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Abstract
Routine respiration rates in the South Georgia stock of Antarctic krill (Euphausia superba) were measured to compare with 
previously published measurements on stocks from colder locations further south. Within the natural temperature range 
of this species (− 1.8° to 5.5 °C), respiration rate data from both the present and previous studies were adequately fitted 
by a single Arrhenius regression (Q10 of 2.8), although South Georgia krill showed an upward deviation from this regres-
sion between 0° and 2 °C (the lower temperature range at South Georgia). Metabolic compensation (i.e. the comparative 
lowering of respiration rate) at the high temperatures experienced at South Georgia was not apparent, although the higher 
than predicted metabolic rates at low temperatures suggests acclimation of South Georgia krill to a warm water lifestyle. 
Weight-specific respiration rate was significantly higher in sub-adults and adults compared to juveniles, highlighting the 
metabolic burden of reproduction. South Georgia krill showed no further increase in respiration rate when exposed to acute 
temperatures (5.5–12.2 °C), indicating that they were already at the limit of aerobic capacity by 5.5 °C. Overall, this study 
shows that even small degrees of additional warming to South Georgia waters are likely to make conditions there metaboli-
cally unsustainable for Antarctic krill.

Introduction

Euphausiids represent an important component in marine 
food webs, linking primary production to higher predators 
(Mauchline 1980). Moreover, they are major contributors to 
world plankton community biomass, second only to cope-
pods (Longhurst 1998; Ikeda 2013). In some regions of the 
Southern Ocean, euphausiids are the primary contributor 
to biomass, of which a large proportion are Antarctic krill 
(Euphausia superba). This species constitutes a crucial food 
source for many mammalian and avian predatory species 

(Everson 1984) and have been shown to be vital for breeding 
success (Croxall et al. 1988). Antarctic krill are additionally 
of interest to commercial fisheries (Everson and Goss 1991; 
Nicol et al. 2012), necessitating effective resource manage-
ment that can account for temporal and spatial variability in 
krill biomass (Trathan et al. 2003).

The pelagic ecosystem at South Georgia is extremely 
productive, where intense phytoplankton blooms support a 
rich foodweb (Atkinson et al. 2001). Antarctic krill reaches 
notably high levels of biomass in this region and are con-
sumed by large populations of krill-dependent predators 
(Veit et al. 1993; Croxall et al. 1999). South Georgia is at 
or near the northerly limit for this species (Cuzin-Roudy 
et al. 2014) and stocks found there are considered to be close 
to their physiological limits (Opalinski 1991; Flores et al. 
2012). Sea-surface temperatures in South Georgia waters 
oscillate between 0 and 5.5 °C over the course of the year 
(Whitehouse et al. 2008). These warmer temperatures are 
already beyond the upper lethal limit identified for Antarc-
tic krill populations located further south (McWhinnie and 
Marciniak 1964; Aarset and Torres 1989), which suggests 
that there may be some physiological differences in Ant-
arctic krill from different locations, especially with regards 
thermal responses.
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The issue of thermal response has been brought into 
greater focus given that the Antarctic Circumpolar Current 
has warmed more rapidly than the global ocean as a whole 
over recent decades, with mid-depth temperatures rising 
by 0.17 °C between the 1950s and the 1980s (Gille 2002). 
South Georgia itself has experienced even more extreme 
warming, with one study reporting mean temperature in 
the top 100 m of the water column to have increased by 
0.9 °C in January and 2.3 °C in August over the past 80 years 
(Whitehouse et al. 2008). Predicting the future viability of 
Antarctic krill populations at South Georgia depends on 
parameterising how these organisms respond to warming. 
In this regard, physiological parameterisations carried out 
directly on South Georgia Antarctic krill are crucial.

One of the most fundamental physiological measure-
ments is that of metabolic rate. In most instances, oxy-
gen consumption rate, otherwise termed respiration rate, 
is used as a proxy for metabolic rate. In Antarctic krill, 
between 72 and 85% of assimilated carbon is respired 
(Ikeda 1984). Oxygen consumption is the sum of many 
different physiological processes occurring together, 
which include basal metabolism, swimming activity and 
the contribution from any feeding, growth, or gametogen-
esis in progress at the time of measurement (Clarke and 
Morris 1983). Measuring basal metabolism in euphausi-
ids is difficult since individuals always maintain at least 
some level of motion (Swadling et al. 2005). Nevertheless, 
containment within measurement vessels constrains full 
levels of activity. Therefore, most studies on euphausiids 
report what has been termed “routine” metabolism, which 
represents basal metabolism plus an uncontrolled, but 
assumed to be minor, contribution from other processes, 
including low levels of swimming. With certain caveats, 

the measurement of routine metabolism in euphausiids 
provides a comparative index of metabolic costs between 
populations, environments and species (Ikeda 2013; Trem-
blay et al. 2014).

Although limited to water masses poleward of the Polar 
Front, Antarctic krill still has a wide distributional range, 
comprising more than 20° of latitude (Atkinson et al. 2008) 
and sea surface temperatures ranging from − 1.8 to 5.5 °C 
(Opalinski 1991). Northern krill (Meganyctiphanes nor-
vegica) is arguably the nearest equivalent species in the 
northern hemisphere, both in terms of body size and dis-
tributional range, covering more than 40° of latitude, and 
temperatures between 2 and 15 °C (Tarling et al. 2010). 
Saborowski et  al. (2002) measured in  situ respiration 
rate in three distinct populations of this species, from the 
Mediterranean Sea, northern UK shelf and Kattegat Sea. 
Despite the contrasting temperatures, in situ respiration rates 
were similar between the three environments (30–35 µmol 
 O2 mg–1 dry wt h–1). It was concluded that different popula-
tions of Northern krill compensated for differences in tem-
perature to maintain a constant metabolic level.

Saborowski et al. (2002) also found that there was no 
metabolic compensation during short exposures of Northern 
krill to temperatures above or below those prevailing in their 
natural environment. Across the range of experimental tem-
peratures, respiration rates followed an exponential curve, 
closely following van’t Hoff’s generalization. With no capac-
ity for short term compensation, Saborowski et al. (2002) 
further surmised that similarity in in situ respiration rates of 
Northern krill between thermally contrasting environments 
was the result of long-term adaptations to local conditions.

For a species as widely distributed as Antarctic krill, 
compensating metabolic rate to counter contrasting thermal 
conditions has distinct advantages. The Southern Ocean is 
extremely seasonal and there is strong evidence that Antarctic 
krill alters its respiration rate beyond thermal expectations, 
with minimum rates in mid-winter and maximum rates in 
mid-summer (Meyer 2012; Tremblay et al. 2014). Increas-
ing respiration rate in summer, particularly in colder higher 
latitude waters, may allow maximal use of the high productiv-
ity levels available, increasing development and maturation 
rates and allowing life-cycles to be completed (Thorpe et al. 
2019). At lower latitudes, there is the opposite problem of 
metabolic costs potentially being in excess of consumption 
rates, so lowering respiration rate may allow an energy deficit 
to be avoided. Nevertheless, studies do not agree on whether 
Antarctic krill can compensate for temperature change in a 
similar way to Northern krill (Hirche 1984; Opalinski 1991). 
Furthermore, whether in situ respiration rates remain similar 
between Antarctic krill populations inhabiting thermally con-
trasting environments has yet to be fully considered because 
very few measurements have been made in comparatively 
warmer environments, such as South Georgia.

Fig. 1  Locations around South Georgia where there were successful 
net catches for Antarctic krill, subsequently used in respiration exper-
iments. See Table 1 for further details
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Another aspect that requires further consideration is the 
potential differences in the relationship between tempera-
ture and metabolic rate between sexes and developmen-
tal stages. Adult male and female Antarctic krill exhibit 
marked dimorphism, with mature (gravid) females contain-
ing large distended ovaries filled with lipid rich oocytes. 
Clarke and Morris (1983) hypothesised that females have a 
higher energy intake than males to amass such resources. An 
alternative hypothesis is that females have a comparatively 
lower metabolism and so have a higher net energy gain per 
unit resource consumed. To date, comparisons of male and 
female Antarctic krill metabolic rate have not revealed any 
differences (Klekowski et al. 1991), although significant 
differences have been found between adults and juveniles 
(Klekowski and Opalinski 1989).

The present study measures routine metabolism of differ-
ent sexes and developmental stages within the South Geor-
gian population of Antarctic krill. Routine metabolism is 
measured across two temperature ranges, 0–5.5 °C, which 
represents the ambient range of temperatures that prevail 
in South Georgia surface waters over a seasonal cycle, 
and 5.5–12.5 °C, representing extreme temperatures that, 
although unlikely to be encountered in the natural environ-
ment, can indicate physiological capacity (Pörtner 2002). 
Within these two temperature ranges, I investigate the influ-
ence of body size, sex and developmental stage on routine 
respiration rate. Comparisons are made with measurements 
of routine respiration rate made by other studies across a 
wide range of Southern Ocean locations.

Materials and methods

Field sampling

Antarctic krill were caught at a variety of locations in the 
vicinity of South Georgia on board the RRS James Clark 
Ross between 21st December 2010 and 19th January 2011 
(Cruise JR245). They were captured with a 1 m2 MIK net 
fitted with a 2-mm mesh and non-filtering cod-end deployed 
obliquely to maximum depths of between 50 and 60 m 
(Table 1, Fig. 1). Where catches were successful, around 
100 individuals were randomly extracted immediately and 
transferred to 50 L containers filled with ambient surface 
seawater, where they were left for a period of between 12 
and 48 h before transfer to an incubation apparatus. The 
remainder of the catch was analysed for population struc-
ture through random extraction of around 200 individuals 
on which standard body length (TL) was measured follow-
ing Morris et al. (1988), from the anterior edge of the eye 
to the tip of the telson and rounded down to nearest mm. 
Sex and developmental stage were categorised according to 
Makarov and Denys (1980). Full depth temperature profiles 

were obtained at regular intervals throughout the field cam-
paign with a calibrated SeaBird 911 + CTD.

Incubation apparatus

The incubation apparatus (a Spartel Temperature Gradi-
ent Incubator) contained a hollow rectangular aluminium 
block (1.3 m × 0.5 m) housed within an insulating outer-box, 
which maintained a temperature gradient across its long axis 
(Fig. 2). The gradient was achieved by circulating coolant 
within the block, cold coolant being fed in and out from 
one end (chilled and circulated by C-85D + FC-500 units) 
and warm coolant from the other (via a C-400 unit). An 
internal division half way along the block prevented direct 
mixing between the warm and cold coolants. A maximum of 
seventy-two 250 ml glass stoppered bottles were placed on 
top of this block in advance of an incubation experiment for 
a period of time (usually 3 h) sufficient to equilibrate their 
temperature to that of the specific block location. All bot-
tles were filled with fine-filtered seawater (filtered through 
0.2 µm Sartorius membrane filters). The minimum within-
bottle temperature was 0 °C, and the maximum, 12.2 °C. 
Between 5 and 8 bottles (median 6) were placed evenly 
along this gradient per respiration experiment, and a total of 
24 experiments were carried out over the course of the study.

Respiration experiments

Krill were extracted from the 50-L containers and catego-
rised as follows: (i) juvenile, (ii) small sub-adult, (iii) large 
sub-adult, (iv) adult female (v) adult male. It is to be noted 
that a large number of adult females were gravid, containing 
swollen ovaries and a purple discolouration to the cephalo-
thorax. Numbers introduced to each bottle varied according 
to category: 10 per bottle for juveniles, 5 per bottle for small 
sub-adults, 3 per bottle for large sub-adults, and 1 per bottle 
for adult females and males. These numbers were arrived at 
through trials where the aim was to achieve a sufficient drop 
in  O2 concentration within 90 min without overly affecting 
respiratory performance (Clarke and Morris 1983; Opalinski 
1991).

Respiration rates were estimated by determining the 
concentration of  02 in the bottles at the start and end of an 
experiment. After introduction into the bottles, the krill were 
left to settle for around 10 min. The temperature of the bot-
tle was then taken and a stopper placed on the bottle, taking 
care not to trap any bubbles. The first  O2 measurement was 
made immediately afterwards and a second after a period of 
between 60 and 90 min.

O2 concentration was measured via factory-calibrated 
Presens oxygen sensor spots glued to the inside neck of 
the 250-ml stoppered bottles using silicone rubber com-
pound. The spots were read by a fibre-optic probe held to 
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Table 1  Euphausia superba: net 
catches from which Antarctic 
krill were extracted for 
respiration experiments

Note that for nets where sensor failures meant that maximum net depth was “unknown”, maximum depth 
was most likely within the range of other nets for which such information was collected successfully (i.e. 
between 21 and 59 m). Local time was GMT-3 h

Event No. Lat (°S) Long (°W) Date Time (GMT) Max. net depth

18 53.70695 38.18605 25/12/2010 00:37:00
00:57:49

21 m

44 53.60767 38.23436 28/12/2010 01:24:49
01:55:52

58 m

45 53.61291 38.24039 28/12/2010 02:45:53
03:10:41

44 m

74 53.99585 36.35807 01/01/2011 00:19:42
00:45:36

59 m

93 54.26053 35.35364 03/01/2011 22:20:30
22:36:27

40 m

108 54.55503 35.60416 06/01/2011 16:40:00
17:03:34

Unknown

109 54.55829 35.58579 06/01/2011 17:32:17
18:00:32

47 m

111 54.55915 35.58569 07/01/2011 01:02:48
01:16:35

Unknown

116 53.62301 36.34162 08/01/2011 00:47:29
01:47:53

55 m

117 53.62300 36.34105 08/01/2011 02:22:23
02:52:12

38 m

124 54.27473 35.87499 09/01/2011 01:47:38
02:10:04

Unknown

131 53.87294 36.74385 10/01/2011 04:43:09
05:10:45

Unknown

146 53.59231 37.61264 13/01/2011 02:14:31
02:28:58

36 m

149 53.59129 37.70458 13/01/2011 05:23:55
05:43:15

Unknown

154 53.69436 38.71951 14/01/2011 01:53:29
02:19:20

49 m

156 53.70875 38.56402 14/01/2011 04:27:21
04:54:03

50 m

Fig. 2  Schematic showing the setup of the incubation apparatus (not to scale). I In; O Out. See text for further details
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the outside wall of the glass, at a sample rate of 1 reading 
per second. Readings were taken over a period of approxi-
mately 1 min in units of µmol L−1 (precision of three deci-
mal places), from which an average was derived, excluding 
any outlier measurements.

After the second measurement was made, the krill were 
extracted from the bottles and their TL measured as above. 
Individuals were subsequently dissected for a variety of 
further analyses not considered here.

Biometric conversions

Individual dry weight was estimated using TL to dry 
weight regressions provided by Atkinson et al. (2006). 
These were considered suitable given: (i) they were 
obtained from krill caught in the same geographic region 
and at the same time of year as the present study and (ii) 
separate regressions were derived for different develop-
mental stages and sexes similar to those discriminated 
in the present study. The respective regressions were as 
follows:

Juvenile:

Sub-adult:

Adult female:

Adult male:

where DW is dry weight in mg and TL is standard body 
length in mm.

Data compilation

A compilation of previously published data (COMP) was 
carried out to relate to respiration rates measured by the 
present study (see Electronic Supplementary Material). 
The COMP dataset only included studies where direct 
measurements of oxygen consumption were made within 
a few days of capture at temperatures within the natu-
ral environmental range (− 1.8 to 5.5 °C). Furthermore, 
COMP was limited to studies which carried out measure-
ments on krill that were at least equivalent to the mini-
mum individual body size encountered in the present study 
(i.e. > 0.01 g DW).

(1)Log10DW = 4.09 log10 TL−4.51

(2)Log10DW = 3.67 log10 TL−3.83

(3)Log10DW = 53.74 log10 TL−3.90

(4)Log10DW = 3.60 log10 TL−3.76,

Analytical procedures

Data from the present study was divided into two sub-sets: 
(i) 0 to 5.5 °C, the natural seasonal temperature range at 
South Georgia (SG_ambient) and (ii) 5.5 to 12.2 °C, an 
extreme temperature range (SG_extreme). SG_ambient was 
combined with the COMP dataset to produce a dataset of 
all respiration measurements taken within the natural envi-
ronmental range of krill, referred to henceforth as AMBI-
ENT (see Electronic Supplementary Material).

The scaling equation relating respiration rate per indi-
vidual (Rind) to body mass in terms of dry weight (DW, 
mg) is as follows:

where a is a constant and b, the scaling exponent (Schmidt-
Nielsen and Knut 1984). b was estimated by fitting a 
2-parameter power function to the AMBIENT dataset using 
curve fitting software (Sigmaplot 13.0.0.83, Systat Software, 
Inc). b was used to account for body-size effects when deriv-
ing a weight-specific function for respiration rate (RDW) in 
units of µl  O2  gDW−b h−1, following Ikeda (2013).

A number of different functional forms were fitted to 
identify one that best described the relationship between 
weight-specific respiration rate (RDW) and temperature for 
both the AMBIENT and SG_extreme datasets, including 
linear, log-linear, log–log and the Arrhenius function, with 
the selected regression model having (i) a slope signifi-
cantly different from 0 and (ii) the highest R2 value. All 
fitting procedures were performed in Sigmaplot (13.0.0.83, 
Systat Software, Inc.).

The selected regression model was used to determine 
Q10 for the AMBIENT dataset through estimating RDW at 
the lowermost (T_lower) and uppermost (T_upper) tem-
peratures within the dataset [RDW(T_lower), RDW(T_upper) 
respectively] and then applying van’t Hoff’s generaliza-
tion as follows:

It was not possible to calculate Q10 for the SG_extreme 
dataset, because the slopes of all fitted regression models 
were not significantly different from 0.

Residuals (̂Yi − Yi) from the selected regression model 
fitted to the AMBIENT dataset were explored further to 
identify any significant deviations. This involved sepa-
rate analyses on the residuals from the two datasets con-
catenated within AMBIENT, namely SG_ambient and 
COMP. The relationship between the residuals and tem-
perature was explored by considering the fit of a num-
ber of functions, including linear, quadratic, log–log and 

(5)R = aDWb,

(6)Q10 =

(

RDW(T_upper)

RDW(T_lower)

)10∕(T_upper−T_lower)
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Arrhenius functions. In a further analysis, the residuals 
from SG_ambient were sub-divided according to sex and 
developmental stage and differences in residuals between 
these sub-divisions were tested using non-parametric 
Kruskal–Wallis One Way Analysis of Variance on Ranks, 
having failed tests for normality and equal variance. To 
isolate the group or groups differing significantly from 
each other, an all pairwise multiple comparison procedure 
(Dunn’s method) was performed.

Results

Prevailing environmental conditions

Temperature in the upper mixed layer (0–50 m) varied 
between 3 and 3.8 °C across different cruise locations 
(Fig. 3). In the winter water layer, between 100 and 200 m, 
temperature dropped to a minimum of around 0.7  °C. 
However, it subsequently increased with increasing depth, 
reaching just above 2 °C in the deeper layers (> 200 m) 

in offshore stations, principally through the influence of 
Circumpolar Deep Water (Thorpe et al. 2002).

Population structure in South Georgia at time 
of capture

The population at South Georgia consisted of a range of 
developmental stages, from juveniles of mean minimum 
size of 25 mm TL to adults reaching 60 mm TL (Fig. 4). 
The modal peak of the population was at 40 mm. The 
population was dominated by sub-adults, which comprised 
66% of the population, followed by juveniles (19%) and 
then adults (15%). The adult male to adult female ratio 
was 1:1.8, with females having a broader size range than 
males, but both sexes being evident in the uppermost body 
lengths.

Scaling of respiration rate to body weight

The fit of the scaling equation (Eq. 5) to data for individual 
respiration rate and body dry weight in the AMBIENT 
dataset was as follows:

where Rind is individual respiration rate in µlO2  ind−1 h−1, 
DW is dry weight in mg (Fig. 5).

The exponent of 0.9606 indicated a relatively strong 
effect of body size on respiration rate, relative to the stand-
ard value of 0.75 (Ikeda 2013).

(7)
Rind = 616.2062DW0.9606 R2 = 0.75,F2,182 = 828.22,P < 0.001,
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Fig. 3  Full-depth temperature profiles for each of the stations where 
net catches for Antarctic kill (Euphausia superba) were successful
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to Makarov and Denys (1980)
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Relationship between respiration rate 
and temperature within the ambient range

The relationship between RDW and temperature in the 
AMBIENT dataset was examined in both linear and log 
domains, including the Arrhenius function (Fig. 6). All 
fitted regressions indicated a significant relationship, with 
RDW increasing with increasing temperature. The highest 
R2 was achieved by the Arrhenius function (termed hence-
forth as the ‘ambient Arrhenius regression’) and was as 
follows:

where RDW is weight-specific respiration rate in terms of dry 
weight (µlO2 gDW

−0.9606 h−1), and K is temperature (Kelvin).
Figure  6 highlights the paucity of measurements 

towards the upper ambient temperature range of Antarctic 
krill in previous studies (i.e. the COMP dataset), although 
the few studies that made measurements at temperatures 
above 3  °C generally fell within the range of values 
obtained by the present study at South Georgia (SG_ambi-
ent). The ambient Arrhenius regression had a Q10 of 2.8. 
Accordingly, this equates to around a doubling in RDW 
between the upper and lower temperatures within the natu-
ral environmental range (− 1.8 °C and 5.5 °C respectively). 
The regression explained 32% of the variance, reflecting 
the numerous data points that lay outside the 95% confi-
dence bands.

When considering the residuals from the ambient 
Arrhenius regression, it is apparent that there is no further 
relationship with temperature within the COMP dataset, 

(8)LN
(

RDW

)

= 34.3872−
(

7.6983 ⋅
1000

K

)

R2 = 0.32,F2,183 = 40241.35,P < 0.001,

with variance being evenly distributed above and below 0 
across the ambient temperature range (Fig. 7). However, 
in the SG_ambient dataset, there was an increasing trend 
of negative residuals (i.e. higher than expected individual 
values) towards lower temperatures. The pattern was best 
described by the following quadratic function:

where Resid is residuals from Eq.  8 in units of LN 
(µlO2 gDW−0.9606 h−1).

Hence, although the SG_ambient data showed a reason-
able fit to the ambient Arrhenius regression, described by 
Eq. 8 in the upper part of the ambient range (> 3 °C), there 
was an increasing deviation from this regression towards the 
lower temperatures (0–2 °C), with RDW being higher than 
otherwise expected at those temperatures.

Some significant differences were apparent in the distri-
bution of residuals between sexes and developmental stages 
in the SG_ambient dataset (Kruskal–Wallis 1-way ANOVA 
on ranks, H3 = 12.20, P = 0.007, Fig. 8). In the all pairwise 
multiple comparison test, residuals for juveniles were sig-
nificantly different to both adult females and sub-adults, 
while there were no significant differences between adult 
males, adult females or subadults. The juvenile median was 
the only one of the four categories to be negative, although 
males did show a wide variation in residuals spanning both 

the negative and positive domains. Hence, overall, juvenile 
respiration rate was lower than that predicted by the ambi-
ent Arrhenius regression (Eq. 8) while respiration rate rose 
abruptly in sub-adult and adults to lie above this regression.

Acute exposure to extreme temperatures

When exposed to a range of extreme temperatures 
(5.5–12.5 °C), there was no further significant increase in 
RDW with temperature (Fig. 9). RDW ranged between 483.63 
and 1730.32 µlO2 gDW−0.9606 h−1, with a mean of 923.08 
µlO2  mgDW−0.9606 h−1. Assuming that RDW is independ-
ent of temperature within this temperature range, there 
were significant differences between sexes and develop-
mental stages, with females and sub-adults having a sig-
nificantly lower RDW compared to males and juveniles 
(Kruskal–Wallis 1-way ANOVA on Ranks, H3 = 28.468, 
P < 0.001). The differences between the respective medians 

(9)

Resid = −1727.86 + 956.39
1000

K
− 132.34

(

1000

K

)2

R
2 = 0.14,F3,66 = 5.88,P = 0.013,
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Fig. 5  Euphausia superba: Individual respiration rate (Rind, µl 
 ind−1 h−1) as a function of dry weight (DW, g) fitted by the scaling 
equation R = aDWb, where a is 616.2062, b is 0.9606. R2 was 0.7454
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of the two groups was around 300 µlO2 gDW−0.9606 h−1, 
with the medians of females and sub-adults both around 
800 µlO2 gDW−0.9606 h−1, and those of juveniles and males 
around 1100 µlO2 mgDW−0.9606 h−1.

Discussion

Effect of temperature on respiration rate

Within the natural temperature range of Antarctic krill 
(− 1.8 °C to 5.5 °C), a single Arrhenius function was found 
to describe adequately the relationship between weight-spe-
cific respiration rate and temperature. This dataset combined 
previously published studies with new data obtained by the 
present study on the stock at South Georgia, where some of 

the warmest temperatures within the distributional range of 
Antarctic krill are observed. In adhering to an Arrhenius 
function, Antarctic krill weight-specific respiration rates 
were found to increase logarithmically from the coldest to 
the warmest environments across its distributional range. 
Applying the van’t Hoff’s generalisation produced a Q10 
value of 2.8, implying that respiration rate in the warmest 
regions is almost double that in the coldest.

This finding differs from some previously published stud-
ies. McWhinnie and Marciniak (1964), Rakusa-Suszczewski 
and Opalinski (1978) and Segawa et al. (1979) all considered 
that Antarctic krill showed a degree of metabolic independ-
ence between 0 and 2 °C, with there being little detectable 
change in respiration rate across this temperature range. By 
contrast, Hirche (1984) found that the relationship between 
respiration rate and temperature between 0 and 5 °C fitted an 
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Arrhenius relationship, with a Q10 of 2.8. Opalinski (1991) 
presented an analysis where the  Q10 value altered across the 
temperature range, from 1.22 between − 1.8° to 2.5 °C, to 
1.81 between 2.5° and 3.5 °C and then an abrupt rise to 16.5 
at temperatures up to 10 °C.

From the polar to the tropical regions, intra-specific Q10 
values of between 2 and 3 are typical for the respiration 
rates measured at graded temperatures within the natural 
ranges of aquatic fishes and crustaceans (Scholander et al. 
1953). A Q10 value of 2.8 for Antarctic krill, as determined 
by the present study, places them within this typical range. 
The present study has the benefit of being able to analyse 

data compiled from a large number of respiration rate stud-
ies across a diversity of Southern Ocean environments. It 
has also been able to add a considerable amount of new 
data to the warmer part of the distributional range, which 
has previously been poorly studied in this regard. This more 
comprehensive data set provides a wider perspective to 
determine a universal relationship between respiration rate 
and temperature in Antarctic krill. Nevertheless, as further 
analysis in the present study shows, there may be regional 
deviations from this relationship, which could explain the 
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differing interpretations in the previous individual studies 
mentioned above.

Lack of metabolic compensation in Antarctic krill

The present study did not find any evidence that the stock 
of Antarctic krill at South Georgia compensated metaboli-
cally for the warmer ambient temperatures found there, 
rather, their respiration rates were higher in accordance 
with the expectations of an Arrhenius function. Meta-
bolic compensation would otherwise be indicated through 
either a failure to fit such a function (since the relation-
ship between respiration rate and temperature would not 
be significantly different from 0), or in a significant nega-
tive deviation from any such function with increasingly 
warmer temperatures. Neither of these patterns were found 
within the natural seasonal temperature range. The present 
findings for Antarctic krill differ from those of Saborowski 
et al. (2002) on Northern krill, where metabolic rates were 
similar between thermally contrasting environments. Sab-
orowski et al. (2002) stated that this pattern was the result 
of adaptation to local conditions. In an accompanying 
study, Patarnello et al. (1996) found Northern krill stocks 
within the three different localities to be genetically dis-
tinct, inferring that there had been little exchange of indi-
viduals and that populations were relatively isolated from 
each other. Although a lack of exchange is not a necessary 
pre-requisite for local adaptation to take place (Sanford 
and Kelly 2011), it is likely to reinforce any such process 
(Slatkin 1987).

Whether there are distinct stocks of Antarctic krill 
in different Southern Ocean regions has yet to be fully 
resolved from the genetics perspective (Deagle et al. 2015). 
Although South Georgia is geographically remote from the 
main population centres of Antarctic krill further south 
(Atkinson et al. 2008), it has long been postulated that the 
high biomass of Antarctic krill found there is most likely 
a result of an influx of stocks from elsewhere (Marr 1962; 
Mackintosh 1973). Net sample analyses have failed to find 
evidence of local recruitment at South Georgia given the 
lack of any early to mid-stage larvae in its surrounding 
waters (Tarling et al. 2007; Perry et al. 2019). Models have 
shown that Antarctic krill can arrive at South Georgia in 
the prevailing flow of the Antarctic Circumpolar Current 
(ACC, Hofmann et al. 1998; Murphy et al. 1998; Thorpe 
et al. 2007). Accordingly, variability in the abundance of 
Antarctic krill at South Georgia has mainly been explained 
through differences in the amount of krill that becomes 
entrained within the ACC flow at sites upstream of South 
Georgia (Murphy et al. 1998; Brierley et al. 1999), or to 
variability in the transport mechanism itself (Thorpe et al. 
2002; Trathan et al. 2003; Reid et al. 2010). The transport 
and regular mixing of stocks means that the Antarctic krill 

population at South Georgia is unlikely to be genetically 
isolated.

Regional acclimation

We found that the Arrhenius function fitted to all Antarctic 
krill respiration rate data within the natural environmen-
tal temperature range provided an adequate description of 
the relationship between temperature and respiration rate 
observed in the South Georgia stock. However, there was an 
increasing deviation from this function towards the lowest 
temperatures encountered at South Georgia (0–2 °C). Spe-
cifically, as temperatures decreased below 2 °C, respiration 
rates of South Georgia krill were higher than predicted by 
the Arrhenius function. Hence, between 0 and 2 °C, South 
Georgia krill had significantly higher respiration rates than 
stocks located elsewhere.

It is possible that one source of this deviation is experi-
mental error. In designing the protocol for the present study, 
the aim was to emulate that of previous respiration rate stud-
ies to provide a comparative dataset. Prior to incubation, the 
krill were maintained for at least 12 h, to complete digestion, 
but for no more than 48 h, to avoid maintenance effects. 
Incubations were carried out in closed vessels. In the case of 
juveniles and sub-adults, multiple individuals were enclosed 
per vessel to ensure a measurable drop in  O2 concentration 
within the incubation period, which was between 60 and 
90 min. With regards prior incubation, Opalinski (1991) 
found that keeping animals under laboratory conditions for 
even 2 days exerted no significant effect on the metabolic 
rate. Analogous findings were reported by McWhinnie and 
Marciniak (1964), who found that the level of Antarctic 
krill metabolism remained unchanged over the 6 days post-
capture. Opalinski (1991) found that the size of the meas-
uring vessel (100–1000 ml) exerted no effect on Antarctic 
krill metabolic rate and stated that the results obtained upon 
using vessels of differing capacity are fully comparable. In 
terms of  O2 saturation within incubation vessels, Kils (1979) 
reported that Antarctic krill are very sensitive to hypoxia and 
that metabolic rate reached a maximum at 85% saturation. 
However, Opalinski (1991) found no change in metabolic 
rate between 97 and 85% saturation, while Clarke and Mor-
ris (1983) reported no change in filtration and locomotor 
activity down to 30%  O2 saturation. With such a high ener-
getic demand to remain pelagic (Kils 1981; Swadling et al. 
2005), it is likely that individual Antarctic krill must main-
tain a relatively constant metabolic rate despite the variable 
 O2 concentrations they may experience, particularly within 
the body of swarms (Johnson et al. 1984; Brierley and Cox 
2010).

If one can exclude the influence of experimental error as 
an explanatory factor, the significant difference between the 
respiration rates of South Georgia krill from other stocks 
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between 0 and 2 °C must have some biological cause. In par-
ticular, local acclimation may have a role to play. In a study 
of stocks at the Antarctic Peninsula, McWhinnie and Mar-
ciniak (1964) found that animals placed at 4 °C died within 
24 h. Aarset and Torres (1989) also agreed that 4 °C was 
the upper lethal temperature for this species. Accordingly, 
Opalinski (1991) defined the main habitable thermal range 
for Antarctic krill to be between − 1.8 °C and 3 °C. The fact 
that Antarctic krill maintain high levels of biomass at South 
Georgia, where temperatures reach up to 5.5 °C (Whitehouse 
et al. 2008), suggests that such an upper lethal temperature 
is not universal to all stocks and additional levels of physi-
ological tolerance is possible in some. In a scenario where 
stocks reach South Georgia during winter, acclimation to 
warmer temperatures may be built up over the subsequent 
season as temperatures gradually increase to their late sum-
mer maximum. These warm-acclimated stocks may then per-
sist within the South Georgia region for a number of further 
years, as indicated by regional population dynamic studies 
(Reid et al. 2010).

Nevertheless, increasing levels of tolerance to warmer 
temperatures is also likely to incur a metabolic cost. Over 
seasonal timescales, species adjust their metabolic rates 
through a number of mechanisms, of which alteration of 
the density and capacity of mitochondria appears to be par-
ticularly key (Pörtner 2002). Through warm acclimation, 
mitochondrial densities and capacities are decreased in an 
effort to reduce energetic expenditure on processes such as 
proton leakage. Such acclimation may allow krill to toler-
ate warmer temperatures without excessive energetic costs. 
However, exposing warm-acclimated krill to colder tem-
peratures, particularly on an acute basis, means that these 
cellular processes have a lower functionality. Costly higher 
level functions, such as increased ventilation and circulation, 
may be required for metabolic processes to continue at suf-
ficient rates when exposed to the cold. Comparatively high 
levels of respiration may therefore be necessary for South 
Georgia krill to remain viable at colder temperatures and 
this may represent a trade-off to enable enhanced tolerance 
of warmer conditions.

Antarctic krill have a high scaling exponent

This study found that the power function relating respiration 
rate to body weight for all Antarctic krill data (i.e. previously 
published and the present study) had a relatively high scaling 
exponent (b) of 0.9606. This is in agreement with Opalin-
ski (1991), where an exponent of 0.9 (SD 0.1) was derived 
from a compilation of 12 studies. By comparison, Ross 
(1982) obtained values of between 0.7 and 0.8 for Euphau-
sia pacifica raised in the laboratory. Ikeda (2013) derived 
a value of 0.75 in a compilation of 24 different euphausiid 
species.

Across the animal kingdom (from Protozoa to large mam-
mals), the general rule is that the power function relationship 
between respiration rate and body weight has an exponent 
between 0.6 and 0.8 across all organisms with a mean of 
0.75 (± 0.15, Hemmingsen 1960). The most likely explana-
tion is that body weight includes skeletal, connective and 
adipose tissue, which has lower metabolic demands than 
muscular, glandular and nervous tissue whose increase is 
proportionally smaller in larger organisms. The relatively 
high exponent derived by the present study indicates that 
adult Antarctic krill do not experience a net benefit in meta-
bolic costs through increasing in size, implying that becom-
ing larger is metabolically expensive in relative terms. This 
may be a product of the energetic demands of overcoming 
negative buoyancy in Antarctic krill (Kils 1981; Swadling 
et al. 2005), which means that levels of muscular tissue must 
be maintained relative to overall body weight.

Influence of sex and maturity stage

The present study found that juveniles had a significantly 
lower weight-specific respiration rate compared to the more 
mature stages within the natural environmental temperature 
range. This finding agrees with that of Klekowski and Opa-
linski (1989), who also found juvenile weight-specific res-
piration rate to be lower than that of adults. It indicates that 
there is a metabolic cost to maturation in this species. Even 
at the sub-adult stage, females are starting to develop their 
ovaries and initiating the production of oogonia (Cuzin-
Roudy and Amsler 1991). The continued production and 
maturation of both male and female gametes over the course 
of adulthood places further physiological demands, as does 
the growth of external secondary sexual characteristics, such 
as the thelycum in females and petasma in males.

More unexpected was the lack of any significant dif-
ference between the respective weight-specific respiration 
rates of sub-adults, adult males and adult females within 
the natural environmental temperature range. Klekowski 
et al. (1991) and Rakusa-Suszczewski and Opalinski (1978) 
also found weight-specific respiration rate of Antarctic krill 
adults to be independent of sex and maturity stage. The large 
distended ovaries of females, filled with lipid rich oocytes, 
implies a lifestyle with a large net energy gain sufficient to 
resource such a trait. An equivalent level of net energy gain 
is not required by the males, who are much less energy rich 
by comparison (Clarke and Morris 1983). The greater net 
energy gain of the females could be achieved through main-
taining a comparatively lower metabolic rate. However, the 
lack of any significant difference in respiration rates between 
the sexes, even accounting for different maturity stages 
within adult females, indicates that this is not the case. 
Alternatively, it appears that the energetic investment made 
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in maturing the ovary must be achieved through greater con-
sumption of resources, probably at some greater risk to the 
individual (Tarling 2003).

Physiological capacity of Antarctic krill at South 
Georgia

5.5  °C represents the highest temperatures likely to be 
encountered in waters around South Georgia. However, it 
is instructive to consider how individuals cope with even 
higher temperatures as a means of assessing their aerobic 
scope (i.e. the capacity to increase aerobic metabolic rate 
above maintenance levels, or otherwise, the difference 
between routine and maximum metabolic rate). The present 
study found no consistent change in respiration rate in tem-
peratures between 5.5 and 12.2 °C in juvenile, sub-adult or 
adult stages. Hence, whereas individuals were able to adjust 
respiration rate according to changes in temperature between 
0 and 5.5 °C, there was no capacity adjust respiration rate 
further beyond 5.5 °C.

At the limit of their aerobic scope, individuals reach a 
point where oxygen levels in the body fluids start to fall 
and the capacity to adjust respiration becomes progressively 
limited (Pörtner 2002). As temperatures increase further, 
excessive oxygen demand causes insufficient oxygen levels 
in the body fluids until a high critical threshold temperature 
is reached. Aerobic scope then disappears and a transition 
to an anaerobic mode of mitochondrial metabolism occurs, 
with cellular energy levels becoming progressively insuf-
ficient. As a model species for crustaceans, the spider crab, 
Maja squinado, was found to maintain circulatory oxygen 
concentrations with rising temperature through increasing 
heart and ventilation rates to compensate for the rise in 
oxygen demand (Frederich and Portner 2000). A point was 
eventually reached (the high pejus temperature threshold) 
where ventilation and heart rates became more or less con-
stant and independent of temperature, indicating capacity 
limitation. Circulatory oxygen concentrations then decreased 
as the continued rise in oxygen demand was no longer com-
pensated for by an increase in ventilation and circulation. 
Eventually, an upper critical temperature was reached where 
ventilatory and circulatory activity collapsed.

In Antarctic krill at South Georgia, it appears that the 
high pejus temperature threshold is reached at 5.5 °C. At 
this point, it is likely that individuals increasingly revert 
to anaerobic mitochondrial metabolism. Nevertheless, the 
continued survival of individuals at 12.2 °C, at least over 
the 90 min of exposure, indicates that a short term upper 
critical temperature had not been reached and vital meta-
bolic functions could still be performed. This is consistent 
with Cascella et al. (2015) who, in performing short-term 
exposures to acute temperature increases, found E. superba 
from Terre Adelie to have Critical Temperature maximum 

of 15.8 ± 0.1 °C., although the heat shock response of Hsp 
70 appeared to be relatively weak compared with temperate 
species. In Northern krill, Spicer et al. (1999) considered 
anaerobic metabolism with respect to the ability of individu-
als to survive in oxygen poor waters and found this physi-
ological capacity to be poorly developed but sufficient to 
endure such periods. However, high mortality rates were 
observed if incubation conditions were made even slightly 
more severe, indicating they were close to their physiologi-
cal limits at such times. Tolerance of oxygen poor condi-
tions in Antarctic krill may be a necessary adaptation to 
living within large swarms (Johnson et al. 1984; Brierley and 
Cox 2010). However, it is likely that anaerobic metabolism 
can only be utilised for short periods so that the burden of 
anaerobic metabolites does not become too large (Spicer 
and Saborowski 2010). The present study shows that sea 
temperatures above 5.5 °C would make Antarctic krill revert 
to anaerobic metabolism, which would be unsustainable over 
the long term.

Concluding remarks

The biomass of Antarctic krill at South Georgia is notably 
variable between, and even within, years (Fielding et al. 
2014). Much of this variability is considered to be a product 
of fluctuations in the success of recruitment events upstream 
of South Georgia. Murphy et al. (2007), for instance, found 
a strong correlation between recruitment and time-lagged 
anomalies in sea surface temperature across the wider Sco-
tia Sea. The present study indicates that, even in the event 
of a successful wave of recruitment into the South Geor-
gia region, their physiological limitations may mean that 
local conditions are unsuitable for further persistence in the 
region. There remain certain behavioural counter-measures 
of which Antarctic krill are capable, such as vertical migra-
tions into deeper, cooler waters or living within smaller, 
more dispersed swarms to minimise levels of oxygen stress. 
However, the efficacy of such behaviours as a means of 
overcoming increasing water temperatures at South Georgia 
remains a matter for further research.
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