE studyAtmos. Environ. 62 374–90

Demographia 2019WorldUrbanAreas [WWWDocument]
(http://demographia.com/db-worldua.pdf) (Accessed: 9
April 2019)

Di Sabatino S, Buccolieri R, Pulvirenti B andBritter R 2007
Simulations of pollutant dispersionwithin idealised urban-
type geometries withCFD and integralmodelsAtmos.
Environ. 41 8316–29

Ding J, van der AR J,Mijling B, Jalkanen J-P, Johansson L and
Levelt P F 2018MaritimeNOx emissions over Chinese seas
derived from satellite observationsGeophys. Res. Lett. 45
2031–7

ECMWF2019 ECMWF |PublicDatasets [WWWDocument]
(Accessed: 30March 2019) (https://doi.org/10.24381/cds.
adbb2d47)

ESCAPE 2008 ESCAPE StudyManual [WWWDocument] (http://
escapeproject.eu/manuals/ESCAPE-Study-manual_x007E_
final.pdf) (Accessed: 21May 2019)

Faustini A, RappR and Forastiere F 2014Nitrogen dioxide and
mortality: review andmeta-analysis of long-term studies Eur.
Respir. J. 44 744–53

FuM, LiuH, Jin X andHeK 2017National- to port-level inventories
of shipping emissions inChinaEnviron. Res. Lett. 12 114024

GengG, ZhangQ,Martin RV, Lin J, HuoH, Zheng B,Wang S and
HeK2017 Impact of spatial proxies on the representation of
bottom-up emission inventories: a satellite-based analysis
Atmos. Chem. Phys. 17 4131–45

GhanemDandZhang J 2014 Effortless perfection:’ doChinese cities
manipulate air pollution data? J. Environ. Econ.Manag. 68
203–25

Globeland30 2010GLC30 Information Service [WWWDocument]
(http://globallandcover.com/GLC30Download/index.
aspx) (Accessed: 19May 2019)

9

Environ. Res. Lett. 14 (2019) 124019

https://datashare.is.ed.ac.uk/handle/10283/3420
https://datashare.is.ed.ac.uk/handle/10283/3420
https://orcid.org/0000-0003-1994-4151
https://orcid.org/0000-0003-1994-4151
https://orcid.org/0000-0003-1994-4151
https://orcid.org/0000-0003-1994-4151
https://orcid.org/0000-0003-1994-4151
https://orcid.org/0000-0001-5539-7293
https://orcid.org/0000-0001-5539-7293
https://orcid.org/0000-0001-5539-7293
https://orcid.org/0000-0001-5539-7293
https://orcid.org/0000-0001-5539-7293
https://orcid.org/0000-0003-1017-2191
https://orcid.org/0000-0003-1017-2191
https://orcid.org/0000-0003-1017-2191
https://orcid.org/0000-0003-1017-2191
https://orcid.org/0000-0003-1017-2191
https://orcid.org/0000-0001-9101-5168
https://orcid.org/0000-0001-9101-5168
https://orcid.org/0000-0001-9101-5168
https://orcid.org/0000-0001-9101-5168
https://orcid.org/0000-0003-2428-8320
https://orcid.org/0000-0003-2428-8320
https://orcid.org/0000-0003-2428-8320
https://orcid.org/0000-0003-2428-8320
https://orcid.org/0000-0003-2428-8320
https://www.airvisual.com/world-most-polluted-countries
https://www.airvisual.com/world-most-polluted-countries
https://doi.org/10.5194/gmd-11-1653-2018
https://doi.org/10.5194/gmd-11-1653-2018
https://doi.org/10.5194/gmd-11-1653-2018
https://doi.org/10.5194/acp-19-2881-2019
https://doi.org/10.5194/acp-19-2881-2019
https://doi.org/10.5194/acp-19-2881-2019
https://doi.org/10.1289/EHP3766
https://aqicn.org/map/china/cn/#@g/39.5901/88.9673/5z
https://aqicn.org/map/china/cn/#@g/39.5901/88.9673/5z
https://doi.org/10.1016/j.atmosenv.2012.01.064
https://doi.org/10.1016/j.atmosenv.2012.01.064
https://doi.org/10.1016/j.atmosenv.2012.01.064
https://doi.org/10.1016/j.atmosenv.2013.02.037
https://doi.org/10.1016/j.atmosenv.2013.02.037
https://doi.org/10.1016/j.atmosenv.2013.02.037
https://doi.org/10.1016/j.atmosenv.2012.05.034
https://doi.org/10.1016/j.atmosenv.2012.05.034
https://doi.org/10.1016/j.atmosenv.2012.05.034
https://doi.org/10.1016/j.atmosenv.2012.05.034
https://doi.org/10.1126/science.1207824
https://doi.org/10.1126/science.1207824
https://doi.org/10.1126/science.1207824
https://doi.org/10.1080/136588197242158
https://doi.org/10.1080/136588197242158
https://doi.org/10.1080/136588197242158
https://doi.org/10.1016/S0140-6736(02)11274-8
https://doi.org/10.1016/S0140-6736(02)11274-8
https://doi.org/10.1016/S0140-6736(02)11274-8
https://doi.org/10.1016/S0140-6736(02)11274-8
https://doi.org/10.1016/j.jhazmat.2010.12.036
https://doi.org/10.1016/j.jhazmat.2010.12.036
https://doi.org/10.1016/j.jhazmat.2010.12.036
https://doi.org/10.1504/IJEP.2000.000558
https://doi.org/10.1016/0167-6105(94)90044-2
https://doi.org/10.1016/0167-6105(94)90044-2
https://doi.org/10.1016/0167-6105(94)90044-2
https://doi.org/10.1016/0167-6105(94)90044-2
https://doi.org/10.1080/10962247.2017.1280096
https://doi.org/10.1080/10962247.2017.1280096
https://doi.org/10.1080/10962247.2017.1280096
https://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban4.1.1_User_Guide.pdf
https://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban4.1.1_User_Guide.pdf
https://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban4.1.1_User_Guide.pdf
https://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban4.1.1_User_Guide.pdf
https://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban4.1.1_User_Guide.pdf
https://doi.org/10.1016/j.atmosenv.2007.09.003
https://doi.org/10.1016/j.atmosenv.2007.09.003
https://doi.org/10.1016/j.atmosenv.2007.09.003
https://doi.org/10.1016/j.atmosenv.2011.06.070
https://doi.org/10.1016/j.atmosenv.2011.06.070
https://doi.org/10.1016/j.atmosenv.2011.06.070
https://doi.org/10.1289/ehp.1002904
https://doi.org/10.1289/ehp.1002904
https://doi.org/10.1289/ehp.1002904
http://www.cnemc.cn/sssj/
http://www.cnemc.cn/sssj/
http://www.cnemc.cn/sssj/
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)30505-6
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/734799/COMEAP_NO2_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/734799/COMEAP_NO2_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/734799/COMEAP_NO2_Report.pdf
https://doi.org/10.1289/ehp.1409276
https://doi.org/10.1289/ehp.1409276
https://doi.org/10.1289/ehp.1409276
https://doi.org/10.1016/j.atmosenv.2012.07.080
https://doi.org/10.1016/j.atmosenv.2012.07.080
https://doi.org/10.1016/j.atmosenv.2012.07.080
http://demographia.com/db-worldua.pdf
https://doi.org/10.1016/j.atmosenv.2007.06.052
https://doi.org/10.1016/j.atmosenv.2007.06.052
https://doi.org/10.1016/j.atmosenv.2007.06.052
https://doi.org/10.1002/2017GL076788
https://doi.org/10.1002/2017GL076788
https://doi.org/10.1002/2017GL076788
https://doi.org/10.1002/2017GL076788
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
http://www.escapeproject.eu/manuals/ESCAPE-Study-manual_x007E_final.pdf
http://www.escapeproject.eu/manuals/ESCAPE-Study-manual_x007E_final.pdf
http://www.escapeproject.eu/manuals/ESCAPE-Study-manual_x007E_final.pdf
https://doi.org/10.1183/09031936.00114713
https://doi.org/10.1183/09031936.00114713
https://doi.org/10.1183/09031936.00114713
https://doi.org/10.1088/1748-9326/aa897a
https://doi.org/10.5194/acp-17-4131-2017
https://doi.org/10.5194/acp-17-4131-2017
https://doi.org/10.5194/acp-17-4131-2017
https://doi.org/10.1016/j.jeem.2014.05.003
https://doi.org/10.1016/j.jeem.2014.05.003
https://doi.org/10.1016/j.jeem.2014.05.003
https://doi.org/10.1016/j.jeem.2014.05.003
http://www.globallandcover.com/GLC30Download/index.aspx
http://www.globallandcover.com/GLC30Download/index.aspx


GuY, LinH, Liu T, Xiao J, ZengW, Li Z, Lv X andMaW2017The
interaction between ambient PM10 andNO2 onMortality in
Guangzhou, China Int. J. Environ. Res. Public. Health 14 1381

GuangzhouGovernment 2017 Environmental AirQuality
Standardization Plan ofGuangzhouCity (2016–2025)
[WWWDocument].Website GuangzhouGov (http://gz.
gov.cn/gzgov/s2811/201712/57727a1d77354f5dbc22bb
5831aa7d93.shtml) (Accessed: 25 September 2018)

GuangzhouMunicipal Public Security Bureau 2016TheNumber of
Deaths inGuangzhouTraffic Accidents hasDropped for 13
Consecutive Years [WWWDocument] (http://gzjd.gov.cn/
gzjd/gaxw_ztbd_ctgc/201602/67b06e82303f4f1bb3e6f7225
f187552.shtml) (Accessed: 21May 2019)

Guangzhou Statistics Bureau 2018Guangzhou Statistics Bureau
[WWWDocument] (http://gzstats.gov.cn/gzstats/tjgb_
qtgb/201802/cf533209a9cc46d08da1f6070a65067e.shtml)
(Accessed: 15April 2019)

GurungA, Levy J I andBellML 2017Modeling the intraurban
variation in nitrogen dioxide in urban areas inKathmandu
Valley, NepalEnviron. Res. 155 42–8

HaoW,Reis S, LinC andHealMR2016 Effect ofmonitoring
network design on land use regressionmodels for estimating
residential NO2 concentrationAtmos. Environ. 149 24–33

HeB,HealMR andReis S 2018 Land-use regressionmodelling of
intra-urban air pollution variation inChina: current status
and future needsAtmosphere 9 134

HoodC,MacKenzie I, Stocker J, JohnsonK,Carruthers D,
VienoMandDoherty R 2018Air quality simulations for
Londonusing a coupled regional-to-localmodelling system
Atmos. Chem. Phys. 18 11221–45

Huang J, PanX,GuoX and LiG 2018Health impact of China’s air
pollution prevention and control action plan: an analysis of
national air qualitymonitoring andmortality data Lancet.
Planet. Health. 2 313–23

JerrettM, Arain A, Kanaroglou P, BeckermanB, PotoglouD,
Sahsuvaroglu T,Morrison J andGiovis C 2005A review and
evaluation of intraurban air pollution exposuremodels
J. Expo. Anal. Environ. Epidemiol. 15 185–204

Ji X et al 2019Nitrogen dioxide air pollution and preterm birth in
Shanghai, ChinaEnviron. Res. 169 79–85

JimCY andChenWY2008Assessing the ecosystem service of air
pollutant removal by urban trees inGuangzhou (China)
J. Environ.Manage. 88 665–76

Johansson L, Jalkanen J-P andKukkonen J 2017Global assessment
of shipping emissions in 2015 on a high spatial and temporal
resolutionAtmos. Environ. 167 403–15

JohnsonM, IsakovV, Touma J S,Mukerjee S andÖzkaynakH2010
Evaluation of land-use regressionmodels used to predict air
quality concentrations in an urban areaAtmos. Environ. 44
3660–8

LiW,CaoY, Li R,MaX, Chen J,WuZ andXuQ2018The spatial
variation in the effects of air pollution on cardiovascular
mortality in Beijing, China J. Expo. Sci. Environ. Epidemiol. 28
297–304

LinH et al 2018Ambient particulatematter air pollution associated
with acute respiratory distress syndrome inGuangzhou,
China J. Expo. Sci. Environ. Epidemiol. 28 392–9

Liu F, Beirle S, ZhangQ, van der AR J, Zheng B, TongD andHeK
2017NOx emission trends over Chinese cities estimated from
OMI observations during 2005 to 2015Atmos. Chem. Phys. 17
9261–75

LiuH, FuM, Jin X, Shang Y, Shindell D, Faluvegi G, Shindell C and
HeK2016Health and climate impacts of ocean-going vessels
in East AsiaNat. Clim. Change 6 1037–41

LuoK, Li R, LiW,Wang Z,MaX, ZhangR, FangX,WuZ,
CaoY andXuQ2016Acute effects of nitrogen dioxide on
cardiovascularmortality in beijing: an exploration of spatial
heterogeneity and the district-specific predictors Sci. Rep. 6
38328

MarcoPolo-Panda 2017MarcoPolo Emission Inventory |
MarcoPolo—Panda (http://marcopolo-panda.eu/
products/toolbox/emission-data/marcopolo-emission-
inventory/) (Accessed: 30March 2019)

McHughCA, Carruthers D J and EdmundsHA1997ADMS–
Urban: an air qualitymanagement system for traffic,
domestic and industrial pollution Int. J. Environ. Pollut. 8
666–74

Ministry of Environmental Protection 2012Ambient AirQuality
Standards [WWWDocument] (http://210.72.1.216:8080/
gzaqi/Document/gjzlbz.pdf) (Accessed: 21May 2019)

Ministry of Environmental Protection 2018a Report on the State of
the Environment inChina [WWWDocument] (http://
english.mee.gov.cn/Resources/Reports/soe/) (Accessed: 9
April 2019)

Ministry of Environmental Protection 2018b环境空气气态污染

物 (SO2,NO2,O3, CO)连续自动监测系统技术要求及检测

方法(Specifications andTest Procedures for Ambient Air
Quality ContinuousAutomatedMonitoring System for SO2,
NO2,O3 andCO) [WWWDocument] (http://kjs.mee.gov.
cn/hjbhbz/bzwb/jcffbz/201308/t20130802_256853.shtml)
(Accessed: 13October 2019)

Mölter A, Lindley S, de Vocht F, SimpsonA andAgius R 2010
Modelling air pollution for epidemiologic research: I. A novel
approach combining land use regression and air dispersion
Sci. Total Environ. 408 5862–9

OpenStreetMap 2018OpenStreetMap [WWWDocument]
OpenStreetMap (https://openstreetmap.org/) (Accessed: 19
May 2019)

Righi S, Lucialli P and Pollini E 2009 Statistical and diagnostic
evaluation of the ADMS-Urbanmodel comparedwith an
urban air qualitymonitoring networkAtmos. Environ. 43
3850–7

Stamen 2019 StamenMaps [WWWDocument] (http://maps.
stamen.com/) (Accessed: 18 April 2019)

Stoerk T 2016 Statistical corruption in Beijing’s air quality data has
likely ended in 2012Atmos. Environ. 127 365–71

Sun J andZhouT 2017Health risk assessment of China’smain air
pollutantsBMCPublic Health 17 212

Su JG, JerrettM andBeckerman B 2009Adistance-decay variable
selection strategy for land use regressionmodeling of ambient
air pollution exposures Sci. Total Environ. 407 3890–8

Tonnesen S and JeffriesHE 1994 Inhibition of odd oxygen
production in the carbon bond four and generic reaction set
mechanismsAtmos. Environ. 28 1339–49

UnitedNations 2014 2014Revision of theWorldUrbanization
Prospects [WWWDocument] (https://esa.un.org/unpd/
wup/publications/files/wup2014-highlights.pdf) (Accessed:
9 April 2019)

UnitedNations 2017TheWorld’s Cities in 2018 [WWW
Document] (https://un.org/en/events/citiesday/assets/
pdf/the_worlds_cities_in_2018_data_booklet.pdf )
(Accessed: 25 January 2018)

VenkatramA,Karamchandani P, Pai P andGoldstein R 1994The
development and application of a simplified ozonemodeling
system (SOMS)Atmos. Environ. 28 3665–78

Visscher AD2013AirDispersionModeling: Foundations and
Applications (NewYork:Wiley)

WaltonH,DajnakD, Beevers S,WilliamsM,Watkiss P andHuntA
2015Understanding theHealth Impacts of Air Pollution in
London [WWWDocument] (https://london.gov.uk/sites/
default/files/HIAinLondon_KingsReport_14072015_final_
0.pdf) (Accessed 21May 2019)

Wang S andHao J 2012Air qualitymanagement inChina: issues,
challenges, and options J. Environ. Sci. China 24 2–13

WeinmayrG, Romeo E,De SarioM,Weiland SK and Forastiere F
2010 Short-term effects of PM10 andNO2 on respiratory
health among childrenwith asthma or asthma-like
symptoms: a systematic review andmeta-analysis Environ.
Health Perspect. 118 449–57

WHO2006AirQuality Guidelines: Global Update 2005: Particulate
Matter, Ozone, NitrogenDioxide, and SulfurDioxide.
(Copenhagen:WorldHealthOrganization)

WHO2013Health Risks of Air Pollution in Europe—HRAPIE
Project, Recommendations for Concentration–Response
Functions for Cost–Benefit Analysis of Particulate
Matter, Ozone andNitrogenDioxide [WWWDocument]

10

Environ. Res. Lett. 14 (2019) 124019

https://doi.org/10.3390/ijerph14111381
http://www.gz.gov.cn/gzgov/s2811/201712/57727a1d77354f5dbc22bb5831aa7d93.shtml
http://www.gz.gov.cn/gzgov/s2811/201712/57727a1d77354f5dbc22bb5831aa7d93.shtml
http://www.gz.gov.cn/gzgov/s2811/201712/57727a1d77354f5dbc22bb5831aa7d93.shtml
http://www.gzjd.gov.cn/gzjd/gaxw_ztbd_ctgc/201602/67b06e82303f4f1bb3e6f7225f187552.shtml
http://www.gzjd.gov.cn/gzjd/gaxw_ztbd_ctgc/201602/67b06e82303f4f1bb3e6f7225f187552.shtml
http://www.gzjd.gov.cn/gzjd/gaxw_ztbd_ctgc/201602/67b06e82303f4f1bb3e6f7225f187552.shtml
http://www.gzstats.gov.cn/gzstats/tjgb_qtgb/201802/cf533209a9cc46d08da1f6070a65067e.shtml
http://www.gzstats.gov.cn/gzstats/tjgb_qtgb/201802/cf533209a9cc46d08da1f6070a65067e.shtml
https://doi.org/10.1016/j.envres.2017.01.038
https://doi.org/10.1016/j.envres.2017.01.038
https://doi.org/10.1016/j.envres.2017.01.038
https://doi.org/10.1016/j.atmosenv.2016.11.014
https://doi.org/10.1016/j.atmosenv.2016.11.014
https://doi.org/10.1016/j.atmosenv.2016.11.014
https://doi.org/10.3390/atmos9040134
https://doi.org/10.5194/acp-18-11221-2018
https://doi.org/10.5194/acp-18-11221-2018
https://doi.org/10.5194/acp-18-11221-2018
https://doi.org/10.1016/S2542-5196(18)30141-4
https://doi.org/10.1016/S2542-5196(18)30141-4
https://doi.org/10.1016/S2542-5196(18)30141-4
https://doi.org/10.1038/sj.jea.7500388
https://doi.org/10.1038/sj.jea.7500388
https://doi.org/10.1038/sj.jea.7500388
https://doi.org/10.1016/j.envres.2018.11.007
https://doi.org/10.1016/j.envres.2018.11.007
https://doi.org/10.1016/j.envres.2018.11.007
https://doi.org/10.1016/j.jenvman.2007.03.035
https://doi.org/10.1016/j.jenvman.2007.03.035
https://doi.org/10.1016/j.jenvman.2007.03.035
https://doi.org/10.1016/j.atmosenv.2017.08.042
https://doi.org/10.1016/j.atmosenv.2017.08.042
https://doi.org/10.1016/j.atmosenv.2017.08.042
https://doi.org/10.1016/j.atmosenv.2010.06.041
https://doi.org/10.1016/j.atmosenv.2010.06.041
https://doi.org/10.1016/j.atmosenv.2010.06.041
https://doi.org/10.1016/j.atmosenv.2010.06.041
https://doi.org/10.1038/jes.2016.21
https://doi.org/10.1038/jes.2016.21
https://doi.org/10.1038/jes.2016.21
https://doi.org/10.1038/jes.2016.21
https://doi.org/10.1038/s41370-018-0034-0
https://doi.org/10.1038/s41370-018-0034-0
https://doi.org/10.1038/s41370-018-0034-0
https://doi.org/10.5194/acp-17-9261-2017
https://doi.org/10.5194/acp-17-9261-2017
https://doi.org/10.5194/acp-17-9261-2017
https://doi.org/10.5194/acp-17-9261-2017
https://doi.org/10.1038/nclimate3083
https://doi.org/10.1038/nclimate3083
https://doi.org/10.1038/nclimate3083
https://doi.org/10.1038/srep38328
https://doi.org/10.1038/srep38328
http://www.marcopolo-panda.eu/products/toolbox/emission-data/marcopolo-emission-inventory/
http://www.marcopolo-panda.eu/products/toolbox/emission-data/marcopolo-emission-inventory/
http://www.marcopolo-panda.eu/products/toolbox/emission-data/marcopolo-emission-inventory/
https://doi.org/10.1504/IJEP.1997.028218
https://doi.org/10.1504/IJEP.1997.028218
https://doi.org/10.1504/IJEP.1997.028218
https://doi.org/10.1504/IJEP.1997.028218
http://210.72.1.216:8080/gzaqi/Document/gjzlbz.pdf
http://210.72.1.216:8080/gzaqi/Document/gjzlbz.pdf
http://english.mee.gov.cn/Resources/Reports/soe/
http://english.mee.gov.cn/Resources/Reports/soe/
http://kjs.mee.gov.cn/hjbhbz/bzwb/jcffbz/201308/t20130802_256853.shtml
http://kjs.mee.gov.cn/hjbhbz/bzwb/jcffbz/201308/t20130802_256853.shtml
https://doi.org/10.1016/j.scitotenv.2010.08.027
https://doi.org/10.1016/j.scitotenv.2010.08.027
https://doi.org/10.1016/j.scitotenv.2010.08.027
https://openstreetmap.org/
https://doi.org/10.1016/j.atmosenv.2009.05.016
https://doi.org/10.1016/j.atmosenv.2009.05.016
https://doi.org/10.1016/j.atmosenv.2009.05.016
https://doi.org/10.1016/j.atmosenv.2009.05.016
http://maps.stamen.com
http://maps.stamen.com
https://doi.org/10.1016/j.atmosenv.2015.12.055
https://doi.org/10.1016/j.atmosenv.2015.12.055
https://doi.org/10.1016/j.atmosenv.2015.12.055
https://doi.org/10.1186/s12889-017-4130-1
https://doi.org/10.1016/j.scitotenv.2009.01.061
https://doi.org/10.1016/j.scitotenv.2009.01.061
https://doi.org/10.1016/j.scitotenv.2009.01.061
https://doi.org/10.1016/1352-2310(94)90281-X
https://doi.org/10.1016/1352-2310(94)90281-X
https://doi.org/10.1016/1352-2310(94)90281-X
https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf
https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf
https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf
https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf
https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf
https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf
https://doi.org/10.1016/1352-2310(94)00190-V
https://doi.org/10.1016/1352-2310(94)00190-V
https://doi.org/10.1016/1352-2310(94)00190-V
https://www.london.gov.uk/sites/default/files/HIAinLondon_KingsReport_14072015_final_0.pdf
https://www.london.gov.uk/sites/default/files/HIAinLondon_KingsReport_14072015_final_0.pdf
https://www.london.gov.uk/sites/default/files/HIAinLondon_KingsReport_14072015_final_0.pdf
https://doi.org/10.1016/S1001-0742(11)60724-9
https://doi.org/10.1016/S1001-0742(11)60724-9
https://doi.org/10.1016/S1001-0742(11)60724-9
https://doi.org/10.1289/ehp.0900844
https://doi.org/10.1289/ehp.0900844
https://doi.org/10.1289/ehp.0900844


(http://euro.who.int/__data/assets/pdf_file/0006/
238956/Health_risks_air_pollution_HRAPIE_project.pdf)
(Accessed: 21May 2019)

Worldpop 2015China 100mPopulation (https://doi.org/10.5258/
SOTON/WP00645)

XuZ,Wang T, Xue LK, Louie PKK, LukCWY,Gao J,Wang S L,
Chai FH andWangWX2013 Evaluating the uncertainties of
thermal catalytic conversion inmeasuring atmospheric
nitrogen dioxide at four differently polluted sites inChina
Atmos. Environ. 76 221–6

XueT, Zheng Y, TongD, Zheng B, Li X, ZhuT andZhangQ
2019 Spatiotemporal continuous estimates of PM2.5

concentrations inChina, 2000–2016: amachine learning
methodwith inputs from satellites, chemical transport
model, and ground observationsEnviron. Int. 123
345–57

YanW, YunY,KuT, Li G and SangN 2016NO2 inhalation
promotes Alzheimer’s disease-like progression:
cyclooxygenase-2-derived prostaglandin E2modulation and

monoacylglycerol lipase inhibition-targetedmedication Sci.
Rep. 6 22429

YangX, Zheng Y, GengG, LiuH,ManH, LvZ,HeK and
deHooghK2017Development of PM2.5 andNO2models in
a LUR framework incorporating satellite remote sensing and
air qualitymodel data in Pearl River Delta region, China
Environ. Pollut. 226 143–53

YuyuC,Zhe JG,NareshK andGuang S 2012Gaming in air pollution
data?Lessons fromChinaBE J. Econ. Anal. Policy13 1–43

Zhang P et al 2011 Long-term exposure to ambient air pollution and
mortality due to cardiovascular disease and cerebrovascular
disease in Shenyang, ChinaPLoSOne 6 e20827

Zheng B et al 2018a Trends in China’s anthropogenic emissions
since 2010 as the consequence of clean air actionsAtmos.
Chem. Phys. 18 14095–111

Zheng B, ZhangQ,Davis S J, Ciais P,HongCP, LiM, Liu F, TongD,
LiHY andHeKB 2018b Infrastructure shapes differences in
the carbon intensity of Chinese citiesEnviron. Sci. Technol. 52
6032–41

11

Environ. Res. Lett. 14 (2019) 124019

http://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf
http://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf
https://doi.org/10.5258/SOTON/WP00645
https://doi.org/10.5258/SOTON/WP00645
https://doi.org/10.1016/j.atmosenv.2012.09.043
https://doi.org/10.1016/j.atmosenv.2012.09.043
https://doi.org/10.1016/j.atmosenv.2012.09.043
https://doi.org/10.1016/j.envint.2018.11.075
https://doi.org/10.1016/j.envint.2018.11.075
https://doi.org/10.1016/j.envint.2018.11.075
https://doi.org/10.1016/j.envint.2018.11.075
https://doi.org/10.1038/srep22429
https://doi.org/10.1016/j.envpol.2017.03.079
https://doi.org/10.1016/j.envpol.2017.03.079
https://doi.org/10.1016/j.envpol.2017.03.079
https://doi.org/10.3386/w18729
https://doi.org/10.3386/w18729
https://doi.org/10.3386/w18729
https://doi.org/10.1371/journal.pone.0020827
https://doi.org/10.5194/acp-18-14095-2018
https://doi.org/10.5194/acp-18-14095-2018
https://doi.org/10.5194/acp-18-14095-2018
https://doi.org/10.1021/acs.est.7b05654
https://doi.org/10.1021/acs.est.7b05654
https://doi.org/10.1021/acs.est.7b05654
https://doi.org/10.1021/acs.est.7b05654

	1. Introduction
	2. Method
	2.1. Study design
	2.2. The ADMS-urban model
	2.3. Selection of the ADMS-urban virtual receptor sites
	2.4. LUR model predictor variables
	2.5. LUR model development and validation
	2.6. Health burden calculation

	3. Results
	3.1. ADMS-urban model validation
	3.2. Hybrid LUR model and validation
	3.3. Concentration map and health burden calculation

	4. Discussion
	5. Conclusions
	Acknowledgments
	Data availability statement
	References



