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Abstract Using a particle-in-cell code, we study the diffusive response of electrons due to
wave-particle interactions with whistler-mode waves. The relatively simple configuration of field-aligned
waves in a cold plasma is used in order to benchmark our novel method, and to compare with previous
works that used a different modelling technique. In this boundary-value problem, incoherent
whistler-mode waves are excited at the domain boundary, and then propagate through the ambient
plasma. Electron diffusion characteristics are directly extracted from particle data across all available
energy and pitch-angle space. The ‘nature’ of the diffusive response is itself a function of energy and
pitch-angle, such that the rate of diffusion is not always constant in time. However, after an initial transient
phase, the rate of diffusion tends to a constant, in a manner that is consistent with the assumptions of
quasilinear diffusion theory. This work establishes a framework for future investigations on the nature of
diffusion due to whistler-mode wave-particle interactions, using particle-in-cell numerical codes with
driven waves as boundary value problems.

Plain Language Summary ‘Whistler-mode’ plasma waves interact with electrons in the Earth's
outer radiation belts. This wave-particle interaction plays a significant role in both electron acceleration,
and in the loss of electrons to the atmosphere via ‘pitch angle scattering’. Such processes are typically
modelled using numerical diffusion codes, with electron diffusion coefficients that characterize the nature
and the strength of the wave-particle interaction. These diffusion coefficients are calculated using a mixture
of long-established theory and input parameters taken from data and/or empirical models. We present
a novel method for the direct extraction of characteristics of the electron diffusion from particle-in-cell
numerical experiments. Our results demonstrate that the rate of diffusion can be time-dependent at early
times, but then tends to constant values in a manner that is consistent with quasilinear theory.

1. Introduction
Wave-particle interactions are a key source of variability in the outer radiation belt (e.g. Horne, Thorne,
Shprits, et al., 2005; Reeves et al., 2013; Thorne, 2010). Decades of research into the behaviour of high-energy
electrons in Earth's magnetosphere has determined that wave-particle interactions over a range of different
frequencies can diffuse the particles in phase-space, leading to energisation and loss of high-energy parti-
cles that could explain the variability of the belts (e.g. Fálthammar, 1965; Hudson et al., 2000; Thorne et al.,
2013). Whistler-mode waves are electromagnetic waves that propagate below the electron gyrofrequency
(e.g. see Artemyev, Agapitov, et al., 2016) and can interact with electrons across a wide range of energies
(e.g. Horne, Thorne, Glauert, et al., 2005; Thorne et al., 2010). Whistler-mode waves take a range of differ-
ent forms: narrowband transmitter waves are artificially-generated at Earth's surface by high-power radio
transmitters (e.g. Meredith et al., 2019; Zhang, Chen, et al., 2018); lightning-generated whistlers are gener-
ated by lightning and propagate upwards through the ionosphere into the magnetosphere (e.g. Němec et al.,
2010); whistler-mode chorus is naturally generated by plasma instabilities within the Earth's magnetosphere
(e.g. Chen et al., 2017; Gao et al., 2017; Meredith et al., 2009; Omura et al., 2007); incoherent plasmaspheric
hiss (Bortnik, Thorne, Meredith, et al., 2008; Chen et al., 2012, 2014) has a number of established source
mechanisms (e.g. see Meredith et al., 2018 for a discussion of these).
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Current approaches to modelling the effect of wave-particle interactions in the outer radiation belt most
typically use the quasilinear theory (QLT) (Kennel & Engelmann, 1966; Lerche, 1968; Lyons, 1974). This
formalism describes wave-particle interactions as diffusive processes in the plasma, flattening out gradients
and moving electrons to different energies and/or different pitch-angles. The exact form of the equations
used in the model depends on the characterization of the wave-particle interactions that are responsible for
the diffusive behaviour, and this characterization is provided by the diffusion coefficients. The analytic form
of diffusion coefficients are derived using QLT, and then implemented in diffusion codes by using models of
wave and plasma parameters (e.g. see Glauert et al., 2014). Formally, the application of QLT to wave-particle
interactions places a number of restrictions on the plasma waves considered, typically considered to be
that the waves are incoherent and of low amplitude (Stix, 1992; Treumann & Baumjohann, 2001). How-
ever, observations of whistler-mode waves in the inner magnetosphere (e.g. Breneman et al., 2011; Cattell
et al., 2008; Cully et al., 2008; Gao et al., 2016; Kellogg et al., 2011; Wilson et al., 2011) have revealed that
wave amplitudes can be orders of magnitude larger than previously thought. Furthermore, it is evident from
observations that certain whistler-modes possess structure and/or coherency in frequency space, e.g. the ris-
ing and falling tones of chorus emissions, and the nearly monochromatic signals of transmitter waves. Hence
there is strong evidence that motivates from-first-principles investigations of whistler-mode wave-particle
interactions in the outer radiation belt.

There are a large number of theoretical calculations and numerical experiments relevant to the work pre-
sented in this paper and so it is not possible to discuss every one (e.g. a non-exhaustive list of such works
on whistler-mode wave-particle interactions includes Albert, 2001, 2002, 2010; Bortnik, Thorne, Inan, et al.,
2008; Camporeale, 2015; Camporeale & Zimbardo, 2015; Silva et al., 2018; Mourenas et al., 2018; Omura
et al., 2007; Tao & Bortnik, 2010; Tao et al., 2011, 2012, 2013). Instead, we focus on some of the works
that - either with test-particle or particle-in-cell (PiC) codes - analyzed the statistical/diffusive response of
the plasma, by directly extracting particle data. Bortnik, Thorne, Meredith, et al. (2008) used test-particle
experiments in a dipolar magnetic field to model the effect of large amplitude and oblique monochromatic
chorus waves on the particle response. It was found that the wave-particle interaction changed qualitatively
from that of diffusion beyond a certain amplitude, in which case a nonlinear approach was found necessary.
The nature of the nonlinear behaviour observed (diffusive, phase bunching or phase-trapping) was found
to correlate with those predicted in Albert (2002) for different wave and plasma regimes. The nonlinear
behaviour also varies according to a inhomogeneity parameter that indicates whether or not quasi-linear
theory is applicable in the narrowband limit (discussed in e.g. Bortnik, Thorne, Meredith, et al., 2008; Omura
et al., 2008; Tao & Bortnik, 2010, 2012). Tao et al., 2011 used a test-particle code to study the response of
electrons to a uniform spectrum of incoherent, broadband and small amplitude waves in a homogeneous
background field, but specifically targeted electron populations predicted to be in resonance. They found
that the electron response was indeed stochastic and in excellent agreement with QLT. Tao et al. (2012) per-
formed test-particle simulations for field-aligned waves in a simplified dipole field model (no curvature),
and found (also for resonant particles only) that the bounce-averaged quasi-linear diffusion coefficients
became invalid as the wave amplitude surpassed given thresholds. Specifically, they found this threshold
to be |B2

w,rms∕B2
0| ≥ 2 × 10−7 for 10keV electrons, and |B2

w,rms∕B2
0| ≥ 7 × 10−6 for 1MeV electrons, where

waves have root-mean-squared amplitudes of magnitude Bw,rms in a background field B0. Camporeale and
Zimbardo (2015) used self-consistent kinetic simulations to investigate diffusion during the linear growth
phase and saturation of anisotropy-driven instabilities that self-consistently generate whistler-mode waves.
They found evidence of nonlinear and time-dependent effects, with enhanced pitch angle diffusion dur-
ing the linear growth phase. In a similar experiment, Camporeale (2015) investigated diffusion due to the
self-consistently generated lower-band chorus waves, and compared to the predictions given by a QLT diffu-
sion code. Specifically, they found significant mismatch in regions of phase-space for which the resonance
condition is not satisfied, and called for nonlinear theories in order to capture non-resonant interactions. We
also note that there is recent theoretical work based upon using kinetic equations used to describe the evo-
lution of the particle energy distribution due to nonlinear wave-particle interactions (Artemyev, Neishtadt,
et al., 2016; Artemyev et al., 2017, 2018; Mourenas et al., 2018; Vainchtein et al., 2018), and for which
one of the main aims is “to incorporate nonlinear effects of intense, short-duration chorus wave packets into
global (quasilinear) diffusion models” (Quoted from presentation, J. Bortnik, ISSS-13, September 6-14 2018,
UCLA). We note that the standard quasilinear diffusion theory sometimes captures observed diffusive
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properties surprisingly well, even in circumstances for which the assumptions of the theory are formally
invalid (e.g. see a discussion in Zhang, Thorne, et al., 2018).

The standard test-particle approach to modelling wave-particle interactions presents both advantages and
disadvantages. Test-particle codes are (relatively) cheap to run numerically and enable one to implement
wave modes of exactly the desired form. However, wave-particle interactions are a fundamentally kinetic
physics process, and test-particle codes do not include all of the self-consistent interactions between parti-
cles and wave fields. Particle-in-cell experiments enable users to model these self-consistent interactions,
and in principle allow a greater range of kinetic-physics diagnostics (e.g. the distribution function). Indeed,
it has recently been shown that using the two different approaches to study diffusion due to whistler mode
wave-particle interactions can yield markedly different results (Camporeale & Zimbardo, 2015; Camporeale,
2015). Here, we use a mixture of both the test-particle and particle-in-cell approaches. We exploit the
self-consistent PiC interaction to model the waves as they propagate through the plasma, instead of prescrib-
ing fixed-characteristic waves as in a test-particle approach. The inclusion of sub electron-scale physics in the
interaction between the background plasma and the propagating waves will allow the whistler-mode waves
to fluctuate on sub-electron spatial and temporal scales. In the simulation, we release a very large number
of tracer (‘test’) particles in order to extract characteristics of the pitch-angle diffusion for electrons across
all available energies and pitch-angles. These tracer particles contribute no ‘moments’ to the particle-in-cell
algorithm, and respond to the electromagnetic fields in the same way as the methods in Tao et al. (2011), for
example. In using a combination of both self-consistent particle-in-cell and test-particle methods, we should
expect to see both similarities and differences in the results obtained when compared to Tao et al. (2011).

In particular, our intent in this first paper of a series is to study the nature of the diffusion when the waves
propagate in one dimension along the background magnetic field in a cold, homogeneous plasma. This ini-
tial ‘benchmarking’ scenario showcases our method and indicates similarities to and differences from the
test-particle results reported in previous work (e.g. Tao et al., 2011). Future papers in this series will compare
the strength of the effective diffusion coefficients extracted from the PiC experiment with the size of the ana-
lytic quasilinear diffusion coefficient across all of pitch-angle/energy space, and will repeat the numerical
experiment for whistler-mode wave propagation through a plasma with the fractional warm components
that can be found in Earth's inner magnetosphere.

This paper is organized as follows. In Section 2 we describe the philosophy and set-up of the numerical
experiments, including the numerical scheme. In particular we discuss the wave excitation mechanism and
the properties of the electromagnetic waves within the domain. Diffusion theory as is applicable to the outer
radiation belt is discussed in Section 3. Results from the numerical experiments, including the diffusive
plasma response are discussed in Section 4. In Section 5 we discuss our results in more detail and put the
results in context. Section 6 contains a summary, including motivation for future investigations that will
build upon the results reported here.

2. Outline of Experiments
Radiation belt diffusion coefficients are fundamentally a function of both the plasma and wave parame-
ters, i.e,. the plasma density, background magnetic field, wave strength and wave spectral form. As a result,
the direct evaluation of a diffusion coefficient relies on both the plasma and wave characteristics being
quasi-static for the time over which they are calculated (Schulz & Lanzerotti, 1974). Therefore we consider a
boundary value problem, in which we perturb the left-hand boundary with a given specific wave spectrum,
which then excites electromagnetic waves that propagate throughout the experimental domain. The pertur-
bation mechanism is applied at all times, and this enables us to study the interaction for a wave spectrum
that is quasi-static in amplitude (root-mean-squared) and spectral form. However, the wave spectrum does
exhibit some small-scale spatial and temporal fluctuations in response to self-consistent interactions with
the background cold plasma. This approach is in contrast to an initial value problem, in which one might
study the self-consistent generation mechanism and subsequent evolution of waves in an initially unsta-
ble plasma, and for which the wave spectra is more variable in time (e.g. Camporeale, 2015; Camporeale &
Zimbardo, 2015; Silva et al., 2017; Hikishima et al., 2009; Katoh & Omura, 2006, 2013; Katoh et al., 2018;
Omidi et al., 2010, 2011; Omura et al., 2008, 2009; Ratcliffe & Watt, 2017). In Tao et al. (2011), a relativistic
test-particle code was used to study the diffusive plasma response due to wave-particle interactions of driven,
broadband and incoherent waves waves with magnetospheric plasma populations appropriate for the outer

ALLANSON ET AL. 8895



Journal of Geophysical Research: Space Physics 10.1029/2019JA027088

radiation belt at 6 Earth radii (r ∼ 6RE). Our experimental parameters are chosen in order to resemble those
in Tao et al. (2011) as far as possible.

2.1. Numerical Experiment Design
Wave-particle interactions are a fundamentally kinetic plasma physics process, since their efficiency explic-
itly depends on particle-scale physics, as statistically described by the particle distribution function. We use
the EPOCH PiC code (Arber et al., 2015), which is described in more detail in Appendix A. Essentially,
the numerical experiments involve exciting waves of specified frequencies from an “antenna” at one of the
spatial boundaries of the simulation domain. Electromagnetic waves then propagate through the domain,
self-consistently interacting with the cold plasma component of the plasma interior. We also release a large
number of non-interacting ‘tracer’ particles that are used to monitor the diffusion in different regions of
pitch-angle/energy space. These particles contribute no moments to the PiC algorithm. The tracer particles
act as ‘labels’ in phase-space such that their collective diffusive response can be categorized as a function of
pitch angle and energy.

As a first step, we restrict the experimental domain to one field-aligned dimension (x). On the compressed
dayside magnetosphere near the magnetic equator, uniform fields and field-aligned wave propagation is
a reasonable approximation (Tsurutani & Smith, 1977). We do so in order to fully understand the most
idealized example of this wave-particle interaction, before introducing new effects in isolation (e.g. oblique
wave propagation, field inhomogeneities, and modifications to the wave spectra). EPOCH uses a Cartesian
grid, which in 1-D means that all quantities may vary in the x direction only. We set an ambient magnetic
field, B0 = (Bx0, 0, 0), with Bx0 = 140nT, and so refer to x as parallel (||), y and z as perpendicular (⟂).

We model a uniform cold ‘background’ plasma with number density, nb = 107m−3. For this cold background
plasma, and ambient magnetic field, the ratio of electron plasma frequency to non-relativistic gyrofrequency
is given by𝜔pe∕|𝜔ce| ≈ 7.2, for𝜔pe =

√
ne2∕(me𝜖0), and𝜔ce = qeB0∕me < 0 in the uniform background field.

We describe the ambient plasma by using cold ion and electron populations with initial spatially uniform
number density of nb and isotropic temperature of 0.1eV. These choices are motivated by our desire to emu-
late, as far as possible, the scenario of Tao et al. (2011). In a warm plasma, or plasma with fractional warm
components, the wave amplitudes would be expected to altered by the presence of the warm component.
If the plasma is isotropic, then the waves will damp/reduce their amplitude, and if the plasma has positive
anisotropy then the waves may grow in amplitude through the appropriate kinetic wave-particle interaction.
In this numerical experiment, we choose a cold plasma environment in order to ensure that waves entering
the domain do not change amplitude significantly as they propagate through the plasma.

The real world run time for the experiment is T = 575tce ≈ 0.15s, for tce = 1∕fce with fce = |𝜔ce|∕(2𝜋) ≈
3919Hz. We use 500 particles-per-cell per species; physical values of proton-electron mass ratio, mi∕me =
1836.2; and the speed of light is set to its real value c ≈ 3×108ms−1. Periodic boundary conditions are chosen
for the particles, whereas electromagnetic waves have open boundary conditions (the electromagnetic field
boundary condition works by allowing outflowing characteristics to propagate through the boundary with
as little reflection as possible). The domain length, L = 40𝜆lc, is set to be 40 times the estimated wavelength
inside the domain, 𝜆lc = c∕(𝜂flc), of the lowest frequency wave emitted by the antenna, 𝜔lc = 2𝜋flc. The
refractive index is a function of frequency, 𝜂 = 𝜂(𝜔), and is determined by the cold plasma dispersion relation
(Omura et al., 2007; Stix, 1992),

𝜂2 = c2k2

𝜔2 = 1 +
𝜔2

pe∕𝜔
2

|𝜔ce|∕𝜔 − 1
. (1)

We use 3587 cells in the x-direction, with grid spacing Δx ≈ 235m, such that Δx∕(c∕|𝜔ce|) ≈ 0.02. The Debye
radius, 𝜆D =

√
𝜖0kBTe∕(nbq2

e ) ≈ 2.35m is not resolved by Δx, and we have Δx∕𝜆D = 100. It is well-known
that particle-in-cell experiments are in principle vulnerable to the self-heating phenomenon, and that this
can be mitigated by choosing Δx ≈ 𝜆D in explicit codes. However, it is absolutely possible to perform valid
and physically meaningful particle-in-cell numerical experiments with a value of Δx that does not resolve
the Debye radius (e.g. see a discussion in Arber et al., 2015). In particular, if one can demonstrate that for a
particular choice of Δx:

1. all necessary physical scales have been resolved that are most important for the phenomenon of interest,
2. the self-heating is limited to a reasonable level,
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Figure 1. Evolution of the energy budget within the experiment.

then it is entirely justifiable to have Δx > 𝜆D. It is not uncommon to use such values, e.g. two examples
of works that discussed results of explicit PiC experiments using a spatial resolution Δ ≫ 𝜆D include: (i)
Ratcliffe and Watt (2017) with Δ∕𝜆D ≈ 139, in which the ‘0.5 cyclotron frequency gap’ in magnetospheric
whistler-mode waves was self-consistently generated; (ii) Tsiklauri (2016) with Δ∕𝜆D ≈ 200 − 270, for the
study of electron plasma wakefield acceleration.

We justify point 1. for our experiment as follows. Our chosen value of Δx resolves the electron inertial length
according toΔx∕de ≈ 0.07, for de = c∕𝜔pe ≈ 1680m, and therefore resolves the fundamental scale of electron
kinetic physics. Furthermore, it resolves the shortest wavelength of the whistler-mode wave spectrum that is
important for the wave-particle dynamics in this study, Δx∕𝜆uc ≈ 0.009, for 𝜆uc = c∕(𝜂fuc) and 𝜂 determined
by equation (1). Therefore, our chosen grid discretization resolves electron scale kinetic physics, and in
particular the spatial scales necessary for electron wave-particle interactions with the driven whistler-mode
waves.

We justify point 2. for our experiment as follows. The classic constraint Δx ≈ 𝜆D (Langdon, 1970) relates to
the case where particle forces are assigned to ‘nearest-neighbour’ grid points, and for which the underlying
scheme is momentum-conserving. EPOCH is a charge-conserving code, with capability to use higher-order
shape functions: such weighting schemes suffer from a less catastrophic form of self-heating, and generally
with a low growth rate. In this work we triangular shape functions (a 3 point stencil, 2 cells wide). A discus-
sion of stability and self-heating in EPOCH, with reference to shape-functions, is given in Section 5 of Arber
et al. (2015). The EPOCH code also provides one further method to limit the noise in the PiC simulation,
and which we use in this work: ‘ΔF mode’ (as detailed in Appendix A). In figure 1 we present an analysis of
the temporal evolution of the electromagnetic and particle energies within the experimental domain, with
special consideration of the electromagnetic energy flux through the boundaries. The experiment utilizes
periodic boundary conditions for the particles. However, there is a constant input of electromagnetic energy
into the domain via the wave excitation method, and outgoing electromagnetic wave energy is permitted to
flow out of the experimental domain. Therefore the total energy will not be conserved, but the following
quantity should be conserved,

EKE(t) + EEM,domain(t) − ES,boundary(t) = const. (2)

The three terms on the left-hand-side represent, respectively: (a) the kinetic energy of all ions and electrons;
(b) the total electromagnetic energy within the domain; (c) the time-integrated net electromagnetic power
that has entered the domain up to time t,

ES,boundary(t) ∶= ∫
𝜏=t

𝜏=0 ∫V
∇ · S(x, 𝜏)dVd𝜏

for S the Poynting vector. This time-integrated power (energy) represents the only means by which the total
energy budget within the experimental domain should change. In figure 1 we plot the normalized evolution
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Figure 2. The By (red) and Ey (blue) components of the electromagnetic fields as a function of x at: (a) 28tce; (b) 143tce; (c) 280tce; (d) 561tce.

of the quantity in equation (2) minus the energy associated with the time-independent and homogeneous
background magnetic field (with a solid black line). Stability of the numerical code required that this quan-
tity should not diverge significantly from unity. Figure 1 shows conservation of the net simulation energy
to better than 0.1%, confirming that self heating is minimal. In figure 1 we also plot the evolution of: total
electron energy (black dots); total energy associated with electromagnetic fluctuations within the domain
(black dashes); and the time-integrated electromagnetic power that has entered the domain up to time t
(solid blue line). We see that the total electron energy clearly tracks the injected wave energy and the total
energy associated with the EM fluctuations.

2.2. Wave Spectra
We excite the plasma at the left-hand boundary (x = 0)using EPOCH's driven boundary option, (called 'laser'
after its most common use), such that the perturbations propagate in the positive-x direction. For each given
specified frequency, this boundary condition simply perturbs the domain with a (sinusoidal) time-varying
electromagnetic field. We superpose a collection of different perturbations, with the intent to reproduce the
spectrum used in Tao et al. (2011). We specify a discrete sum of Nwave = 100 individual right-hand polarized
electric field perturbations. Each one of the 100 modes is composed of 2 linearly polarized components, with
wave fields that oscillate in the y and z directions respectively,

Ewave(x, t) =
Nwave∑

i=1
Ewave,i(x, t) =

Nwave∑
i=1

Ewave,𝑦,i(x, t) + Ewave,z,i(x, t),

Each pair of linearly polarized waves, (Ewave,y,i , Ewave,z,i), has the appropriate phase shift between themselves
such as is required for right-handed polarization (Stix, 1992). Each mode, Ewave,i, also has a random phase,
and a frequency that is uniformly selected from the range

𝑓lc = 0.2𝑓ce ≤ 𝑓 ≤ 0.4𝑓ce = 𝑓uc.

Full details on how to prescribe such a spectrum are given in Tao et al. (2011), and we include the text file
that prescribes the perturbation as supporting information (provided at https://doi.org/10.6084/m9.figshare.
9884210.v1).

Given these user inputs for the electric field perturbations, the Maxwell solver in EPOCH generates
self-consistent magnetic field perturbations (Bwave,i) in accordance with Maxwell's equations. We choose the
magnitude of the electric field perturbations so that they are (in principle) consistent with corresponding
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Figure 3. Fourier amplitude of the By (red) and Ey components (blue) of the waves within the PiC domain. Vertical
black lines mark the lower and upper bounds of the driven wave spectrum (flc = 0.2fce and fuc = 0.4fce respectively).
Vertical green line marks the electron gyrofrequency fce. The horizontal black line marks a continuous version of the
By spectrum employed by Tao et al. (2011).

magnetic field perturbations of 1pT in a vacuum (|Ewave,i| = c|Bwave,i|, and such that |Bwave,i| = 1pT). We
note here that our perturbation method is intended to excite the whistler-mode wave branch of the cold
plasma dispersion relation (Stix, 1992), since a cold plasma can support whistler-mode wave propagation
when excited at these frequencies. A ‘fully self-consistent’ wave driving technique would also necessi-
tate the self-consistent perturbations of other oscillating macroscopic quantities, e.g. polarization currents.
However, that approach is much more complicated and beyond the scope of this work. Regardless of the
specific excitation technique, and as will be shown, we are able to excite the electromagnetic component of
whistler-mode waves within the interior of the plasma. Once excited, these components then propagate and
continue to be supported by (and interact self-consistently with) the background cold-plasma.

Sudden electromagnetic perturbations can often cause undesired ‘shock’ effects in a simulated plasma at the
moment the perturbation is ‘switched on’. In order to eliminate any such effects, we apply a linear envelope
to the wave profile, so that for t < 2∕flc, the wave profile has amplitude scaled by 1∕t. This prevents any shock
effects from occurring. It takes approximately tcross = 115tce for the wave profile to cross the experimental
domain, from left to right. All wave and particle analysis in this paper pertains to times after this time,
t > tcross. Therefore we analyze only over times during which the entire experimental domain is interacting
with the propagating waves. Since the run time of the experiment is T = 575tce, we analyze wave-particle
interactions for a total time of T − tcross = 460tce. This corresponds to ≈92 wave periods for waves with
frequency flc, and ≈184 wave periods for waves with frequency fuc. For completeness, we plot the By (red)
and Ey (blue) components of the electromagnetic fields as a function of x in figure 2. This figure includes the
waveform at: (a) 28tce, soon after the completion of the linear envelope scaling of the excitation; (b) 143tce,
soon after the wave has crossed the domain; (c) 280tce, roughly half-way through the numerical experiment;
(d) 561tce, close to the end of the experiment.

One important difference between our work and that of Tao et al. (2011), is that the wave-spectrum excited
by the antenna on the left-hand boundary is not exactly reproduced within the domain. Since we use a fully
kinetic numerical code, the driven waves interact self-consistently with the background plasma populations
via Maxwell's equations, where the current density is derived directly from the flux of different species'
super-particle populations. The background plasma super-particle populations evolve in a self-consistent
manner via the (relativistic) Lorentz force equation. This is all at the cost of higher computational expense,
as compared to a test-particle simulation. However, we consider the freedom to have fully self-consistent
wave-particle interactions to be a benefit of using the PiC approach for this study, and therefore the benefits
of using fully self-consistent PiC compensate for the added computational cost.

Figure 3 shows the ‘one-sided’ Fourier amplitude spectrum of the By (red) and Ey components (blue) of
the waves, averaged over all space (within the PiC domain) and time during the wave-particle interaction
(460tce, i.e. t > tcross). The Fourier amplitude is defined such that a single wave ∼ A sin(kx ± wt) will have
amplitude |A|. The vertical black lines mark the lower and upper bounds of the driven wave spectrum
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Figure 4. ‘Dispersion relation’ of the By component of the waves present in the numerical experiment, averaged over
the entire spatial and temporal domain during the wave-particle interaction. The over-plotted cyan curve marks the
cold plasma dispersion relation (see equation (1)).

(flc = 0.2fce and fuc = 0.4fce respectively), whilst the vertical green line marks the electron gyro-frequency fce.
The horizontal black line marks a continuous version of the By spectrum employed by Tao et al. (2011). The
waves clearly show dominant power within the required frequency domain. However, there is some ampli-
fication as compared to the uniform 1pT spectrum as used by Tao et al. (2011), and we observe non-zero
amplitudes outside the driven frequency domain (flc, fuc). We observe a root-mean-square wave amplitude of
Bw,rms ≈ 25pT in our experiment, slightly higher than the value of 10pT that Tao et al. (2011) use. This differ-
ence is, in reality, a small one, and a result of the difficulty in exactly prescribing a given wave spectrum in a
PiC experiment. This amplitude ((Bw,rms∕B0)2 ≈ 3×10−8) still falls well below the nonlinear wave amplitude
thresholds as discussed in Section 1. Therefore, this factor does not preclude us from comparing our results
to those obtained by Tao et al. (2011). As discussed above, we excite the boundary with individual whistler
modes each with electric field amplitudes that correspond to magnetic field perturbations of 1pT, but for the
case of a vacuum (|ΔB| ≈ |ΔE|∕c). However, when propagating through a plasma medium, one will expect
magnetic field perturbations within the domain |ΔB| ≈ |ΔE|∕(c∕𝜂) (in our experiment 14.8 < 𝜂 < 18.1 for
waves with frequencies flc < f < fuc). If the coupling efficiency between the wave excitation mechanism and
the plasma was 100% efficient, then we should expect a spectrum of magnetic field perturbations (i.e. at each
frequency) with amplitudes a factor of 𝜂 greater than |ΔE|∕c, i.e ≈ 𝜂 × 1pT. However, the coupling is not
perfectly efficient, as should be expected, and so we observe magnetic field perturbations within the domain
≈ 2 − 3 times the 1pT level used by Tao et al. (2011). One obtains near-identical results as those in figure 3
for the power spectra of the Bz and Ez components, as should be expected for circularly polarized waves.

Figure 4 shows the ‘dispersion relation’ of the By component of the waves present, obtained via Fourier
transforms performed over the entire spatial and temporal domain during the wave-particle interaction. The
over-plotted line marks the cold plasma dispersion relation as according to equation (1), and we see that the
dominant power is strongly localized to the (flc, fuc) region, and along the expected dispersion curve. Once
again, we obtain near-identical plots of the dispersion relation for Bz,Ey and Ez.

3. Particle Diffusion
The application of QLT to the Vlasov-Maxwell equation for collisionless plasmas leads to a diffusion
equation to describe the plasma distribution function, F, of the form

𝜕F
𝜕t

=
∑
i,𝑗

𝜕

𝜕Ji

[
Di𝑗

𝜕F
𝜕J𝑗

]
(3)

(Schulz & Lanzerotti, 1974), for Dij a symmetric tensor of diffusion coefficients, and Ji are the three action
integrals associated with adiabatic charged particle motion (Northrop, 1963; Roederer & Zhang, 2013). For
use in the outer radiation belt, equation (3) is typically rewritten in (E, 𝛼,L⋆) space (e.g. see Glauert et al.,
2014). Here, the kinetic energy is E; pitch angle 𝛼 = tan−1(|p⟂∕p|||) (for p⟂ and p|| the momenta perpen-
dicular and parallel to the background magnetic field); and L⋆ ∝ 1∕Φ, is a value inversely proportional to

ALLANSON ET AL. 8900



Journal of Geophysical Research: Space Physics 10.1029/2019JA027088

the third adiabatic invariant (Roederer & Zhang, 2013; Roederer & Lejosne, 2018). The work in this paper
does not consider radial diffusion (i.e. diffusion in L⋆). It is the diffusion in pitch angle, characterized by
D𝛼𝛼 = D𝛼𝛼(E, 𝛼), that will be the focus.

Particles are considered to be in resonance with a given wave mode when the wave-particle resonance
condition is satisfied (Kennel & Engelmann, 1966),

𝜔 − k||v|| = n𝜔ce∕𝛾. (4)

In this equation, 𝜔 > 0 is the wave frequency, n = 0,±1,±2, ...; k|| = k · B0∕B0 and v|| = p||∕(m0e𝛾) are
the wave vector and velocity components that are parallel to B0, and we remind that 𝜔ce < 0. In the case of
field-aligned whistler mode waves, only the n = −1 resonance can occur for electrons (e.g. see Summers,
2005). Under these circumstances, wave-particle resonance occurs for a given wave frequency, 𝜔, for pitch
angles and energies defined by

𝛼 = cos−1

(||||||
|𝜔ce|∕𝜔 − (1 + 𝜀)

(kc∕𝜔)
√
𝜀2 + 2𝜀

||||||
)
, (5)

for 𝜀 = E∕(m0ec2), and kc∕𝜔 given by equation (1). This equation implies that for a given pitch angle, lower
frequency waves resonate with higher energies (Camporeale, 2015; Chen et al., 2018). Furthermore, for a
given wave frequency, the values of particle energy that can resonate are a monotonically increasing function
of pitch angle.

3.1. Background Theory on Normal Diffusion
An implicit assumption in the use of QLT is that the plasma undergoes ‘normal diffusion’ (Bouchaud &
Georges, 1990) in phase-space: “the diffusion model assumes the existence of an underlying uncorrelated,
Gaussian stochastic process, i.e., a Brownian random walk” (del Castillo-Negrete et al., 2004). In this normal
diffusive framework, diffusion coefficients are defined by the following formula (for arbitrary variables X
and Y ),

DXY (X ,Y ) =
⟨ΔXlΔYl⟩

2Δt
, (6)

in units of [X][Y]s−1. Here, Δt is interpreted as the duration over which the diffusion coefficients are to be
calculated, Xl and Yl are distributions of the particle parameters, localized to given values of X and Y (for
N particles l = 1, 2, … ,N within the given local population). The mean of the distribution Xl is denoted by⟨Xl⟩, and

⟨ΔXl⟩ ≡ ⟨Xl − ⟨Xl⟩⟩, (7)

such that ⟨(𝛥Xl)2⟩ ≡ var(Xl), for var(Xl) the variance of the distribution Xl. Implicit within this normal
diffusion construction, is that the variance of a given parameter scales linearly with time,

Δvar(Xl) = 2DXXΔt, (8)

for Δvar(Xl) the change in the variance of Xl over the time Δt (e.g. see Bouchaud & Georges, 1990; Metzler
& Klafter, 2000). Conceptually, this means that for a given subset of a plasma population that is located
in some region of phase space, then the distribution of that subset will spread in phase space according to
equation (8).

4. Diffusion in our Numerical Experiments
Particle diffusion due to wave-particle interactions is monitored by using the EPOCH ‘tracer’ particle fea-
ture. EPOCH allows the embedding of test-particle populations (tracers) into numerical experiment. Unlike
all the other particle populations, tracer particles do not contribute to the current, and so they effectively
act as labels in phase-space: that is to say that the behaviour of a given tracer is indicative of the behaviour
of an interacting particle (one that does contribute moments) in the same given region of phase-space. We
release ≈ 108 tracer particles within the domain at t = 0, that are initially distributed according to a 100keV
Maxwellian distribution that is uniform in space. Since they do not contribute current, we can load tracers
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Figure 5. The diffusive response for 4444 electrons, within a bin roughly centred on 75◦ and 50keV. (a)-(d) plot
electron E, 𝛼 values at t̃ = 0, T∕3, 2T∕3 and t̃ = T respectively. (e)-(h) plot pitch angle distributions of the given
particles at those times.

however we want in phase space. We choose this specific ‘temperature’ merely to provide a relatively uni-
form distribution of particles across the section of energy space important for pitch-angle diffusion in the
Radiation Belts.

Once the driven wave profile crosses the experimental domain, we consider all of the tracer particles to be
under the influence of the whistler-mode waves. At t = tcross, we bin the tracer particles in two dimensions
according to their values of energy and pitch angle at that time. We emphasize that tracers then remain
identified with that given bin for the entirety of the experiment, i.e. we do not re-bin at each data-dump.
The binning process is performed as follows. We first order all of the ≈ 108 tracers according to their energy
at t = tcross, and separate these tracers into 250 intervals, which are defined so as to allow exactly identical
numbers of tracers in each interval. Within each of these energy intervals, the tracers are then ordered
according to their value of pitch angle, and subdivided into 90 pitch angle sub-intervals, defined in order
to allow the same number of tracers in each. Each of these 250 × 90 bins in energy and pitch-angle space
contains 4444 tracer particles, and therefore we have uniformly good statistics within each bin with which
to calculate the diffusive response. In the case of an isotropic Maxwellian distribution, it would be expected
that this procedure would yield bins of a uniform size in pitch angle space, within each energy interval. Our
bins are not exactly uniform in pitch angle space, but they are almost uniform. The reason is as follows. The
tracer particles are loaded into the simulation at t = 0 as an isotropic Maxwellian. However, they are binned
at a later time, t = tcross. Between t = 0 and t = tcross, the tracers have been responding to the electromagnetic
perturbations within the domain created by both the wave excitation mechanism and any other inherent
PiC electromagnetic fluctuations, and therefore the tracers are not in a perfectly isotropic state at t = tcross.

4.1. Scattering in Phase-Space
Figure 5 shows an example of the diffusive response for particles within a bin roughly centred on 𝛼 = 75◦

and E = 50keV. This combination of energy and pitch angle implies that the particles are in resonance
with the driven wave spectrum. From hereon in we redefine t = tcross as t̃ = 0, and the end of the simu-
lation as t̃ = T, to simplify the discussion. Figures 5(a)-(d) plot electron E, 𝛼 values at t̃ = 0, T∕3, 2T∕3
and t̃ = T respectively, and figures 5(e)-(h) plot pitch angle distributions of the entire sub-population
(all energies). It is evident that pitch-angle diffusion dominates over energy diffusion in this bin, for rea-
soning as follows. The maximum magnitude of the pitch angle scattering in this bin reaches values of
(max(Δ𝛼))2∕(2T) ≈ (±3)2∕(2T) = 9∕(2T). Whereas the energy scattering in this bin reaches maximum mag-
nitudes of (1∕E2)(max(ΔE))2∕(2T) ≈ (1∕50keV)2(±1keV)2∕(2T) = 0.0004∕(2T). We have checked that the
dominance of pitch-angle scattering is observed in most bins. This is an expected result, since the ratio fpe∕fce
is known to control the relative significance of energy versus pitch angle diffusion (Summers, 2005). It is
also interesting to note that the particles are scattered in preferred directions. This scattering is such that
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Figure 6. d𝛼(E, 𝛼), for each (E, 𝛼) bin in the experiment (see equation (12)).
The over-plotted white curves mark the values of energy and pitch angle
that are (according to equations (4) and (5)) in “n = −1 resonance” with
waves of frequency flc (‘dash’), fuc (‘dash-dot’), and 0.5(flc + fuc) (‘solid’).

positive changes in E correlate with positive changes in 𝛼, and negative
changes in E correlate with negative changes in 𝛼. We have observed that
this behaviour is ubiquitous for the particles that are in resonance with
the dominant whistler-mode waves, and therefore the particles which
undergo ‘significant diffusion’ (see section 4.3 for a discussion on this
topic, and our definition of ‘significant diffusion’). The observed scatter-
ing in a preferred direction is an expected result due to the following argu-
ment. During a resonant interaction with a given parallel-propagating
whistler-mode wave (𝜔k < |𝜔ce|), then an electron will experience
changes in the total kinetic energy, ΔE, and the perpendicular kinetic
energy, ΔE⟂, that are related according to

ΔE⟂∕ΔE = |𝜔ce|∕𝜔k > 1, (9)

(e.g. see equation (36) in Brice (1964)). Equation (9) implies that for a
given positive change in the electron energy (ΔE > 0), such that

ΔE = ΔE⟂ + ΔE||,
then the perpendicular energy must increase by a greater amount, i.e. ΔE⟂ > ΔE. Therefore the parallel
energy must decrease (ΔE|| < 0). This therefore implies that the pitch angle must increase. One can use
an exactly analogous argument using equation (9) to conclude that a decrease in the energy of an electron
(ΔE < 0) is consistent with a decrease of the electron pitch angle. These, and other, helpful observations
are summarized in Table 1. of Brice (1964), and can also be seen clearly in Figure 1. from Kennel and
Petschek (1966).

Furthermore, we see from Figure 5 that the particle population spreads from an initial ‘top-hat’ sample, into
a Gaussian-type distribution. This property seems broadly consistent with the diffusive paradigm, in which
initially localized distributions spread into Gaussian distributions with ever greater widths (variances).

4.2. The Diffusive Hypothesis
The direct evaluation of the nature of diffusion in response to a given wave spectrum, relies on both the
plasma and wave characteristics being quasi-static for the time considered, Δt (Schulz & Lanzerotti, 1974).
Further to this requirement, we propose some additional constraints that are described by the following
hierarchy of timescales,

𝜏wave ≪ Δt ≤ 𝜏B(𝜔,k) , 𝜏n,B0
, 𝜏local, (10)

that should be satisfied in order for one to directly measure properties of the diffusion for a given (E, 𝛼)
bin. Equation (10) states that one can meaningfully evaluate diffusion due to interactions with a given wave
frequency over timescales: (i) significantly larger than 𝜏wave = 1∕fwave;(ii) smaller than those for which
one observes variations in the wave spectrum (𝜏B(𝜔,k)); (iii) and smaller than those for which one observes
variations in the the background magnetic field and number density (𝜏n,B0

). These conditions hold for our
experiment.

Furthermore, in order to be able to consider the rate of diffusion as a function of E and 𝛼 over some timescale
Δt, each given sub-population (or bin) of particles must remain localized to the same given region of (E, 𝛼)
space for the duration of Δt. To be clear, consider one particular bin composed of l = 1, 2, … ,N particles,
with initial values binned according to [(Ebin, min < El(t = 0) < Ebin, max) , (𝛼bin, min < 𝛼l(t = 0) < 𝛼bin, max)].
Then, in order to be able to measure diffusion for that given bin, we require

Ebin, min| < ⟨El⟩(t̃) < Ebin, max,

𝛼bin, min < ⟨𝛼l⟩(t̃) < 𝛼bin, max.
(11)

We define the timescale over which ⟨El⟩(t) and < ⟨𝛼l⟩(t̃) satisfy the above constraints in a given bin as 𝜏 local.
Therefore, if satisfied, then the electrons in the given bin undergo negligible advection in (E, 𝛼) space over
the timescale 𝜏 local.
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Figure 7. var(𝛼l) for three bins roughly centred on: (a):(E, 𝛼) = (20keV, 45◦), (b):(E, 𝛼) = (300keV, 82◦), and
(c)∶ (50keV, 75◦) respectively. Asterisks mark the particle data, and solid black lines mark curve fits. The solid blue line
is a linear fit over T∕2 < t̃ < T.

Figure (6) plots a normalized measure of local advection in phase-space,

d𝛼(E, 𝛼) ∶=
Δ⟨𝛼l⟩|bin(𝛼l)| . (12)

Here,Δ⟨𝛼l⟩ = ⟨𝛼l⟩(t̃ = T)−⟨𝛼l⟩(t̃ = 0), and |bin(𝛼l)| = 𝛼bin, max−𝛼bin, min. The over-plotted white curves mark
the values of energy and pitch angle that are (according to equations (4) and (5)) in “n = −1 resonance” with
waves of frequency flc (‘dash’), fuc (‘dash-dot’), and (flc + fuc)∕2 (‘solid’). We can see that the largest values of
d𝛼 are localized to regions within the boundaries of the resonance curves, and have maximum size less than
0.5 (max(|d𝛼|) ≈ 0.36). Therefore, for this choice of binning, all electron sub-populations remain localized
to their given pitch-angle bins for the duration of the interaction that we consider, 0 < t̃ < T. Therefore
an evaluation of diffusive properties is valid, i.e. timescales are in agreement with equation (10) and the
diffusive hypothesis holds over the given timescale Δt = 460tce. We have also constructed a similar plot
for dE, which shows qualitatively similar results (max(|dE|) ≈ 0.25), and so sub-populations also remain
localized to their given energy bins.
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Figure 8. var(𝛼l) for a bin roughly centred on (E, 𝛼) = (9.2keV, 40◦). Asterisks mark the particle data, solid black lines
is a curve fits, and the solid blue line is a linear fit over T∕2 < t̃ < T. The solid green line shows evolution of var(𝛼)
consistent with the PADIE diffusion coefficient, D𝛼𝛼 , over T∕2 < t̃ < T.

4.3. Nature of the Diffusion
As described at the beginning of Section 3, the calculation of a diffusion coefficient (e.g. D𝛼𝛼) within the
normal diffusive paradigm assumes that the variances of electron pitch-angle distributions within a given
bin grow linearly with time. In this case, the diffusion coefficient is given by equation (8), and defines the
slope of the line according to var(𝛼l) = 2D𝛼𝛼Δt. Prior to calculating diffusion coefficients, it is therefore
important to check whether the data supports this implicit assumption of ‘variances that grow linearly in
time’.

Figures 7(a)-(c) plot the evolution of var(𝛼l) for three different example bins. These bins are given by (E, 𝛼) =
(20keV, 45◦) (300keV, 82◦), and (50keV, 75◦). The asterisks mark the directly extracted particle data, and the
solid black lines mark curve fits. The curve-fitting method is described in Appendix B. For the purposes
of presentation, the particle variance curves are translated so that var(𝛼l; t̃ = 0) = 0. An instantaneous
measure of the rate of diffusion could be considered to be d(var(𝛼l))∕dt̃. Figure 7(b) shows an example for
which this rate of diffusion appears to be roughly constant in time. However, figures 7(a) and 7(c) show
examples for which the rate appears, respectively, to be slowing down and speeding up as time passes. This
time-dependent rate of diffusion is an interesting feature, and does not (at first glance) appear consistent
with the assumptions of normal diffusion theory. Diffusive theories that move beyond the assumption of
normal diffusion (sometimes called ‘anomalous diffusion’) have many applications, and not only in space
physics (e.g. see Bouchaud & Georges, 1990; Metzler & Klafter, 2000; Perrone et al., 2013; Zaslavsky, 2002;
Zimbardo et al., 2015). Anomalous diffusion theory essentially allows for the variance of a given parameter
X to evolve according to a power-law

var(Xl) ∝ ta, (13)

for 0 < a < ∞, and for which a < 1 denotes ‘sub-diffusion’, a ≈ 1 denotes ‘normal diffusion’, and a > 1
denotes ‘super-diffusion’. Using this interpretation, figures 7(a)-(c) present values a = 0.52, a = 0.92 and
a = 2.21 respectively (suggesting sub-, normal- and super-diffusion respectively). It is interesting to see that
the diffusion observed does not always follow normal diffusive behaviour over the time-scales 0 < t̃ < T.
Each sub-figure also includes a blue solid line, obtained via imposing a linear fit to the raw data over the
second half of the wave-particle interaction, T∕2 < t̃ < T. These straight lines are a good fit in each case.
This suggests that normal diffusion is observed in all three cases, but only after an initial transient phase
during which anomalous diffusion occurred.

Figure 8 plots the evolution of var(𝛼) for a bin roughly centred on (E, 𝛼) = (9.2keV, 40◦). This sub-population
of particles is resonant with waves of frequency f = 0.3fce, and represents a direct comparison with the main
example plotted by Tao et al. (2011) (figure 2 in that paper). The black and blue solid lines represent the
same curve fits as applied to figure 7. The solid green line represents the theoretical evolution of var(𝛼), as
inferred by using the value of D𝛼𝛼 as predicted from the PADIE code (Glauert & Horne, 2005) using input
plasma and wave parameters as detailed in this paper. As a reminder, note that var(𝛼) = 2ΔtD𝛼𝛼 under the
assumption of normal diffusion. The diffusion index for this bin is given by a = 1.15 and therefore classified
as normal diffusion. We see a very good agreement between the theoretical diffusion coefficient and our
directly extracted data on the diffusive response for this particular energy and pitch-angle bin. We will follow
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Figure 9. The diffusion index, a, for each (E, 𝛼) bin in the experiment. Plot(a) shows this index over the entire time of
wave-particle interaction (0 < t̃ < T), whereas plot (b) shows the index for the second half of the interaction only
(T∕2 < t̃ < T). Black indicates ‘no diffusion’. Yellow indicates ‘sub-diffusion’ (0 < a < 0.67), pink indicates normal
diffusion (0.67 < a < 1.5), and dark red regions indicate super-diffusion (a > 1.5). The over-plotted cyan curves mark
the values of energy and pitch angle that are (according to equations (4) and (5) in “n = −1 resonance” with waves of
frequency flc (‘dash’), fuc (‘dash-dot’), and 0.5(flc + fuc) (‘solid’). The bins represented in figure 7(a)-(c) are marked by
cyan symbols: ”<”, ”⋆“ and ”>”.

up on direct comparisons between D𝛼𝛼 as predicted from the PADIE code and diffusive response in our PiC
experiments in a separate paper that will include all energy and pitch-angle bins.

Figure 9 presents contour plots of the diffusion index, a, for each (E, 𝛼) bin, as defined in equation (13).
We remind that we calculate the value a for each and every bin over all phase space (0 < 𝛼 < 90, 9keV <

E < 1MeV). The rate of diffusion that is observed is a function of phase-space, and we observe very weak
diffusion in some bins. We do not present the value of a when diffusion is very weak, and instead mask
those cases with black. For this purpose, a measure of the strength of the diffusion is calculated as follows.
We calculate the total change in the variance of the pitch-angle distributions within each bin,

D𝛼𝛼,proxy(E, 𝛼) =
var(𝛼l; t̃ = T) − var(𝛼l; t̃ = 0)

2T
. (14)

Significant diffusion is deemed to have occurred within a given bin, if the value of this diffusion proxy
satisfies

D𝛼𝛼,proxy(E, 𝛼) > 10−2 max
E,𝛼

{
D𝛼𝛼,proxy(E, 𝛼)

}
. (15)

If significant diffusion does occur, then we describe its nature as ‘sub-diffusion’ if < a < 0.67 by using
yellow, as normal diffusion if 0.67 < a < 1.5 by using pink, or as ‘super-diffusion’ if a > 1.5 by using
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dark-red. These bounds of a < asub = 2∕3 and a > asuper = 1∕asub were chosen in order to classify sub- and
super-diffusion relatively strictly. Any regions for which the curve-fitting routine failed, are represented by
missing data (white). As was done for figure 6, the over-plotted cyan curves mark the values of energy and
pitch angle that are in “n = −1 resonance” with the driven waves. Furthermore, the locations of the bins
represented in figure 7(a)-(c) are marked by cyan symbols: ” <”, ”⋆“ and ”>” respectively. Figure 9(a) shows
the value of a that is calculated over the entire wave-particle interaction (0 < t < T). One clear observation is
that the regions of significant diffusion, as defined by equation (15), are almost exclusively localized within
the “n = −1 resonance” regions of phase space. Figure 9(a) also shows two well-defined region of sub- and
super-diffusive behaviour. The sub-diffusive region is found at ‘lower-frequency’ resonances, and predom-
inantly lower energies (< 100keV); whereas the super-diffusive behavior is observed for ‘higher-frequency’
resonances, and across the entire energy range. Out of all bins in which significant diffusion was observed,
7.2% show sub-diffusion, 45% show normal-diffusion, and 47.8% show super-diffusion.

Figure 9(b) shows the same quantity as figure 9(a), but calculated over the second-half of the interaction
(T∕2 < t̃ < T). This plot is motivated by the hypothesis made after analysis of figures 7(a)-(c), that an
initial transient period of varying diffusion rates gives way to normal diffusion in the latter half of the exper-
iment. We indeed see from figure 9(b) that a smaller proportion of the plot (i.e. fewer bins) displays the
sub- and super-diffusive behaviour. This observation is consistent with the observations made of the data in
figures 7(a)-(c): during 0 < t̃ < T∕2 we observe an initial transient phase during which different kinds of
diffusive responses are possible; later on (during T∕2 < t̃ < T) we observe a shift towards a normal-diffusive
response. Out of all bins in which meaningful diffusion was observed, 2.9% show sub-diffusion, 86.7% show
normal-diffusion, and 10.4% show super-diffusion during the second half of the numerical experiment.

5. Discussion
We use the EPOCH particle-in-cell code (Arber et al., 2015) to track electron pitch-angle diffusion due to
interactions with whistler-mode waves. There are two main novel features to our approach: (i) we consider
diffusion using a PiC code as a boundary value problem, i.e. we excite specific wave modes at the boundary,
as opposed to considering an initial-value problem in which one typically considers waves that grow from
an initially unstable distribution (e.g. see Camporeale, 2015; Camporeale & Zimbardo, 2015; Silva et al.,
2017; Hikishima et al., 2009; Katoh & Omura, 2006, 2013; Katoh et al., 2018; Omura et al., 2008, 2009, 2010,
2011; Ratcliffe & Watt, 2017); (ii) by considering the response of a distribution of electrons, we track the
diffusion in energy and pitch angle space across the entire phase-space domain, in contrast to some previous
similar studies of diffusion (e.g. see Camporeale & Zimbardo, 2015; Tao et al., 2011, 2012) that considered
resonant particles only. These novel features allow us to, respectively: (i) consider a ‘quasi-static’ system, in
which the background plasma and whistler-mode wave spectra are roughly time-independent; (ii) derive
characteristics of the diffusive response for all electrons, including those that are non-resonant with the
waves and typically not expected to strongly interact.

In this first study, we model the background plasma as a 0.1eV isotropic cold population. We use this
approach to benchmark our novel method with expected results, before studying more realistic ‘radiation
belt’ background plasmas in the future, with ‘warm’ and ‘hot’ anisotropic electron populations (see e.g.
Denton et al., 2010). We also make the assumption of spatially 1D dynamics, thereby permitting only parallel
and anti-parallel wave propagation, as well as a homogeneous background magnetic field. This consider-
able simplification is done in order to benchmark with previous work (Tao et al., 2011), and with a mind
to a systematic future program of work with more realistic magnetic field geometries, wave-normal-angle
spectra, and/or more ‘exotic’ wave modes and amplitudes. In order to properly understand each effect, it
is necessary to first understand the experimental response in the most simple of circumstances, and then
implement additions in isolation. We have compared our results for pitch angle diffusion with the example
presented by Tao et al. (2011), using results from the PADIE code, and we see very good agreement. A more
comprehensive comparison of the diffusive response with the predictions of QLT is beyond the scope of this
paper, but will be addressed explicitly in future papers in this series.

Extremely low levels of background noise have been enabled by using theΔF mode in EPOCH. This, in addi-
tion to the linear envelope applied to the wave driver, allows for a highly effective wave-driving mechanism
for whistler-mode waves, with an excellent signal-noise-ratio. We have verified that the wave power is well
localized to follow the cold plasma dispersion relation. A large number of tracer particles were embedded
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within the PiC domain (≈ 108 electrons) by using the EPOCH tracer functionality. This provides good statis-
tics with which we characterize the electron diffusion over the entire energy and pitch angle domain. The
dominant diffusion is clearly seen to correspond to those particles that are in ‘n = −1’ resonance with the
driven wave mode, as expected by QLT. Diffusive effects outside the resonant regions of phase-space are at
most 1% as significant as the dominant resonant effects. Therefore, for this experiment, non-resonant inter-
actions are of little importance (unlike in e.g. Camporeale, 2015). This feature is an explicit requirement of
QLT, and seems sensible given the simplified nature of the experimental setup. Future investigations will
seek to determine those circumstances under which nonlinear effects become more important.

One interesting feature of the diffusion is observed for early times; namely, a time-dependent rate of dif-
fusion. The variances of pitch-angle distributions of given electron sub-populations do not always grow
linearly with time during the first half of the experiment (see figures 7 and 9). We discuss this result in the
context of ‘anomalous’ diffusion theories (e.g. see Bouchaud & Georges, 1990; Metzler & Klafter, 2000; del
Castillo-Negrete et al., 2004; Perrone et al., 2013; Zaslavsky, 2002; Zimbardo et al., 2015), that are known
to play a role in various space and astrophysical plasma contexts. However, at later times, normal diffusion
(Brownian motion) is seen to dominate, during which time the variances grow with a linear rate. This latter
result is consistent with the implicit assumptions of QLT, and suggests that in order to construct meaning-
ful diffusion coefficients from such PiC experiments, one may have to consider how to appropriately treat
this initial transient phase (see examples of possible methods to treat time-dependent diffusion rates in e.g.
Degeling et al., 2007).

6. Summary
In this first paper of a series, we analyze the nature of the electron pitch-angle diffusion due to interac-
tions with broadband and incoherent whistler-mode waves. The most significant technical development
is a proof-of-concept for the novel method used. Namely, an analysis of the nature of electron diffusion
over all phase-space due to specified whistler-wave modes, using a particle-in-cell method to construct a
boundary-value problem. This analysis is enabled by direct extraction of particle data from numerical exper-
iments performed using the EPOCH code. The numerical experiment was intended to both resemble and
build upon the test-particle experiments performed by Tao et al. (2011). As such, we drove an incoherent
spectrum of whistler-mode waves into a simple cold plasma with uniform background magnetic field, and
tracked the diffusive response of ≈ 108 electrons for 460tce, as a function of energy and pitch angle. We make
the following observations of our experiments:

1. The strength of the diffusive response is found to be a function of energy and pitch angle, as is expected
using quasilinear diffusion theory. The diffusion is strongest in regions of energy-pitch angle space that
are in the n = −1 resonance with the dominant wave signal. This is not a new result, but a required one,
since the only wave-particle resonance that is possible in our experiment is the n = −1 case. However, it
is an important benchmarking criteria that our novel method must satisfy, and therefore it is important
to check and present.

2. Non-resonant interactions are observed to be of little consequence in this case. This feature is directly
observed in our numerical experiments, and is not a priori assumed. It will be interesting to check how
this feature changes in future experiments.

3. When considered over the entire duration of the wave particle interaction for particular regions of
energy-pitch angle space, the nature of the diffusive response is observed in some regions of phase-space
to be: (a) ‘normal’, i.e. it is Einsteinian/Brownian (for which the variances of energy or pitch angle grow
linearly with time, as is implicit in QLT); (b) or 'anomalous', i.e. it is either super- or sub-diffusive (for
which the variances of energy or pitch angle grow at either a faster or slower relative rate, respectively)

4. When considered over the second half of the wave-particle interaction, we observe that a larger proportion
of phase-space exhibits a normal diffusive response due to the wave-particle interaction

5. A preliminary analysis of the strength of pitch-angle diffusion for a given region of energy and pitch angle
space demonstrates consistency with the results presented by Tao et al. (2011), and the results of the
PADIE code.

The results presented in this paper effectively benchmark our techniques against other treatments that con-
sider the response of test-particles to whistler-mode waves (e.g. see Tao et al., 2011). This work motivates
the following future investigations on: (i) the strength and nature of diffusion as a function of driving wave
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amplitude; (ii) the difference in the plasma response when more realistic radiation belt plasmas are mod-
elled, i.e. those with the fractional warm components that can be found in Earth's inner magnetosphere.
It will also be interesting to consider methods that allow for a analysis of a fully self-consistent electron
response to whistler-mode waves, i.e. to move beyond the mixed ‘PiC – test-particle approach’ that we
employed in this paper, and therefore beyond any of its inherent limitations.

Beyond that, there are many questions remaining that motivate other future studies. Namely, how do the
results presented in this paper change when modelling other manifestations of whistler-mode waves (e.g.
monochromatic waves), other wave spectra (e.g. with a much wider wave-normal angle spectrum). It will
also be important to study the diffusive response in spatially two-dimensional plasmas, with both homoge-
neous and inhomogeneous background magnetic fields. Oblique waves can only propagate in a numerical
experiment that has more than one spatial dimension, and are known to be relevant for some properties of
whistler-mode wave dynamics in the radiation belts (e.g. see Artemyev, Agapitov, et al., 2016; Ratcliffe &
Watt, 2017). All of these effects should be expected to produce qualitatively different diffusive responses.

Appendix A: The EPOCH particle-in-cell code
We use version 4.16 of the Extendable PiC Open Collaboration (EPOCH) code in one spatial dimension
(‘EPOCH1D’). EPOCH is an explicit (Birdsall & Langdon, 2004), relativistic and charge-conserving PiC
code (Arber et al., 2015), using Villasenor and Buneman current deposition (Villasenor & Buneman, 1992).
EPOCH solves Maxwell's equations combined with the equations of motion for charged particles in an EM
field to provide a direct simulation of collisionless plasma. Since EPOCH uses an explicit scheme, numerical
stability requirements dictate that timesteps, Δt, are limited by the usual CFL condition, and the resolution
of electron plasma waves, for a given grid discretization Δx. EPOCH1D therefore sets the time scale as the
most restrictive of constraints set by: the CFL condition (ΔtCFL = Δx∕c); the inverse plasma frequency, (at the
beginning of the simulation); and the inverse ‘laser’ frequency (the term ‘laser’ refers to an electromagnetic
wave driver), according to

Δt < min
(
ΔtCFL, 1∕

(
2𝑓BG

)
, 1∕

(
2𝑓laser

))
, (A1)

for fBG = |𝜔BG∕(2𝜋)| the ordinary frequency according to the Bohm-Gross dispersion relation (Bohm &
Gross, 1949), and flaser the minimum laser frequency. All quantities in EPOCH are given in normal SI units.

EPOCH allows users to run in ‘ΔF mode’. In general terms, if we consider a plasma population as being
described by a distribution function of the form F = F0(x, v) + ΔF(x, v, t) (with F0 either an isotropic or
anisotropic Maxwellian distribution function), then the ΔF method (e.g. see Sydora, 1999) can achieve a
reduction in PiC noise of the order of ∼ |ΔF|∕F, for all other settings left unchanged. Hence, this method is
particularly useful if F is close to an (an-)isotropic Maxwellian distribution function.

Instructions on how to download and run EPOCH are given in supplementary information (S1).

Appendix B: Curve-fitting procedure
Here we describe the curve-fitting procedure, used to determine the diffusion index a, as shown in figures 7,
8 and 9. In each (E, 𝛼) bin, a time-series of the quantity

V𝛼(t̃) =
var(𝛼l; t̃) − var(𝛼l; t̃ = 0)

var(𝛼l; t̃ = 0)
, (B1)

is calculated. We track V𝛼 instead of just the variance, so that all time-series are ordinated according to
similar scales, and are initialized at zero. This also helps with the curve-fitting procedure which is performed
as follows:

(i) First, we test to see whether or not any ‘significant diffusion’ occurs in each bin, using the rule defined by
equation (15). (ii) If significant diffusion occurred then curve-fitting of the time-series, V𝛼 , is implemented,
to the test function,

𝑦 = c0 + c1xc2 .

For a given initial estimate of the vector c = [c0, c1, c2], the standard curve-fitting routine uses a
gradient-expansion least-squares method, and returns a successful result when the relative decrease in
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chi-squared is less than 10−3 in a given iteration. The routine returns a fail if convergence is not reached
after a large number of iterations, or if the chi-squared value increases without bounds. Note that we clas-
sify ‘successful’ outputs of the curve-fitting algorithm as ‘failures’ if c2 > 10, in order to neglect spuriously
high values. Finally, curve-fitting could only be considered a success if |y(x = 0)∕y(x = xmax)| < 0.5.

(iii) For each bin, we employ this curve fitting routine for 100 different initial guesses of c, and record the
output values of all ‘successful’ attempts. We then select the output vector that minimizes the mean deviation
between the curve fit and the data. In theory, normal diffusion would give c2 ≈ 1, with the coefficient c1
directly proportional to D𝛼𝛼 , and c0 = 0.
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