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Abstract The age and distribution of the synrift and early postrift infill records the spatial and temporal
distribution of extension and breakup processes in a rift basin. The Eastern Black Sea Basin (EBSB) is
thought to have formed by back-arc extension during Cretaceous to Early Cenozoic time. However, a lack of
direct constraints on its deep stratigraphy leaves uncertainties over the time, duration, and location for
rifting and breakup processes in the basin. Here we use the enhanced imaging provided by 2-D long-offset
seismic reflection profiles to analyze the deep structural and stratigraphic elements of the EBSB. Based on
these elements, we infer the presence of two distinct Late Cretaceous synrift units, recording initial
extension (rift stage 1) over the continental highs (Shatsky Ridge and the Mid Black Sea High), followed by
strain localization along the major basin-bounding faults and rift migration toward the basin axis

(rift stage 2). Overlying these units, Palaecocene(?)-Eocene and Oligocene units show a synkinematic
character in the NW, with evidence for ongoing extension until Oligocene time. Toward the SE, these
sequences are instead postkinematic, directly overlaying a basement emplaced during breakup. We interpret
the Palaeocene(?)-Oligocene units to record the time spanning from the initiation of breakup (Late
Cretaceous-Palaeocene, in the SE) to the end of extension (Oligocene, in the NW). The first ubiquitously
postrift infill is the Lower Miocene Maykop Formation. Our results highlight the along-strike temporal
variability of extension and breakup processes in the EBSB.

1. Introduction

Classical rifting models imply that rifting and continental breakup occur as processes well defined in time
and space and recorded by distinct sedimentary sequences (e.g., Driscoll et al., 1995). However, these models
are based on the interpretation of isolated transects across margins, so cannot be expected to explain the 3-D
distribution of structures and sedimentary sequences along a rift system. More recently, the availability of
more comprehensive data sets has allowed the documentation of the along-strike evolution at rifted mar-
gins, showing that continental rifting and breakup processes are more complex and variably distributed in
time and space (e.g., Alves & Cunha, 2018; Muirhead et al., 2016; Nixon et al., 2016; Péron-Pinvidic et al.,
2007; Soares et al., 2012).

In the context of intracontinental back-arc rifting, the Eastern Black Sea Basin (EBSB) is one of the most stu-
died and yet most controversial basins in the world (Figure 1). It consists in a narrow NW trending linear
trough underlain by oceanic or proto-oceanic crust, bounded by the continental domains of the Mid Black
Sea High (MBSH) and the Shatsky Ridge (Figure 1a). The thickness of the sedimentary infill in the EBSB
is approximately 8-9 km (Scott et al., 2009), including Cenozoic and upper Mesozoic sediments
(Shillington et al., 2008). However, the deep part of the EBSB is yet to be drilled and little is known about
the age and distribution of its synrift and early postrift infill. Early insights into the geological evolution of
the Black Sea came from regional seismic lines (Belousov et al., 1988; Finetti et al., 1988; Tugolesov et al.,
1985). Since then, researchers have attempted to unravel the kinematics, mechanisms, and timing for the
opening of the EBSB (e.g., Finetti et al., 1988; Goriir, 1988; Graham et al., 2013; Nikishin et al., 2003;
Okay et al.,, 1994; Rangin et al., 2002; Robinson et al., 1996; Shillington et al., 2008; Stephenson &
Schellart, 2010). In addition, crustal-scale industry seismic data sets have been acquired due to the growing
interest in the EBSB as a region with high hydrocarbon potential, related to the presence of a regionally
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Figure 1. (a) Topographic and structural map of the Black Sea and Caucasus region (www.emodnet-bathymetry.eu). The black box represents the study area (b).
Structural elements highlighted are EBSB/WBSB, Eastern/Western Black Sea Basins; SR, Shatsky Ridge; MBSH, Mid Black Sea High; TT/ST, Tuapse/Sorokin
Troughs; GC/LC, Greater/Lesser Caucasus; TC, Transcaucasus; EP/WP, Eastern/Western Pontides; NAF/EAF, North/East Anatolian Fault. (b) Bathymetry and
topography map of the EBSB. The black lines mark the long-offset seismic reflection profiles. The orange lines mark other profiles used. The yellow dots mark deep-
water and onshore wells in the area. Surmene-1, Sinop-1, HPX-1, and Subbotina-403 well locations are from Kitchka et al. (2014), Sydorenko et al. (2017), and Tari
and Simmons (2018). The location for the onshore well Ochamchira is from Banks et al. (1997).

distributed source-rock, the Maykop Formation (e.g., Graham et al., 2013; Robinson et al., 1996; Stovba et al.,
2009).

The identification of synrift stratigraphic intervals is essential to understand the evolution of rifted margins,
as they record the early stages processes in a rift system. However, the determination of these synrift
sequences is often complicated by a lack of data and of direct constraints (e.g., Péron-Pinvidic et al., 2007).
In the EBSB, wells penetrating the entire Cenozoic and part of the Mesozoic sections are located along
the margins or onshore, while strata of this age lie at depths >8 km in the center of the basin. Therefore, stra-
tigraphic sections at well locations are comparatively condensed, and there are uncertainties in tracing
major horizons from well locations into the basin center (Shillington et al., 2008). Also, most of the wells
have been drilled in the Western Black Sea Basin (WBSB), and tracing horizons from the WBSB to the
EBSB is challenging because of the presence of the MBSH, which prevents direct correlation of horizons
older than Late Eocene (Banks et al., 1997).

Seismic data have also been used to define the presence and distribution of the synrift in the EBSB, but ima-
ging is often limited by attenuation through the thick basin infill (e.g., Finetti et al., 1988; Rangin et al., 2002;
Shillington et al., 2008). In fact, in most studies, synrift geometries (e.g., fanning reflector geometry toward
fault planes) are not clearly observed in seismic data (e.g., Nikishin et al., 2015a; Shillington et al., 2008).
Therefore, synrift units may be mistaken for prerift or postrift strata because of the lack of obvious growth
beds (Withjack et al., 2002). This ambiguity may explain the small thickness of synrift deposits identified
in the EBSB (e.g., Goriir et al., 1993; Goriir & Tiiysiiz, 1997).

Here we interpret and discuss the deep seismo-stratigraphic framework of the EBSB using long-offset seis-
mic reflection profiles acquired in 2011 by Geology Without Limits (GWL) and ION GXT, which provide
enhanced imaging at depth, combined with published litho-stratigraphy and well-correlated seismic data.
Isopach maps, seismic facies, and examples of seismic profiles are presented to illustrate the characteristics,
areal distribution, and thickness of each unit. The aim of this study is to present the distribution and ages of
the synrift, early postrift, and postrift sequences, to analyze their stratigraphic contacts and their interaction
with the structural features of the basin. These elements are used to define rift onset, propagation, and
breakup stages in the EBSB.

Unraveling the rifting and breakup processes controlling EBSB formation has a key role in understand-
ing the geodynamic evolution of this area and of similar rift systems. Furthermore, this study provides
fundamental insights into (i) how deformation is accommodated in space and time and (ii) how
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stratigraphic and structural elements track strain distribution and localization during the process of
continental extension.

2. Geological Framework
2.1. Geological Evolution of the EBSB Region

The EBSB is a deep sedimentary basin lying between the Eastern Pontides and the Great Caucasus mountain
ranges (Figure 1a). Rifting is the first-order geodynamic process responsible for the tectonic evolution of the
EBSB and is related to the northward subduction of the Neotethys Ocean below the Eurasian Plate (Finetti
et al., 1988; Goriir, 1988; Nikishin et al., 2003; Okay et al., 1994; Robinson et al., 1996; Stephenson &
Schellart, 2010; Zonenshain & Le Pichon, 1986). The basin opened in a back-arc setting behind the
Pontides magmatic arc (Finetti et al., 1988; Goriir, 1988; Okay et al., 1994; Zonenshain & Le Pichon,
1986). Back-arc extension was generated by the counter-clockwise rotation of the Shatsky Ridge away from
the MBSH, as evidenced by paleo-magnetic data (Westphal et al., 1986). Compressional forces and tectonic
inversion, due to the northward movement of the Arabian Plate, started along the Pontides in the Late
Cretaceous, reaching the Greater Caucasus possibly in the Palaeocene and becoming regionally widespread
during the Late Eocene and Oligocene (Espurt et al., 2014; Hippolyte et al., 2017; Munteanu et al., 2011;
Robinson et al., 1996; Vincent et al., 2016). The syncollisional (orogenic) stage is generally considered to have
started in the Oligocene, forming the Caucasus mountain range and causing the uplift of some areas within
tectonic units as well as the reactivation of older fault systems and the formation of inverted structures
(Stovba et al., 2009). Compressive deformation is concentrated around the edges of the EBSB, as shown by
seismic reflection data, earthquake locations, and subsidence analysis (e.g., Edwards et al., 2009;
Shillington et al., 2008).

2.2. Available Data on the Basin Stratigraphy

Detailed analyses of the thicknesses and distribution of the sedimentary deposits in the EBSB are based on
the most updated interpretation of seismic data (e.g., Kazmin et al., 2000; Nikishin et al., 2003, Nikishin,
Okay, et al., 2015a; Scott et al., 2009; Sydorenko et al., 2017), and estimates on the age and lithology of the
sedimentary units generally come from seismic stratigraphic horizons tied to well control at the edges of
the basin and to onshore outcrops (e.g., Greater and Lesser Caucasus, and Crimean Mountains; Nikishin
et al., 2003, Nikishin et al., 2015a, Nikishin et al., 2015b; Okay et al., 2013; Robinson et al., 1996; Saintot
et al., 2006; Stephenson & Schellart, 2010; Stovba et al., 2009). More reliable information comes from
dredged sequences from the Archangelsky Ridge (Rudat & MacGregor, 1993) and from a complete
Mesozoic to Lower Palaeocene stratigraphy in wells drilled over the Shatsky Rise in Georgia (Robinson
et al.,, 1996). These stratigraphic interpretations have fed into paleo-geographic reconstructions of the
mechanisms and timing of basin opening (e.g., Egan & Meredith, 2007; Nikishin et al., 2015b; Okay et al.,
1994; Robinson et al., 1996; Stephenson & Schellart, 2010).

Extensive deepwater drilling has occurred in the WBSB, whereas only four deep wells have been drilled in
the EBSB to date (e.g., Stovba et al., 2009; Sydorenko et al., 2017; Tari & Simmons, 2018; Figure 1b).
Subbotina-403 reaches 4,300 m below seabed and terminates in the Lower Eocene succession (Stovba
et al., 2009; Sydorenko et al., 2017; Figure 1b). Sinop-1, 5,531 m deep, was drilled on a structural high of
Andrusov Ridge, targeting a synrift of Aptian to Albian age (e.g., Tari & Simmons, 2018; Figure 1b). The sedi-
ment cover above the MBSH and the Shatsky Ridge has been described by using extensive academic and
industry seismic reflection data (e.g., Belousov et al., 1988; Nikishin 2015a, 2015b; Rangin et al., 2002;
Robinson et al., 1996; Tari et al., 2018), crustal scale wide-angle seismic data (e.g., Shillington et al., 2017;
Yegorova et al., 2010), and seafloor dredging (Rudat & MacGregor, 1993). Chronostratigraphic charts have
been compiled to illustrate the different ages and litho-stratigraphy elements of the Black Sea region and
EBSB (Adamia et al., 2017; Shillington et al., 2008; Sydorenko et al., 2017; Tari & Simmons, 2018).

Figure 2 and Table 1 summarize previous attempts to estimate the timing of rifting in the EBSB. Note that
the definition of rift duration changes from author to author: it can be either the time from rift initiation
to breakup (e.g., Nikishin et al., 2015a) or the time from rift initiation to the end of oceanic spreading
(e.g., Okay et al., 1994). Some studies assume that the EBSB opened at the same time as the WBSB, and pro-
vide age estimates, which are mostly based on data coming from the WBSB region (e.g., Hsti et al., 1977;
Tiiysliz, 1999). Based on different data, rifting has been considered to be Jurassic (e.g., Zonenshain &
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Figure 2. Timing of rift and breakup in the Eastern Black Sea Basin from previous studies. The black bar indicates rift
duration. The grey bar indicates the age of a second synrift deposit identified by Tari and Simmons (2018). When avail-
able, timing of breakup (BU) and oceanic spreading are shown (hashed bar). Numbers correspond to the studies listed in
Table 1. The geological time-scale is adapted from Cohen et al. (2016).
Le Pichon, 1986), Cretaceous (e.g., Adamia et al., 1974; Goriir, 1988; Nikishin et al., 2003; Okay et al., 1994),
Early Cretaceous to Palaeocene (e.g., Finetti et al., 1988; Sydorenko et al., 2017), Palaeocene to Early Eocene
(e.g., Banks et al., 1997; Robinson, Spadini, et al., 1995), or Eocene (e.g., Kazmin et al., 2000; Yilmaz et al.,
2000) in age. From the analysis of the Crimean Mountains onshore outcrops, and from
micropaleontological dating (nanno-plankton) in the same region, studies infer similar timing for the
EBSB rift (starting in Early Cretaceous), breakup (Albian-Cenomanian), and oceanic spreading
(Cenomanian to Santonian/Campanian; e.g., Hippolyte et al., 2018; Nikishin et al., 2003; Sheremet et al.,
2016). Conversely, studies based on Georgia and Eastern Pontides onshore outcrops generally infer a Late
Cretaceous-Early Cenozoic basin opening (e.g., Okay et al., 1994; Yilmaz et al., 2000). Similarly, studies inte-
grating wells data from the Shatsky Ridge and dredging from the Archangelsky Ridge infer a Palaeocene-
Eocene age for rifting (e.g., Banks et al., 1997; Rudat & MacGregor, 1993; Spadini et al., 1996). Depending
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Table 1

Table Listing in Chronological Order the Studies Used as a Reference for the Previous Estimated Time of Rifting and Breakup in the EBSB

# List of authors

Data used to constrain timing of rift

(1) Adamia et al. (1974)

(2) Letouzey et al. (1977)

(3) Hsiietal. (1977)

(4)  Tugolesov et al. (1985)

(5)  Zonenshain and Le Pichon (1986)

(6)  Finetti et al. (1988)

(7)  Gortir (1988); Goriir and Tiiysiiz (1997); Goriir et al. (1993)

(8)  Golmshtok et al. (1992)
(9)  Rudat and MacGregor (1993)

(10) Okay et al. (1994); Okay and Sahintiirk (1997); Okay and Tiiysiiz (1999)
(11) Bektas and Giiven (1995)

(12) Robinson, Banks, et al. (1995), Robinson, Spadini, et al. (1995), Robinson et al. (1996)
(13) Spadini et al. (1996)

(14) Banks et al. (1997)

(15) Shreider et al. (1997); Shreider (2005)

(16) Tiiystiz (1999); Tiiysiiz et al. (2012)

(17) Yilmaz et al. (2000)

(18) Kazmin et al. (2000)

(19) Verzhbitsky et al. (2002)

(20) Cloetingh et al. (2003)

(21) Nikishin et al. (2003, 2011, 2013, 2015b), Nikishin, Wannier, et al. (2015)
(22) Shillington et al. (2008)

(23) Stovba et al. (2009)

(24) Stephenson and Schellart (2010)
(25) Hippolyte et al. (2010, 2017, 2018)

(26) Sheremet et al. (2016)

(27) Vincent et al. (2016)
(28) Sydorenko et al. (2017)

(29) Tari (2015); Tari and Simmons (2018)

Structural relationships from EBSB coastline, ages of
magmatism, and plate reconstruction

Geological observations and seismic reflection data analysis

Plate reconstruction

Seismic data interpretation

Seismic evidences and subsidence history analysis

Seismic reflection data and onshore observations

Paleogeography based on geological observations and
stratigraphy Central Pontides

Seafloor heat-flow measurements and multichannel data

Wells data from Shatsky Ridge in Georgia and dredging from
Archangelsky Ridge

Structural/stratigraphic evidences and age of magmatic
products of Eastern Pontides

Age of magmatism in Eastern Pontides

Seismo-stratigraphic interpretation and well data

Kinematic modeling and thermal structure analysis

Onshore outcrops, well data, and seismic interpretation
onshore Georgia

Magnetic anomaly studies

Analysis of volcanogenic rocks in north Turkey

Structural correlations (Transcaucasus and Eastern Pontides),
and age of magmatism

Thickness and distribution of Palaeocene-Eocene sedimentary
units from seismic data

Heat-flow analysis and seismic data interpretation

Thermo-mechanical modeling

Correlation of Crimean onshore geology and regional seismic
reflection profiles

Integration of onshore geological mapping, well data and
seismic reflection data

Seismic data interpretation and correlation with Subbotina-403,
-1 wells

Geo-dynamic modeling of back-arc extension

Structural and stratigraphic analysis in Crimes and Pontides,
and nannoplankton ages

Micro-paleontological dating sampled on the Crimean
Mountains

Subsidence analysis.

Seismic interpretation offshore Crimea and correlation with
Subbotina-403 well

Stratigraphic compilation of published information and well
data

Note. Numbers in the left column refer to the time bar shown in Figure 2. For each of the studies, the methodology used to determine the time-constraints is

briefly described.

on the location of the sampling, there are different outcomes in terms of timing for rifting and breakup in

the EBSB.

3. Data and Methods

3.1. Seismic Data

We used 12 poststack time-migrated long-offset seismic reflection profiles, acquired in 2011 by GWL and
ION GXT (Figure 1b). Seismic profiles were acquired using an air gun array with total volume of 5,680 cu.
in., 816 channels, a 10.200-m-long streamer, and an 18-second (two-way travel time) record length.
Processing was carried out by GWL and consisted in editing, low-cut filtering, spherical divergence correc-
tion, multiple suppression (predictive deconvolution and radon de-multiple), amplitude balancing, normal
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moveout correction, muting and stacking, poststack Kirchhoff time migration and poststack/postmigration
band-pass filtering, coherent filtering, and amplitude balancing. Long-offset profiles are integrated with six
time-migrated multichannel seismic reflection profiles, acquired by BP before 2005 (Figure 1b). These pro-
files were acquired with streamer lengths of 3,600 to 6,000 m, allowing 8 to 15-second (two-way travel time)
record length, and they were used to constrain the shallower seismo-stratigraphic interpretation. We con-
verted the time migrated profiles to depth using interval velocities derived from the stacking velocities pro-
vided by GWL, combined with velocities from wide-angle seismic data (Shillington et al., 2009, 2017). A
comparison between the GWL velocities and those from wide-angle seismic profiles, which have a suffi-
ciently large aperture to constrain the velocities of deep sediments, showed that the two velocity functions
are very similar in the shallow section (above basement reflection), while wide-angle seismic velocities are
faster in the deeper section. In order to provide the most accurate velocity model for time-depth conversion,
we combined these two velocity fields. Further information on the time-depth conversion steps is given in
the supporting information.

3.2. Seismic Interpretation: Method and Terminology

Regionally distributed prominent reflectors, characterized by discordant stratigraphic contacts and varia-
tions in seismic character, extend across the EBSB. These reflectors were used to identify the top and base
of separate sedimentary sequences (S1-S7). We used the internal geometries and seismic facies variation
of these sequences (Figures 3-7), as well as their interaction with structural elements across the basin, to
identify their prerift, synrift, or postrift character (e.g., Franke, 2013; Williams, 1993). Seismic horizons inter-
preted in depth were gridded using a Convergent Interpolation algorithm (e.g., Haecker, 1992) and a cell size
of 250x250 m to generate horizon structural surfaces. Thickness maps for each sedimentary sequence (iso-
pach maps) were calculated from the difference between the horizon surfaces representing top and base of
that sequence. Isopach maps are presented to illustrate the depocenter distribution and their spatial and
temporal migration (Figure 8).

Normal fault systems were mapped and interpolated across seismic profiles, where possible. The resulting
fault polygons were overlain on isopach maps to help to define fault-related depocenter development
(Figure 8). Fault planes have been picked from discontinuities in reflections, from residual diffractions
and from sedimentary infill geometries.

In this paper we classify the identified unconformities based on the stratigraphic models of Bond et al.
(1995), Falvey (1974), and Franke (2013), which recognize two key unconformities that develop during rift-
ing and continental breakup: the rift-onset unconformity, which separates prerift and synrift strata, and the
breakup unconformity, which separates synrift from postrift strata at the time of crustal breakup and onset of
oceanic crust accretion (e.g., Falvey, 1974; Withjack et al., 1998). The breakup unconformity is defined as an
erosional surface characterizing the uplifted margins during rifting stage, often truncating wedge-shaped
synrift sediments and separating them from younger postrift sequences that show little/no evidence of exten-
sion controlling their deposition (Franke, 2013). Basinward, this unconformity merges with an angular
unconformity and terminates onto the top of the igneous crust (Franke, 2013). However, a clear definition
of this unconformity as a single stratigraphic surface, together with the identification of distinct synrift
and postrift stratigraphic sequences, is complicated by the fact that rifting and continental breakup processes
are variably distributed in time and space (e.g., Péron-Pinvidic et al., 2007). In this study we define the pre-
sence of a breakup unconformity of regional extent, which is the principal stratigraphic feature related to con-
tinental breakup along the continental highs. Downslope and in the central basin this unconformity
becomes a stratigraphic contact between distinct sedimentary sequences and/or the contact between the
top of the inferred oceanic crust and the overlying sequence. Due to the complex definition of rift and
breakup processes, previous studies introduced the idea of a transition sequence recording the gradual tran-
sition from synrift to postrift stage (e.g., Moore, 1992). This idea has been further developed by more recent
studies, acknowledging breakup as a prolonged event identified by a discernible unconformity-bounded
stratigraphic sequence of regional extent, showing distinct depositional architectures compared to older
(synrift) strata and younger (postrift) units: the breakup sequence (e.g., Alves & Cunha, 2018; Soares et al.,
2012). Here we refer to a recent definition of breakup sequence by Soares et al. (2012), which describes the
character of some sedimentary units deposited from the onset of lithospheric breakup to the establishment
of thermal relaxation as the main process controlling the subsidence of the basin.

MONTELEONE ET AL.
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SEISMIC FACIES LITHO-STRATIGRAPHY SEQ #
+ Plio-Quaternary sediments. S7
+ Mostly clays, including marls (11-1.8 Ma)
and occasional turbidites’.
+ Upper Miocene interval®.
+ The shallower sequence (13-11 S6
Ma) comprises terrigenous (20.5-11 Ma)
sediments®.
+ Oligocene-Early Miocene May-
kop Formation.
+ Hydrocarbon source rock in S5
the Black Sea and Caspian Sea.
(33.9-20.5 Ma)
+ Muds rich in organic carbon
with very little sand®.

—— S S5a

+ S3 and S4 associated to Palae- sS4
ocene(?)-Lower Eocene and
Middle-Upper Eocene for- (45-33.9 Ma)
mations, respectively.

+ Eocene succession is com-
posed by dominantly silicoclas- S3

tic turbidites (sandstones and (45-65? Ma)
shales)®7®.

¢ The basement consists of Up-

per Jurassic to Cretaceous )
(over the MBSH) or Upper Cre-
taceous (over the Shatsky (65?-? Ma)
Ridge) limestones.

¢ The overlain sequences (51-S2)
are associated to the Upper S1

Cretaceous interval’.

Figure 3. Summary of the interpreted seismo-stratigraphic units (S1-S7). From left to right: seismic examples for each sequence, litho-stratigraphy information
from previous studies, and sequence number and age estimated from correlation with previous studies. References: 'Ross (1978), 2Robinson, Banks, et al.
(1995), 3Nikishin et al. (2003), “Reston et al. (1996), SGériir and Tiiystiz (1997), 6Sydorenko et al. (2017), and 7Robinson, Spadini, et al. (1995).

4. Seismic Data Analysis

4.1. Structural Elements

The main rift-related structural elements of the EBSB are illustrated in profile bs-90 (Figure 4a). To the NE,
the Shatsky Ridge is a basement high bounded to the south by one or more large normal faults (Shatsky

Ridge fault), with a northern flank that is flexed beneath the Greater Caucasus, generating a small foreland
basin, the Tuapse Trough (Figure 4a). On the western and south-western side of the basin are the
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Figure 4. (a) Profile bs-90. The MBSH and the Shatsky Ridge bound the central EBSB. Colors mark interpreted stratigraphic sequences (S1 to S7). The top basement
is affected by normal faults (dashed lines) generating tilted crustal blocks. Normal faults over the structural highs generally show higher dip angle (30°-70°),
whereas downslope they show lower dip angle (15°-25°). Synkinematic deformation is mainly visible within units S1 and S2, but it affects also shallower units S3-S4
and S5a, at locations. The main fault planes are interpreted in continuity across NE-SW trending profiles (red dotted lines): Shatsky Ridge fault and Andrusov
Ridge fault. The black boxes show the locations of Figures 5b, 5c, and 7a. (b) Profile bs-110. A major change in the character of the deep sedimentary infill is visible:
no clear synkinematic deformation affects sequences S3 and S4, which have instead a clear postrift character, directly overlying the central EBSB basement.

The Shatsky Ridge fault is mapped across from profile bs-90, showing here a lower dip angle. The Andrusov Ridge fault is also mapped across nearby profiles. A
volcanic body has been interpreted at the SW end of this profile by previous studies (e.g., Nikishin et al., 2015a). The black box shows the location of Figure 7b.
(VE = 6:1).
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Figure 5. (a) Part of profile bs-170, showing synrift wedged geometries (S1-S2). The contact between S1 and the basement is defined by unconformity U1. S2 over-
lies S1 in angular discordance, defining unconformity U2. Horizon U3 identifies the top of S2 and the base of sequence S3. Sequences S3 and S4 are a thinner
sedimentary cover over the structural highs. (b) Part of profile bs-90. The Oligocene Maykop Formation (S5a) shows strata dragging along the Shatsky Ridge fault.
The Miocene Maykop Formation (S5b-S5¢) pinches-up over the same fault plane, indicating compressive reactivation along this fault. S3 and S4 units resemble
the character of chaotic slope degradation deposits (VE = 4:1). (c) Part of profile bs-90. Downslope, wedged S2 deposits represent the main synrift infill,
overlying tilted fault-blocks. S1 is generally absent. The base of the well layered S3 unit truncates the S2 wedges, defining unconformity U3. (VE = 3:1).

Archangelsky and Andrusov Ridges (MBSH). Various evidence for extensional tectonics is visible, with
normal faults generally showing a NW-SE to WNW-ESE trending direction and bounding graben and
half-graben structures (Figures 4a, 4b, 5a-5c, 6a, 6b, and 8). Basinward, normal fault arrays are organized
in closely spaced domino faults (Figure 5c). All the identified faults cut the basement (prerift) and the
deep sedimentary sequences (S1 and S2). The main fault systems, interpolated across the seismic profiles,

Depth (Km) Depth (Km)

D—
15 Km

6a NW EBSB—Tilted and faulted blocks 6b| NW EBSB—Tilted and faulted blocks

Figure 6. Profiles showing fault activity through S3, S4, and S5a units: (a) part of profile bs-80; (b) part of profile bs-210. In both examples, faulting and tilting of con-
tinental blocks occur up to the Oligocene Maykop Formation (S5a). The resulting synkinematic topography is then progressively smoothed out by the Miocene
Maykop Formation (S5b and S5¢). The red dashed lines are the Shatsky Ridge fault (NE) and the Andrusov Ridge fault (SW). Mapped unconformities U1, U2, and U3
are also shown. Evidence for S5c pinching-up over the Shatsky Ridge fault (b) indicates compressive reactivation along this fault (see also Figure 5b). (VE = 4:1).
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Figure 8. Isopach maps. (a) S1—visible over the structural highs and rapidly thinning basinward (Rift stage 1); (b) S2—visible basinward (NW), records strain
migration toward the basin axis (Rift stage 2); (c) S3—Palaeocene(?)-Early Eocene sequence, progressively infilling the central EBSB; (d) S4—Middle-Upper
Eocene; (e) S5a—Oligocene Maykop Formation. S3, S4, and S5a record ongoing extension in the NW, and a localized breakup in the SE; (f) SSb—Lower Miocene
Maykop Formation, showing the end of extension and the beginning of a regionally spread postrift subsidence; (g) SS5c—Middle Miocene Maykop Formation.
Thickness changes along basin-bounding faults are linked to compressional reactivation; (h) S6—Top Miocene, showing a greater amount of sediment supply in the
SE, and (i) S7—Pliocene-Quaternary, progressively filling the all basin. Fault systems have been tentatively interpreted with a continuous black line (the fault was
active during the time represented by that sequence), or with a dashed line (ceased/not started fault activity at that time).
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are the basin-bounding faults also representing the flanks of Shatsky Ridge and MBSH (Figures 4a, 4b, and
8). The sedimentary sequences immediately overlying faulted basement blocks allow us to estimate the age
and duration of fault activity. The faults affecting the basement highs generally show a variable but mostly
high dip angle (30-70°; Figure 5a), whereas basinward faults arrays have quite a uniform and low dip angle
(15-25°; Figure 5c). The velocity model used for seismic depth conversion affects the dip angle of the inter-
preted faults. Below basement, time-depth conversion using wide-angle velocities results in faults with dip
angles up to 4-5° steeper than those from using stacking velocities. This difference in fault dip angle is similar
to the 1-2° dip angle uncertainty from the standard deviation in wide-angle velocities (see the supporting
information). Another change from the structural highs to the central basin is represented by the different
stratigraphic contacts with the top of the faulted basement blocks. Over the ridges, S1 is the dominant infill,
while S2 is the prevalent infill within basinward half-graben structures (Figures 4a, 5a, 5c, 6a, and 6b). In the
central and SE parts of the basin, there is no evidence for normal faults (Figures 4a and 4b). The top base-
ment is a corrugated surface becoming progressively smoother to the SE (Figures 7a and 7b). In this area,
faults affecting the basement generate basement scarps that have been described in previous studies as the
result of interpreted ENE-WS trending trans-tensional faulting (Shillington et al., 2009).

4.2. Seismo-stratigraphic Elements

We mapped the acoustic basement and seven sedimentary sequences across the EBSB, based on their seismic
facies, internal geometries, and interaction with structural elements (Figure 3). Some of the deepest and thus
oldest, fault-bounded sequences are discontinuous throughout the basin. This lack of continuity, together
with the presence of gaps between seismic profiles, prevents a clear correlation of these sequences at a regio-
nal scale. This point has to be considered when looking at isopachs for these sequences (especially S1 and
S2), particularly in areas where seismic coverage is low. With this point in mind, we describe the interpreted
sequences below, starting from the oldest, S1 (deepest), and moving to the youngest, S7 (shallowest):

S1 is a low-amplitude seismic unit with isolated higher-amplitude reflections (Figure 3). Despite the general
lack of coherency of its seismic facies, it can be present as a well-layered infill of graben and half-graben
structure (Figures 3, 4a, and 5a). The S1 isopach map shows that S1 is present over the tops of the MBSH
and the Shatsky Ridge, where it is 250 to 1,500 m thick (Figure 8a). It then rapidly thins downslope to dis-
appear toward the central basin (Figures 4a, 4b, and 5c). S1 is bounded by two unconformities (horizons
Ul and U2), marking the discordant contact at its base and top with the underlying basement and the over-
lying S2 sequence. Horizon Ul is, in some places, a very high reflectivity boundary (Figure 5a). In contrast,
horizon U2 is a low-amplitude reflection (Figure 5a). S1 is a tectonically controlled sedimentary infill, with
strata thickness changes and wedged geometries bounded by normal fault planes (Figures 4a and 5a).

S2 is a medium- to low-amplitude sequence, showing layered packages organized into sedimentary wedges
bounded by normal faults (Figures 3, 4a, 5a, and 5c). Along the main basin-bounding faults, S2 is sometimes
a chaotic and semitransparent package resembling a detrital material deposited downslope and subse-
quently onlapped by chaotic to well-layered younger sedimentary sequences (S3-S4; Figures 4a, 5b, 6a,
and 6b). S2 is up to ~1,500 m thick and is often confined within small depocenters (Figure 8b). S2 occurs
as secondary infill above S1, on the top of Shatsky Ridge and the MBSH, while it is a primary infill of basin-
ward half-graben structures (Figures 4a and 5c). Within these half-graben structures, S1 may be still present
below S2, although not properly imaged. The top of S2 is defined by unconformity U3 (Figures 4a, 4b, 5a, 5c,
6a, and 6b). The progressive basinward thinning of S1 and S2 causes the related unconformities U1 and U2 to
merge in the basin center, and here only the top U2 horizon is interpreted (Figure 5c¢). Further basinward
thinning of S2 causes the coalescence of horizons U2 with U3, leaving horizon U3 as the contact between
S3 and the top basement (Figures 5c, 7a, and 7b). The S2 isopach map shows the uneven distribution of this
unit through the basin (Figure 8b). Compared to S1, which is mostly interpreted over the Shatsky Ridge, the
MBSH, and the Tuapse and Sorokin Troughs, S2 exists further basinward, in the NW (Figure 8b). In the SE,
S2 is interpreted along the basin-bounding faults, but it is absent in the central basin (Figures 4b and 8b).

S3 is generally a well-layered sequence, with low-amplitude reflections at its base and higher amplitudes
toward its top (Figure 3). In the NW, down the Shatsky Ridge slope, this sequence has the character of a
chaotic detrital deposit (Figures 5b, 6a, and 6b). Seismic profiles and isopach map show that this unit is pre-
ferentially distributed in the central basin (with maximum thickness up to 1,200 m), while it is <500 m thick
over the MBSH and the Shatsky Ridge (Figure 8c). Thickness changes are partly a response to the underlying

MONTELEONE ET AL.

11



'AND SPACE SCiENCE

Tectonics 10.1029/2019TC005523

basement topography (Figures 4a and 7a), affecting the distribution of S3 in the central basin, but also a
response to tectonic activity visible in the NW part of the basin and along the main basin-bounding faults
(Figures 4a, 5c, 6a, and 6b). In these areas normal faults crosscut S3, indicating a synkinematic deposition
(Figures 5c, 6a, and 6b).

S4 is characterized by subparallel, high- to low-amplitude reflections (Figure 3). The top and base of this
sequence are identified by high acoustic impedance contrasts with the base of S5a (lower Maykop
Formation) and the top of S3, respectively (Figure 3). Tectonic control is less visible within this sequence,
but some normal faults propagate through S4 generating small thickness changes (Figures 5c, 6a, and 6b).
S4 is deposited mainly in the central basin (500 to 1,250 m thick), while it is a drape of sedimentary cover
over the continental highs (<250 m thick; Figure 8d). S4 is generally more uniformly distributed in the cen-
tral basin compared with the older sequence S3.

S5a, S5b, and S5c units are associated to the regionally distributed Maykop Formation characterized by a
semitransparent seismic layer (e.g., Robinson et al., 1996; Sydorenko et al., 2017; Zonenshain & Le
Pichon, 1986). S5 is indeed a low-amplitude package with homogeneous appearance, generally linked to uni-
formity in its lithological character. This sequence is up to ~4,500 m thick in the central basin, thinning over
Shatsky Ridge and the MBSH (<500 m thick), and thickening again along the compressed margins of the
EBSB (Tuapse and Sorokin Troughs), where it can reach thicknesses of 2,500 to >5,000 m (Figures 8e, 8f,
and 8g). Although the Maykop Formation is usually interpreted as a single sedimentary package, we subdi-
vide it into three layers: S5a, S5b, and S5c (Figures 3, 4a, 4b, 5b, 6a, and 6b). This subdivision is marked by the
presence of weak but laterally continuous reflectors, probably linked to lithological variation within the unit.
Within the lower Maykop Formation (S5a) some high reflectivity layers are probably related to the interca-
lation of more sandy interbeds (e.g., Stovba et al., 2009). Extensional faults propagate through S5a sequence
generating small thickness changes (Figures 5c, 6a, and 6b). Furthermore, the lateral termination of S5a on
the Shatsky Ridge fault shows evidence of normal-drag (the hanging wall beds dip away from the normal
fault; Withjack et al., 2002) along the fault plane (Figures 5b and 6b). In contrast, S5b and S5c show no par-
ticular evidence for extensional tectonics, and their strata onlap in reverse-drag (the hanging wall beds dip
toward the normal fault; Withjack et al., 2002) onto the basin-bounding faults (Figures 5b and 6b). S5a, S5b,
and S5c isopach maps show depocenter migration through time (Figures 8e, 8f, and 8g). S5a has quite a uni-
form distribution in the central basin, with visible thickness changes controlled by normal fault activity
along the Shatsky Ridge fault, and thrust fault activity along the NE margin of the EBSB (Figure 8¢). The
compressional tectonics is associated with the folding and thrusting visible in the seismic data, also affecting
the shallower units S5b and S5c (Figures 4a and 5b). The S5b main depocenter is located in the NW corner of
the basin (Figure 8f), whereas S5¢ main depocenter migrates toward the SE (Figure 8g). No clear tectonic
control is visible within these units, so depocenter migration is probably due to a change in the main source
of sediment supply. Furthermore, small thickness changes along fault planes, visible in the S5b and S5c iso-
pach maps, may be related to the compressive reactivation of the basin-bounding faults (Figures 5b, 6b,
and 8g).

S6 and S7 are well-layered and subparallel, medium to high reflectivity units with alternating semitran-
sparent strata (Figure 3). They represent the shallowest and youngest sequences filling the basin. Our
interpretation matches previous seismic interpretation and well data correlation (e.g., Nikishin et al.,
2015a; Shillington et al., 2008). The thickness of sequence S6 is up to 2,500 m in the central basin, while
sequence S7 reaches a thickness of 100-2,000 m across the EBSB (Figures 8h and 8i). S6 is thicker
toward the SE part of the basin, perhaps related to the main source of sediment supply in that
area (Figure 8h).

5. Discussion

5.1. Character and Distribution of the EBSB Sedimentary Infill

5.1.1. Age of the Interpreted Sequences

There are no new well data available for this study, so we rely on published information to define the age and
litho-stratigraphy of the interpreted sequences. The Palaeocene(?)-Eocene to recent EBSB infill is generally
well known and considered as a postrift, based on onshore and offshore drilling (e.g., Ross, 1978; Sydorenko
et al., 2017), whereas the age and distribution of the synrift sequences is much less constrained. Synrift units
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interpreted on seismic data rely mostly on onshore observations (e.g., in Turkey, Crimea and Georgia).
However, correlation of the synrift laying in the central basin with its approximate onshore equivalent
requires the assumption that the timing of rifting is synchronous across this region.

The age of the interpreted sequences S1 and S2 is difficult to constrain, for the reasons stated above.
Sequences overlying S2 are instead within depths investigated by some of the offshore drilling, especially
in areas where those sequences have been uplifted by Eocene compression (e.g., Hippolyte et al., 2018;
Sydorenko et al., 2017). In the N-NE part of the EBSB, offshore Crimea, the Subbotina-403 and -1 wells
reached the Neogene and Oligocene-Eocene sequence (Stovba et al., 2009; Tari & Simmons, 2018). The old-
est sequence identified consists in sediments of Lower Eocene age. Above them, lies the Oligocene-Miocene
Maykop Formation (corresponding to S5 units). Seismic data from the northern EBSB, correlated to
Subbotina-403 well, are presented by Stovba et al. (2009) and Sydorenko et al. (2017). These profiles cross
some of our seismic lines (bs220, bs180, bs210, and bs80), so we can correlate our interpreted sequences with
this well stratigraphy. Sydorenko et al. (2017) interpreted a single sequence beneath the Maykop Formation,
which includes the Palaeocene-Eocene deposits and corresponds to our S3-S4 units. Below that sequence,
they interpreted an undifferentiated Cretaceous sequence, probably including our S1 and S2 units, which
overlies an Upper Jurassic prerift in the northern part of the Shatsky Ridge.

Comparing the stratigraphic information from Subbotina-403 with the seismic facies of our interpreted
sequences, we further subdivide the Palaeocene-Eocene unit. The S3 medium to low reflectivity facies, with
high reflectivity toward the top (Figure 3), corresponds to the Lower Eocene sequence litho-stratigraphy
sampled by Subbotina-403, which is made of marls interlayered with clay and sandy layers toward the top
(Sydorenko et al., 2017). The seismic character of sequence S4 (Figure 3) matches well with the Middle-
Upper Eocene sequences sampled by Subbotina-403, showing alternating shale and sandy units, with sandy
layers dominating top and base of the sequence, which would generate strong acoustic-impedance contrasts.
Based on this evidence, we define S3 to be Palaeocene(?)-Lower Eocene (45-65 Ma) unit and S4 Middle-
Upper Eocene (45-33.9 Ma) unit. Consequently, the underlying sequences S1 and S2 represent an undiffer-
entiated Upper Cretaceous infill, in agreement with other studies (e.g., Shillington et al., 2008; Sydorenko
et al., 2017; Tari & Simmons, 2018).

From published litho-stratigraphy it is possible to define sequences S5a, S5b, and S5c as the Oligocene and
Lower-Middle Miocene part of the Maykop Formation, while S6 and S7 correspond to the Upper Miocene
and Plio-Quaternary, respectively (e.g., Hippolyte et al., 2018; Sydorenko et al., 2017). Here we subdivide
the Maykop Formation into three sequences (S5a-S5b-S5c¢). This subdivision is due to the presence of regio-
nal, medium-low reflectivity horizons that we interpret as the top and base of further packages into which
this sequence is subdivided (Figures 3, 4a, 4b, 6a, and 6b). The presence of these reflective boundaries within
the Maykop Formation may be related to a change in the sedimentary character and physical properties of
the sequence. The Maykop Formation is considered to be an overpressured layer (e.g., Scott et al., 2009), so
this subdivision may imply a compartmentalization of the overpressure within the sequence. A previous sub-
division of the Maykop Formation is described by Jones and Simmons (1997). This layering within the
Maykop Formation is not only representative for the potential variability in its physical and lithological
properties, but it also associates to a different synkinematic (S5a) to postkinematic (S5b-S5c) character of
the sequence.

5.1.2. Rift Stage

Although some studies have interpreted the presence of a synrift infill in the EBSB (e.g., Shillington et al.,
2008; Sydorenko et al., 2017; Tari & Simmons, 2018), most authors tend to agree on the absence/near
absence of synrift deposits in the central EBSB (e.g., Goriir et al., 1993; Goriir & Tiiysiiz, 1997), due to
the lack of strong evidence for synrift sedimentary geometries on seismic profiles (e.g., Nikishin
et al., 2015a).

In our seismic profiles, syntectonic growth structures and wedge geometries bounded by normal faults are
clear features over the Shatsky Ridge and the MBSH (Figures 4a and 5a). Here, overlying a faulted prerift
(basement), sequences S1 and S2 (Upper Cretaceous) are interpreted as two distinct synrift deposits with a
combined thickness up to 3 km (Figures 4a, 5a, 5c, 8a, and 8b). Studies based on onshore observations also
identified the presence of two synrift sequences in the region (e.g., Hippolyte et al., 2018; Nikishin et al.,
2015a; Tari & Simmons, 2018). We define the contact between prekinematic (basement) and S1 as
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Figure 9. A summary of the Eastern Black Sea Basin evolution, with sketches based on seismic reflection profiles from
different parts of the basin (sketches not in scale). (a) Rift Stage 1: Crustal stretching (low 8) forming isolated depocen-
ters (Rift Onset Unconformity - U1), bounded by high-angle normal faults (30-70° dip). Graben and half-grabens are filled
by synrift (S1) (b) Rift Stage 2: Isolated faults coalesce forming main basin-bounding faults and extension migrates
toward the basin axis, where increased crustal thinning (high f8) is accommodated by lower angle (15-25° dip) fault arrays.
Half-grabens are filled by the younger synrift (S2). Unconformity U2 records the basinward migration of rifting. (c)
Breakup Stage: Its onset is marked by unconformity U3. Units S3, S4, and S5a show extension up to Oligocene time (S5a)
in the NW, synchronous to localized breakup and spreading in the SE, where these units show a clear postrift character
(d). (d) Postrift Stage: The Lower Miocene Maykop Formation represents the first widespread postrift infill. Sketch
profile locations are plotted over the survey map on the top right corner.

unconformity Ul, which we interpret as a rift-onset unconformity (Franke, 2013; Withjack et al., 2002),
marking the initial rifting event affecting the structural highs (Rift stage 1, Figure 9a). This unconformity
progressively merges basinward with the stratigraphically younger unconformity U2 (base of S2 unit) form-
ing a composite unconformity (Figures 4a, 5a, and 5c). The merging of these unconformities is due to the
gradual thinning of S1 toward the basin center, where half-graben structures are mostly filled by the younger
synrift (S2) instead (Figures 4a, 5a, and 5c). The presence of an unconformity like U2, separating the early
synrift strata from the later synrift strata, is a common feature in other rift basins (e.g., Buckley et al.,
2015; Lei et al., 2019; Olsen, 1997). This unconformity shows the basinward migration of extension in the
EBSB, associated with a progressive younging of the synrift infill toward the rift axis (Rift stage 2 -
Figure 9b). This two-stage rifting is visible in S1 and S2 isopach maps, where there is a clear basinward pro-
pagation of the main depocenter location (Figures 8a and 8b).

Rift migration is also recorded by a change in the character and age of the extensional faulting. Faults inter-
preted over the structural highs generally show higher dip angles (30°-70°). Here the faulted basement is cov-
ered by the older S1 unit, and fault activity continues through the S1 and S2 units, stopping at the base of S3
unit (Figures 4a and 5a). Downslope, faults are organized into more closely spaced domino-fault arrays,
characterized by lower dip angles (15°-25°; Figures 4a and 5c). In this area, the faulted basement is directly
overlain by the younger synrift sequence (S2), and faults propagate sometimes into shallower units (up to
S5a) steepening upward (Figures 5c, 6a, and 6b). Fault initiation and duration can be constrained by the
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age of the synkinematic infill, so basinward faults formed later than those interpreted over the ridges.
Similar evidence for synkinematic units recording the formation of faults that young oceanward is observed
along other rift basins and rifted margins (e.g., Nixon et al., 2016; Péron-Pinvidic et al., 2007; Ranero & Pérez-
Gussinyé, 2010; Reston, 2005). Various observational studies and numerical models show that rifting starts
within a network of isolated normal fault segments generating a moderate crustal thinning (low 8) and dis-
tributing deformation across the area (e.g., Cowie et al., 2000; Nagel & Buck, 2004; Péron-Pinvidic et al.,
2017). As stretching continues, some faults grow laterally and coalesce into dominant basin-bounding single
faults (e.g., Cowie et al., 2000). Deformation focuses along these few active, larger faults, whereas smaller
faults along the less thinned rift flanks become inactive (e.g., Cowie et al., 2000; Ranero & Pérez-
Gussinyé, 2010). As strain progressively migrates and focuses toward the future basin center, sequentially
active normal faults form to accomplish rift migration (e.g., Brune et al., 2014; Nagel & Buck, 2004;
Ranero & Pérez-Gussinyé, 2010). During this stage, further crustal thinning (high ) and increasing accom-
modation space occurs. In the EBSB, we consider high angle normal faults to record the initial stage of dis-
tributed faulting (Figure 9a), followed by subsequent fault linkage and generation of the master faults
bounding the structural highs (Figure 9b). Continued extension then causes the border faults to experience
more strain and basinward focusing of crustal thinning accompanied by the generation of new, lower angle
sequential faults accommodating the basinward propagation of stretching (Figures 9b and 9c). The seaward
decrease in fault dips is predicted by the rolling hinge model of Buck (1988) and Lavier et al. (1999). Evidence
for normal faults initiating at higher dip angles and then rotating to lower angles during progressive exten-
sion is visible at other rifted margins (e.g., Ranero & Pérez-Gussinyé, 2010; Reston, 2005), and back-arc
basins (e.g., Lei & Ren, 2016). This model may explain the progressive change in fault dip observed in the
EBSB. Based on both stratigraphic and structural elements in the EBSB, we recognize a two-stage rifting pro-
cess, initiating by widespread extension (Figure 9a) and followed by rift migration and strain focusing
toward the basin axis (Figure 9b). Our observations from the EBSB are similar to those from other rift basins
and rifted margins such as the Bay of Biscay (e.g., Tugend et al., 2015), the Iberia-Newfoundland margin
(e.g., Brune et al., 2017; Ranero & Pérez-Gussinyé, 2010; Reston, 2005), the Brazil-Angola margin (e.g.,
Brune et al., 2017), the Gulf of Corinth (e.g., Nixon et al., 2016), and the northern margin of the South
China Sea (e.g., Lei et al., 2019; Lei & Ren, 2016).

5.1.3. Breakup Stage

In our seismic interpretation, S3 lies in angular unconformity over the tilted and faulted blocks, covering the
S1-S2 wedged geometries on the structural highs and crosscutting, basinward, the tops of the S2 wedges
(Figures 5a and 5c). The angular contact between S3 (Palacocene(?)-Eocene) and S2 (Upper Cretaceous)
defines unconformity U3 (Figures 5a and 5c). Based on the geometrical relationship of the contact between
S2 and S3, U3 can be interpreted as a breakup unconformity (Falvey, 1974; Franke, 2013). Basinward, U3
becomes instead the stratigraphic contact between S3 and the underlying basement (Figures 4b, 7a, and
7b). Previous studies interpreted the Palaeocene(?)-Eocene units as a postrift infill (e.g., Nikishin et al.,
2015a; Sydorenko et al., 2017). However, there is evidence for normal fault propagation within these units
in the NW part of the basin (Figures 5c, 6a, and 6b), together with evidence for strata terminations dragged
upward along the main basin-bounding fault planes, indicating extensional activity during their deposition
(Figures 5b and 6b). Similarly, S5a (Oligocene Maykop Formation) shows evidence for active extension in
the NW (Figures 5c, 6a, and 6b). Isopach maps highlight the irregularity of the S3 and S4 infills
(Figures 8c and 8d). These irregularities partly result from the topography of the underlying basement affect-
ing the distribution of the infill (Figure 7a) and/or may be related to differential compaction processes.
However, observations along NW seismic profiles show clear evidence for active faulting during S3-S4
deposition (Figures 5c, 6a, and 6b). The S5a sequence appears to be more uniformly distributed across the
basin, but fault activity observed along NW seismic profiles (Figures 5c, 6a, and 6b), together with thickening
toward the Shatsky Ridge fault visible on the isopach map, suggests fault activity during the time of S5a
deposition (Figure 8e).

Moving toward the central and SE part of the basin, there is no clear evidence of active extension in the S3 to
S5a units. Here, these sequences appear like a typical postrift infill overlying a basement reflection
(Figures 4b, 7a, and 7b). The crustal velocity structure, determined from ocean bottom seismometer data,
suggests that the SE part of the EBSB is underlain by thick oceanic crust (Shillington et al., 2009). This inter-
pretation agrees with the lack of evidence for extension, and with the postrift character of S3-S5a sequences
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in this part of the basin. Therefore, S3-S5a probably consists of marine sediments deposited during and after
the breakup and spreading in the SE of the basin. The S3-S4-S5a units show an along-strike change in strati-
graphic character that appears to be intermediate between synrift and postrift sequences. The seismic char-
acter of these units shows similarities with the definition of breakup sequences given by Soares et al. (2012)
and Alves and Cunha (2018). Similar to this definition, S3 to S5a units record the transitional period between
the onset of breakup (SE) and the end of extension (NW), followed by the establishment of thermal relaxa-
tion as the main process controlling subsidence in the basin. Based on seismic evidence along the west
Iberia-Newfoundland margins, Alves and Cunha (2018) identified within the breakup sequence distinct seis-
mic intervals of chaotic to partly continuous seismic reflections terminating against the slope fault system
and interpreted these intervals as mass-wasting and turbiditic deposits associated to the breakup stage.
These units are then gradually draped by wavy to subparallel, low-amplitude seismic reflections interpreted
to reflect the spreading conditions on a fully developed margin. Similarly, we recognize that S3 and S4 units
are locally organized in chaotic deposits linked to slope degradation processes, overlain by the younger and
semitransparent units of the Maykop Formation (Figures 5b, 6a, and 6b). This may be seen as a further evi-
dence of the comparable character between our S3, S4, and S5a units and the breakup sequence defined by
Soares et al. (2012), both recording the diachronous evolution of breakup processes at extensional settings.
Based on these considerations, and on similarities with observations coming from other studies (e.g.,
Péron-Pinvidic & Manatschal, 2009; Soares et al., 2012), S3 to S5a units are interpreted to record a diachro-
nous breakup stage across the EBSB (Figure 9c).

These considerations imply that the defined breakup unconformity (U3) cannot be considered representative
of a widespread end of rifting and breakup initiation across the EBSB, as we need to acknowledge the
temporal and spatial variability of these processes across the basin (e.g., Péron-Pinvidic et al., 2007). The
breakup stage (Figure 9c) is therefore time constrained by the ages of S3 to S5a infills, which show that
extension continued up to Oligocene time in the NW, whereas breakup started before the deposition of S3
(Palaeocene(?)-Early Eocene time) in the SE, synchronous with the NW ongoing extension. The total
thickness of S3 to S5a sequences ranges from 1.8 to 4-4.5 km in the central basin. Because these units form
part of the synkinematic infill in areas where extension was active up to Oligocene time, they are considered
to contribute to the overall thickness of the synrift deposits of the EBSB.

5.1.4. Postrift Stage

Seismic data show no evidence for extensional tectonics within S5b, S5c, S6, and S7 units (Figures 6a and 6b).
As these sequences all show a ubiquitous postrift character, we consider the onset of thermal relaxation to be
represented by the Lower Miocene Maykop Formation (S5b; postrift stage; Figure 9d). Isopach maps show
that these postrift sequences progressively infill the preexisting topography, while compression starts
deforming the sediments accumulated along the NE margin (Tuapse and Sorokin Troughs; Figures 8f, 8g,
and 8h). Thickness changes within these sequences are associated with depocenter migration related to a
change in the source of sediment supply through time, probably partially controlled by compressional defor-
mation along the peripheral regions of the basin.

5.2. Final Considerations

The identification of synrift stratigraphic intervals is a very important aspect in the study of rifted margins
(e.g., Péron-Pinvidic et al., 2007). In the EBSB, we defined the presence of two clear synrift units (S1 and
S2), which are ascribed to two separate Late Cretaceous extensional stages (Figures 9a and 9b). S3 to S5a
units (Palaeocene(?) to Oligocene) are also interpreted to represent part of the synkinematic infill along
the NW part of the basin, where active tectonics affects their deposition (Figures 6a and 6b), Previous studies
suggested various timings for the synrift and thus for the basin opening, such as Aptian-Albian (e.g., Goriir,
1988; Hippolyte et al., 2018), Cenomanian-Turonian-mid Santonian (e.g., Tari & Simmons, 2018; Tiiysiiz,
1999), or Palaeocene-Early Eocene or Eocene (e.g., Banks et al., 1997; Kazmin et al., 2000; Robinson,
Banks, et al., 1995; Robinson, Spadini, et al., 1995), based on onshore data and well data acquired at different
locations across the EBSB region. Similarly, breakup process has been estimated to be either Albian-
Cenomanian (e.g., Gorlir, 1988: Hippolyte et al., 2018; Nikishin et al., 2015b), Turonian-Coniacian (e.g.,
Tari & Simmons, 2018), mid-Santonian (e.g., Tiysiiz, 1999), or Maastrichtian-Danian (e.g., Okay et al.,
1994, 2013; Shreider, 2005). Our study highlights the variable distribution of rifting and breakup processes
at different locations and times in the basin. This distribution is recorded within the variable architecture

MONTELEONE ET AL.

16



'AND SPACE SCiENCE

Tectonics 10.1029/2019TC005523

and stratigraphic character of the identified sequences, showing either a synkinematic or postkinematic
character. With this observation in mind, the definition of rifting and breakup ages would be strictly depen-
dent on the location of the study, and not really representative of the timing of the process on a regional
scale. This complexity may explain such a variety of results and the general disagreement between
different studies.

The EBSB is a multistage narrow rift formed by initial widespread stretching (Figure 9a), followed by rift
migration toward the basin axis (Figure 9b), and progressive strain localization into the area of the future
breakup (Figure 9c). Once breakup and spreading initiated along the more extended SE segment, extension
continued along the less extended NW segment. This is well expressed by the Palaeocene(?)-Eocene and
Oligocene sequences, which have both a synkinematic character in the area where extension continued
up to Oligocene (NW; Figure 9c), and a postkinematic character in the area where breakup and “new”
basement was generated (SE; Figure 9d). Together with the along-axis variability in sedimentary ages
and architecture, the change in character of the extensional faulting records the different rifting stages
(e.g, Lavier & Manatschal, 2006; Moore, 1992; Péron-Pinvidic et al., 2007; Sutra et al., 2013). Starting as
isolated high angle normal faults, some of these systems merged to form the main basin-bounding faults.
Strain then migrated toward the basin axis forming younger, low-angle domino-fault arrays, associated
with the progressive localization of rifting into the area of the future breakup (Figures 9a-9c). This
along-strike variability in fault geometry and sedimentary architecture reflects a specific kinematics of
basin opening. Several studies have proposed models to explain formation and evolution of V-shaped
basins (e.g., Le Pourhiet et al., 2018; Lundin et al., 2014; Nirrengarten et al., 2018; Taylor et al., 1995;
Zhou et al., 1995). Some models refer to a “scissor-like” opening (e.g., Hey et al., 1980), whereas other
invoke a rift propagation or “zipper-slider” opening style, where the tip point of extension initiates in
one area to then “jump” (e.g., Taylor et al., 1995) or progressively migrate along with further rift propaga-
tion (e.g., Martin, 1984; Vink, 1982). The analysis of oceanic crust magnetic isochrons provides key infor-
mation for the identification of propagation mechanisms, as it may reveal the diachronous development of
oceanic crust younging toward the pole of rotation, thus allowing the reconstruction of its evolutional pat-
tern (e.g., Franke, 2013; Lundin et al., 2014). The three-dimensional modeling of Le Pourhiet et al. (2018)
simulates various scenarios for the opening mechanism of the V-shaped South China Sea basin, showing
that a “scissor-like” model contradicts evidence from magnetic isochrons and conjugate margin structure,
whereas previous studies invoked such a mechanism for this back-arc opening (e.g., Zhou et al., 1995).
Recent studies have investigated the Southern North Atlantic basins to understand the partitioning and
propagation of deformation, proposing a modified version to the model of oceanic propagation (e.g.,
Martin, 1984) by introducing the idea of segmented propagation controlled by the presence of transform
faults (Nirrengarten et al., 2018).

Our observations of along-strike variations in temporal and spatial patterns of extension show clear evidence
for rift propagation, associated with progressive basin opening. Although it is generally assumed that the
EBSB opened around a “fixed” rotation pole located in Crimea (e.g., Okay et al., 1994), thus implying a
“scissor-like” opening kinematic, sediment distribution, and fault patterns seem to indicate that the tip of
the propagator could have migrated in time from SE to NW. To test this idea, detailed three-dimensional
mapping of the fault distribution and of the deep sedimentary sequences is required in order to date the
migration of deformation across the basin (e.g., Péron-Pinvidic et al., 2007). The sparse coverage of our data
set in some areas precludes such mapping. A lack of clear seafloor spreading anomalies over the inferred
oceanic domain (e.g., Graham et al., 2013; Spadini et al., 1996) also limits our ability to constrain the timing
of propagation in this area. Our observations provide initial spatiotemporal markers to constrain models of
EBSB rifting and continental breakup, but ultimately more closely spaced profiles of similar quality, or even
3-D seismic data sets, will be required to determine exactly how the rift propagated.

This study highlights the similarity of EBSB evolution to that of rifted margins (e.g., Iberia-Newfoundland
and Brazil-Angola margins; Brune et al., 2017; Reston et al., 1996; Tucholke & Sibuet, 2007), back-arc
basins (e.g., Tyrrhenian basin (Prada et al., 2015); Aegean Sea, Japan Sea, and Yamato Basin (Jolivet
et al., 1994, 1999); South China Sea (Lei & Ren, 2016); and Woodlark Basin (Taylor et al., 1995)), and rift
basins elsewhere (e.g., Gulf of Suez (Gawthorpe et al., 2003) and North Sea (Cowie et al., 2005)), making
the EBSB a case study for understanding the processes driving the evolution of extensional basins on a
global scale.
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6. Conclusions
Based on the interpretation of long-offset seismic reflection profiles, we conclude the following:

1. Overlying the EBSB rifted basement, up to 3 km of Late Cretaceous synrift deposits (S1 and S2) record
an initial localized extension over the structural highs (S1), followed by rift migration toward the basin
axis (S2).

2. Strain initiated along isolated high-angle normal faults (30-70° dip) over the structural highs. Some faults
coalesced forming the large systems bounding the ridges (Rift Stage 1). Strain then propagated downslope
toward the basin axis, forming closely spaced domino-style fault arrays characterized by lower dip angles
(15°-25°). Stratigraphic contacts show that these fault arrays are younger and they sometimes affect shal-
lower stratigraphic levels (up to S5a), recording the process of strain localization and basinward propaga-
tion (Rift Stage 2).

3. Three main unconformities are identified: (i) the rift-onset unconformity (U1) represents the initiation of
Late Cretaceous extension, (ii) an intermediate rift unconformity (U2) records the migration of strain and
the basinward younging of the synrift infill and normal faulting, and (iii) the breakup unconformity (U3;
Upper Cretaceous-Palaeocene(?)) records breakup initiation and spreading in the SE.

4. Above the breakup unconformity (U3), up to 4-4.5 km of Palaeocene(?)-Eocene and Oligocene deposits
(S3-S4 and S5a) show an intermediate character between synrift and postrift, recording the diachronous
distribution of synkinematic and breakup processes across the EBSB. Stratigraphic and structural evi-
dence within these units shows extension up to Oligocene time, in the NW area and along the main
basin-bounding faults. In the central and SE part of the EBSB, the postrift character of these units con-
firms that localized breakup may have occurred before their deposition, and thus at the Late
Cretaceous-Palaeocene (?) boundary, synchronous with extension in the NW.

5. The diachronous evolution of the EBSB is typical of well-studied rifted margins worldwide and provides
further evidence for the need to consider continental breakup as a fully three-dimensional process that is
poorly represented by a single transect.
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