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Abstract 56 

Large national programs in the United States and several Asian countries have defined and characterised 57 

their marine methane hydrate occurrences in some detail, but European hydrate occurrence has received 58 
less attention. The European Union-funded project “Marine gas hydrate – an indigenous resource of 59 

natural gas for Europe” (MIGRATE) aimed to determine the European potential inventory of 60 

exploitable gas hydrate, to assess current technologies for their production, and to evaluate the 61 
associated risks. We present a synthesis of results from a MIGRATE working group that focused on 62 

the definition and assessment of hydrate in Europe. Our review includes the western and eastern margins 63 
of Greenland, the Barents Sea and onshore and offshore Svalbard, the Atlantic margin of Europe, 64 

extending south to the northwestern margin of Morocco, the Mediterranean Sea, the Sea of Marmara, 65 

and the western and southern margins of the Black Sea. We have not attempted to cover the high Arctic, 66 
the Russian, Ukrainian and Georgian sectors of the Black Sea, or overseas territories of European 67 

nations. Following a formalised process, we defined a range of indicators of hydrate presence based on 68 

geophysical, geochemical and geological data. Our study was framed by the constraint of the hydrate 69 
stability field in European seas. Direct hydrate indicators included sampling of hydrate; the presence of 70 
bottom simulating reflectors in seismic reflection profiles; gas seepage into the ocean; and chlorinity 71 

anomalies in sediment cores. Indirect indicators included geophysical survey evidence for seismic 72 
velocity and/or resistivity anomalies, seismic reflectivity anomalies or subsurface gas escape structures; 73 

various seabed features associated with gas escape, and the presence of an underlying conventional 74 
petroleum system. We used these indicators to develop a database of hydrate occurrence across Europe. 75 
We identified a series of regions where there is substantial evidence for hydrate occurrence (some areas 76 

offshore Greenland, offshore west Svalbard, the Barents Sea, the mid-Norwegian margin, the Gulf of 77 
Cadiz, parts of the eastern Mediterranean, the Sea of Marmara and the Black Sea) and regions where 78 
the evidence is more tenuous (other areas offshore Greenland and of the eastern Mediterranean, onshore 79 
Svalbard, offshore Ireland and offshore northwest Iberia). We provide an overview of the evidence for 80 

hydrate occurrence in each of these regions. We conclude that around Europe, areas with strong 81 
evidence for the presence of hydrate commonly coincide with conventional thermogenic hydrocarbon 82 

provinces.  83 

 84 
Keywords: methane hydrate; Europe 85 
 86 

1. Introduction 87 
Gas hydrate is an ice-like, crystalline solid comprising a hydrogen-bonded water lattice with trapped 88 
gas molecules that is stable at high pressures and low temperatures (e.g., Sloan and Koh, 2008). In 89 

nature the most common hydrate-forming gas is methane. Methane hydrate is widespread in seafloor 90 

sediments and as such may provide a useful energy resource. Because, for equivalent energy production, 91 
burning methane generates significantly less greenhouse gases than burning coal, the energy mix 92 



 4 

required to satisfy the target of keeping the average global temperature rise below 2ºC during the 21st 93 

century may involve substantial gas production, including from undiscovered sources (e.g., McGlade 94 

and Ekins, 2015). Methane hydrate could be one such source, providing a transition fuel to a low-carbon 95 
energy system that compliments intermittent renewable energy generation and supports energy security. 96 

Hydrate-bearing sands have been identified as a key target for production (Boswell and Collett, 2011). 97 

Hydrate is also of interest because hydrate dissociation might be triggered by global ocean warming, 98 
potentially leading to further greenhouse warming (e.g., Archer et al., 2009; Ruppel and Kessler, 2017), 99 

and because of their role as a potential geohazard for offshore operations and infrastructure.  100 
 101 

Driven by high demand for energy and limited conventional hydrocarbon resources, several nations, 102 

including the USA, Japan, China, Korea and India, have developed large national hydrate research and 103 
exploration programmes (e.g., Gabitto, 2010; Oyama and Masutani, 2017; Song et al., 2014). In Europe, 104 

however, there has been less investment in hydrate research. Gas demand declined in Europe during the 105 

first half of this decade, but is likely to show a modest increase in the next decade, despite increasing 106 
development of renewables (Honoré, 2014). Thus there is a continuing need to better understand hydrate 107 
potential in Europe, and the original motivation for this study was to provide a foundation for future 108 

hydrate exploration in Europe. However, for many European nations, imported shale gas is now seen 109 
as a more cost-efficient route to supplement conventional gas supplies, and hydrate exploration is not 110 

seen as a priority. Therefore our study has expanded beyond a focus on hydrate in sands, to cover all 111 
forms of hydrate occurrence around Europe and some adjacent areas. Our goal is to review the current 112 
state of knowledge of hydrate occurrence within this area. 113 

 114 
Our study is framed by the offshore stability field for pure methane hydrate in seawater around Europe, 115 
estimated from global databases (Fig. 1). The region of stability is most poorly constrained offshore 116 
Greenland, where few constraints are available on the geothermal gradient, but is likely to include many 117 

of the deeper fjords. The limit of stability lies at varying distances from the coast on the northwest 118 
European margin, and hydrate is stable in parts of the Barents Sea and a small part of the Skagerrak. 119 

Hydrate is stable in large areas of the western and eastern Mediterranean basins, the Tyrrhenian Sea 120 

and the Black Sea, and in small areas of the Adriatic and Aegean Seas and the Sea of Marmara. Hydrate 121 
also can be stable beneath permafrost and beneath ice sheets. These settings require more complex 122 
hydrate stability calculations that depend on often poorly known parameters. Therefore we have not 123 

attempted to carry out such calculations for the whole of our study area. However, in section 4 below 124 
we discuss the possibility of hydrate stability beneath permafrost and ice caps onshore Svalbard. 125 
 126 

We first describe the methods that we used to identify areas where the presence of hydrate was 127 

indicated. Then we describe in a series of sections the evidence for hydrate occurrence within these 128 
areas. Finally we synthesise the available evidence on hydrate occurrence in Europe. 129 
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 130 
Figure 1: Pure methane hydrate stability zone around Europe (orange area). Blue marks offshore areas 131 
where pure methane hydrate is not stable, but other forms of hydrate may be stable. The limit of 132 
stability is estimated using the 30 arc-second bathymetry grid from the General Bathymetric Chart of 133 
the Oceans, GEBCO (https://www.gebco.net/data_and_products/gridded_bathymetry_data/), the 134 
0.25° seabed temperature grid from the National Oceanic and Atmospheric Administration, NOOA 135 
(https://www.nodc.noaa.gov/cgi-bin/OC5/SELECT/woaselect.pl), a salinity of 3.5% wt, and the 136 
Moridis (2003) phase boundary for Structure I hydrate. Seabed temperature data were interpolated to 137 
match the resolution of the bathymetric grid. Red boxes mark the areas shown in other figures. 138 
 139 

2. Methods 140 
To frame our study, we developed a list of hydrate indicators and a workflow for scientific exploration 141 

of marine hydrate; our workflow is adapted from the hydrate petroleum system approach of Max and 142 

Johnson (2014). For a detailed hydrate assessment from an energy resource perspective, readers are 143 
referred to Boswell et al. (2016), and for a complete review on the hydrate systems concept we refer to 144 
Collett et al. (2009). 145 

 146 
2.1 Hydrate indicators 147 
We define hydrate indicators as geological, geophysical and geochemical observations that either 148 

provide strong evidence to confirm the current presence of hydrate, or simply suggest that hydrate might 149 
be present. We considered two categories of hydrate indicators, based on their confidence in confirming 150 

the hydrate presence: (i) direct indicators and (ii) indirect indicators. Direct indicators include sampling 151 
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F7 

F8 

F9 

F11 

F12 
F14 

F15 

F16 
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of hydrate, and observations of hydrate bottom simulating reflectors (BSRs), gas seepage and pore 152 

water chlorinity anomalies. Indirect indicators include gas chimneys, anomalies in seismic velocity and 153 

electrical resistivity, zones of anomalous reflectivity, the presence of a conventional petroleum 154 
province, and various seabed features (cold seeps without gas, backscatter anomalies, mud volcanoes, 155 

pockmarks and pingos). Except for the sampling of hydrate, all the other indicators are not only found 156 

in hydrate systems and should be considered as hydrate indicators only if they are inferred within or 157 
close to the hydrate stability zone (HSZ). In marine settings, the HSZ is the region with appropriate 158 

sub-seafloor pressure and temperature conditions to form hydrate. Its thickness is given by the distance 159 
between the seabed and the intersection of the thermal structure (obtained using the seabed temperature 160 

and geothermal gradient) with a hydrate phase boundary (e.g., Marín-Moreno et al., 2016).  161 

 162 
A hydrate BSR is a seismic reflector with opposite polarity to the seafloor that generally mimics the 163 

seafloor at a depth consistent with the expected base of the HSZ. The presence of a continuous BSR 164 

may be an indication of dispersed gas being present in pore water below it rather than being an indicator 165 
of the presence of significant hydrate above (e.g., Max and Johnson, 2014). Also, other geological 166 
phenomena can create BSRs at different depths (e.g., Berndt et al., 2004). Nevertheless, the presence 167 

of a hydrate BSR allows us to constrain the extent of the HSZ (Boswell et al., 2016) and likely requires 168 
the presence of at least some hydrate, so we consider it as a direct indicator for hydrate. Hydrate 169 

accumulations often have been identified without associated BSRs, for example in the Gulf of Mexico 170 
(Majumdar et al., 2016). 171 
 172 

Pore water chlorinity anomalies can arise from dissociation of hydrate during the ascent of a core from 173 
the seabed to the surface vessel. Gas seeps from the seabed within the HSZ indicate that pore waters 174 
are saturated with gas and therefore hydrate is very likely to be present. Gas escape structures such as 175 
pipes and chimneys may be imaged in seismic reflection data and may indicate the presence of hydrate-176 

forming gas within the HSZ. The presence of hydrate increases seismic velocities and electrical 177 
resistivities, while the presence of gas decreases seismic velocities but also increases electrical 178 

resistivities. High seismic reflectivity (“bright spots”) can result from the presence of subsurface gas, 179 

while seismic “blanking”, involving loss of coherent reflectivity, can result from the presence of gas or 180 
of chaotic fluid escape structures. Conventional petroleum provinces can provide a source of 181 
thermogenic gas entering the HSZ, while the various seabed features listed above provide possible 182 

evidence for past or present gas escape through the seabed. 183 
 184 
2.2 Hydrate exploration workflow 185 

We developed a hydrate scientific exploration workflow consisting of four clearly defined steps: 186 

1. Determining the likelihood of hydrate stability. 187 
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2. Imposing better constraints on the likelihood of hydrate presence considering relevant recent 188 

geological, physical and chemical changes.  189 

3. Hydrate petroleum system analysis. 190 
4. Prospect identification and scientific drilling. 191 

The first step is to determine the likelihood of hydrate thermodynamic stability under steady state 192 

conditions, i.e., to calculate the HSZ. For this calculation, the bathymetry, seabed temperature, pore 193 
water salinity, hydrate forming gases, and geothermal gradient or heat flow need to be known or 194 

assumed. In general, sufficient bathymetric data exist or can be easily acquired, but seabed temperature 195 
and/or geothermal gradient/heat flow data are generally sparse, and sometimes non-existent. Therefore 196 

interpolation/extrapolation techniques need to be employed, with caution to avoid creation of artefacts. 197 

In marine environments, the first estimate of the HSZ is commonly made by assuming a salinity of 198 
3.5% and that the hydrate-forming gas is 100% methane.  199 

 200 

The second step involves constraining the likelihood of hydrate presence by assessing existing 201 
geological, geophysical and geochemical data. This step also considers the temporal variability of the 202 
system and includes: (i) the identification of BSR(s) and their character (continuous or discontinuous) 203 

in existing seismic data; (ii) assessment of the sediment thickness that may contain hydrate, based on 204 
the identification of source beds and quantification of total organic carbon; (iii) re-assessment of the 205 

hydrate-forming gas and its saturation based on possible thermogenic sources; (iv) re-calculation of the 206 
HSZ using better constraints on the hydrate-forming gas and any time-dependent parameters affecting 207 
the volume of the HSZ, including the influence of geologically recent oceanographic, seabed and 208 

tectonic changes on seabed pressure and temperature, geothermal gradient and salinity.  209 
 210 
The third step involves developing a hydrate system analysis, beginning with identifying what 211 
additional data need to be acquired. This step might involve the following surveys: (i) a regional 2D 212 

seismic survey to study the large scale structure of the geological system and identify BSRs (e.g., Lee 213 
et al., 2005); (ii) an ocean bottom seismometer (OBS) survey and/or a 2D long streamer seismic survey 214 

to derive information on seismic-wave velocity, porosity, and hydrate and gas saturation (e.g., 215 

Westbrook et al., 2008); (iii) a high resolution local 2D/3D seismic survey to clearly identify direct 216 
indicators of hydrate and/or potential clues (e.g., Riedel et al., 2002); (iv) a controlled source 217 
electromagnetic survey (CSEM) to impose better constraints in porosity contrasts and pore phase 218 

saturations (e.g., Weitemeyer et al., 2006); (v) less well established exploration techniques such as heat 219 
flow-based methods for additional information and/or for independent validation of the seismic and 220 
electromagnetic observations. Such surveys might lead to a more formal analysis for gas hydrate 221 

identification and saturation estimation (e.g., Dai et al., 2008). A joint interpretation approach can be 222 

applied to the different geophysical datasets (e.g., Goswami et al., 2015), and focus the interpretation 223 
on identifying the depositional environments within and immediately beneath the HSZ, gas sources, 224 
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and depocentres for sand, turbidite and mass transport deposits, and on assessing the morphology of the 225 

sand deposits. At this stage, there are enough data to estimate the approximate volume of methane that 226 

might be recoverable from hydrate using average hydrate saturations, and the dominant hydrate 227 
distribution and morphology.  228 

 229 

The fourth step, prospect identification, brings the detailed information needed to make an informed 230 
decision about scientific drilling targets. This step includes a detailed analysis of seismic and CSEM 231 

data to identify features such as sweet spots or structures with enhanced fluid flow, or elevated 232 
resistivities or seismic velocities. Such analysis may be followed by rock physics and geotechnical 233 

laboratory experiments to determine the elastic (e.g., Priest et al., 2005), electrical (e.g., Spangenberg 234 

and Kulenkampff, 2006) and thermo-hydro-mechanical (e.g., Santamarina et al., 2015) properties of 235 
hydrate-bearing samples. These properties are then used to calibrate rock physics and geotechnical 236 

models (e.g., Marín-Moreno et al., 2017; Uchida et al., 2012) that provide a quantitative understanding 237 

of the above properties, of the likely response of the target natural hydrate bearing deposits to natural 238 
and/or anthropogenic perturbations, and of local relationships between relevant properties such as 239 
porosity and permeability. Then potential drilling targets can be chosen and a geohazard assessment 240 

performed for each target to help to decide which, if any, should be prioritized. Finally, scientific 241 
drilling should take place to evaluate more fully the prospectivity of the area.   242 

 243 
Below we cover in a series of regional sections the areas where there is evidence for the presence of 244 
hydrate. Some large sections of the eastern Atlantic margin have been extensively sampled using both 245 

seismic and acoustic techniques, as well as direct sampling. However, to date there are no published 246 
reports of hydrate BSRs, gas seeps, chlorinity anomalies or other significant hydrate indicators within 247 
or in close proximity to the HSZ. Examples include the northwest margin of the UK and the Bay of 248 
Biscay; in both areas, gas seeps have been detected at shelf depths (e.g., Judd et al., 1997; Ruffine et 249 

al., 2017) but not in regions of hydrate stability. In most of the areas described below, only the first step 250 
and some aspects of the second step have been conducted (Table 1). To date, scientific drilling for 251 

hydrate in Europe has been limited to the west Svalbard margin and the western Black Sea, though 252 

hydrate has been encountered several times during drilling for other purposes.   253 
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Table 1: Summary of the most relevant hydrate-related information for all the regions described in the 254 
text. ODP = Ocean Drilling Program; MV = mud volcano; see text for definitions of indicators.  255 

Region Location Data 

Direct 
hydrate 

indicator 
Indirect hydrate 

indicator 

Occurrence 
and host 
sediment 

Gas source and 
migration path 

Hydrate 
extent and 

amount 

Offshore 
Greenland 

Northeast 

ODP 909; 2D 
seismic; heat 
flow; seabed 
temperature 

Possible 
BSR 

Gassy sediment 
sampling; bright 
spots; chimneys 

No hydrate 
recovered 

No information 
available Not estimated 

West 

Gravity core; 
2D & 3D 

seismic; heat 
flow; seabed 
temperature 

BSRs 

Seismic blanking; 
oil and gas shows; 

Ikaite crystals; 
fluid/gas escape 

structures; 
pockmarks 

No hydrate 
recovered 

Thermogenic gas; 
migration through 

faults and 
fractures 

Not estimated 

Offshore 
Svalbard 

Vestnesa 
Ridge and 

slope 

2D & 3D 
seismic; OBS; 
CSEM; cores; 
MeBo drilling; 

seafloor 
imaging; HSZ 

modelling 

Hydrate 
sampled; 
gas seeps; 

BSR 

Chimneys; 
pockmarks; 

seismic blanking 

Topographically 
& structurally 

controlled; 
Small, thin 

chips, in veins 
or as chunks in 
the upper 2-4 m 
of fine-grained 

hemipelagic 
sediments 

Dominant 
thermogenic; 
thermogenic 

input increases 
with depth; 
thermogenic 
gas migration 
through faults 

700 km3 
extent of HSZ 
at ~800-2000 

mbsl; 
saturation 

from Vp 6-
18%; from 
CSEM 20-

30% and 40-
68% in 

chimneys 

Prinz Karl 
Forland 

2D seismic; 
OBS; CSEM; 
cores; MeBo 
drilling; 
seafloor 
imaging; HSZ 
modeling 

Hydrate 
sampled; 
gas seeps; 

patchy 
BSR 

 Chimneys; bright 
spots 

 
Hydrate 

recovered from 
one pockmark 

 
 

Microbial with 
significant 

thermogenic 
contribution 

Not estimated 

Elsewhere 
West 

2D & 3D 
seismic; cores; 
HSZ modelling 

Gas seeps; 
BSRs 

Bright spots; gas 
chimneys 

No hydrate 
recovered 

Abiotic gas 
inferred in the 
South Molloy 

Transform Fault 
& West 

Knipovich Ridge 
region 

Not estimated 

Onshore 
Svalbard  

HSZ modelling; 
scientific and 

industry  
drilling; 2D 

seismic 

None 

Hydrate stability; 
hydrate found 
offshore; fluid 

escape structures; 
gas seeps 

Fractured 
sandstones 
and shales; 
coal beds 

Partly 
thermogenic; 
migration via 
fractures and 

seeps 

Not estimated 

Norwegian 
Margin 

Barents 
Sea 

2D seismic; 
cores; HSZ 
modelling 

Hydrate 
sampled; 
gas seeps; 

BSRs 

Bright spots; 
chimneys; 
pockmarks 

Structurally 
controlled; 

BSRs in 
consolidated
low-porosity 

sediments 
and glacial 
sediments 

Mostly 
thermogenic gas; 
migration through 

faults and 
fractures 

Volume 0.19 
GSm3 in 
Bjornoya 

Basin; 93-650 
GSm3 in SW 

Barents Sea or 
470-3320 
GSm3 if  
higher 

hydrocarbons 
 

Mid-
Norwegian 

Margin 

Core sampling; 
2D seismic; 
OBS; Multi-
component 

seismic; CSEM; 
HSZ modelling 

Hydrate 
sampled; 

BSRs 
 

Fluid escape 
structures; 
pockmarks 

Finely bedded  
contourite and 
hemipelagic 
deposits – 

mainly silty 
clays 

Microbial with 
thermogenic 
component 

4000 km2 
BSR along N 

flank of 
Storegga 

Slide; 
saturation 2-
10%; volume 
of 625 GSm3 

 256 
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Table 1: Continuation 257 

Region Location Data 

Direct 
hydrate 

indicator 
Indirect hydrate 

indicator 
Occurrence and 
host sediment 

Gas source 
and 

migration 
path 

Hydrate 
extent and 

amount 

Offshore 
Ireland 

Rockall and 
Porcupine 

Basins 

Scientific & 
industry 

drilling; 2D & 
3D seismic; 

HSZ 
modelling 

Possible 
BSRs 

Hydrocarbon 
seeps; fluid escape 
structures; bright 

spots 

No hydrate 
recovered 

Thermogenic 
gas migration 
through faults 
above active 
petroleum 
systems 

Not 
estimated 

NW 
Iberian 
Margin 

 
Cores; 2D 

seismic; HSZ 
modelling 

None 

Pockmarks; 
fluid/gas escape 

structures; seismic 
blanking; bright 
spots; chimneys 

No hydrate 
recovered Not known Not 

estimated 

Offshore 
South 

Iberia & 
NW 

Africa 
Margin 

Gulf of 
Cadiz 

Cores; 2D 
seismic 

Hydrate 
sampled; 
chlorinity 
anomalies; 

BSRs 

MV; gas 
chimneys; 

pockmarks; 
degassing 

structures; seismic 
blanking; 

backscatter 
anomalies 

 

Hydrate found in 
MV; localised 
deposits and 

hosted in fine-
grained 

sediments with 
low permeability 

Thermogenic 
gas migration 

through 
focused fluid 

flow; 
abiogenic 

crustal-derived 
fluids 

Saturation of 
5-31% in 

cores 

Alborán Sea Cores Chlorinity 
anomalies 

Gas release from 
cores 

No hydrate 
recovered 

Thermogenic 
gas from ~5 

km depth 

Not 
estimated 

Eastern 
Mediterr

anean 

Anaximander 
Seamount 

Cores; HSZ 
modelling 

Hydrate 
sampled; 
chlorinity 
anomalies; 
gas seeps 

MV; pockmarks Hydrate found in 
MV Thermogenic 

mm to cm 
scale 

disseminated 
H; saturation 
of 0.7-16.7% 

 

Olimpi Field Cores 

Hydrate 
sampled; 
chlorinity 
anomalies; 
gas seeps 

MV; pockmarks Hydrate found in 
MV 

Mainly 
thermogenic 

c. 5 GSm3 in 
Milano dome 

       

Nile fan and 
Levant Basin 

2D & 3D 
seismic; 

seafloor video 

Possible 
BSR; gas 

seeps 

Pockmarks, bright 
spots, seismic 

blanking 

Sandy buried 
systems 

Mostly 
microbial; 

thermogenic at 
MV 

 

Estimated c. 
100 Tcf in 
the Levant 

Basin 

Sea of 
Marmara  Cores; 2D & 

3D seismic 

Hydrate 
sampled; 
gas seeps 

MV; bright spots; 
gas chimneys; 

pockmarks 
Thermogenic 

Thermogenic 
G migration 
from deep 
Oligocene-

Eocene 
reservoirs 

Not 
estimated 

 258 
 259 
 260 
  261 
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Table 1: Continuation 262 

Region Location Data 

Direct 
hydrate 

indicator 
Indirect hydrate 

indicator 

Occurrence 
and host 
sediment 

Gas source 
and migration 

path 

Hydrate 
extent and 

amount 

Western 
Black 
Sea 

Bulgaria & 
Rumania 

Cores; 2D & 
3D seismic; 

OBS; CSEM; 
HSZ 

modelling 

Hydrate 
sampled; 
gas seeps; 

BSRs 

Seismic blanking; 
gas pipes and 

chimneys; high 
resistivity values 

H formed in 
levees or base 

of channels 
Microbial 

Saturation 
from CSEM 
of 30% and 

from OBS of 
10% or 30-

40%. 

İğneada 2D seismic, 
cores 

Hydrate 
sampled; 

BSRs 

Seismic blanking; 
bright spots; gas 

chimneys; possible 
MV 

 

Hydrate 
fragments in 
possible MV 

Migration via 
faults and 

possible MV 

Not 
estimated 

Zonguldak-
Amasra 

Cores; 2D 
seismic; HSZ 

modelling 
BSRs Seismic blanking; 

MV; gas chimneys Not known Thermogenic 
and microbial 

Not 
estimated 

Eastern 
Black 
Sea 

Samsun Cores; 2D 
seismic None 

Seismic blanking; 
gas chimneys; 

pockmarks 
Not known 

Possible  
hydrogen 

sulphide in the 
gas 

 

Not 
estimated 

Hopa-Rize-
Trabzon-
Giresun 

2D & 3D 
seismic BSRs Seismic blanking; 

MV; gas chimneys Not known 

Deep 
thermogenic 
gas migration 
through faults 
and microbial 

gas 

Not 
estimated 

 263 
3. Offshore Greenland 264 

3.1 Geological Setting 265 
The West Greenland margin formed during Cretaceous to Paleogene continental rifting that eventually 266 

resulted in seafloor spreading in the Baffin Bay and the Labrador Sea (e.g., Oakey and Chalmers, 2012). 267 
A change in spreading direction during the latest Paleocene to Eocene resulted in a general northward 268 
drift of Greenland into the Arctic Ocean, resulting in compression and inversion that becomes more 269 
pronounced the farther north along the Baffin Bay part of the margin. Significant strike-slope motion 270 

along many parts of the margin are also recorded at this time. 271 

 272 
After the cessation of the Caledonian Orogeny during Late Silurian–Early Devonian, the northeast 273 

Greenland margin experienced repeated episodes of rifting with intervening quiescent periods, and 274 

occasionally minor compression and inversion. During the Cretaceous to Paleogene, rifting and breakup 275 
resulted in the onset of opening of the North Atlantic, and continued seafloor spreading formed large 276 

sedimentary basins (Hopper et al., 2014 and references therein). By early Neogene times, the seafloor 277 

spreading resulted in the opening of the Fram Strait and creation of the Atlantic-Arctic gateway (Jokat 278 
et al., 2008; Ritzmann and Jokat, 2003).  279 

 280 

Along the southeast Greenland margin, no Paleozoic–Jurassic rocks are exposed onshore or otherwise 281 
known to exist. Small outcrops of Cretaceous sediments are known both onshore and offshore (e.g., 282 
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Gerlings et al., 2017). Paleocene to Eocene breakup was accompanied by extremely voluminous 283 

volcanism as seafloor spreading was established (e.g., Larsen and Saunders, 1998).  284 

 285 
In late Neogene, all of Greenland's margins became glaciated, resulting in erosion of the inner and 286 

middle shelf areas and deposition of kilometer thick glacigenic wedges on the outer shelf and slope 287 

areas, while thick contourite deposition occurred in the basinal areas.	288 

 289 
Figure 2: Bathymetric map of the Greenland margins and outline of larger offshore areas with seismic 290 
indications of hydrate. Box marks the area shown in Fig. 3. 291 
 292 

3.2 Hydrate occurrence 293 
Greenland is surrounded by wide shelf areas with water depths of 200-500 m and 1000-4000 m deep 294 

basinal areas (Fig. 2), all swept by cold bottom water currents. Therefore the Greenland continental 295 
margins should have physical and oceanographic settings suitable for marine hydrate formation. In 296 

addition, a study addressing as yet undiscovered hydrocarbon resources north of the Arctic Circle 297 
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suggests that the offshore Mesozoic sedimentary basins on the west and northeast Greenland margins 298 

could hold large quantities of oil and gas (Gautier et al., 2011). Due to late Cenozoic uplift and glacial 299 

erosion (Japsen et al., 2006), these basins are now exposed on the shelves at or near the seabed 300 
(Gregersen and Bidstrup, 2008; Hamann et al., 2005; Hopper et al., 2014), increasing the probability of 301 

seepages of gas and thus for formation of hydrate.  302 

 303 
Figure 3: Indications of hydrate occurrence in the Disko area offshore central west Greenland, where 304 
bottom water temperature is c. 3oC (after Nielsen et al., 2014) a) Bathymetric map with locations of 305 
seismic and cores shown in c)-f) ; b) Simplified map of Cretaceous–Paleogene major structural 306 
elements, outlining the hydrocarbon-bearing Nuussuaq Basin (Bojesen-Koefoed et al., 2007) and the 307 
likely hydrocarbon-bearing Ilulissat Graben (Gregersen and Bidstrup, 2008), with locations of seismic 308 
and cores; c) High-resolution seismic line along Vaigat showing younger sediments with chimneys 309 
(dashed black lines) indicating gas/fluid seepage from below, and location of gravity core PG2012-05 310 
taken on top of one of these features; d) 6-cm-long ikaite crystal collected from the core catcher of 311 
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gravity core PG2012-05, presumably originating from seepage of methane; e) 2D seismic record 312 
showing a seabed depression with sub-cropping faulted Cretaceous–Paleocene strata (yellow lines) 313 
and a BSR at about 75 ms sub-bottom depth (red dashed line); f) High-resolution seismic line inside 314 
the seabed depression, showing Cretaceous–Paleocene strata overlain by younger sediments that are 315 
disrupted by gas/fluid escape features (black dashed lines). Gas-bearing gravity core PG2012-03 was 316 
located in a pockmark underlain by a large diapiric feature. 317 
 318 

Nevertheless, little work has been done on the hydrate potential of offshore Greenland. At present, most 319 
of the available data derive from conventional oil and gas exploration, including more than 100,000 km 320 

of 2D seismic reflection data offshore west and northeast Greenland as well as several 3D surveys on 321 
the western margin. Some information of heat flow and seabed temperature data offshore Greenland 322 

exist, but these are sparse and mostly limited to the few exploration wells that have been drilled along 323 

the western margin. Echo-sounder, high-resolution subbottom profiler and swath bathymetry data exist 324 
for smaller areas along all the margins, but most are not in the public domain.  325 

 326 

Offshore northeast Greenland no commercial wells have been drilled yet. However, in the southern 327 
Fram Strait, Ocean Drilling Program (ODP) well 909 encountered gassy sediments (Knies and Mann, 328 
2002), which can be traced up-slope the northeast Greenland margin, where bright spots, chimneys and 329 

possible BSRs indicate that hydrate may be present (Fig. 2; Nielsen and Jokat, 2009). Offshore west 330 
Greenland, several commercial wells have gas and oil shows, but there have been no significant 331 

discoveries so far. Several oil seeps as well as hydrate and gas encountered by shallow onshore drilling 332 
demonstrate that working petroleum systems exist in the Nuussuaq Basin (Fig. 3; Bojesen-Koefoed et 333 
al., 2007; Christiansen et al., 1994; Pedersen et al., 2006). A pilot study of the marine part of the 334 

Nuussuaq Basin found various indirect indicators for the presence of hydrate in shallow seismic and 335 
gravity core data (Nielsen et al., 2014; Fig. 3), demonstrating that the offshore part of the Nuussuaq 336 
Basin likely contains significant quantities of hydrate. Further offshore west Greenland, in the up to 337 
700 m deep Davis Strait area (Fig. 2), BSRs with associated amplitude variations indicating hydrate 338 

above free gas can be seen on several seismic profiles (Nielsen et al., 2000), further demonstrating a 339 
possible marine hydrate occurrence in the region.  340 

 341 

Direct sampling of hydrate offshore Greenland has not been reported to date and, despite the above-342 
mentioned indications of hydrate presence, no systematic study or compilation has yet been undertaken. 343 
In addition, due to the very sparse information on heat flow and seabed temperature, there is currently 344 

no published detailed study of the hydrate stability zone offshore Greenland. 345 
 346 
4. Offshore and onshore Svalbard 347 

4.1 Geological Setting 348 

The west Svalbard margin shares a common geological history with the northeast Greenland margin 349 
(section 3.1) until the opening of the Fram Strait. Subsequently, deep-water circulation between the 350 
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Arctic Ocean and the Norwegian-Greenland Sea led to deposition of thick contourite sequences that 351 

extend from the Svalbard margin towards the mid-ocean ridges. Two sediment types dominate the west 352 

Svalbard margin: glacigenic debris flows in trough mouth fans beyond the shelf break; and turbiditic, 353 
glaciomarine and hemipelagic sediments, which are to some extent reworked by contour currents 354 

(Vorren and Laberg, 1997; Vorren et al., 1998). The eastern margins of the Fram Strait were dominated 355 

by contourites during the late Miocene to Pleistocene (Mattingsdal et al., 2014) leading to the 356 
development of large sediment drifts such as the Vestnesa Ridge (Fohrmann et al., 2001) on young and 357 

relatively warm oceanic crust. The Vestnesa Ridge is located in the eastern Fram Strait at ~79°N, north 358 
of the Knipovich Ridge  and Molloy transform fault (Fig. 4), representing one of the northernmost 359 

occurrences of hydrate in the world. 360 

 361 
In contrast, the Svalbard archipelago is the most uplifted part of the Barents Shelf and is dominated by 362 

older strata providing a “window” into the tectono-stratigraphic evolution of the Barents Sea area. 363 

Approximately 60% of the archipelago is covered by glaciers, with the remainder strongly affected by 364 
continuous permafrost.  Ice caps are found predominantly in northeastern Svalbard, with ice thicknesses 365 
of up to 550 m observed for the Austfonna ice cap on Nordaustlandet (Furst et al., 2018). Permafrost 366 

thickness varies from less than 100 m in coastal settings to over 500 m in the highlands (Humlum et al., 367 
2003). The nearly complete Devonian-Paleogene stratigraphic record is exceptionally well exposed due 368 

to the lack of vegetation, giving insights into reservoir and source rock intervals targeted further south 369 
(Henriksen et al., 2011b; Nøttvedt et al., 1993; Worsley, 2008).  370 
 371 

4.2 Hydrate occurrence 372 
4.2.1 Offshore west Svalbard 373 
The presence of a prominent hydrate BSR was revealed by several seismic reflection studies in the 374 
Vestnesa basin (e.g., Dumke et al., 2016; Eiken and Hinz, 1993; Vanneste et al., 2005; Fig. 4). The BSR 375 

can be traced from the continental slope at c. 800 m water depth to the Molloy Transform Fault and 376 
beyond to > 2000 m water depth (Hustoft et al., 2010; Sarkar et al., 2012; Vanneste et al., 2005). It 377 

appears as a nearly continuous reflection with amplitudes that vary laterally and generally decrease 378 

towards the flanks of sedimentary ridges (Fig. 5). This variation indicates that hydrate and gas 379 
accumulations are primarily topographically and structurally controlled (Bünz et al., 2012). The BSR 380 
covers the whole of the Vestnesa Ridge (i.e., from c. 1100 m to 1700 m water depth), exhibiting a strong 381 

impedance contrast between hydrate-bearing and gas-charged sediments (Bünz et al., 2012; Petersen et 382 
al., 2010; Plaza-Faverola et al., 2017). An interconnected zone of free gas beneath the BSR is more 383 
prominent along the eastern segment of the Vestnesa Ridge, where currently active gas seepage is 384 

concentrated (Hustoft et al., 2009; Panieri et al., 2017; Smith et al., 2014). Faults are identified on 385 

seismic profiles, extending from the seafloor to beneath the BSR. These faults control the ascent of 386 
fluids and the distribution of gas seeps on the Vestnesa Ridge (Plaza-Faverola et al., 2015; Vanneste et 387 
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al., 2005). Basin modeling studies show that generation of thermogenic gas from relatively shallow and 388 

young source rocks sustains shallow gas and hydrate accumulations, at least within the eastern part of 389 

the Vestnesa basin (Dumke et al., 2016; Knies et al., 2014). In this setting, very close to the mid-ocean 390 
ridge, the hydrate system is strongly influenced by the young and hot oceanic crust. Geothermal 391 

gradients increase gradually from 70 to 115 °C/km towards the Molloy Transform Fault (Crane et al., 392 

1991; Vanneste et al., 2005). 393 
 394 

 395 
Figure 4: BSR distribution projected over IBCAO bathymetry off Svalbard. The BSR outline 396 
corresponds to observations from Vanneste et al. (2005); Petersen et al. (2010); Hustoft et al. (2009); 397 
Sarkar et al. (2012); Bünz et al. (2012); Geissler et al. (2014); Johnson et al. (2015); (Dumke et al., 398 
2016);Plaza-Faverola et al. (2017); and Waghorn et al. (2018). Gas flares compiled from multiple 399 
expeditions to the area by NOC, AWI, CAGE. PKF=Prins Karl Forland; COT=Continent-Ocean 400 
Transition (Engen et al., 2008); KR=Knipovich Ridge; MR=Molloy Ridge; VR=Vestnesa Ridge; 401 
VB=Vestnesa Basin; SR=Svyatogor Ridge; MTF=Molloy Transform Fault; STF=Spitsbergen 402 
Transform Fault. (a)-(d) mark seismic profiles shown in Fig. 5.   403 
 404 
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South of the Molloy Transform Fault and to the west of the Knipovich ridge spreading axis, a well-405 

developed hydrate system has been documented along the Svyatogor ridge, a contourite drift similar to 406 

the Vestnesa Ridge (Fig. 4, 5). Here the gas hydrate system is believed to be sustained by input of 407 
abiotic gas, a product of serpentinization at detachment faults (Johnson et al., 2015; Waghorn et al., 408 

2018). 409 

 410 
Elsewhere on the west Svalbard Margin, the BSR is weak and in some areas it is patchy (e.g., Geissler 411 

et al., 2014). Observations of shallow gas in accumulations that roughly follow the seafloor further 412 
upslope on the continental margin may be linked to hydrate dissociation (Riedel et al., 2018; Sarkar et 413 

al., 2012). To the west and east of the Yermak Plateau, relatively weak BSRs and some double BSRs 414 

have been documented (e.g., Geissler et al., 2014).  415 

 416 
Figure 5: Examples of BSRs offshore west-Svalbard: (a) western segment of the Vestnesa Ridge (Plaza-417 
Faverola et al., 2017); (b) western flank of Yermak Plateau (Geissler et al., 2014); (c) slope between 418 
Prins Karl Forland and the Molloy Transform Fault (Vanneste et al., 2005); (d) southern part of the 419 
Svyatogor Ridge (Johnson et al., 2015; Waghorn et al., 2018). The location of each example is indicated 420 
in Fig. 4. The BSR is continues and strong along the Svyatogor Ridge, the Vestnesa Ridge and its 421 
southern flank. The BSR is weak and patchy towards the Yermak Plateau.   422 
 423 
Hydrate has been recovered from several of the pockmarks that lie above chimney structures on the 424 

eastern Vestnesa Ridge segment. Here, hydrate appears as small, thin chips, in veins or as chunks of 425 

several 10s of cm, embedded in the upper 2-4 m of muddy sediments (e.g., Panieri et al., 2017; Smith 426 
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et al., 2014).  The gas compositions of these hydrate samples and of core head-space gas samples 427 

provide strong evidence for a thermogenic input into the HSZ (Plaza-Faverola et al., 2017; Smith et al., 428 

2014). Massive hydrate has been collected in a zone of weak BSRs at a focused fluid flow structure on 429 
the continental slope (e.g., Graves et al., 2017; Sarkar et al., 2012). Hydrate is suspected but so far not 430 

found in regions where the HSZ pinches out near the shelf break off Prins Karl Forland, where pervasive 431 

seepage exists (e.g., Berndt et al., 2014; Wallmann et al., 2018; Westbrook et al., 2009). A HSZ volume 432 
of ca. 700 km3 was derived from mapped BSRs in the Vestnesa Basin (Plaza-Faverola et al., 2015).  433 

 434 
Several studies provide constraints on hydrate saturations on the eastern Vestnesa Ridge based on P-435 

wave velocity variations from seismic data and resistivity from CSEM data. From P wave velocity 436 

anomalies, Hustoft et al. (2009) estimated mean hydrate saturations of ~6% within a 30-100 m thick 437 
zone above the BSR, reaching a maximum of 11%. Their velocity model was derived from multi-438 

channel seismic reflection data along an E-W profile that intersects the crest of the Vestnesa ridge at 439 

the eastern end of an area of active seepage. They found the highest hydrate saturations at the crest of 440 
the ridge and near fault zones. In a more recent study along the ridge crest nearby, Singhroha et al. 441 
(2019) estimated hydrate saturations of 10-18% of the pore space within a 100 m thick zone above the 442 

BSR, based on P wave velocities and full waveform inversion of wide-angle seismic data from OBSs. 443 
By comparison, joint analysis of resistivity from CSEM data and OBS data along a transect in the same 444 

area suggests mean hydrate saturations of 20-30% outside of chimney structures and 40-68% in the 445 
lowermost c. 80 m of the HSZ within a highly brecciated gas chimney (Goswami et al., 2015). Despite 446 
similar velocities to those of Hustoft et al. (2009) and Singroha et al. (2019), these estimated saturations 447 

are much higher because free gas is assumed to co-exist with hydrate in the HSZ, contributing positively 448 
to the resistivity anomaly and negatively to the velocity anomaly. All three studies systematically found 449 
the highest hydrate saturations associated with faults and fractures within the GHZ. The free gas 450 
saturations estimated by these studies in zones outside gas chimneys consistently range between 1.5 451 

and 4% of the pore space within a low-velocity zone below the BSR.  452 
 453 

4.2.2 Onshore Svalbard 454 

As part of early petroleum exploration of the Barents Sea, eighteen petroleum exploration wells were 455 
drilled on Svalbard from 1961 to 1994 (Senger et al., 2017). While none of these wells resulted in 456 
commercial discoveries, numerous boreholes encountered gas. In addition, research drilling in 457 

Adventdalen and coal exploration in Petuniabukta discovered producible natural gas, some of which 458 
is directly associated with permafrost (Senger et al., 2019).  These discoveries, as well as the presence 459 
of hydrate offshore (Section 4.2.1), prompted efforts to assess the feasibility of finding hydrate 460 

onshore Svalbard (Betlem et al., 2019). 461 

 462 
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Recent modelling efforts constrain a potentially stable marine hydrate stability zone in the fjords around 463 

Svalbard (Betlem, 2018; Roy et al., 2012), and a permafrost-associated hydrate stability zone onshore 464 

central Spitsbergen (Betlem et al., 2019). The latter has been extended to all unglaciated areas of 465 
Svalbard’s main islands (Spitsbergen, Nordaustlandet, Prins Karls Forland, Barentsøya and Edgeøya; 466 

Fig. 6). Thus far hydrate has not been directly sampled onshore Svalbard, largely due to a lack of 467 

dedicated exploration efforts. Circumstantial evidence for probable hydrate presence is provided by 468 
long-term gas bubbling in numerous coal exploration boreholes (Jochmann, M., pers. comm. 2017), 469 

though these are unfortunately not well documented. 470 
 471 

Thus the Svalbard archipelago possesses three important factors contributing to the presence of hydrate: 472 

1) suitable thermobaric conditions, 2) an active petroleum system, and 3) a constant flux of thermogenic 473 
and microbial gas. Suitable thermobaric conditions (i.e., shallow-to-deep permafrost) are brought about 474 

by laterally changing mean annual air temperatures of between -3.5 °C and -8 °C (Betlem et al., 2019; 475 

Przybylak et al., 2014). Where permafrost surpasses 100-125 m depth, subsurface thermal regimes are 476 
cold enough to allow hydrate formation under hydrostatic pressure. Thickening of ice caps and glaciers 477 
towards the north is likely to contribute further to local regions of hydrate stability as a result of loading 478 

(i.e, pressure increase) and favourable thermal regimes at glacier bases. However, the extent of hydrate 479 
stability remains difficult to assess due to uncertainties in properties such as sub-glacial thermal state, 480 

densities, and local thicknesses, as well as the limited resolution and accuracy of relevant datasets. 481 
 482 
Widespread organic-rich source rocks (e.g., Upper Jurassic to Lower Cretaceous Agardhfjellet 483 

Formation and Middle-Triassic Botneheia Formation) and coal beds (e.g., Lower Carboniferous 484 
Billefjorden Group and Paleogene Firkanten Formation) may act as unconventional reservoirs hosting 485 
disseminated or fracture-filled hydrate. These Mesozoic organic rich source rocks have the same 486 
origin as those contributing to hydrocarbon discoveries in the Barents Sea (Abay et al., 2014) and 487 

have been linked to hydrocarbon finds onshore. Suitable reservoir rocks are found in both sandstone-488 
dominated sequences (e.g., the Paleogene Van Mijenfjorden Group, the Lower Cretaceous 489 

Helvetiafjellet Formation and the Upper Triassic-Middle Jurassic Wilhelmøya Subgroup) and 490 

carbonates (e.g., the Permian Tempelfjorden and Gipsdalen Groups). Limited reservoir quality, with 491 
poor matrix porosity and permability related to extensive diagenesis (e.g., Mork, 2013) is a major 492 
challenge. However, pervasive natural fracturing contributes by enhancing fracture-related fluid flow 493 

(Ogata et al., 2012). 494 
 495 
Significant quantities of thermogenic gas (mixed with microbial gas in shallower intervals) were 496 

encountered during research drilling for the Longyearbyen CO2 Lab project in Adventdalen (Ohm et 497 

al., 2019) and in petroleum and coal exploration wells (Senger et al., 2019). Furthermore, high 498 
concentrations of microbial gas are observed in onshore pingo discharge waters (Hodson et al., 2019). 499 
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Gas flares, pockmarks and thermogenic methane are observed in several fjords of Svalbard (Liira et 500 

al., 2019; Roy et al., 2019). Thus there is evidence for active fluid seepage both onshore and offshore. 501 

 502 

 503 
Figure 6: Thickness of the HSZ onshore Svalbard, for a plausible gas composition of 93% methane, 7% 504 
ethane and seawater salinity. Geothermal gradients are derived from boreholes and inferred from the 505 
depth of the base of permafrost thickness in central Spitsbergen (Betlem, 2018; Betlem et al., 2019). 506 
Lapse rate is set at -6 °C/km, and surface air temperatures are incorporated from Przybylak et al. (2014). 507 
A: Adventdalen; L: Longyearbyen; P: Petuniabukta. The map uses topographic and coastline data from 508 
the Norwegian Polar Institute. 509 
 510 
Assuming that structure I hydrate dominates, a zone of hydrate stability likely occurs in the interior of 511 

Spitsbergen along a relatively unglaciated corridor stretching from Nordenskiöldland in the centre to 512 

Wijdefjorden in the north. Strandflats and valley systems limit hydrate stability on Svalbard’s western 513 
flanks due to elevated temperatures associated with the West Spitsbergen Current (Przybylak et al., 514 

2014). Mean annual temperatures decrease to the east, so that similar settings on Edgeøya, Barentsøya 515 

and Nordaustlandet fall well within the hydrate stability field, even in coastal settings. Most of the 516 
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archipelago thus appears to be on the edge of hydrate stability, with vertical and lateral variations 517 

tipping particular locations in and out of the hydrate stability field. 518 

 519 
5. Norwegian Margin 520 

5.1 Geological setting 521 

The Barents Sea is a large epi-continental shelf sea bound by the North Atlantic to the west, the 522 
Norwegian and Russian landmasses to the south, the Arctic Ocean to the north and Novaya Zemlya to 523 

the east. Formed in association with the opening of Norwegian-Greenland Sea and Eurasia Basin during 524 
the Cenozoic (Faleide et al., 1984), it is composed of a complex mosaic of basins, platforms, and 525 

structural highs and is a major petroleum province (Doré, 1995; Nøttvedt et al., 1988). Tectonic uplift, 526 

erosion and multiple glaciations affected the Barents Sea during the Cenozoic and resulted in the 527 
removal of up to 2 km of sediments from the region (Henriksen et al., 2011a; Ktenas et al., 2017; Vorren 528 

et al., 1991). These processes resulted in the spillage of hydrocarbons from reservoir rocks, and recent 529 

exploration has shown predominantly gas reservoirs and underfilled reservoirs with low oil saturation 530 
(Doré and Jensen, 1996; Henriksen et al., 2011a).  531 
 532 

Along the mid-Norwegian margin, the Møre and the Vøring basins are the two most prominent. They 533 
developed as a result of several rifting episodes until Late Paleocene/Early Eocene continental break-534 

up (Brekke, 2000; Lundin and Doré, 1997). Post break-up thermal subsidence during the Cretaceous 535 
resulted in up to 10-km-thick sedimentary basin fill. The second youngest sedimentary succession is 536 
the Miocene/lowermost Pliocene Kai Formation with predominantly fine-grained hemipelagic 537 

sediments (Dalland, 1988; Rise et al., 2005). The overlying Naust formation encompasses sediments of 538 
the Plio-Pleistocene glacial-interglacial cycles that significantly changed the sedimentation pattern, 539 
yielding a thick wedge of clastic sediments on the shelf (Hjelstuen et al., 1999; Stuevold and Eldholm, 540 
1996). Within this formation, contourites deposited along slope during deglaciation and interglacials 541 

frequently interlayer the glacigenic downslope-transported debris flows (Laberg et al., 2001). A mass-542 
wasting event, the Storegga Slide, removed large amounts of sediment within the Møre Basin and along 543 

its northern border with the Vøring Plateau at about 8.2 ka  (Bryn et al., 2005). 544 

 545 
5.2 Hydrate occurrence 546 
5.2.1 Barents Sea 547 

Leaking reservoirs in the Barents Sea have given rise to widespread occurrence of fluid-flow features 548 
such as shallow gas accumulations, gas seeps, gas chimneys, pockmarks of various sizes, pingos and 549 
hydrate (Fig. 7; Andreassen et al., 2017; Chand et al., 2012; Laberg and Andreassen, 1996; Rise et al., 550 

2015; Serov et al., 2017; Vadakkepuliyambatta et al., 2013; Vadakkepuliyambatta et al., 2017). Fluid 551 

migration in the area is structurally controlled, with major faults and fractures acting as pathways 552 
(Vadakkepuliyambatta et al., 2013).  553 
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 554 

The presence of hydrate has been inferred at multiple locations in the Barents Sea from BSRs in multi-555 

channel seismic data (Vadakkepuliyambatta et al., 2017 and references therein). BSRs occur in close 556 
association with vertical fluid-flow systems, shallow gas accumulations, faults, and fractures (Ostanin 557 

et al., 2013; Vadakkepuliyambatta et al., 2013; Vadakkepuliyambatta et al., 2017; 558 

Vadakkepuliyambatta et al., 2015). They generally occur in consolidated sediments of Jurassic and 559 
younger ages as well as in the glacial sediments of Pleistocene to Holocene age (e.g., Andreassen et al., 560 

1990; Vadakkepuliyambatta et al., 2017). Although multiple active seeps have been detected in the 561 
southwest Barents Sea (e.g., Andreassen et al., 2017; Chand et al., 2012), no hydrate sample has been 562 

recovered yet. However, in the Storfjordrenna region of the northwest Barents Sea, Serov et al. (2017) 563 

reported sampling of hydrate just below the seafloor. Hydrate was also recovered on the continental 564 
slope of southwest Barents Sea at the Håkon Mosby mud volcano (Ginsburg et al., 1999). 565 

 566 

Results from thermal modelling suggest a prevalence of thermogenic methane and higher order 567 
hydrocarbons forming hydrate in the region (Chand et al., 2008; Vadakkepuliyambatta et al., 2017). 568 
Methane hydrate is not stable in most parts of the Barents Sea, primarily due to the shallow water depth 569 

(<350 m; Chand et al., 2008; Klitzke et al., 2016; Vadakkepuliyambatta et al., 2017). Hydrate 570 
occurrence is highly variable, controlled primarily by thermogenic gas discharge into the shallow 571 

sediments (Vadakkepuliyambatta et al., 2017). Variations in the geothermal gradient, salt tectonics, and 572 
the inflow of warm Atlantic water also influence hydrate stability in the region (Chand et al., 2008; 573 
Vadakkepuliyambatta et al., 2017). Major factors controlling hydrate stability, such as the bottom water 574 

temperature and geothermal gradient, vary greatly across the various basins and highs of southwest 575 
Barents Sea. Bottom-water temperatures can vary between 1 and 6 ºC across the region, where warm 576 
Atlantic waters mix with cold Arctic waters (Vadakkepuliyambatta et al., 2017). Seasonal variations in 577 
bottom water temperature are up to 2 º C (Ferré et al., 2012). Geothermal gradients vary from 25 to 65 578 

º C/km, mainly due to the presence of salt diapirs on the eastern part of this area (Bugge et al., 2002). 579 
The southwest Barents Sea may be a focus of hydrate dissociation due to ocean warming in the near 580 

future (Vadakkepuliyambatta et al., 2017). 581 

 582 
The volume of hydrate in the Barents Sea is still uncertain, primarily due to the uncertainties related to 583 
gas composition, hydrate saturation and hydrate distribution within the host sediments. Based on multi-584 

channel seismic data and well logs, Laberg et al. (1998) estimated ~0.19 GSm3 (GSm3 = 109 standard 585 
cubic metres) of gas hydrate trapped within the Eocene succession of a small part of Bjørnøya Basin 586 
where a BSR was observed. Vadakkepuliyambatta et al. (2017) proposed a hydrate volume of ~93-650 587 

GSm3 in the southwest Barents Sea from hydrate stability models that assumed that the hydrate-forming 588 

gas was pure methane. Due to the presence of higher-order hydrocarbons, the hydrate volume could be 589 
as high as ~470–3320 GSm3. The patchy occurrence of hydrate systems in the southwest Barents Sea 590 
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and their occurrence in consolidated, low-porosity sediments indicates low resource density for 591 

economic exploitation. 592 

 593 
Figure 7: a) Bathymetry of the western Barents Sea with locations of hydrate indicators (compiled from 594 
Andreassen et al., 2017; Chand et al., 2012; Mau et al., 2017; Serov et al., 2017; Vadakkepuliyambatta 595 
et al., 2013; Vadakkepuliyambatta et al., 2017). b) and c) Seismic examples of a BSR in the southwest 596 
Barents Sea clearly cross-cutting the tilted sedimentary strata and showing reversed polarity compared 597 
to the seafloor reflection (modified from Vadakkepuliyambatta et al., 2017). 598 
 599 
5.2.2 Mid-Norwegian margin  600 

Bugge et al. (1988) first recognised evidence for hydrate in the northern Storegga Slide area of the mid-601 
Norwegian Margin in the form of a weak BSR. Later, Posewang and Mienert (1999) and Bouriak et al. 602 
(2000) confirmed the geophysical evidence that hydrate exists in this area. In high-resolution seismic 603 

data, the BSR is generally characterised as an abrupt upper boundary of increased reflection amplitude 604 

(Fig. 8a; Bouriak et al., 2000; Bünz et al., 2003). In areas of dipping seafloor the BSR is readily 605 
identified cross-cutting the almost horizontally layered strata. 606 

 607 

A double BSR observed in a small area along the northern flank of the Storegga Slide is attributed to a 608 
hydrate structure involving high-order hydrocarbons (Andreassen et al., 2000; Posewang and Mienert, 609 
1999). Analysis of multi-component seismic data does not show a BSR in shear-wave components, 610 

indicating that hydrate here does not increase the shear stiffness of the sediments (Andreassen et al., 611 
2003; Bünz et al., 2005). The presence of a BSR inside the slide area indicates that the hydrate system 612 
is dynamically adjusting to post-slide pressure-temperature equilibrium conditions (Fig. 8b; Bouriak et 613 

al., 2000; Bünz et al., 2003). 614 

 615 
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Bünz et al. (2003) mapped the extent of the BSR, which predominantly occurs over an area of about 616 

4000 km2 on the mid-Norwegian margin along the northern flank of the Storegga Slide (Fig. 8c). The 617 

glacial evolution of this margin resulted in widespread deposition of glacial sediments that built out 618 
the continental shelf (e.g., Hjelstuen et al., 2005; Stuevold and Eldholm, 1996). These low-619 

permeability sediments are not conducive to hydrate growth and limit the extent of hydrate to the 620 

northern flank of the Storegga Slide, where they occur in marine contourite deposits. The large-scale 621 
distribution of hydrate in this area can be classified as a stratigraphic accumulation. The hydrate 622 

occurrence coincides with a vertical fluid flow system as documented by features such as pockmarks 623 
on the seafloor and pipe and chimney structures in subsurface seismic data (Bouriak et al., 2000; Bünz 624 

et al., 2003; Hustoft et al., 2010; Hustoft et al., 2007). A hydrate stability model was developed by 625 

Mienert et al. (2005), who speculated that ocean warming since the last deglaciation promoted the 626 
development of instabilities along the mid-Norwegian margin. 627 

 628 

 629 
Figure 8: Examples of BSRs on the mid-Norwegian margin (modified from Bünz and Mienert, 2004): 630 
a) typical expression of a BSR identified as an abrupt upper boundary of increased reflection amplitude, 631 
occurring in glaciomarine contourite deposits along the northern flank of the Storegga Slide (vertical 632 
exaggeration ~35). b) The BSR also occurs inside the Storegga Slide area where it has readjusted to 633 
post-slide pressure-temperature equilibrium conditions (vertical exaggeration ~33). c) The BSR 634 
predominantly occurs along the northern Storegga Slide flank and patchily west of the Storegga Slide 635 
headwall over a total area of 4000 km2. 636 
 637 
Velocity analyses of seismic data provided evidence for the existence of hydrate in sub-seafloor 638 

sediments (Bünz and Mienert, 2004; Bünz et al., 2005; Plaza-Faverola et al., 2010; Westbrook et al., 639 

2008). Hydrate saturations have been estimated from OBS data and range from 2 to 15% of pore space. 640 

The first hydrate sample in this area was from a pockmark in the Nyegga area, located at the northeastern 641 
corner of the Storegga Slide (Ivanov et al., 2007). Isotopic analysis of the gas in hydrate from this 642 
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pockmark suggests a primarily microbial origin but with a significant thermogenic component (Vaular 643 

et al., 2010). In the Nyegga area, many focused fluid flow structures pierce the HSZ (Hjelstuen et al., 644 

2010; Hustoft et al., 2010; Plaza-Faverola et al., 2011) and form such pockmarks at the seafloor 645 
(Hovland et al., 2005; Mazzini et al., 2006). Analysis of velocities from wide-angle seismic data and 646 

resistivities from CSEM data showed that these chimneys likely contain much larger amounts of gas 647 

hydrate than the surrounding stratified sediments (Attias et al., 2016; Plaza-Faverola et al., 2010). 648 
 649 

Senger et al. (2010) compiled a large database of geophysical and geotechnical borehole data for a 650 
resource evaluation of the Norwegian Sea gas hydrate prospect. Their method was based on a stochastic 651 

approach and closely followed that of conventional hydrocarbon prospect evaluation. The calculated 652 

in-place volume has a large uncertainty, primarily due to the lateral variations in reservoir parameters. 653 
Senger et al. (2010) estimated that the prospect (both hydrate and free-gas zones) contains 625 GSm3 654 

of gas. The amount of gas is significant compared to conventional hydrocarbon reservoirs in the 655 

Norwegian Sea (e.g. the Ormen Lange field with about 439 GSm3). However, the resource density is 656 
rather low, so future economic exploitation is unlikely. 657 
 658 

6. Offshore Ireland 659 
6.1 Geological Setting  660 

The continental margin offshore Ireland bears the imprints and structures resulting from Variscan, 661 
Caledonian and older orogenic events (Naylor and Shannon, 2011). The nature of the basement 662 
successions, together with their inherent lineaments and structural fabrics, had a major influence on the 663 

location and structural segmentation of the basins. Basins of various geometries, sizes and ages, filled 664 
with thick Cenozoic successions, occur in the western Irish Atlantic shelf, in water depths of 400 m to 665 
more than 4500 m. Four kilometres of Cenozoic strata occur in the Porcupine Basin and up to 2 km 666 
have been identified on seismic profiles in the Rockall Basin (Shannon et al., 1993). Fluid flow within 667 

the basins is likely to have been controlled by the overall basin geometry and by the distribution and 668 
linkage of permeable strata with fault systems and unconformities. Active petroleum systems in the 669 

Rockall and Porcupine basins have been documented by oil and gas exploration since the 1970s. 670 

 671 
Potential source rocks include the Upper Carboniferous, Middle and Upper Jurassic successions, which 672 
are generally mature throughout these basins. The Cretaceous and Cenozoic successions also have some 673 

potential for oil and gas generation. The Kimmeridgian succession (Upper Jurassic) is a good proven 674 
source rock that is well distributed in the Porcupine Basin. It has total organic carbon (TOC) values of 675 
3 - 4%. The Lower Cretaceous succession has TOC values of 1.8 – 2.7% (Naylor and Shannon, 2011). 676 

The Dooish gas condensate discovery on the eastern margin of the Rockall Basin demonstrates the 677 

presence there of a thermogenic petroleum system. Middle Jurassic lacustrine mudstone is anticipated 678 
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as a potential source as in the Porcupine Basin. Other source rocks are the Lower Cretaceous with TOC 679 

values of 3-14%, and Albian lacustrine mudstones with TOC values of 2.04% (Hitchen, 2004). 680 

 681 
Figure 9: Calculated HSZ of Irish basins, for pure methane and 3.5% salinity and using seabed 682 
temperature from a compilation of oceanographic data and a geothermal gradient of 30-35°C/km (Roy 683 
et al., 2017).  Also shown are locations of 3D seismic cubes, boreholes, gas chimneys, hydrocarbon 684 
(HC) seeps, and proven hydrocarbon systems (text in red).  685 
 686 

6.2 Hydrate Occurrence 687 
High resolution bathymetric data (100 m resolution), seabed temperature from 4760 CTD casts, and 688 
geothermal data from four boreholes have been used to calculate the HSZ offshore western Ireland (Roy 689 

and Max, 2018; Fig. 9). An extensive set of geophysical and geological data was integrated for the 690 
assessment of lithology, migration pathways of natural gas-saturated water in the form of chimney 691 
structures (Van Rensbergen et al., 2005b), presence of source rocks or conventional reservoirs, as well 692 

as host rocks for hydrate within its stability zone.  A brief summary of the datasets used is provided 693 

below, with locations shown in Fig. 9:  694 
a) Industry scale exploration data: 31 2D multichannel seismic surveys, 11 3D seismic cubes, and 695 

18 exploration wells drilled within the HSZ.  696 
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b) Scientific drilling campaigns: Integrated Ocean Drilling Programme (2 sites), Ocean Drilling 697 

Programme (2 sites) and 12 Deep Sea Drilling Project (12 sites) within the HSZ.  698 

c) Shallow drilling campaigns: Statoil 1994 (1 site), Rockall Study Group Bucentaur 1999 (3 699 
sites), and Mebo 2006 (1 site).  700 

The HSZ extends up to 645 m below the seafloor in the Rockall Basin, and 784 m in Porcupine Basin 701 
(Fig. 9). Fluid escape features, gas chimneys, bright spots indicating shallow gas accumulations, and 702 

faults that act as pathways for fluid migration, have been interpreted above potential source rocks and 703 

active petroleum systems. Three types of depositional systems have been identified as potential hosts 704 
for hydrate accumulations in Irish basins:  705 

a) Mass transport deposits (MTDs): Slope failures are widespread along both the western and 706 
eastern margins of the Rockall Basin. Sidescan sonar images show a broad interplay of along-707 

slope and downslope sediment transport, with sediment sourced from the northeastern margin 708 

and redistributed by currents along the western margin (Unnithan et al., 2001). Along the 709 
western margin, the Rockall Bank Mass Flow is a large, multi-phase submarine slope failure 710 
comprising of several MTDs, with failure scarps extending over c. 6100 km2. It lies upslope a 711 

series of mass flow lobes covering c. 18,000 km2 of the Rockall Basin seafloor (Elliott et al., 712 
2010). Low- to medium-porosity turbidites have been found in shallow gravity cores of the 713 

lobes, which could be ideal hydrate reservoirs (Roy and Max, 2018).  714 

b) Feni contourite drift: The Feni drift lies along the northwest flank of Rockall Basin, formed 715 
under the influence of deep, geostrophic currents formed by intermittent overflows of Arctic 716 

Intermediate Water from the Norwegian Sea. Sites 980 and 981 from ODP Leg 162 are located 717 
on the Feni Drift sediments. It is predominantly composed of rapidly accumulated nannofossil 718 
oozes with variable amounts of clay and silt. The lithology of Feni Drift is similar to that of 719 

Blake Ridge sediments but bed differentiation may be better. Extensive fluid escape features 720 

from deeper Lower Jurassic source rocks extend over an area ~ 2000 km2, known as the Druid 721 
Anomaly (Fig. 9). Gas chimneys terminate beneath polygonal faults observed partly within the 722 
HSZ, which has an average thickness of 225 m (Roy and Max, 2017; Fig. 10). 723 

c) Turbidite and contourite deposits: Isolated sand bodies, contourite furrows (erosional features), 724 
and turbidite channel systems have been mapped from 3D seismic data within the HSZ in the 725 
Porcupine Basin (Roy and Max, 2018). Associated gas chimneys and fault systems mark 726 

upwelling fluid migration from deeper sources to these potential hydrate reservoirs. 727 

BSRs have not been identified in the Irish basins. A reason for the absence of a BSR in the available 728 

seismic data could be that these data were processed to better identify deeper structural and 729 

stratigraphic geological traps. The processing sequence may have obscured shallower structures. 730 
Various seismic amplitude anomalies (e.g., bright spots, seismic gas pipes and chimneys, reverse 731 

polarity) have been observed in close proximity to the calculated base of the HSZ (Fig. 10b). Possible 732 
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BSRs have been documented within contourite deposits in the southern and central parts of Porcupine 733 

Basin, at water depths of 1500 - 2200 m (Roy and Max, 2018). 734 

 735 
Figure 10: a) Seismic reflection profile showing gas chimney (part of the Druid anomaly) in the Rockall 736 
Basin, originating from potential source rock, with polygonal faults, sill complexes, mass transport 737 
deposits (Rockall Mass Flow), and C30 late Eocene unconformity (Roy et al., 2017). The extent of 738 
polygonal faults, which extend into the HSZ in the southeast, is shown by square brackets. These faults 739 
could act as potential fluid migration pathways for deeper fluids to reach the HSZ (interpolated from 740 
the grid of Fig. 9). b) Interpretation of suspected shallow gas accumulation (enhanced high-amplitude 741 
reflections) beneath the calculated base of HSZ, and fluid migration pathways such as gas pipes and 742 
normal faults in Rockall Basin. Locations are  marked in Fig. 9.  743 
  744 
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7. Northwest Iberian Margin 745 

7. 1 Geological Setting 746 

The northwest Iberia continental margin developed during the northward propagation of the North 747 
Atlantic Ocean rift system (Boillot, 1995; Boillot et al., 1979; Pérez-Gussinyé and Reston, 2001). 748 

Several extensional phases from the Triassic to the Early Cretaceous lead to a complex fault system 749 

formed by north-south to northwest-southeast normal faults and northeast-southwest to east-west 750 
transfer faults (Pinheiro et al., 1996; Wilson et al., 1989). North-south compression during the Alpine 751 

orogeny resulted in the reactivation and partial inversion of previous rift structures and the generation 752 
of new compressional structures (Murillas et al., 1990; Pinheiro et al., 1996; Vázquez et al., 2008). 753 

 754 

The present-day northwest Iberia continental margin is characterised by a roughly north-south, ~40 km 755 
wide continental shelf and a relatively steep slope down to ~2000 m water depth. Beyond the continental 756 

slope, the continental margin can be divided into three main geomorphological provinces (Fig. 11; 757 

Reston, 2005): 1) the Galicia Interior Basin (GIB); 2) the Western Banks – an area of seamounts that 758 
includes the Galicia Bank; and 3) the Deep Galicia Margin (DGM). The sedimentary cover ranges from 759 
0 to 4 km, with maximum thickness in the Galicia Interior Basin depocenter (Pérez-Gussinyé et al., 760 

2003). 761 
 762 

7.3 Hydrate Occurrence 763 
The data available for determining the likelihood of methane hydrate stability and presence on the 764 
northwest Iberia margin come from diverse sources of varying resolution. Bathymetry data with a 765 

minimum 250 x 250 m resolution are publicly available on the EMODnet bathymetry data portal ( 766 
EMODnet Bathymetry Consortium, 2016). A higher resolution bathymetric grid (100 x100 m) 767 
compiled by the Spanish Naval Hydrographic Institute has limited public availability (Druet et al., 2018; 768 
Maestro et al., 2018; Somoza et al., 2014). Only two research cruises have been focused on shallow gas 769 

occurrence there (Rey and Gran Burato Science Team, 2010, 2011). These cruises acquired high-770 
resolution multichannel and very-high-resolution single channel (3.5 kHz) seismic data and multibeam 771 

data to characterise three giant pockmarks depressions in the Transitional Zone (Fig. 11) between the 772 

highly thinned crust of the Galicia Interior Basin and the relatively unthinned crust of the Galicia Bank. 773 
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 774 

Figure 11: a) Bathymetry of the northwest Iberian Margin. GIB: Galicia Interior Basin, TZ: 775 
Transitional Zone, GB: Galicia Bank, NFD: Northwest Flank Domain, DGM: Deep Galicia Margin, 776 
HGD: Half-graben Domain. Note the three large circular structures in the Transitional Zone; b) Detail 777 
of the Gran Burato (GB) giant pockmark (after Druet, 2015) corresponding to grey square in a); c) 778 
Seismic line located south of the Gran Burato pockmark in b) showing how amplitude anomalies 779 
(circled in red) sourced fluid activity (after Ribeiro, 2011).	780 
 781 

Evidence for shallow gas in the proximal northwest Iberia continental margin has been described since 782 

the early 2000s (Durán et al., 2007; Ferrín et al., 2003; García-García et al., 2003; García-Gil et al., 783 
2015). However, the possibility of hydrate occurrence did not emerge until a decade later based on the 784 
presence of several seabed features related to fluid escape imaged in the Transitional Zone (Druet, 2015; 785 

Ercilla et al., 2011; López Pérez et al., 2019; Ribeiro, 2011). Some of the fluid escape structures have 786 

a seafloor expression (e.g., pockmarks), while others were detected by seismic amplitude anomalies. 787 
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Pockmarks were identified with a wide range of size and depths, on almost all the seismic profiles 788 

acquired in the Transitional Zone (Rey and Gran Burato Science Team, 2010, 2011; Ribeiro, 2011). 789 

The three biggest pockmarks, in water depths of 1600-1850 m, correspond to semicircular depressions 790 
that have depths up to 375 m and diameters between 2 and 5 km. A detailed study of the Gran Burato 791 

(Fig. 11b), the northernmost and largest pockmark in the Transitional Zone, showed evidence for fluid 792 

(most likely gas) migration and accumulation in both deep and shallow stratigraphic units (Ribeiro, 793 
2011). Additionally, two fields of medium-size pockmarks with a density of more than five pockmarks 794 

per square kilometer were described (Rey and Gran Burato Science Team, 2011). Stratigraphic analysis 795 
of seismic data suggests that some these pockmarks are related to middle Miocene to Quaternary 796 

sedimentary units. Some of the pockmarks still appear to be active (Ribeiro, 2011). The most recent 797 

and intense fluid escape takes place in the northernmost sector. An estimate of the HSZ based on the 798 
regional geothermal gradient suggests widespread hydrate stability in the area (Rey and Gran Burato 799 

Science Team, 2011). 800 

 801 
Various seismic amplitude anomalies (e.g., areas of seismic blanking, bright spots, chimney structures) 802 
have been identified close to the pockmark fields and are interpreted as evidence of gas presence within 803 

the sediments (Ribeiro, 2011). Fig. 11c shows high-amplitude anomalies on a structural high that pinch 804 
out against faults. Pockmarks observed immediately above may result from extensive structurally 805 

controlled fluid seepage via faults and fractures (Ribeiro, 2011). A high-amplitude reflector that mimics 806 
the seabed was observed in some seismic profiles at the estimated hydrate phase boundary depth, but 807 
the polarity inversion typically associated with BSRs could not be identified, so its origin remains 808 

uncertain (Rey and Gran Burato Science Team, 2011).  809 
 810 
Analysis of sediment samples from piston cores collected close to the Gran Burato were inconclusive 811 
(Rey and Gran Burato Science Team, 2011). Some signs of liquefaction were observed in one piston 812 

core, but no associated thermal anomalies were registered, though long core travel times may have 813 
attenuated such anomalies. Also, no evidence for chlorinity anomalies or significant sulphate depletion 814 

was reported (Rey and Gran Burato Science Team, 2010, 2011). Benthic fauna associated with gas 815 

seepage were reported, although the observed species are not exclusive to these environments. 816 
 817 
8. South Iberia and Northwest African Margin 818 

8.1 Geological Setting  819 
The South Iberia and Northwest Africa margins are located in the context of the Betic–Rif orogen either 820 
side of the Gibraltar Strait: the Gulf of Cádiz (Eastern Atlantic) and Alborán Sea basin (Western 821 

Mediterranean) (Fig. 12). The Atlantic margins of the Gulf of Cádiz were formed during Mesozoic 822 

rifting close to the boundary between the Central and North Atlantic. From the late Oligocene to the 823 
early Tortonian, these margins were deformed by north-south convergence between the African and 824 
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Eurasian plates due to the westward drift of the Alborán Domain and development of the Betic-Rif belt 825 

(Platt et al., 2003). Simultaneously the Alborán Basin was developed by extensional normal faulting 826 

and crustal thinning in the back-arc area of the Alborán Domain. Northwest-southeast convergence 827 
caused a post-Tortonian compressive regime that produced the progressive inversion of the basin, Betic-828 

Rif range uplift, two sets of strike–slip faults, reverse faults and folds (Estrada et al., 2018; Martinez-829 

Garcia et al., 2017). There was subsequent mud diapirism and related mud volcanism and the formation 830 
of pockmark fields (Pérez-Belzuz et al., 1997; Somoza et al., 2012), which occur mainly in the western 831 

part of the Alborán Basin (Pérez-Belzuz et al., 1997). 832 

 833 
Figure 12. Bathymetry of the South Iberia and Northwest Africa margins. Arrows mark flow directions 834 
of Mediterranean outflow water. Stars mark mud volcanoes (MV) at which hydrate has been sampled. 835 
Black dots mark other mud volcanoes. The boundaries of the Allochthonous Unit of the Gulf of Cádiz 836 
(AUGC) are modified from Medialdea et al. (2009). Black lines mark southwest Iberia Margin (SWIM) 837 
faults (dashed where discontinuous). 838 
 839 
In the Gulf of Cádiz, the westward migration of the Alborán Domain forced the emplacement of a large 840 
tectono-sedimentary allochthonous unit in the continental margin and oceanic realm of the Gulf of 841 

Cádiz, generally known as the allochthonous unit of the Gulf of Cádiz (AUGC) (Medialdea et al., 2009). 842 

The AUGC is responsible for diapirism of huge volumes of mud and salt of Triassic units and also for 843 
under-compacted early to middle Miocene plastic marls and shales (Fernandez-Puga et al., 2007; 844 

Maldonado et al., 1999; Medialdea et al., 2009). Numerous seabed fluid escape structures result from 845 

this diapirism, including mud volcanoes, of which some bear hydrate (León et al., 2012; Mazurenko et 846 
al., 2002; Pinheiro et al., 2003; Somoza et al., 2003; Van Rensbergen et al., 2005a), hydrocarbon-847 

derived authigenic carbonate (HDAC)-bearing chimneys (Diaz-del-Rio et al., 2003; Magalhaes et al., 848 

2012; Palomino et al., 2016) and pockmarks (Baraza and Ercilla, 1996; León et al., 2014; León et al., 849 
2010; León et al., 2006). The distribution of these fluid migration and escape structures is also related 850 



 33 

to the arcuate wedge and the west-northwest  to east-southeast SWIM transcurrent fault system (Fig. 851 

12; Hensen et al., 2015). The deeper mud volcanoes (2500-4500 m water depth), located in the 852 

Southwest Iberia Margin segment of the Gulf of Cádiz area, are closely linked to the presence of the 853 
active strike-slip SWIM faults, which provide pathways for deep-seated fluids sourced from oceanic 854 

crust older than 140 Ma (Hensen et al., 2015). A local and discontinuous BSR has been observed only 855 

in the upper slope (between 200 and 400 m water depth) on the Iberian margin of the Gulf (Casas et al., 856 
2003) and within a mud volcano in the Moroccan slope (Depreiter et al., 2005). Hydrate and 857 

hydrocarbon gases sampled from mud volcano sediments include both microbial and thermogenic 858 
components (Mazurenko et al., 2002; Stadnitskaia et al., 2006). 859 

 860 

8.2 Hydrate Occurrence 861 
Direct evidence for hydrate in the Gulf of Cádiz has been detected only in association with the mud 862 

volcanoes. The first sample was recovered in 1999 at the Ginsburg mud volcano (Gardner, 2001; 863 

Mazurenko et al., 2002). Subsequent work confirmed the presence of hydrate in six other mud volcanoes 864 
at 930-4500 m water depth (Hensen et al., 2015; Mazurenko et al., 2002; Pinheiro et al., 2003; Fig. 12). 865 
Hydrate appears in various morpho-stratigraphical types, including a tabular shape of irregular 866 

thickness (up to 1-2 mm), forming layers within the sediment; or isometric sub-rounded aggregates or 867 
individual clast-like occurrences, from millimetre size to several centimetres. The biggest samples (> 868 

5cm) have been recovered in the Porto and Michael Ivanov mud volcanoes (Hensen et al., 2015). They 869 
comprise disseminated clasts inside a homogeneous mud breccia of grey or dark grey color, saturated 870 
in gas and with a porous structure resulting of degasification. In some of the mud volcanoes (e.g. 871 

Ginsburg and Captain Arutyunov), based on chlorinity anomalies in sediment cores, hydrate content 872 
can reach 3-16% of the sediment volume and 5-31% of the pore space volume (Mazurenko et al., 2002). 873 
Hydrocarbon gases from gravity cores collected from Ginsburg mud volcano indicate allochthonous 874 
natural gases of thermogenic origin, with 81% methane and 19% higher hydrocarbons (Mazurenko et 875 

al., 2002; Stadnitskaia et al., 2006). The ratio iso-C4/n-C4 points to focused fluid flow as the principal 876 
mechanism of gas migration (Stadnitskaia et al., 2006). Differences in the composition of hydrocarbon 877 

gases between the deep Portuguese margin and the Atlantic Morocco middle continental slope suggest 878 

two groups with distinctive fluid venting environments and geochemical behavior/properties of 879 
migrating fluids, resulting from a complex of secondary migrated, microbially altered and mixed 880 
hydrocarbons (Stadnitskaia et al., 2006). 881 

 882 
Indirect evidence for hydrate has been found in other mud volcanoes and mud mounds in the Gulf of 883 
Cádiz. The most common indirect evidence is liquefied and degassing structures in the mud breccia 884 

sediments (Fig. 13). These structures have been detected in most mud volcanoes below 1000 m water 885 

depth and in some carbonate mounds such as Cornide. In the Alborán Sea, degassing structures have 886 
been detected only in one gravity core from the Carmen mud volcano. Coherent reversed-polarity 887 
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reflections beneath the slopes of mud volcanoes, interpreted as BSRs have been detected in the Atlantic 888 

Moroccan margin below Mercator mud volcano (Depreiter et al., 2005). Similar reflections that are 889 

quasi-parallel to the seafloor and interpreted as BSRs have been detected in seismic profiles from the 890 
Portuguese continental upper slope seaward the city of Faro. Finally, the presence of chloride ion 891 

concentrations below 450 mM, indicating the presence of dissociated hydrate (Hesse and Harrison, 892 

1981), has been detected in the hydrate-bearing mud volcanoes, as well as in the Yuma, Carlos Ribeiro 893 
and Olenin mud volcanoes, where hydrate was not recovered (Mazurenko et al., 2002). 894 

 895 
Figure 13. Direct and indirect hydrate evidence of the South Iberia and Northwest Africa margins. a) 896 
Hydrate sample from the Bonjardim mud volcano (AT624 from Akhmetzhanov et al., 2008); b) 897 
Bathymetry and geological interpretation of the Ginsburg mud volcano (modified from Toyos et al., 898 
2016) with the location of the first hydrate sample recovered in the Gulf of Cádiz (AT238G from 899 
Kenyon et al., 2001); c) Hydrate crystals from a gravity core at Porto mud volcano (Ivanov et al., 2010); 900 
d) Liquefied structures (red arrows) inferred to represent hydrate dissociation in a gravity core from 901 
Ibérico mud volcano (Leon, 2007). 902 
 903 
Thus, hydrate in the Gulf of Cádiz seems to be present in localised deposits and hosted in fine-grained 904 

sediments with low permeability, although the thickness and extent of hydrate present are poorly 905 
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known. This type of occurrence cannot be considered to be of significant resource potential. No hydrate 906 

has been detected in any other geological features, such as pockmarks in the Gulf of Cádiz, nor in the 907 

Estremadura Spur of the west Iberia margin (Duarte et al., 2017). Hydrate indications are also absent in 908 
the sandy or muddy contourite deposits of the continental slope of the Gulf of Cádiz. The lack of hydrate 909 

evidence in pockmarks could also be related to the insufficient data collected on these sites. HDACs 910 

recovered in pockmarks show an isotopic composition (depletion in δ13C and enrichment in δ18O) 911 
compatible with possible past massive hydrate dissociation episodes (Diaz-del-Rio et al., 2003). 912 

 913 
Moreover, the BSRs that were identified occur only locally, without regional continuity, and in close 914 

association with fluid escape areas (Casas et al., 2003; Depreiter et al., 2005). In multichannel seismic 915 

profiles, areas of blanking and amplitude anomalies below pockmark fields, collapse structures and 916 
mud volcanoes reflect the presence of fluids (very possibly hydrocarbon fluids) in the sediment column 917 

(Medialdea et al., 2009). Suitable reservoirs for hydrate, comprising thick sandy contourite deposits 918 

generated by the Mediterranean outflow water (MOW), exist in the Gulf of Cádiz at 400-1200 m water 919 
depth. However, this water mass warms the seafloor and results in variation of the hydrate stability field 920 
through time. Global sea-level changes and subsequent episodic warming by the MOW undercurrents 921 

are the most plausible scenarios for massive hydrate dissociation in the Gulf of Cádiz during the 922 
Quaternary (León et al., 2010). Thus, hydrate could extend beyond the seabed fluid escape structures 923 

where it has been observed, and ultimately the amount of hydrate present is unknown. 924 
 925 
Although hydrate has not been sampled in the mud volcanoes of the Alborán Sea, their presence has 926 

been proposed due to indirect evidence from some mud volcano structures (e.g., Blinova et al., 2011). 927 
Here, hydrate occurrence was inferred from the large gas release during core sampling. Pore water 928 
geochemistry provided further evidence, with a 160 to 600 mMol chlorinity anomaly. The gas was 929 
inferred to be thermogenic and from a deep (around 5 km) source (Blinova et al., 2011). 930 

 931 
9. Eastern Mediterranean 932 

9.1 Geological Setting 933 

The Eastern Mediterranean Sea (Fig. 14) is a diverse composite of tectonic elements, which evolved 934 
through the Mesozoic formation and fragmentation of the northern passive margin of Gondwanaland 935 
and subsequent collision with Eurasia to form a subduction and accretionary complex (e.g., Garfunkel, 936 

2004). An increasing supply of clastic sediments since the Oligocene formed the extensive present-day 937 
Nile fan, extending into the Herodotus and Levant basins and reaching thicknesses of >8 km 938 
(Macgregor, 2012). Restricted connectivity with the Atlantic Ocean during the Messinian salinity crisis 939 

resulted in the deposition of evaporites across the Mediterranean basin and accumulation of ~2 km of 940 

salt within the Levant and Herodotus basins (CIESM, 2008).  941 
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 942 

The Eastern Mediterranean Sea is expected to host a significant amount of hydrate (e.g., Merey and 943 

Longinos, 2018) because large areas of the seabed are located within the HSZ (Fig. 1). The geological 944 
variability of this region offers a variety of potential hydrate depositional environments. The deep-water 945 

temperature ranges between 13 and 14 °C (e.g., Zavatarelli and Mellor, 1995), so that hydrate is only 946 

stable at water depths of  >1000 m (Praeg et al., 2011). The geothermal gradient varies significantly 947 
between 20-30 °C/km in the Nile fan and associated deep basins to the south and ~60 °C/km in the 948 

Aegean (e.g., Makris and Stobbe, 1984), resulting in a variable sub-seafloor depth of the base HSZ 949 
across the area. The Eastern Mediterranean is extremely oligotrophic (Krom et al., 2004). The major 950 

potential sources for hydrocarbon formation are Tethyan deposits, late Messinian shallow water 951 

deposits and Miocene to recent sapropels and other organic-rich intervals (e.g., Merey and Longinos, 952 
2018).  953 

 954 

9.2 Hydrate Occurrence 955 
Multiple observations indicate the availability of gas, required for the formation of hydrate, across the  956 
seafloor. In particular, numerous mud volcanoes are present, primarily along the accretionary complex 957 

and to a lesser degree in the Nile fan (e.g., Mascle et al., 2014; Zitter et al., 2005). Mud volcanoes in 958 
the Olimpi Field and at Anaximander Seamount exhibit gas seeps and broad degassing areas, with 959 

associated chemosynthetic fauna and authigenic carbonates (Aloisi et al., 2000; Zitter et al., 2005). In 960 
both locations, pockmarks have been identified and some of these are filled with brines characterized 961 
by high gas content (Dimitrov and Woodside, 2003). The gas seeps have clear thermogenic signatures, 962 

indicating deep-rooted fluid expulsion sources (e.g., Pape et al., 2010). Away from mud volcanoes, an 963 
abundance of gas, predominantly microbial methane (e.g., Römer et al., 2014; Rubin-Blum et al., 2014), 964 
is indicated by a multitude of deep sea seafloor gas seepage features that have been identified over the 965 
last two decades across the Nile fan (Dupre et al., 2010; Loncke et al., 2004), Levant basin (Tayber et 966 

al., 2019) and Eratosthenes Seamount (Mitchell et al., 2013). These features include gas bubbling, 967 
pockmarks, and authigenic carbonates at the seafloor, and a variety of seismic reflection anomalies 968 

beneath the seabed, including bright spots and seismic blanking. The scope of known seepage is 969 

continuously expanding as new data become available, providing further evidence for the potential for 970 
hydrate formation. 971 
 972 

To date, hydrate has been sampled only in several mud volcanoes of the accretionary complex, starting 973 
in the Anaximander Seamount region (Fig. 14). These include the Kula mud volcano (Woodside et al., 974 
1997), the nearby Amsterdam, Kazan, Athina, and Thassaloniki mud volcanoes (Lykousis et al., 2009; 975 

Pape et al., 2010; Perissoratis et al., 2011), and those in the Olimpi field offshore Crete, including the 976 

Napoli, Milano, Maidstone and Moscow mud volcanoes (Fig. 14; e.g., Aloisi et al., 2000). Most hydrate 977 
samples are within predominantly relatively fine muddy sediments. In most cases the presence and 978 
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dissolution of hydrate was indicated by the soupy texture of the sampled sediments (e.g., Lykousis et 979 

al., 2009) or their signatures in pore water chlorinity and chemistry (e.g., de Lange and Brumsack, 980 

1998a; Pape et al., 2010).  981 
 982 

Analysis of sediments collected at the Mediterranean Ridge (ODP Leg 160, Site 971) suggests locally 983 

massive hydrate occurrence at depths of 1 to over 40 m below seafloor across the summit of Milano 984 
mud volcano (de Lange and Brumsack, 1998a). Based on a porosity of 60% to 40% (ODP Leg 160, 985 

hole 970A), the  total amount of methane stored in this mud volcano as hydrate and free gas equal is 986 
estimated to be 5 × 109 m3 (De Lange and Brumsack, 1998b). In contrast, hydrate samples retrieved at 987 

Kazan mud volcano had a mm-scale rice-like appearance. Those from the summit of Amsterdam mud 988 

volcano occurred as several-cm scale flaky lumps resembling compacted snow, estimated to occupy a 989 
volume fraction of 16.7% within the sediment interval between the sulphate base and the maximum 990 

sampling depth of 2.5 m (Pape et al., 2010). This estimate is based on the analysis of four pressurized 991 

near-surface sediment cores (following e.g., Heeschen et al., 2007). In addition, pore-water analysis 992 
was used to assess the upper limit of hydrate stability. Both of the above hydrate morphologies were 993 
found on the Thessaloniki mud volcano, but the estimated volume fraction in a single 70-cm autoclave 994 

core was only 0.7% (Perissoratis et al., 2011). Lykousis et al. (2009) and Perissoratis et al. (2011) note 995 
that on Thassaloniki mud volcano, located at about 1260 m water depth, methane hydrate is present 996 

mostly just below the calculated upper limit of the HSZ. Thus, hydrate may dissociate due to small 997 
increases in temperature or decreases in pressure or salinity, which might occur due to climate change 998 
or local sediment transport.  999 

 1000 
In spite of the broad coverage of the Eastern Mediterranean by 2D and 3D commercial and academic 1001 
seismic data, only a single observation of a BSR has been reported (Fig. 14; Praeg et al., 2008; Praeg 1002 
et al., 2011). The suggested BSR appears as a discontinuous negative polarity reflection, 220-330 ms 1003 

below the seafloor at water depths of 2000–2500 m on the distal part of the western deep sea Nile fan. 1004 
If a mean seismic velocity of 1.6-1.8 km/s is assumed above the reflection, its depth agrees well with 1005 

the modelled base of the HSZ (Praeg et al., 2017). Direct indications of hydrate stability, and of the 1006 

presence of gas within the HSZ, in the Nile deep sea fan were provided by Römer et al. (2014). They 1007 
observed formation of hydrate within a funnel during the collection of gas emitted from the seafloor. In 1008 
addition, hydrate coating formed on ascending bubbles and dissolved below the modeled top of the 1009 

HSZ. This latter result was supported by echo-sounder imaging. Geochemical analyses of vented gas 1010 
suggest that it predominantly originates from microbial methanogenesis, with traces of thermogenic 1011 
input (Römer et al., 2014).  1012 

 1013 

Based on a statistical analysis of a large 3D dataset covering a significant portion of the Levant basin, 1014 
Tayber et al. (2019) suggest that observed scattered high-amplitude reflectivity there marks a pseudo 1015 
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BSR, representing the presence of hydrate and associated underlying gas within localised sandy buried 1016 

channel systems. Tayber et al. (2019) estimated the hydrate volume associated with these presumed 1017 

accumulations at ~100 Tcf (~3000 GSm3) and its carbon content at ~1.5 Gt.  1018 

 1019 
Figure 14: Bathymetry of the Eastern Mediterranean Sea (from https://www.gmrt.org/GMRTMapTool) 1020 
with a range of seafloor features (e.g., Mascle et al., 2014). Filled circles mark sites where hydrate has 1021 
been sampled and coloured triangles mark other hydrate indicators, as detailed in the text. Black line 1022 
marks the seismic profile along which Praeg et al. (2008) reported a BSR. 1023 
 1024 

10. Sea of Marmara 1025 
10.1 Geological Setting 1026 

The Sea of Marmara is a pull-apart basin linking the onshore North Anatolian Fault with more 1027 

distributed extensional deformation in the Aegean. The current basin geometry appears to have formed 1028 
since 5 Ma by the rotation of several lithospheric blocks (Armijo et al., 1999). The basin reaches a depth 1029 

of over 1300 m and is subdivided into three sub-basins, from west to east named the Tekirdağ, Central 1030 

and Çınarcık basins, separated by basement highs named the Western and Central High, respectively 1031 
(e.g., Le Pichon et al., 2001). It has been extensively studied over the past two decades because of the 1032 
hazardous active fault system that crosses its centre.  1033 
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1034 
Figure 15: a) Faults, bathymetry and topography of the Sea of Marmara. Bathymetry is from Rangin et 1035 
al. (2001) and faults from Sorlien et al. (2012). Red circle shows the study area and yellow line inside 1036 
shows the location of the seismic profile in b). b) Seismic reflection profile showing evidence of shallow 1037 
gas (Sarıtaş et al., 2018). Thick black arrows show gas seeps to seabed. The amount of gas seeps is the 1038 
highest at mud volcano area. Hydrate of thermogenic origin is sampled in the mud volcanoes on the 1039 
western high. High amplitude and reverse polarity bright spots are formed due to gas accumulations. c) 1040 
Seabed morphology of the central Sea of Marmara calculated from 3D seismic data with red dots 1041 
showing gas flares (Saritas, 2013). Yellow circles mark gas seeps from pockmarks, blue circle marks 1042 
seeps from mud volcanoes and green circle marks seeps from the North Anatolian Fault. 1043 
 1044 

10.2 Hydrate occurrence 1045 
Only small areas of the Sea of Marmara are deep enough to fall within the methane HSZ (Fig. 1). 1046 
However, hydrate has been sampled directly (Bourry et al., 2009) on the Western High, where 1047 

indications of sub-seabed fluid escape have been widely observed in seismic profiles around the North 1048 
Anatolian Fault system (e.g., Sarıtaş et al., 2018; Thomas et al., 2012; Fig. 15). Oil seeps have also been 1049 

observed (Crémière et al., 2012). Unequivocal BSRs have not been observed, but high-amplitude 1050 

reflections with reversed polarity that roughly mimic the seabed were clearly imaged in 2D and 3D 1051 
high-resolution multichannel seismic reflection data (e.g., Thomas et al., 2012). The reflections do not 1052 

cross-cut sedimentary strata, which also roughly parallel the seabed, so they may or may not mark the 1053 

base of the HSZ. They are similar to reflections seen in the Sorokin Trough in the Black Sea (Krastel 1054 
et al., 2003). Mud volcanoes, zones of seismic blanking and chimneys reaching the seabed were also 1055 

clearly imaged, suggesting the presence of abundant free gas in the shallow sedimentary column. 1056 

 1057 
Gas sampled from hydrate and bubble plumes was predominantly methane, but ethane, propane and i-1058 

butane were also present, indicating a thermogenic source (Bourry et al., 2009). This thermogenic gas 1059 
may have migrated into shallow sediments via the North Anatolian Fault system from Oligocene to 1060 
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Eocene reservoirs like those in the Thrace basin. Based on the gas compositions observed, both structure 1061 

I and structure II hydrate may be present. 1062 

 1063 
11. Black Sea 1064 

11.1 Geological Setting 1065 

The Black Sea (Fig. 16) is a semi-isolated extensional basin with a maximum water depth of 2212 m. 1066 
Its deep waters (87% of the total volume) form the largest anoxic, hydrogen sulphide and methane 1067 

reservoirs in the world. The amount of dissolved methane contained in the basin (96 Tg) is 2.4-6 times 1068 
greater than the global annual geological methane contribution to the atmosphere (Reeburgh et al. 1069 

1991). 91% of its seafloor is within the range of hydrate stability (Vassilev and Dimitrov, 2002), making 1070 

the Black Sea an interesting target for a European hydrate field study. 1071 

 1072 
Figure 16: Bathymetry of the Black Sea (Smith and Sandwell, 1997) with study areas described in the 1073 

text. 1074 

 1075 
The Black Sea basin is generally thought to have formed in a back-arc environment because of its 1076 

spatial association with subduction of both the Paleo- and Neo-Tethys oceans (Letouzey et al., 1977). 1077 

The timing and style of this opening history remain controversial, partly because the thick sediment 1078 
cover means that the oldest sedimentary fill has not been drilled (e.g., Nikishin et al., 2015; 1079 

Zonenshain and Le Pichon, 1986). The Black Sea is subdivided into eastern and western basins 1080 

separated by the Mid Black Sea High, a SW-NE system of buried basement ridges (e.g, Nikishin et 1081 
al., 2015). Sediments in the Western basin may reach a thickness of up to 19 km (Nikishin et al., 1082 

2003). They include 4-5 km of folded organic-rich Maikopian deposits (Oligocene to lower Miocene) 1083 

and 2-3 km of Cenozoic deposits (e.g., Finetti et al., 1988; Nikishin et al., 2015), which become 1084 
thinner or disappear on the basin margin. Sediments in the eastern basin are thinner – perhaps only 8-1085 

9 km (Shillington et al., 2008). 1086 
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 1087 

11.2 Hydrate occurrence in the western Black Sea 1088 

11.2.1 Offshore Romania and Bulgaria 1089 
The northwestern Black Sea forms the transition zone between the Moesian Platform in the west, 1090 

Scythian Platform in the north and the Western Black Sea Basin in the southeast. Structural styles of 1091 

the Moesian and Scythian Platforms, which correspond to the Bulgarian and Romanian-Ukrainian 1092 
EEZs, are significantly different. The former is quite structured and features normal faults with tilted 1093 

blocks, while the latter is a mosaic of structural styles, with mainly Miocene gravity-driven thrusting, 1094 
folding, toe-thrust and growth and tectonic deformation (Bega and Ionescu, 2009). 1095 

 1096 

The northwest margin of the Black Sea (Fig. 17) is made up of the two largest and thickest organic-rich 1097 
fan complexes in the Black Sea, the Danube and Dniepr fans, built up by the rivers Danube, Dniepr, 1098 

Dniestr and Bug. Sediment deposition and the evolution of these fan systems has been controlled by 1099 

climate and sea-level change (e.g., Ryan et al., 1997). The Danube and Dniepr fans developed from a 1100 
significant stack of paleo-channels and levee deposits (Popescu et al., 2001; Winguth et al., 2000). 1101 
Periodic seabed anoxia made conditions favourable for gas generation, as documented by the presence 1102 

of more than 3000 gas plumes in the water column (Egorov et al., 2011), arranged in a circum-Black-1103 
Sea belt of gas flares. The majority of flares occur in water depths shallower than 665 m, which marks 1104 

the present-day upper limit of the gas hydrate stability zone in the Black Sea. Exceptions are the 1105 
underwater mud volcanoes, generally located in deeper waters, which can expel significant amounts of 1106 
fluids, including methane. However, only 1.9% of the total methane escape from the seafloor reaches 1107 

the atmosphere (Egorov et al., 2011).  1108 
 1109 
Hydrate was first discovered in the area in a core sample by Yefremova and Zhizchenko (1974), with 1110 
the first hydrate sample in the Romanian sector recovered in 2017 (Riboulot et al., 2018). The existence 1111 

of hydrate at depth was inferred from BSRs. However their distribution is not continuous and is limited 1112 
to a few areas (e.g., Popescu et al., 2007; Zander et al., 2017). Hydrate there is of microbial origin, with 1113 

methane δ13C values of −84‰ to −70‰ and concentrations of 99.1–99.9% (Haeckel et al., 2017). 1114 

Organic-rich Maykopian sedimentary deposits are not in a productive state yet and do not provide an 1115 
observable thermogenic methane component. 1116 
 1117 

The HSZ in the northwestern Black Sea is coincident with the Danube and Dniepr fans. Hydrate 1118 
formation in the levees or channel base of these fans is inferred from the presence of BSRs, for example 1119 
in the Danube fan, where multiple BSRs have been observed beneath ancient levee systems (e.g., 1120 

Popescu et al., 2007; Zander et al., 2017; Fig. 18). Zander et al. (2017) inferred that these multiple BSRs 1121 

do not reflect gas composition changes or overpressured compartments, but rather past pressure and 1122 
temperature conditions. Results from thermal models suggest that temperature changes related to 1123 
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rapid sediment deposition, rather than bottom-water temperature or sea level variations, have a primary 1124 

influence over the pressure and temperature conditions resulting in the formation of multiple BSRs 1125 

(Zander et al. 2017).  1126 

 1127 
Figure 17: Bathymetric map of the northwest Black Sea. Background shaded bathymetry from Smith 1128 
and Sandwell (1997) is overlain with shipboard bathymetry compiled by MARUM and GEOMAR. 1129 
Areas with reported gas hydrate indications are marked with shade ellipses. Dashed contour marks the 1130 
upper depth limit of the HSZ at 650 m water depth. Hydrate distribution is derived from Zillmer et al. 1131 
(2005), Popescu et al. (2006), Zander et al. (2017) and Hillman et al. (2018a). 1132 
 1133 
CSEM data collected across and within the channel levee system shown in Fig. 18 revealed highly 1134 

anomalous resistivity values at various depths within the HSZ, which are partly attributed to lower pore 1135 

water salinities (around 4 ppm; Bohrmann et al., 2018), but also suggest a high hydrate saturation of 1136 
possibly up to 20-30% within the channel filling sediments and below the western levee.  1137 
 1138 

The availability of structural and stratigraphic constraints from deep-penetrating seismic data has 1139 
enabled the development of a basin scale numerical model to investigate the production and migration 1140 
of gas and resulting hydrate distribution (Hillman et al., 2018a). Sediment structure, slope failures and 1141 

distribution of BSRs are imaged on shallow seismic data (Hillman et al., 2018b; Popescu et al., 2007; 1142 
Zander et al., 2017). These data have enabled the development of a stratigraphy for the slope deposits 1143 
and mass transport events inferred from that of Winguth et al. (2000), although in the absence of 1144 

sufficient sediment samples there remains some uncertainty in the dating of these deposits. Dating has 1145 
come from the ASSEMBLAGE project (Lericolais et al., 2013) and DSDP Leg 42 (Stoffers et al., 1978). 1146 

Mapping of active gas seeps using water column imaging, and gas-related structures in seismic profiles, 1147 
have been used to describe the plumbing system in the canyon and levee systems (Hillman et al., 2018b). 1148 

Many of the active gas seeps correlate with sub-seafloor gas migration structures such as chimneys or 1149 
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pipes. There is an apparent correlation between gas vents and submarine landslide features, but there 1150 

are insufficient data to determine whether gas migration has played a causative role in triggering such 1151 

slope failure events (Hillman et al., 2018b). Changes in climate, resulting in changes in the HSZ, and 1152 
the identification of paleo seafloors, have together been used to explain the origin of the multiple BSRs 1153 

(Zander et al., 2017). Modelling of the HSZ using inputs from 2D and 3D seismic data has indicated 1154 

that the hydrate system may be in a transient state, with factors such as topographic focusing of heat 1155 
flow playing a significant role in controlling the location and distribution of hydrate (Hillman et al., 1156 

2018a).  1157 

 1158 
Figure 18: Multichannel seismic data example of today’s BSR (BSR 1) and multiple BSR occurrences 1159 
(BSR 2 to 4) in the Danube fan. While BSR 1 extends over the entire channel levee system the multiple 1160 
BSRs disappear towards the channel structure (SUGAR channel). Insets zoom into the BSR events and 1161 
highlight the increased reflection amplitudes where inversion point and termination indicate the BSR 1162 
position. Data acquired during cruise MSM34 (Bialas et al., 2014). 1163 
 1164 

Seismic velocities from analysis of OBS data were used to provide the first estimates of possible gas 1165 
and hydrate concentrations in the Bulgarian sector of the northwestern Black Sea. The resulting 1166 

velocity-depth sections represent average velocities for sediment packages of about 100 m thickness. 1167 

Estimates of average hydrate saturations in the pore space based on these seismic velocity distributions 1168 
are up to 10% or 30-40%, depending on the hydrate morphology assumed. CSEM data were acquired 1169 
to further investigate gas and hydrate distribution in the sediments. Hydrate saturation estimates derived 1170 

from CSEM datasets depend on the porosity and pore water salinity, and the appropriate choice of 1171 
Archie parameters. These studies suggest saturations in the range of 20-30% in parts of the HSZ. It is 1172 

likely that the highest hydrate saturations are be located within coarser grained, sand-rich sediments in 1173 
the channel systems and intermittently distributed through the levees (Zander et al., 2017).  1174 
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 1175 
Figure 19:  Seismic line parallel to coastline offshore Trabzon area, showing fault related volcanic 1176 
dome structure at the eastern side of the section and a BSR at around 300 ms below the seafloor 1177 
(Gunduz, 2015). The Trabzon fault is a strike-slip fault. Acoustic blanking below the BSR may 1178 
indicate free gas. Acoustic blanking is also present in deeper parts of the section. 1179 
 1180 

11.2.2 Offshore İğneada 1181 
Regional seismic data acquired across the continental shelf and slope offshore İğneada (Fig. 16) show 1182 

folded sediments with gas accumulations beneath structural highs, evidenced by seismic blanking 1183 
zones, fluid escape structures and a reef structure (Özel, 2012). Fault systems penetrate the shallow 1184 

sediments beneath these ridges and cross the gas-charged lithologies, suggesting the presence of 1185 
hydrocarbon migration pathways. One profile displays BSRs across the continental slope. However, the 1186 

distribution of hydrate at this site is not well understood due to large inline and cross-line intervals. 1187 

Other profiles show high-amplitude, reversed-polarity reflections that mimic the seabed but do not 1188 
cross-cut stratigraphy, at a depth that is significantly different from that of the unequivocal BSRs. The 1189 

origin of these features remains uncertain. Hydrate was recovered at an acoustically transparent feature 1190 

observed in sub-bottom profiler data that protrudes from beneath the hemipelagic cover, interpreted as 1191 
a mud volcano (Fokin et al., 2005). Numerous carbonate-cemented layers and a mousse-like breccia 1192 
below were also observed. 1193 
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11.2.3 Offshore Zonguldak-Amasra 1196 

The Zonguldak-Amasra area is one of the best-studied in terms of shallow gas and hydrate. Geological 1197 

and geophysical investigations, including conventional and high-resolution seismic data, chirp sub-1198 
bottom profiler data, multibeam bathymetry and direct sampling, have shown the presence of gas and 1199 

indications of gas hydrate (Küçük et al., 2015). Dissolved gas in the shallow sediments contains 1200 

hydrocarbons ranging from methane to hexane, suggesting a thermogenic gas source in addition to 1201 
microbial gas in the shallow sediments. Seismic evidence for the presence of seven different mud 1202 

volcanoes and a large number of buried and active gas chimneys was found in this region. Widespread 1203 
seismic blanking zones were observed also beneath the HSZ, with up to 25 km lateral extent. Chirp 1204 

sub-bottom profiler data show many chimney structures in the first 40-50 m below the seabed and sparse 1205 

gas anomalies were observed on seismic data in various locations. Both continuous and discontinuous 1206 
BSRs have been widely observed at this site. Multiple BSRs were also imaged, with up to five 1207 

successive BSRs. These additional BSRs may have a similar origin to those imaged in the Danube fan 1208 

(section 11.2.1) or may be attributed to a variety of different gas compositions with different stability 1209 
limits. In addition to structure I and structure II hydrate, structure H hydrate might be present at this 1210 
site, indicated by the presence of i-Pentane gas in a gas composition similar to that observed in the Gulf 1211 

of Mexico (Sassen and MacDonald, 1994). 1212 

 1213 

11.3 Hydrate occurrence in the eastern Black Sea 1214 

11.3.1 Offshore Samsun 1215 
High-resolution seismic data and sediment cores are available from this region (e.g., Dondurur and 1216 

Çifçi, 2009). Indications of shallow gas, such as buried and active pockmarks and seismic blanking 1217 
zones, were imaged in seismic data. Here, hydrate may be present at relatively shallow water depth 1218 
(250-700 m). Bright reflections on the upper slope have been interpreted as hydrate-bearing 1219 

sedimentary units. The presence of hydrate at such shallow water depths could be explained by the 1220 
presence of hydrogen sulphide in the gas, which shifts the phase boundary to higher temperatures and 1221 

lower pressures (Dondurur and Çifçi, 2009). 1222 

 1223 

11.3.2 Offshore Hopa-Rize-Trabzon-Giresun 1224 

Three-dimensional seismic data offshore Hopa show the presence of a widespread BSR that is most 1225 

prominent beneath structural highs (Minshull and Keddie, 2010). A dense grid of seismic data offshore 1226 
Rize and Trabzon showed widespread indications of shallow gas and gas hydrate (Fig. 19). Chimneys, 1227 

seismic blanking zones, gas charged sediments, mud diapirs and mud volcanoes are all present. These 1228 

were observed around crustal-scale faults that suggest migration from depth. Both continuous and 1229 
discontinuous BSRs have been clearly imaged. No hydrate indicators have been identified in regional 1230 

seismic data offshore Giresun.  1231 
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 1232 

12. Discussion 1233 

Although methane hydrate is stable in large areas of European margins, numerical models of microbial 1234 
gas generation suggest that significant microbial hydrate accumulations are unlikely to be widespread 1235 

(e.g., Archer et al., 2009; Wallmann et al., 2012). This result is a consequence of low predicted organic 1236 

carbon accumulation rates in the parts of European margins that are deep enough for hydrate stability. 1237 
This prediction is supported by observations of particulate organic carbon concentrations in surface 1238 

sediments (Wallmann et al., 2012). Consistent with these modelling considerations, most of the hydrate 1239 

occurrences described above are associated with conventional hydrocarbon provinces, and where there 1240 
are data available on hydrate-forming gas compositions or isotopic ratios, these data commonly suggest 1241 

the presence of gas that is at least partly of thermogenic origin. Direct sampling of hydrate is mostly at 1242 

fluid escape features such as pockmarks or mud volcanoes, so we cannot rule out the possibility that 1243 
the sample locations are unrepresentative. 1244 

  1245 
Offshore Greenland, the search for hydrate is still at an early stage, although the physical and 1246 
oceanographic settings of these margins are perfect for hydrate formation. Investigations suggest a high 1247 

potential for oil and gas within out- or shallow sub-cropping sedimentary basins in the west and 1248 
northeast Greenland margins. The onshore observations of oil seeps in central west Greenland confirm 1249 
the existence of an active hydrocarbon system here and the discovery of onshore hydrate indicates that 1250 

gas is migrating from the system and likely forms hydrate. Such gas migration is also suggested by 1251 
indirect evidence from seismic and shallow cores offshore. Further offshore on the west Greenland 1252 

margin, observed BSRs and seismic blanking may also provide evidence of hydrate occurrence. Thus 1253 
it is likely that hydrate is present on the central west Greenland margin and, based on the onshore oil 1254 
discoveries, the hydrate could contain a high portion of thermogenic gas. Hydrate has not yet been 1255 

reported on the east Greenland margin, which is likely due to the lack of research and wells on this 1256 
margin. However, a gas-show in ODP well 909, together with the presence of BSRs and other seismic 1257 

indicators, may provide evidence for an active hydrocarbon system forming hydrate in the northeast 1258 

Greenland margin.  1259 

 1260 

Offshore Svalbard, the hydrate system has characteristics that may be unique among hydrate systems 1261 

worldwide. It stretches from the continental slope onto the mid-ocean ridge, thereby experiencing 1262 
significant changes in thermodynamic conditions, and it may be the only hydrate system in the world 1263 

that forms from hydrocarbon gas of three different sources, namely microbial, thermogenic and abiotic 1264 

gas. However, the relative contribution of each of these sources is still unknown and may show 1265 
significant local variations. The structural-stratigraphic development of this area has led to the 1266 

formation of distinct sedimentary depocentres and fluid migration pathways, thereby controlling the 1267 

distribution of hydrate. At present, the total distribution extends over approximately 4000 km2 with the 1268 
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main accumulation in the Vestnesa Ridge and many smaller patches of hydrate in close vicinity. Yet 1269 

large parts of this area remain unmapped and potentially hold much more hydrate if the hypothesized 1270 

abiotic origin of gas in hydrate is confirmed as a potential hydrate play. Nonetheless, current estimates 1271 
of hydrate saturations so far are sufficiently low that the economic value of hydrate offshore Svalbard 1272 

is questionable. 1273 

 1274 
Onshore Svalbard, on average, the modelled HSZ thickness reaches 300 m, with the thickest zones 1275 

extending from about 75 m to up to 725 m below the surface, which are the minimum and maximum 1276 
depths at which hydrate is expected to form, based on regionally constrained thermobaric conditions. 1277 

Variable pore water salinities, anomalous regional pressure regimes, uncertainties in regional 1278 

geothermal gradients and changing temperature conditions put a limit on the model’s accuracy further 1279 
away from Nordenskiöldland, where regional datasets and constraints afford good control. In addition, 1280 

the model takes no account of factors likely to control hydrate presence, such as fluid migration 1281 

pathways and local biogeochemistry. The ongoing study of the onshore HSZ in central Spitsbergen and 1282 
archipelago-wide is pivotal to the mapping of the potential occurrence of onshore hydrate 1283 
accumulations and compliments the significant findings made offshore. 1284 

 1285 
The Barents Sea exhibits widespread evidence for thermogenic hydrate occurrence and is a unique 1286 

region where hydrate is hosted in consolidated sedimentary formations and likely co-exists with 1287 
conventional petroleum reservoirs. Seismic data analysis by Laberg et al. (1998) and patchy BSR 1288 
distribution indicate relatively low resource potential, but the free gas trapped beneath the BSR could 1289 

still be of commercial interest. Despite increased petroleum exploration activities in recent years, 1290 
none of the BSRs identified in the southwest Barents Sea have yet been drilled or sampled. The 1291 
presence of hydrate stability conditions within the major shallow reservoirs in the region, however, 1292 
has attracted increased attention towards hydrate from commercial exploration companies (Norwegian 1293 

Petroleum Directorate, 2018). 1294 
 1295 

On the mid-Norwegian Margin, the BSR only occurs within finely bedded contouritic and 1296 

hemipelagic deposits (mainly silty clays) of the Quarternary Naust formation, which seem to be the 1297 
favourable host sediments for hydrate. The extent of hydrate is geologically controlled by hydrate 1298 
stability conditions that exclude hydrate on the continental shelf, and the availability of the suitable 1299 

host rock elsewhere. Bünz et al. (2003) suggest that hydrate on the mid-Norwegian margin develops 1300 
from fluids that originate far beneath the HSZ. Deep-seated Cenozoic dome structures with inferred 1301 
hydrocarbon reservoirs might be one source of gas, though gas compositions from limited sampling 1302 

suggest a primarily microbial origin. Using the approach of Max and Johnson (2016), hydrate on the 1303 

mid-Norwegian margin can be classified as a low grade deposit with little economic value. 1304 
 1305 
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Offshore Ireland, the Druid Anomaly over the Feni Drift in the Rockall Basin, and contourite deposits 1306 

in the Porcupine Basin, have been identified as potential targets for further hydrate exploration. 1307 

Furthermore, exploration in deep water for conventional hydrocarbons in the South Porcupine Basin 1308 
requires better definition of the HSZ to mitigate against the risk of hydrate dissociation while drilling 1309 

and consequent uncontrolled gas release. More seismic interpretation, followed by seabed sampling 1310 

and shallow drilling, are required to identify hydrate. As more conventional oil and gas wells are 1311 
drilled offshore Ireland, new geothermal gradient data will be acquired that will contribute to a better 1312 

definition of the HSZ.  1313 
 1314 

On the northwest continental margin of Iberia, the occurrence of hydrate is uncertain. Although some 1315 

data suggest that the sedimentary and geomorphological evolution of the area is controlled by fluid 1316 
dynamics associated with gas seepage, and occasional weak indicators of gas have been described (e.g., 1317 

possible BSR, seismic bright spots and liquefaction of a sediment core), none are conclusive.  1318 

 1319 
On the South Iberia and Northwest Africa margins, direct evidence for hydrate has been found only in 1320 
the mud volcanoes of the Gulf of Cádiz. Indirect evidence has been detected on both sides of the Straits 1321 

of Gibraltar, mostly associated with mud volcanoes and mud diapirs, but also in the form of localised 1322 
BSRs, degassing and liquefied sediments in cores, and by the presence of chlorinity anomalies. The 1323 

preferred migration pathways for fluids into the basin are the main tectonic structures such as diapirs, 1324 
folds and faults. The composition of the pore fluids and hydrate sampled in the Gulf of Cádiz indicate 1325 
generally a mixture of microbial and thermogenic sources. However, in some mud volcanoes associated 1326 

with the deep SWIM strike-slip faults, an abiotic source is also possible, connected to hydrothermal 1327 
fluids in the oceanic domain. Thus the Gulf of Cádiz has a variety of sources of gas and geological 1328 
settings for hydrate formation. In the case of the Alborán Sea, gas is present in diapiric formations 1329 
originating in the basal allochthonous unit and is likely to be thermogenic. 1330 

 1331 
In the Eastern Mediterranean, hydrate sampling is also limited to mud volcanoes. There is little 1332 

published work on seismic indicators of hydrate presence, although extensive exploration datasets 1333 

provide opportunities for further analysis. The high sensitivity of the ocean here to climate and 1334 
oceanographic changes may provide a natural laboratory to investigate the influence of these changes 1335 
on hydrate stability, as well as the potential impacts.  1336 

 1337 
In the Sea of Marmara, there is abundant evidence for the presence of gas within the HSZ and hydrate 1338 
has been directly sampled in the top of a mud volcano, but unequivocal BSRs have not been observed, 1339 

so the amount of the hydrate present is difficult to assess. 1340 

 1341 
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In the Black Sea offshore Romania and Bulgaria, diverging results on possible hydrate saturations 1342 

demonstrate the need to ground-truth models by collecting samples from deep drilling with logging and 1343 

core sampling. Physical sediment parameters, heat-flow measurements, geochemical data and sediment 1344 
dating are required to calibrate the remote sensing techniques and to enable the extension of available 1345 

models along the margin. Changes in climate such as the last glacial maxima (LGM) caused a bottom 1346 

water temperature decrease from 9° C to about 4-6° C, a sea-level decrease of about 120 m and the 1347 
development of limnic conditions as the Bosphorus interface to the Mediterranean was closed. These 1348 

changes caused a decrease in the maximum thickness of the hydrate stability field by about 33%, from 1349 
550 m to 370 m (Zander et al. 2017). This change may have released 1.1-4.6 Gt of methane carbon as 1350 

the hydrate dissociated (Poort et al. 2005). Ongoing salinity increases in the Black Sea sediments will 1351 

shift the top of the HSZ in the future, causing further hydrate dissociation (Riboulot et al., 2018). 1352 
Furthermore, a mis-match between modeled HSZ limits and observed BSR depths suggests that the 1353 

hydrate system of the Black Sea is currently not in equilibrium but is approaching steady state (Hillman 1354 

et al., 2018a).  1355 
 1356 
On the southern continental slope and rise of Black Sea, BSR occurrences are mapped in water depths of 1357 

750-2000 meters from high resolution multichannel seismic reflection data. Also, chirp data suggest the 1358 
presence of gas accumulations at shallow sediment depths (30-40 m). Slope failures are widespread along 1359 

both the western and eastern steep canyon systems. The presence of hydrate is not restricted to these areas 1360 
but is probably much more extensive. Hydrate samples have been reported widely across the Turkish 1361 
Black Sea margin in BSR and mud volcano areas. Free gas is inferred to occur beneath the BSR, as 1362 

indicated by seismic bright spots and areas of seismic blanking. The presence of gas seeps to the seabed 1363 
through the hydrate stability zone, via mud volcanoes and fault zones, provides evidence for free gas 1364 
below the hydrate zone. Mapping of active gas seeps using water column imaging and sampling of free 1365 
gas in water samples and sediments will give information about the origin of the gas, which could be 1366 

microbial or thermogenic or both, as in the Amasra area. 1367 
 1368 

Thus we can categorise areas covered by our study into three types: 1369 

1. Areas of widespread BSRs: the Davis Strait, Fram Strait, the mid-Norwegian margin, and the 1370 
southern margin of Black Sea. 1371 

2. Areas where there is no BSR, or the BSR is localised rather than widespread, but hydrate has 1372 

been directly sampled: the Barents Sea, the Gulf of Cadiz, the Eastern Mediterranean, the Sea of 1373 
Marmara, and the Black Sea offshore Bulgaria and Romania. 1374 

3. Areas with neither a clearly identified BSR nor direct sampling of hydrate, but where other more 1375 

indirect hydrate indicators are present: the Disko area offshore west Greenland, the northeast  1376 

Greenland margin, onshore Svalbard, offshore Ireland, and offshore northwest Iberia. 1377 
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Where hydrate has been sampled, it usually contains higher hydrocarbons, indicating a thermogenic 1378 

component; an exception is the Black Sea offshore Romania and Bulgaria, where only trace amounts of 1379 

higher hydrocarbons are present. 1380 
 1381 

13. Conclusions 1382 

From our review of hydrate occurrence around Europe, we conclude: 1383 
1. There is direct or indirect evidence for the presence of hydrate in several European locations 1384 

including the western and eastern margins of Greenland, onshore and offshore Svalbard, the 1385 
Barents Sea, the mid-Norwegian margin, the Atlantic margin of Ireland, the eastern 1386 

Mediterranean Sea, the Sea of Marmara, and the western and southern margins of the Black 1387 

Sea. 1388 
2. Hydrate is observed to be particularly widespread offshore Svalbard and Norway and in the 1389 

Black Sea. 1390 

3. Areas with strong evidence for the presence of hydrate commonly coincide with conventional 1391 
thermogenic hydrocarbon provinces.  1392 

4. Although hydrate systems are well explored in a few small areas, for most European margins, 1393 

significant further research is needed to determine the regional abundance of hydrate beneath 1394 
the seabed. 1395 
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