1 <u>Title:</u>

- 2 A conceptual model for the analysis of multi-stressors in linked groundwater–surface water
- 3 systems.
- 4

5 <u>Authors</u>

6	Vince P Kaandorp	Department of Subsurface and Groundwater Systems, Deltares,
7		Utrecht, the Netherlands
8		Department of Earth Sciences, Utrecht University, Utrecht, the
9		Netherlands
10	Eugenio Molina-Navarro	Department of Bioscience, Aarhus University, Silkeborg, Denmark
11	Hans E Andersen	Department of Bioscience, Aarhus University, Silkeborg, Denmark
12	John P Bloomfield	British Geological Survey, Wallingford, UK
13	Martina JM Kuijper	Department of Subsurface and Groundwater Systems, Deltares,
14		Utrecht, the Netherlands
15	Perry GB de Louw	Department of Subsurface and Groundwater Systems, Deltares,
16		Utrecht, the Netherlands
17		

18 <u>Abstract</u>

19	Groundwater and surface water are often closely coupled and are both under the influence of
20	multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface
21	waters but to date no conceptual framework to analyse linked multi-stressed groundwater – surface
22	water systems has been developed. In this paper, a framework is proposed showing the effect of
23	groundwater on surface waters in multiple stressed systems. This framework will be illustrated by
24	applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands,
25	and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-
26	stressors through groundwater to surface waters in these catchments. It is shown that groundwater
27	affects surface water flow, nutrients and temperature, and can both propagate stressors towards
28	surface waters and buffer the effect of stressors in space and time. The effect of groundwater on
29	drivers and states depends on catchment characteristics, stressor combinations, scale and

30	management practises. The proposed framework shows how groundwater in lowland catchments
31	acts as a bridge between stressors and their effects within surface waters. It shows water managers
32	how their management areas might be influenced by groundwater, and helps them to include this
33	important, but often overlooked part of the water cycle in their basin management plans. The
34	analysis of the study catchments also revealed a lack of data on the temperature of both
35	groundwater and surface water, while it is an important parameter considering future climate
36	warming.

37

38 <u>Keywords</u>

39 Multiple stressors, Groundwater – Surface water interaction, Nutrients, Flow, DPSIR framework

40 Graphical Abstract

Research Highlights

43	•	A framework is proposed to analyse stressors in groundwater-surface water systems
44	•	This is the first application of the DPSIR scheme to groundwater systems
45	•	Groundwater can act as a medium for the propagation of stressors to surface water
46	•	Groundwater can buffer the effect of stressors in time and space
47	•	A need for more ground- and surface water temperature data is identified

49 **1. Introduction**

50 Europe's groundwaters and surface waters are affected by multiple anthropogenic stressors (Hering 51 et al., 2014) which are having an impact on their status. For example, approximately 20% of Europe's 52 groundwater bodies have a poor chemical status, while about 50% of the surface water bodies have 53 failing ecological statuses (European Environmental Agency, 2012). Groundwater and surface water 54 are not separate components of the hydrological system, rather they are linked and interact over a 55 wide range of physiographic and catchment settings (Winter et al., 1998; Woessner, 2000; 56 Sophocleous, 2002; Dahl et al., 2007). Consequently, the use and development of or contamination 57 of one or other resource can have an effect on the other component of the system (Sophocleous, 58 2002). Many aquatic ecosystems in lowland streams are dependent on a supply of groundwater 59 (Brunke and Gonser, 1997; Hatton and Evans, 1998; Power et al., 1999; Wriedt et al., 2007) and 60 together with specific terrestrial ecosystems are referred to as Groundwater Dependent Ecosystems 61 (GDEs) (Hancock et al., 2005; Kløve et al., 2011). Because groundwater-surface water (GW-SW) 62 systems are often so closely coupled, stressed groundwater systems may lead to a poor ecological 63 status of surface waters (Kløve et al., 2011). Much research has already been undertaken on the 64 effect of stressors on surface waters (e.g. Feld and Hering, 2007; Stendera et al., 2012; Nõges et al., 65 2015; Piggott et al., 2015; Baattrup-Pedersen et al., 2016; Schülting et al., 2016). And although a 66 significant body of research has been developed over the last 50 years or so related to a wide range 67 of aspects of GW-SW interactions – in particular the implications for ecological functioning of the 68 riparian zone (Fleckenstein et al., 2010), Sophocleous (2002) identified the following, still unresolved, 69 research challenge: how to better understand the environmental impacts of multiple processes that 70 affect both groundwater and surface water across multiple spatio-temporal scales. In the same 71 paper, Sophocleous (2002) cited a conceptual model of Brunke and Gonser (1997) who 72 diagramatically illustrated how human induced pressures from contamination, land-use practices 73 and hydro-engineering impacted on one specific GW-SW interaction, colmation - the clogging of 74 stream-bed sediments, and the ecological consequences. Despite this intial problem-specific

example, to date no comprehensive conceptual framework has been developed to analyse linked
stressed GW-SW systems. The objective of this paper is to address that issue by proposing a
framework to help analyse the effect of groundwater on surface waters in multiply stressed systems.
This will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge
and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the
propagation or buffering of multi-stressors through groundwater to surface waters in these
catchments.

82 Here we hypothesise that groundwater affects surface water in a stressed system in two ways: it 83 enables the propagation of stressors spatially and in time through catchments towards surface water, 84 and in addition it acts as a buffer to stressors as they pass through the terrestrial water cycle to 85 surface waters and adds time lags and attenuates stressor signals (in a manner similar, for example, 86 to the attenuation and lagging of naturally occuring droughts in the terrestrial water cycle, Van Loon, 87 2015). Groundwater functions as a connection between a catchment and connected streams, for 88 example by transmission of time varying heads or by advection and diffusive transport propagating a 89 range of potential stressors towards surface waters. This way, a stressor located somewhere in a 90 GW-SW connected catchment may have an impact on the surface water downstream, even without 91 any direct connection via the surface. However, groundwater may also buffer the effect of stressors 92 as it yields a 'mean' environmental flow and buffers chemistry and temperature in time and space. 93 Streamflow is a mixture of water from different flow routes: overland flow, flow through shallow 94 groundwater including subsurface drains, and deep groundwater flow which have different travel 95 times. The contribution of groundwater to streams and rivers is spatially and temporally 96 heterogeneous, and changes from upstream to downstream (Modica et al., 1997; Gkemitzi et al., 97 2011). The buffering of stressors by groundwater could mean that groundwater fed surface waters 98 are more resilient to stressors than surface water without a groundwater input.

99 In order to develop the conceptual framework we focus on three aspects of GW-SW systems, 100 namely the role of groundwater in influencing: streamflow, nutrient chemistry and surface water 101 temperature. Discharge from groundwater is delayed compared to discharge from direct 102 precipitation and overland flow and therefore leads to a more stable streamflow (Smakhtin, 2001). 103 When precipitation infiltrates to groundwater, its temperature quickly equilibrates to around the 104 annual mean when it reaches a depth of generally up to several meters. This is for instance a 105 temperature of 10-11 °C for the Netherlands (Bense and Kooi, 2004) and circa 9 °C for Denmark 106 (Matheswaran et al., 2014). Therefore, as opposed to the seasonally and diurnally fluctuating 107 temperature of surface waters, the direct discharge of groundwater into a stream is characterized by 108 a relatively stable temperature. Seepage of groundwater influences stream temperature through a 109 complex interplay of processes with strong spatial and temporal differences (Conant, 2004; Caissie, 110 2006). Surface water chemistry is a mixture of the chemistry of all the (groundwater) flow paths it 111 sources from. As such, freshwaters are directly influenced by the quality of groundwater (Rozemeijer 112 and Broers, 2007). Timescales of groundwater flow are important because groundwater with different travel times is characterized by different chemical compositions. The water chemistry is 113 dependent on the flow path and travel time through the subsoil which determine the loading during 114 115 recharge at source, the chemical interaction with sediments and the time available for chemical 116 reactions.

Following a description of the conceptual framework, the four catchments are briefly described and
then each in turn is analysed in the context of the conceptual framework. The framework is then
used to compare the drivers, pressures and selected abiotic states between the four catchments.
Stressor interactions, propagation and buffering in the groundwater compartment are discussed.
Finally, the implications for ecosystem status, management options and needs for future monitoring
are considered.

123

124 **2.** Conceptual framework for multi-stressor analysis of GW-SW systems

125 We propose that the analysis of multi-stressors in linked GW-SW systems and implications for abiotic 126 (and biotic) status of surface waters in lowland catchments can be facilitated by a variant of the 127 Driver-Pressure-State-Impact-Response (DPSIR) model (OECD, 1993; Svarstad et al., 2008). The DPSIR 128 scheme and variants thereof conceptualize and couple natural-social systems and are used for 129 example in European environmental assessments and various large European funded projects 130 (European Environmental Agency, 1999; Kristensen, 2004) as well as extensively in different fields 131 related to: the terrestrial water cycle; marine (Patrício et al., 2016); coastal (Gari et al., 2015); and, onshore systems (Hering et al., 2014; Lange et al., 2017). The models describe a casual cascade of 132 133 effects from drivers to pressures on the system, which lead to system states, which have an impact 134 which then precipitate a societal response. This response can be linked back to and affect the drivers, 135 pressures, states or impacts. Multiple feedbacks and linkages can be added to the DPSIR scheme, 136 depending on required detail and complexity and it can thus be used to describe for instance 137 connections in a system under multiple-stress (Hering et al., 2014).

138 For the purposes of the present analysis, and as a first step, we use the framework and focus on the 139 DPS components, where we only consider the abiotic status of groundwater and surface water. The 140 Groundwater DPS framework is presented in Figure 1 and covers key drivers, pressures and states, 141 which relate groundwater to surface water. Here we take the abiotic states of surface water as 142 proxies for the ecological status (as described in Grizzetti, et al., 2015). The groundwater system 143 functions as a bridge between drivers and pressures on the one hand and the surface water state on 144 the other hand, as will be demonstrated using examples later in this paper. The effect of 145 groundwater state on surface water state is governed by the connectivity and residence time of the 146 groundwater. The groundwater DPS framework can be applied to a wide range of scales varying 147 from stream stretch to catchment scale.

Figure 1. The Groundwater DPS shows how drivers are connected through groundwater with surface
waters where they function as a pressure and affect abiotic state. Industry and point pressures will not
be part of the analysis in this paper and are therefore marked grey.

153 Important groundwater drivers of change in connected European GW-SW catchments include urban 154 development, agricultural intensification, climate change and industrialisation of the landscape. For 155 example, both urban development and agricultural intensification of the landscape can result in 156 increased groundwater abstractions, while additionally agricultural intensification can cause 157 modification to groundwater drainage and is a major source of diffuse pollution, including increased 158 loading from nutrients such as nitrogen and phosphorous. It is postulated that these drivers 159 propagate and interact through the groundwater system ultimately affecting surface water quality, 160 quantity and temperature. 161 The groundwater abstraction, groundwater drainage and climate drivers of change lead to changes 162 in storage and flow of the groundwater system, a pressure designated as geohydrological alteration. 163 The abstraction of groundwater may change groundwater flow, recharge and discharge regimes to the surface water (Zhou 2009), and any water that is removed from a catchment's water balance is 164 165 no longer available for surface waters. Groundwater abstractions can reduce stream baseflow

166 (Henriksen et al., 2008; SKM, 2012; Hendriks et al., 2014) and because of this, groundwater pumping 167 is an important stressor on a stream's ecosystem. While the abstraction of surface water has a clear 168 immediate effect on stream discharge (Winter et al., 1998; SKM, 2012), the effect of the abstraction 169 of groundwater is delayed in time (Custodio, 2000). In many catchments, part of the groundwater 170 discharge comes from subsurface drainage pipes or small ditches because agricultural and urban 171 areas are often drained intensively. Studies in the USA show examples of catchments where 172 between 41% and 81% of annual stream discharge comes from drainage pipes (Xue et al., 1998; King 173 et al., 2014). Subsurface drainage can be a pressure as it has an effect on groundwater storage and 174 therefore on a catchment's flow regime. Depending on the local settings, subsurface drainage 175 increases peak flows while reducing baseflow by providing a fast flow path to the surface water 176 (Irwin and Whiteley, 1983; Carluer and De Marsily, 2004) or decreases peak flows and increases 177 baseflow (Irwin and Whiteley, 1983; Schilling and Libra, 2003; Blann et al., 2009; King et al., 2014). 178 The groundwater flow system may also be influenced by climate change because different 179 temperatures and precipitation patterns lead to changes in evaporation, groundwater recharge and 180 groundwater levels (Gkemitzi et al., 2011; Green et al., 2011; Taylor et al., 2013). Increasing 181 evaporation and a decrease in precipitation may reduce groundwater recharge and lower 182 groundwater levels (Singh and Kumar, 2010). If this is the case, the amount of groundwater available 183 to surface waters is lowered and consequently the amount of baseflow provided by groundwater 184 seepage. An additional pressure driven by climate change is a change in thermal regime, i.e. changes 185 in groundwater temperatures. Geohydrological alteration can also be a driver for changes in the 186 thermal regime of the groundwater, as changing flow can lead to a change in the temperature of 187 groundwater. Groundwater temperature changes can ultimately affect surface water temperature 188 by a shift in the temperature of seepage.

Agriculture leads to diffuse pressure due to the application of nutrients while geohydrological

alteration can affect nutrient concentrations through changing flow paths and speeds.

191 Anthropogenic nutrient inputs have increased levels of N and P in surface waters by up to a 10-fold

192 (Vitousek et al., 1997). The most important anthropogenic sources of nutrients are direct into the 193 surface water through waste water treatments plants and diffuse by input from agriculture. 194 Nutrients from agriculture can directly enter the surface water through overland flow but also 195 through subsurface drains and deeper groundwater. Of all groundwater bodies in Europe, about a 196 third has been reported to exceed the guideline values for nitrate, which is acknowledge as a risk in 197 causing nitrate pollution of surface waters (European Commission, 2008). Subsurface drainage has 198 been found to be the most important route for nitrate loss from agricultural fields (Rozemeijer et al., 199 2010; Blann et al., 2009) as it provides a short-cut towards the surface water and thus provides 200 surface water with groundwater with a short travel time which has had little time for denitrification 201 processes. Phosphorous is considered the most important factor in causing eutrophication because 202 most surface waters are P-limited (Elser et al., 2007). P is easily bound to sediments and is therefore 203 often retarded in the unsaturated zone (Hamilton, 2012). However, phosphorus is transported by 204 the groundwater when it is released within the groundwater or when groundwater levels rise up to 205 and dissolve P-containing sediments (Dupas et al., 2015).

Although point source pressures driven by industry or urban areas are present in many catchments, their effect and behaviour are very case specific and thus for chemical pressures our focus will be restricted to diffuse pollution and specifically nutrients. Future climate change is not part of the case study analyses, but will be included in the discussion.

210

211 3. The study catchments

This study focuses on the catchments of the Odense in Denmark, the Regge and Dinkel in the Netherlands, and the Thames in the United Kingdom (Figure 2 and Table 1). All four are permeable lowland agricultural catchments and as such there is interaction between groundwater and surface water over a range of spatial and temporal scales, even though the details of the geological and hydrogeological settings may differ. The catchments range in size from 340 km² for the Regge, to
9948 km² for the Thames. In all four agriculture is the main land-use (Table 1), while they also
include forest and urban areas. The catchments of the Odense, the Regge and the Dinkel include
smaller cities such as the city of Odense, Hengelo and Enschede. The catchment of the Thames
contains the Greater London area with a population of about 15 million as well as a number of other

221 large urban areas.

222 223

Figure 2. Location of the four study catchments.

Table 1. Selected characteristics of the four study catchment: size, primary land use, average annual
 air temperature, precipitation and flow, Baseflow Index and geology.

Catchment	Size	Land use	T [°C]	P [mm]	Q [m ³ s ⁻¹]	BFI	Hydrogeology
1. Odense	1061 km²	Agriculture (68%)	9.0	800	10.4	0.90*	Clayey moraines
2. Regge	340 km ²	Agriculture (60%)	9.9	800-850	6.95	0.59	Sand and gravel
3. Dinkel	630 km ²	Agriculture (70%)	9.9	800-850	5.50	0.61	Sand, gravel and clayey
							moraines
4. Thames	9948 km ²	Agriculture (45%)	10.2	600-900	65.7	0.64	Limestones, low permeability
							clays and gravels

- 226 *Outlet of the Odense main river
- Table 1 shows that the mean climatology of the catchments is broadly similar, and Figure 3 shows
- that there is no pronounced seasonality to the precipitation in the four catchments, however there
- is a strong seasonality to evapotranspiration (ET) and to annual river flows.

231 Figure 3. Monthly average air temperature, precipitation and discharge of the Odense, Regge and 232 Thames catchments. Values for the Dinkel are very similar to those of the Regge. 233 The Odense, Regge and Dinkel catchments are relatively flat, however, there is over 300 m of relief 234 in the Thames Basin, and this, combined with differences in the underlying geology (Table 1) and 235 catchment location with respect to the coast (the Odense and the Thames both discharge to the sea), 236 means that the depth of flow systems and travel times in each of the catchments varies in nature 237 (Figure 3). The Odense is the least geologically complex catchment while the Thames has the most 238 complex geology (Figure 4). The Odense catchment consists of clayey moraines and terminal 239 moraines in the south (Smed, 1982). Sand and gravel deposits form local aquifers (Troldborg et al., 2010) and sandy-loam soils are present throughout the catchment. Groundwater flow systems are 240 typically shallow and relatively rapid; the most extensive aquifer complex only has a thickness of 241 242 about 10 m. The aquifers in the Odense catchment contain a substantial amount of organic matter, 243 consequently contaminants are typically non-conservatively. The Regge catchment contains mostly 244 sedimentary aquifers up to a depth of about 150 m with multiple clay layers in between (Figure 4). 245 Flow systems may be moderately deep. These aquifers wedge out towards the east, where they only 246 reach a depth of 10 to 20 m below surface. The Dinkel is characterized by sandy deposits located 247 between clayey ice-pushed ridges which have shallow aquifers and flow systems that feed several 248 tributaries such as the Springendalse Beek and Elsbeek. The Thames catchment, being the largest 249 catchment, contains the most variation in geology. The Basin is underlain by two major bedrock 250 aquifers, the Chalk of the Chilterns, Berkshire Downs and North Downs, and the Oolitic Limestones

of the Cotswolds in the west of the Basin with a wide range of shallow (fast) to deep (slow) flow
systems (Figure 4). These are separated by a series of clay-dominated aquitards (Bloomfield et al.,
2009). There is no significant organic matter in the Chalk and Oolitic limestone, consequently
contaminants typically act conservatively in these aquifers (Downing et al., 1993a). The bedrock
aquifers are overlain by Palaeogene to Holocene gravels and sands along the course of the main
drainage channels with relatively rapid, shallow flow systems (Bricker and Bloomfield, 2014).

257

258 Figure 4. Conceptual drawings of the geology and flow systems of the catchments.

259 Based on a classification system of groundwater-surface water interaction developed by Dahl et al. 260 (2007), the Odense Fjord catchment falls into the moraine landscape type, with a groundwater 261 system comprising a complexly interbedded sequence of sand aquifers and confining layers of clayey 262 till. The topography controlled water table is dominated by local flow systems; although regional and 263 deep groundwater bodies are also present (Dahl et al., 2007). The Regge and Dinkel catchments also 264 have multiple aquifers and confining layers, with local, regional and deep groundwater systems. On 265 the local scale all riparian flow path types are present but discharge is mostly direct and through 266 drainage systems. The Thames Basin likewise falls into the 'landscape type' category, a complexly interbedded sequence of aquifers and confining layers, where groundwater flow systems are 267 268 principally influenced by factors related to regional geomorphology, hydrogeological setting and aquifer structure and heterogeneity rather than specific riparian zone processes (Bloomfield et al., 269 270 2009; 2011; Darling and Bowes, 2016).

Baseflow Index (BFI) (Gustard et al., 1992) is often used as an indicator of the relative contribution of
groundwater to stream flow. In all four catchments the long-term baseflow at the base of the
catchments is of the order of 0.6 to 0.90 (Table 1) consistent with the mixed groundwater-surface
water nature of the catchments. However, all four catchments illustrate spatio-temporal variations
in BFI consistent with spatio-temporal variations in groundwater-surface water interactions.

276 Because of the high level of agricultural land use as well as the degree of urbanization in the 277 catchments, there are pressures on water resources in the study catchments. Agricultural land use was established in the Thames prior to the 20th century, with intensification of farming from the 278 279 1940s onwards. The major urban areas were also established before the start of the 20th century in 280 the Thames although peri-urban growth was a continuous process through this period. Many of the 281 major modifications to the drainage structure in the catchment were also in place by the early 20th 282 century. In contrast, in the Odense, Regge and Dinkel catchments most of the land use and stream alterations took place in the 20th century (Larsen et al., 2008; Hendriks et al., 2015a; Lu et al., 2015). 283 284 All four catchments are now heavily modified with an altered stream network that is artificially 285 regulated. Diffuse agricultural nutrient loss is one of the main threats to aquatic ecosystems in the 286 catchments (Miljø- og Fødevareministeriet, 2016; Molina-Navarro et al., 2018), and agricultural 287 activities are the main pollutant source of Danish groundwater (Blicher-Mathiesen et al., 2014). 288 As a consequence of the pressures on the water environment, water bodies in the catchments are

commonly at poor status. For example, many of the water bodies in the Odense catchment,
including the estuary comprised by the Odense Fjord, do not meet European Water Framework
Direct (WFD) criteria for good ecological status (Miljø- og Fødevareministeriet, 2016). Of the 600 km
of streams only 36% have a good or high ecological status, and for the 17 lakes larger than 5 ha the
corresponding number is 12% (Miljø- og Fødevareministeriet, 2016). Likewise, the Regge and Dinkel
catchments are classified as heavily modified and most surface waters don't have good chemical or
ecological status. The groundwater body underlying the Regge and Dinkel catchments has an

insufficient water quantity status, but a good chemical status, although the chemical status of some
local groundwater bodies is unsatisfactory (Ministry of Infrastructure and the Environment, 2015).
The Thames Basin contains 489 surface water bodies: 45% of the water bodies are affected by
pollution from waste water, and 27% and 17% of water bodies are affected by pollution from rural
sources, and from towns, cities and transport respectively. 47 of the water bodies are groundwater
bodies, of which 22 have been assessed as having poor quantitative status and 18 have poor
chemical status (Environment Agency, 2016a).

303

4. Analyses of stressor propagation and buffering through catchments

305 4.1 Odense catchment

An adequate functioning of the aquatic ecosystems in the Odense Fjord catchment including rivers, lakes and transitional waters, depends on keeping a sufficient and persistent flow level and water quality. Here groundwater might play a vital role; however, studies on this topic are scarce. Here we analyse the role of groundwater in the preservation of the aquatic ecosystems in the Odense catchment based on a comprehensive hydrological and nutrient transport modelling carried out with the Soil and Water Assessment Tool (SWAT, Molina-Navarro et al., 2018).

312 4.1.1 Water storage and flow

313 Hydrological modelling allows exploring the GW-SW interaction. Figure 5 shows the monthly

314 streamflow subdivided into direct aquifer discharge and contributions via tile drains, surface flow

and lateral flow simulated for the period 2001-2010. The average aquifer contribution to total

- 316 streamflow was around 76%. Such a high aquifer contribution favours a delay in the hydrograph
- response to precipitation events (Figure 5). The BFI was calculated for each sub-basin to explore the
- spatial variability of the baseflow contribution. Values varied between 0.63 and 0.92 (Figure 6a),
- 319 supporting the relevance of the aquifer contribution in ensuring the sustainability of aquatic
- 320 ecosystems in the Odense Fjord catchment.

Figure 5. Observed precipitation (P) and simulated flow subdivided (stacked area) into surface flow (SQ), lateral flow (LQ), tile drain flow (TDQ) and direct aquifer discharge (AQ) in the Odense Fjord catchment at a monthly time step (period 2001-2010)

321

325 Another parameter that illustrates the GW-SW interaction is Q₉₀, i.e. the flow below the 90th 326 percentile of the flow duration curve divided by the median flow. A Q₉₀ value close to 0 means a 327 more extreme flow variation than if the Q₉₀ is close to 1. Modelling results yielded Q₉₀ values 328 between 0.03 and 0.39 in the Odense Fjord catchment (Figure 6b), with an average of 0.17. This 329 means that, despite the high aquifer contribution that would ensure a more stable flow regime, flow 330 seasonality is highly pronounced in this catchment, partially due to a considerable tile drain flow contribution (discussed below). In the drier months, the streamflow is almost only supported by the 331 332 direct contribution from the aquifers (Figure 5), becoming a key component of streamflow to 333 provide sufficient water to the aquatic ecosystems in the catchment.

334 335

Hydrological alteration through groundwater abstraction and tile drainage is a major pressure for 338 aquatic ecosystems in the Odense Fjord catchment. The catchment has undergone substantial 339 340 hydrological and hydro-morphological modifications, including sub-surface tile draining of about half 341 of the agricultural area (Thodsen et al., 2015). As a result, 19% of the total flow in the streams of the 342 catchment comes from tile drains (Molina-Navarro et al., 2018). Simulation of land use changes in 343 the catchment revealed that a decrease of the agricultural area by 21% would lead to a decrease in 344 the drain water contribution to total stream flow from 19% to 14%, conversely increasing the direct 345 aquifer contribution (Molina-Navarro et al., 2018). Tile drains respond quickly to precipitation during autumn and winter when soil in the root zone is close to saturation (Figure 5), altering the natural 346 streamflow in the catchment. Additionally, they reduce aquifer recharge, thus ultimately diminishing 347 348 water supply to the aquatic ecosystems during the critical summer months.

349 Groundwater abstraction also plays a major role altering the hydrology of the Odense Fjord 350 catchment. Based on comprehensive hydrological modelling, Henriksen et al. (2008) assessed 351 "sustainable groundwater abstraction" on regional and national scale for Denmark focusing on 352 avoiding significantly negative impacts on both surface water ecology and groundwater quality, in 353 line with the underlying WFD principles. For the Funen Island, of which the Odense catchment is a 354 major part, Henriksen et al. (2008) estimated a sustainable groundwater yield varying from 10 to 29 mm year⁻¹, although the lowest value was chosen for the assessment of sustainable abstraction. 355 356 They also reported an actual abstraction of 12.8 mm year⁻¹ (year 2000), which could mean slight 357 over-exploitation. However, an additional evaluation at a sub-area level showed that the Odense 358 Fjord catchment had the highest exploitation rate in the island, with current exploitation at more 359 than two and a half times the sustainable yield, probably due to abstraction for the water supply of 360 Odense city. One result of non-sustainable groundwater abstraction is streamflow depletion with 361 adverse effects on aquatic ecosystems.

362 4.1.2 Nutrients

363 Nitrate is by far the largest N fraction being loaded into the Odense Fjord estuary (Molina-Navarro et 364 al., 2018), and thus crucial for the ecological status of the marine ecosystem, where it acts as a 365 limiting nutrient (Conley et al., 2007). Moreover, modelling results suggested that direct aquifer 366 discharge and tile drain flow are responsible of 65% and 30% of the total nitrate yield in the streams, respectively, while direct flow (surface and lateral) transport only 5% (Figure 7). Nitrate leached from 367 the root zone can be reduced during transport via groundwater both by microbial denitrification and 368 369 by pyrite oxidation denitrification (Blicher-Mathiesen et al., 2014). This attenuation of the nitrate 370 concentration is strongly dependent on hydraulic residence time (Humborg et al., 2015) and the 371 presence of pyrite in the aquifers. For 17 Danish catchments, Andersen et al. (2001) reported groundwater retention of N of 20-80%, with the higher rates in areas with higher residence times. 372 373 Particularly, for the Odense Fjord catchment, Blicher-Mathiesen et al. (2014) found that nitrate

374 reduction in aquifers and surface waters varied between <40% and up to 70-80% of the root zone N
375 leaching. However, the specific role of groundwater was not analysed.

The SWAT model calculated that 52% of the nitrate that percolates past the base of the soil profile is reduced before reaching the stream as return flow (Ferreira et al., 2016), confirming the relevance of nitrate reduction in groundwater in the Odense catchment, which has been previously pointed out, but scarcely supported by data. Figure 7 illustrates this reduction, and in addition shows how the transport through the aquifer exerts a delay in the nitrate yield back to the streamflow. Results also show how nitrate transport via tile drains is much faster (Figure 7).

Figure 7. Simulation of nitrate percolated and transported via direct aquifer contribution, tile drain flow and direct (surface and lateral) flow in the Odense Fjord catchment at a monthly time step (period 2001-2010).

382

On the other hand, phosphorus (P) acts as a limiting nutrient in streams and lakes, and high loads might also threaten the health of the aquatic ecosystems in the Odense Fjord catchment. Monitoring data revealed that dissolved phosphate represents slightly over half of the TP load in the catchment, and the modelling suggested that the main transport pathway for phosphate in the catchment is groundwater (Molina-Navarro et al., 2018). The source of P is partly agricultural by leaching to the upper groundwater and partly naturally occurring P in reduced groundwater (Kronvang et al., 2007). Figure 8 reveals how both the groundwater flow and phosphate follow a nearly-parallel trend.

Figure 8. Simulated baseflow and phosphate load in the Odense Fjord catchment at a monthly time step (period 2001-2010).

396

393

397 4.2 Regge & Dinkel catchments

398 4.2.1 Water storage and flow

399 The tributaries of the Dinkel show significant variation in their BFI (Table 2) reflecting both 400 differences in underlying geology but also in drainage and land management practices. Using an 401 existing groundwater model (Kuijper et al., 2012; Hendriks et al., 2014), groundwater discharge to 402 the three Dinkel tributaries can be divided into different flow routes: overland flow, subsurface 403 drainage pipes and direct discharge to streams/rivers. Discharge that occurs when the groundwater 404 table rises above the land surface is modelled as overland flow and is highest in the Springendalse 405 Beek due to the fact that many of the springs in the upstream part of this stream are created by local 406 depressions where the groundwater table rises above the surface. The highest amount of discharge 407 from subsurface drains occurs in the Elsbeek and Roelinksbeek (Table 2), which are the catchments 408 with the highest agricultural activity and lowest BFI. Although these catchments also seems to have 409 the highest amount of groundwater outflow though streams, this is mostly through ditches as they 410 have the highest drainage density, while in the Springendalse Beek this water mainly seeps in the 411 main stream course and has longer flowpaths.

412

Table 2. Calculated Baseflow Indices and model flows for three Dinkel tributaries.

		Modelled groundwater outflow routes				
River / Stream	BFI	Streams incl. ditches	Drainage	Overland flow		
Springendalse Beek	0.8	78%	2%	20%		
Elsbeek	0.4	85%	7%	9%		
Roelinksbeek	0.4	84%	4%	12%		

413

414 This artificial drainage and pumping of groundwater for irrigation are changes in the hydrology that 415 resulted from agriculture, while pumping of groundwater for the production of drinking water also 416 occurred. Hendriks et al. (2015a) showed that this caused lowering of groundwater levels in the 417 Regge catchment until the 1980s. Figure 9 presents two time-series of groundwater heads of 418 relatively deep wells in the Regge and Dinkel catchments (60 - 80 m below ground surface) and 419 shows the decrease in groundwater heads between 1940 and 1980. Data at measuring location GW-420 80M shows that deep groundwater levels declined by >15 m between 1950 and 2010. At measuring 421 point GW-60M, groundwater heads have gone down by approximately 3 m between 1965 and 1980 422 as a result of a drinking water abstraction well. After the 1980s, the abstraction and drainage of 423 groundwater remained at a stable level which led to a new equilibrium of the water balance of the 424 systems. In this equilibrium, groundwater heads at measuring location GW-60m did not return to 425 their 1940-1950 levels but remained at a reduced level. With these lowered groundwater tables, 426 research by Hendriks et al. (2014) showed that the Q95 of streamflow has decreased by and 5-55% 427 as a result of groundwater abstractions, and 16-30% as a result of artificial drainage. Kuijper et al. 428 (2012) found a reduction of the groundwater input to surface waters of 20 to 50% as a result of 429 groundwater abstractions and subsurface drainage. Reduction of groundwater baseflow makes the 430 Regge and Dinkel catchments more sensitive to droughts; during the 2003 drought many streams in 431 the Regge and Dinkel catchment fell dry (Kuijper et al., 2012). One of the few exceptions was the 432 Springendalse Beek, which kept flowing as a result of the high groundwater component of flow.

Figure 9. Time-series of groundwater heads in the Regge and Dinkel catchments: measuring points
GW-80M (filter 80 m below ground surface) and GW-60M (filter 60 m below ground surface). Note
these measurements are from different locations.

437 *4.2.2 Nutrients*

433

438 Industrial and urban development has led to point and diffuse pollution in the Regge and Dinkel 439 catchments, but the main driver of poor water quality is agriculture, because of the use of manure 440 and pesticides. These nutrients are transported partly through the groundwater to the surface water. 441 The effect of these pressures depends on the connectivity and residence time of the groundwater, 442 as well as the capacity for degradation of nutrients in the subsurface. A good example of the 443 pressure from nutrients can be seen in the Springendalse Beek where downstream nitrate 444 concentrations have gone up until the 1990s as a result of agricultural loading (Figure 10). In the late 445 1950's, Maas (1959) reported the Springendalse Beek to be a nutrient poor stream and 446 measurements from the 1970s indeed show stream nitrate levels between 0 and 2 mg-N/L (Higler et al., 1981). Between the 1970s and 1990s nitrate concentrations increased significantly (Figure 10) 447 448 following agricultural intensification in the catchment. Since the aquifer is low in organic matter the 449 capacity for denitrification is limited. Following the Nitrate Directive, nitrogen use by farmers in the 450 Regge and Dinkel catchments has decreased by about 40% between 1994 and 2015 (Centraal Bureau 451 voor de Statistiek [CBS], 2017), and in stream nitrate concentrations have consequently slowly 452 decreased, although they are still higher than natural background levels. 453 Contrary to this decreasing trend, nitrate levels in the upstream part of the Springendalse Beek have

not yet reached their peak (Figure 10). As this stream stretch is directly fed by several springs, it is

455 not surprising that the concentration of nitrate in the groundwater at this location is also elevated

456 (Figure 10). This groundwater has flowpaths with long travel times and consequently historic nitrate inputs are still in the system. The groundwater functions as a slow connection between the 457 agricultural fields and stream, and historic nutrient input causes long term pollution of the surface 458 459 water. This is an important consideration for catchment management, since the effect of converting 460 the surrounding agricultural fields to pasture with the consequent reduction in nitrate loading in the 461 late 1990s (Nijboer et al., 2003) has not yet resulted in a response in nutrient concentrations in the 462 stream. Despite the nutrient chemistry of the stream, due to the influence of groundwater on 463 discharge and stream temperature, the upstream stream stretch actually is designated as having 464 relatively high natural value and is a habitat of for instance the brook lamprey (Lampetra planeri) (Verdonschot et al., 2002). 465

470 The largest sources of phosphorous in the surface water of the Regge and Dinkel catchments are

471 overland flow from agricultural fields and the outflow of waste water treatment plants. Most of the

472 phosphorous used in agriculture is retained in the unsaturated zone and does not leach to the

473 groundwater. As opposed to the long delivery times of nitrate in the Springendalse Beek (Figure 10),

the levels of phosphorous in the stream dropped directly following the abandonment of the
agricultural fields upstream, although some phosphorous still seems to leach from the enriched soils
(Nijboer et al., 2003).

477 4.2.3 Water Temperature

478 Figure 11 shows the daily average temperature of the Springendalse Beek and the Elsbeek during the 479 summer of 2016 and shows that the Springendalse Beek compared to the Elsbeek has a more stable 480 temperature regime with less temperature variation during the summer and lower temperature 481 peaks, which is caused by its higher input of groundwater. Table 3 shows the average monthly 482 temperature for August and November both upstream and downstream of a ~500 m river stretch of the Springendalse Beek and Elsbeek. During summer, the difference in temperature between the up-483 484 and downstream parts of the Springendalse Beek is almost 2 °C while for the Elsbeek this difference 485 is only 2/10th of a degree. On the contrary, the difference between up- and downstream is larger in 486 the Springendalse Beek during a cold month. This is the result of the fact that the upstream part of 487 the Springendalse Beek is highly influenced by groundwater and this groundwater has little 488 temperature variation throughout the year. The difference in stream temperature between a warm 489 and cold month is also a characteristic of the temperature regime and influenced by the buffering 490 effect of groundwater. The average downstream temperatures between August and November 491 differ about 5 degrees for the Springendalse Beek and 10 degrees for the Elsbeek, again showing the buffering temperature effect of groundwater in the Springendalse Beek. Scales are important here 492 493 as well; the influence of groundwater on stream temperature is clearer in smaller streams such as 494 the Springendalse Beek. Groundwater seepage mitigates summer temperature peaks in the 495 Springendalse Beek and creates a thermal habitat where stenothermic species are able to reside 496 (Verdonschot et al., 2002).

Jul 2016 Aug 2016 Sep 2016
Figure 11. Average daily temperatures of the downstream parts of the Springendalse Beek and
Elsbeek during the summer of 2016.

500

Table 3. Average temperatures [°C] of two Dinkel tributaries in August and November 2016

Stream	Month	Average Temperature [°C]			
		Upstream	Downstream		
Springendalse Beek	August	12.45	14.41		
	November	9.86	9.69		
Elsbeek	August	16.59	16.81		
	November	6.90	6.86		

501

502 4.3 Thames catchment

503 4.3.1 Water storage and flow

504 Variations in groundwater heads in the Thames Basin are dominated by seasonal variations in 505 evapotranspiration and inter-annual variability in precipitation, the latter represented by the 506 Standardised Precipitation Index (6 month accumulation) for the Thames Basin (Centre for Ecology 507 and Hydrology, 2017) in Figure 12. This seasonal and inter-annual variability is also seen in the flow 508 of the Thames at the tidal limit of the Basin at Kingston, London, Figure 12. Across the Basin 509 episodes of high precipitation, groundwater level stand and flow have been associated with 510 extensive groundwater flooding (Adams et al., 2010; Hughes et al., 2011; Upton and Jackson, 2011; 511 Macdonald et al., 2012), for example in the winter of 2014 (Ascott et al., 2016a; 2017). Similarly, 512 major episodes of drought, for example in 1975-76, 1988-92 and most recently in 2011-12, have 513 been associated with low groundwater levels, reduced flow, drying up of ephemeral streams in 514 Chalk sub-catchments and lowered groundwater yields (Bloomfield and Marchant, 2013; Folland et 515 al, 2015). Warming and changes in the intensity of storm events in the UK, including the Thames Basin, has occurred over the 20th century (Jenkins et al., 2009) consistent with anthropogenic climate 516

517 change, but evidence of the effect of these changes on groundwater recharge and heads is illusive

519

Figure 12. Variation in groundwater levels in the Jurassic Oolitic Limestone and Chalk Aquifer;
 temporal changes in the average Standardised Precipitation Index (6 month accumulation) across the
 Thames Basin; and, flow in the Thames at the tidal limit at Kingston.

523 There is a long history of abstraction from both groundwater and surface water sources in the

524 Thames Basin. As with the rest of England, abstractions from the unconfined aquifer steadily

525 increased from the 1940s reaching a peak in the late 1980s and early 1990s (Downing 1993b), while

526 over a similar period groundwater abstraction from the confined Chalk of London significantly

527 reduced leading to groundwater level rebound (Environment Agency, 2016b). The drought of 1988-

528 1992 resulted in low groundwater levels across the unconfined Chalk of the Thames Basin, and the

- 529 environmental regular at the time, the National Rivers Authority, identified five groundwater-
- 530 dominated sub-catchments in the Chalk where over-abstraction had contributed to extreme low
- flows during this drought (National Rivers Authority, 1993). Low flow alleviation schemes were
- subsequently put in place (Clayton et al., 2008). Since 2000 across the Basin total abstraction has
- fallen, Figure 13 (Environment Agency, 2015), mainly due to a reduction in abstraction from surface

534 waters, although during the recent drought of 2011-12 the relative proportion of groundwater

Figure 13. Annual total abstraction and abstraction from surface water and groundwater sources since
2000 and groundwater abstraction as a percentage of total abstraction (the 2011-12 drought is
highlighted).

540 There is some evidence that leakage from the aging water mains network may be modifying the

541 surface water flow regime within the Thames Basin (Bloomfield et al., 2009) and that it may also

affect surface water quality (Ascott et al., 2016b; Gooddy et al., 2017).

543 4.3.2 Nutrients

536

544 In an analysis of the nitrogen (N) budget of the Thames Basin from the late 19th century to the

545 present, Worrall et al. (2015a) have shown that before extensive use of inorganic fertilizers the total

- 546 N budget approximated to steady state, but following widespread use of fertilizers there was net
- 547 accumulation of N. This resulted in the Basin becoming saturated with respect to nitrate between
- about 1945 and 1995 (Worrall et al., 2015b) and there was a commensurate increase in nitrate
- 549 concentrations in the river Thames (Howden et al., 2010; Worrall et al., 2015b). Modelling the fate
- of nitrate from intensive farming in the Basin has shown that there is still a significant legacy of

551 nitrate in the soil and groundwater compartments within the Basin (Howden et al., 2011), and that 552 restoration of nitrate concentrations in surface waters to levels similar to pre-intensification of 553 farming would require basin-wide changes in land use and management (Howden et al., 2011). Due 554 to the relatively low dissolved organic carbon (DOC) of the Chalk and Oolitic Limestone, once nitrate 555 is in the aquifers the potential for significant denitrification is limited. Consequently, within the 556 major aquifers of the Thames Basin nitrate is relatively mobile and considered broadly conservative in oxic groundwaters (Stuart et al., 2014). Based on a modelled nitrate input function and treating 557 558 nitrate as a conservative pollutant, Wang et al. (2012; 2013) estimated the arrival of peak nitrate at 559 the water table, and Ascott et al. (2016c) subsequently modelled the quantity of nitrate remaining in 560 storage in the unsaturated zone. Ascott et al. (2016c) identified large areas of the Thames Basin, 561 primarily over the Chalk aquifer of the Chilterns and Berkshire Downs, where substantial quantities 562 of nitrate remain in the unsaturated zone. The peak arrival of that nitrate is estimate to not be due 563 for at least another 50 years (Wang et al., 2012; 2013).

564 The loading of phosphorus (P) in the aquatic environment is typically considered to be primarily from 565 agriculture (diffuse source) and sewage treatment work effluent (point source). However Ascott et al. 566 (2016b) and Gooddy et al. (2017) have shown that in urbanised areas of the Thames Basin up to 30% 567 of the total flux of P may be from mains leakage (mains supply is dosed with phosphate), with the 568 relative and absolute contribution from this source increasing substantially since 1993 (Gooddy et al. 569 (2017). Like N, P is considered conservative in the Chalk and Gooddy et al. (2017) estimate that for 570 typical shallow groundwater systems P recharged to groundwater 20 years ago may currently be 571 discharging into river networks.

572 4.3.3 Water temperature

Jenkins et al. (2009) have described a change in average daily mean temperature across the Thames
Basin of between 1.4 and 2.1 °C between 1961 and 2006. However, there has been no systematic
assessment of the temperature of groundwater in the Thames Basin, primarily due to the absence of

576 suitable monitoring data, and so it is not possible to assess the impact changes in air temperature 577 have had on groundwater temperature. Hannah and Garner (2015) noted that surface water 578 temperatures across the UK, including the Thames Basin, have increased in the latter part of the 579 20th century, but that this could not simply be attributed to climatic warming since river 580 temperature is a complex response to climate and hydrological drivers, basin properties including 581 groundwater contributions and anthropogenic impacts. Watts et al. (2015) noted that although 582 baseline groundwater temperatures are poorly understood, groundwater contributes much of the 583 summer flow in some rivers, directly influencing water temperature. Using sub-hourly air, river and 584 groundwater temperature data for a site where River Terrace Gravels are in hydraulic connection 585 with the Thames at Wallingford, Habib et al. (2017) showed a lag in temperature between groundwater in the gravel aquifer and the air and river temperature and a seasonal contrast 586 587 between relatively warm winter groundwater and cooler summer groundwater compared with air 588 and river temperatures (Figure 14).

Figure 14. Daily air, Thames (river) and groundwater (GW) temperatures for a two year period from January2012 for Wallingford, Oxfordshire.

592 At a range of sites across the Basin the thermal effects of upwelling groundwater in Chalk sub-

593 catchments has been recorded, however these effects are typically highly localised, e.g. House et al.

594 (2015; 2016a; 2016b).

595

589

596 5. Discussion & Conclusions

597 <u>5.1 Comparison of drivers, pressures and states of the catchments</u>

The proposed DPS framework was used to describe and analyse the effect of stressors on a coupled GW-SW system. It was shown to be a useful basis for this analysis and helped harmonizing the description of the different multi-stressed catchments. In the following paragraphs the drivers, pressures and states of the catchments will be compared.

602 5.1.1 Water storage and flow

603 In all four catchments storage and flow from groundwater has been changed by anthropogenic 604 influences such as the installation of subsurface drainage and initiation of groundwater abstractions, 605 which have had differing implications for groundwater levels and flow paths in the catchments. In 606 the Odense catchment, flow is dominated by shallow groundwater systems and groundwater 607 accounts for a major part of the streamflow, which is partly discharged through artificial drainage 608 systems. Groundwater is especially important in sustaining streamflow in the driest seasons, but is 609 threatened by unsustainable groundwater abstraction. In the Regge and Dinkel catchments, flow is 610 likewise dominated by groundwater and heavily influenced by both groundwater and surface water 611 abstractions and artificial drainage systems. These drainage systems have been shown to increase 612 the fast outflow of groundwater and with that increase peak flows. In the Thames catchment, flow is 613 dominated by seasonally varying evapotranspiration and recharge and by interannual variation in 614 driving meteorology. Because of its scale, flow in the Thames catchment is spatially averaged and 615 therefor stresses on the groundwater system can show marked variation between sub-catchments. 616 For example, flow in small groundwater (Oolite and Chalk) dominated sub-catchments, particularly 617 in the upper catchment, can be relatively sensitive to groundwater abstractions especially during 618 drought years.

619 Changes in flow regimes might not always be apparent from discharge measurements, but this does620 not mean that groundwater flow paths have not been changed. Changed flow paths could lead to

discharge of water of different quality and temperature. For instance, discharge of groundwater
from shallow subsurface drains is different from discharge from deep groundwater systems
(Rozemeijer et al., 2010), so alterations in groundwater flow paths may also change in-stream
habitat conditions.

625 5.1.2 Nutrients

626 In addition to causing geohydrological alterations, agricultural intensification can causes diffuse 627 pressure from nutrients and pesticides, of which this paper focussed on nutrients. All four 628 catchments suffer from high levels of historic nutrient loading, which contaminates surface waters 629 both directly through overland flow and though the groundwater. Thick unsaturated zones in the 630 Thames Basin prevent fast leaching of nitrate to the groundwater, and thick aquifers create 631 additional lag time in the effect of this nitrate on surface waters. These lag times caused by the slow 632 flow of groundwater are also documented for the Regge and Dinkel catchments, albeit shorter. Even with reductions in nitrate loading, surface water nitrate concentrations will remain high for the 633 634 coming decades in the Thames, Regge and Dinkel catchments due to the historical inputs. Long lag 635 times are relatively absent in the Odense catchment due to the shallow groundwater system.

Denitrification can occur in the groundwater system in anoxic conditions in the presence of organic
matter or pyrite. These conditions are met in the Odense catchment, but although denitrification has
been identified as being active in the Odense, groundwater is still the main transport path for nitrate
in the Odense. Denitrification occurs on local scale in the Regge and Dinkel catchments, but is
effectively absent in the relatively pure calcium carbonate aquifers of the Thames Basin.

Although in general the main source of phosphorous in the four catchments is effluent from waste
water treatment plants, significant amounts of P can also be transported by groundwater. In fact, in
the Odense catchment modelling suggested that the main source of mineral P was transport from
agricultural fields by groundwater, and in urban areas in the Thames catchment evidence indicates

that phosphorous enters the groundwater from leaking water mains network and is subsequentlytransported to the surface water.

647 5.1.3 Water temperature

648 Groundwater influences stream and river temperature by providing an input with a relative constant 649 seasonal temperature. This way, it dampens summer temperature peaks of the surface water, as in 650 the Springendalse Beek in the Dinkel catchment. In addition, at locations with significant 651 groundwater discharge, specific temperature habitats are formed e.g. in the Chalk sub-catchments of the Thames. The effect of groundwater on stream temperature has only been shown for small 652 653 scale headwaters. In downstream parts, climatic effects seem to be much stronger, highlighting the 654 importance of riparian zones. However, a systematic lack of temperature observations exists both in 655 groundwater and surface waters in the catchments described here.

	Characteristic	Odense	Regge&Dinkel	Thames
	GW dependency of flow	++	++	+
	Depth of GW system	-	+	++
NOI	Drainage systems	++	+	-
T	GW abstractions	++	+	++
	Spatially averaging due to scale	-	-	++
	Nitrate concentrations	++	++	++
nts	Unsaturated zone lag times	-	-	++
Nutrie	Saturated zone lag times	+	++	++
	Buffering by denitrification	++	+	-

656 Table 4. Overview of how groundwater affects flow, nutrients and temperature in the four catchments.

iture	Temperature effect groundwater seepage	?	+	+
Tempera	Temperature effect riparian zones	?	+	+

657

658 <u>5.2 (Geo)hydrological controls on the DPS cascade</u>

659 The differences in the effects of the drivers on states between the catchments (Table 4) are the 660 result of differences in a range of factors, such as catchment size, geology, land-use and 661 management practices. The depth of the groundwater system is directly related with the travel 662 times of nutrients, as is shown in the Regge, Dinkel and Thames catchments. Thick unsaturated 663 zones in the Thames catchment increase the time lag in the delivery of nutrients. In addition, 664 relatively small drainage systems, such as in the Odense, Regge and Dinkel catchments, provide a 665 short-cut for the outflow of groundwater, and decrease the travel times and thus lag time in 666 nutrients. The potential for denitrification in aquifers is important in the attenuation of nitrate, and 667 is greatest in the Odense, followed by the Dutch catchments. Groundwater abstractions are a

668 stressor in all four catchments.

669 <u>5.3 Stressor interaction, propagation and buffering</u>

670 Figure 15 illustrates how different drivers and pressures can interact within linked GW-SW systems. 671 For example, if streamflow decreases, for a given loading of nutrients the concentration of nutrients 672 will increase. Climate change affects all other stressor by changing temperature, precipitation and 673 evapotranspiration patterns. It is expected that winter peak flows increase and summer baseflow 674 decreases, while temperatures increase (Kuijper et al., 2012, Kløve et al. 2014). A decrease in 675 groundwater discharge will decrease the temperature effect of groundwater, increasing stream 676 temperature in summer and decreasing winter stream temperatures. This will result in a loss of 677 thermal habitats, especially combined with higher air temperatures. On longer timescales the 678 temperature of groundwater will also increase resulting in further shrinkage of summer thermal

679 refugia (Meisner et al., 1988; Isaak et al., 2012). In addition, an increase in groundwater pumping for 680 irrigation during droughts is already occurring in the Thames catchment, and these abstractions may increase with more regular drought periods, resulting in even more lowering of groundwater tables 681 and consequently of baseflow. Conversely, a substantial groundwater contribution to streams could 682 683 buffer the streamflow response to climate change, sustaining summer flows for elongated periods as 684 opposed to a stream without groundwater input (Tague et al., 2008). Additionally, the presence of 685 groundwater discharge could mitigate part of the effect of an increase in air temperature on 686 streamflow temperature.

687

- Figure 15. Modified DPS framework showing the interactions and feedbacks following from climate
 change. Decreased streamflow will lead to increased nutrient concentrations and groundwater
 abstractions.
- 691 This paper started with the hypotheses that groundwater enables the propagation of stressors
- 692 spatially and in time, and that groundwater acts as a buffer to stressors. Case specific examples have
- been given, demonstrating both these mechanisms. Groundwater provides baseflow, often good

quality water with a stable temperature, and may buffer the temperature increase following climate
warming. Groundwater has also been shown to transmit stressors to surface waters, for instance
nitrate from agricultural fields to streams. Being a relatively slow system, these stressors are also
lagged in time. Groundwater both propagates and buffers stressors, but its effects depend on the
local geology, climate, land-use, stressor combinations and scale.

699 <u>5.4 Implications for ecosystem status</u>

700 Groundwater influences the status of ecosystems in the catchments by providing water, nutrients 701 and energy to aquatic ecosystems (Bertrand et al., 2012) and that way creates refugia in the surface 702 water to for instance fish (Power et al., 1999). Functioning of aquatic ecosystems is strongly 703 dependent on flow (Arthington et al., 2006; Poff and Zimmerman, 2010), which is frequently 704 influenced by groundwater. Aquatic species have adopted their life strategies to specific flow 705 regimes (Bunn and Arthington, 2002; Lytle and Poff, 2004), but many of these regimes are 706 transformed by human interference in catchments (Feld et al., 2011), including changes in the 707 groundwater system. Changes in flow regime of groundwater dominated rivers lead to more 708 generalist and tolerant species (Blann et al., 2009) because species that evolved in a more variable 709 environment are less vulnerable to environmental changes than habitat specialists (Schlosser, 1990). 710 Groundwater also propagates nutrients in the study catchments, which leads to changing food webs 711 (Blann et al., 2009) and is potentially toxic to aquatic species (Camargo et al., 2005). High nutrients 712 levels can cause eutrophication, leading to low oxygen levels. It was shown that groundwater 713 upwelling can influence water temperature, and is therefore a crucial component in the formation of 714 river habitats by providing thermal refugia for aquatic biota during warm or cold periods of the year 715 (e.g. Power et al., 1999). Additionally, groundwater discharge may buffer the warming effects of 716 climate change.

Linking abiotic to biotic states is challenging. An attempt was made for the Odense catchment using
a Danish national dataset comprising 263 variables and 131 observations to evaluate the relationship

719 between different river ecosystem stressors and four ecological status indices for streams. These 720 indices are Danish indices for ecological status assessment for fish fauna, macrophytes and 721 macroinvertebrates, and the widely used Average Score per Taxon for macroinvertebrates (ASPT) 722 (Ferreira et al., 2016). Q₉₀ showed a positive correlation (better ecological status) with all the indices, 723 and BFI also showed a positive correlation with the indices except that for macrophytes. These 724 results corroborate the discussion above regarding the relevant role of groundwater in the 725 preservation of the aquatic ecosystems in the Odense Fjord catchment, favouring a higher ecological 726 status. The analysis also included water quality stressors. Total phosphorous (TP) was seen to be 727 relevant in the estimation of ecological status through macroinvertebrate indices and, as expected, 728 exerting a negative influence. Since the model suggested that groundwater was the main source of 729 phosphate, for macroinvertebrates groundwater has mixed effects on the ecological status of the 730 streams in the Odense Fjord catchment by providing a hydrological regime that favours a high status 731 but on the contrary being an important source of dissolved phosphate. Although this empirical 732 modelling shows groundwater-related indicators to be relevant for ecological status, the effect of 733 groundwater is complex and non-linear and at this time there is not enough knowledge and data 734 available to fully understand these linked systems.

735 <u>5.5 Implications for management</u>

Surface water managers are giving increased attention to the importance of groundwater. For
instance, in Australia water managers started integrating groundwater and surface water
management in the last decade (Lamontagne et al., 2012). In the US groundwater needs of
ecosystems are being taken into account in conservation plans (Brown et al., 2007) and in Europe
groundwater is now included in the Water Framework Directive, Groundwater Directive, Habitats
Directives and the CIS Working group on Groundwater (European Commission. 2000; 2008).

742 Important for management is that long groundwater residence times create a time lag in the
743 contribution of historic pollution input which causes pollution even after management interference

744 in a catchment (Nijboer et al., 2003; Hamilton, 2012). Groundwater fed surface waters often contain 745 water with ages of several decades and older (Hamilton, 2012) which means that current pollution 746 inputs will propagate through the groundwater system and form a future pressure on surface water 747 ecosystems. This proposes a problem to water managers who have to deal with restoring such 748 catchments as a good chemical and ecological status cannot be achieved with excessive nutrient 749 levels. However, evidence from the upstream part of the Springendalse Beek suggests that the 750 ecological value of such stream can be high even with high nutrient levels, encouraging water 751 managers to not abandon these sites, even though good ecological status cannot be achieved on the 752 short term. This is also the case in steams in the south of the Netherlands where data seems to 753 indicate that nitrate levels actually show some correlation with a high ecological status (Waterboard 754 Limburg, personal communication), possibly because nitrate in these catchments is an indicator for 755 groundwater influence.

As opposed to nitrate, phosphorous is generally related to surface runoff processes, but examples from the study catchment showed that groundwater should also be taken into account in managing catchments with phosphorous stress. Temperature is an often overlooked parameter, but has been shown to be important for the creating of specific habitats for e.g. stenothermic species (Power et al., 1999).

A groundwater contribution to surface waters provides ecosystem services, by providing habitats for e.g. trout which are fished in the Thames chalk streams, by providing cool water important for some fish spawning, and by providing water and preventing ceasing of flow during droughts.

Freshwater ecosystems are under multiple-stress and groundwater has a crucial effect on many of these ecosystems. Using examples from literature and from four different European catchments, it was shown how groundwater can influence surface waters in stressed systems. Groundwater has essential implications for river basin management and this study thus supports the call to water managers made in the FP7 REFORM project to take groundwater into account in river basin management (Hendriks et al., 2015b). Groundwater should be taken into account in ecological
management as a possible component of the total environmental system, which can transport and
buffer stressors and their effect. Groundwater may be a crucial component in mitigating the effect
of climate change on river ecosystems (Tague et al., 2008; Palmer et al., 2009), which strengthens
the need for more integrative management of ground- and surface waters.

A framework has been proposed which shows how groundwater in lowland catchments acts as a
bridge between stressors and their effects within surface waters. This framework shows water
managers how their management areas might be influenced by groundwater, and helps them to
include this important, but often overlooked part of the water cycle in their basin management plans.

778 <u>5.6 Implications for future monitoring</u>

779 It was noted that linking abiotic with biotic indices remains a challenge due to a lack of data and 780 system understanding. An obstacle is that data on quantity, quality and ecology of both surface and 781 groundwaters are measured by a myriad of agencies for various legislations. In the Netherlands for 782 instance, surface water quality and ecology are measured by Waterboards and Rijkswaterstaat 783 (Ministry of Infrastructure and the Environment), often with different timing of sampling. Shallow 784 groundwater is monitored by both Waterboards and the RIVM (National Institute for Public Health 785 and the Environment) and deep groundwater by the provinces. To truly understand the connection 786 between groundwater and surface water ecology it is needed to start combined monitoring in a 787 synchronized and coordinated way. The analysis of the study catchments also revealed a lack of data 788 on the temperature of both groundwater and surface water, while it is an important parameter 789 considering future climate warming.

790

791 Acknowledgements

This work is part of the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu). Eugenio Molina-Navarro has received additional support from the Ramón Areces Foundation postgraduate studies programme (26th Edition). Dr Bloomfield publishes with permission of the Executive Director, British Geological Survey (NERC).

```
798
```

799 <u>References</u>

Adams, B.A., Bloomfield, J.P., Gallagher, A., Jackson, C.J., Rutter H., Williams, A.T., 2010. An Early

801 Warning System for Groundwater Flooding in the Chalk. Quarterly Journal of Engineering Geology

- 802 and Hydrogeology, 43, 185-193
- Andersen, H.E., Pedersen, M.L., Jørgensen, O., Kronvang, B., 2001. Analyses of hydrology and flow of
 nitrogen in 17 Danish catchments. Water Sci. Tech. 44, 63–68.
- Arthington, A.H., Bunn, S.E., Poff, N.L., Naiman, R.J., 2006. The challenge of providing environmental
 flow rules to sustain river ecosystems. Ecol. Appl. 16, 1311–1318.
- Ascott, M.J., Lapworth, D.J., Gooddy, D.C., Sage, R.C. and Karapanos, I., 2016a. Impacts of extreme
- 808 flooding on riverbank filtration water quality. Science of the Total Environment, 554-555, 89-101
- Ascott, M.J., Gooddy, D.C., Lapworth, D.J., Stuart, M.J., 2016b. Estimating the leakage contribution of
- 810 phosphate dosed drinking water to environmental phosphorus pollution at the national-scale.
- 811 Science of the Total Environment, 572, 1534–1542
- Ascott, M.J., Wang, L., Stuart, M.E., Ward, R.S., Hart, A., 2016c. Quantification of nitrate storage in
- 813 the vadose (unsaturated) zone: a missing component of terrestrial N budgets. Hydrological Processes,

814 30(12), 1903-1915

- Ascott, M., Marchant, B.P., Macdonald, D.J., McKenzie, A.A., Bloomfield, J.P., 2017. Improved
- 816 understanding of spatiotemporal controls on regional scale groundwater flooding using hydrograph
- analysis and impulse response functions. Hydrological Processes, 31, 4586-4599.
- 818 Baattrup-Pedersen, A., Göthe, E., Riis, T., O'Hare, M.T., 2016. Functional trait composition of aquatic
- 819 plants can serve to disentangle multiple interacting stressors in lowland streams. Sci. Total Environ.
- 820 543, 230–238. doi:10.1016/j.scitotenv.2015.11.027
- 821 Bense, V.F., Kooi, H., 2004. Temporal and spatial variations of shallow subsurface temperature as a
- record of lateral variations in groundwater flow. J. Geophys. Res. B Solid Earth 109, 1–13.
- 823 doi:10.1029/2003JB002782
- 824 Bertrand G., Goldscheider N., Gobat J-M., Hunkeler D., 2012. Review: from multi-scale
- 825 conceptualization of groundwater-dependent ecosystems to a classification system for management
- 826 purposes. Hydrogeology Journal 20, 5-25.
- 827 Blann, K.L., Anderson, J.L., Sands, G.R., Vondracek, B., 2009. Effects of agricultural drainage on
- aquatic ecosystems: a review. Critical Reviews in Environmental Science and Technology 39: 909–
- 829 1001.
- Blicher-Mathiesen, G., Andersen, H.E., Carstensen, J., Børgesen, C.D., Hasler, B., Windolf, J., 2014.
- 831 Mapping of nitrogen risk areas. Agriculture, Ecosystems and Environment 195, 149-160.
- Bloomfield, J. P., Bricker, S. H., Newell, A. J., 2011. Some relationships between lithology, basin form
- and hydrology: a case study from the Thames basin, UK. Hydrol. Process., 25: 2518–2530.
- 834 doi:10.1002/hyp.8024
- 835 Bloomfield, J.P., Allan, J.D., Griffiths, K.J., 2009. Examining geological controls on baseflow index (BFI)
- using regression analysis: An illustration from the Thames Basin, UK. J. Hydrol. 373, 164–176.
- 837 doi:10.1016/j.jhydrol.2009.04.025

- 838 Bloomfield, J.P., Marchant, B.P., 2013. Analysis of groundwater drought building on the standardised
- precipitation index approach. Hydrol. Earth Syst. Sci. 17, 4769–4787. doi:10.5194/hess-17-4769-2013
- 840 Bricker, S.H., Bloomfield, J.P., 2014. Controls on the basin-scale distribution of hydraulic conductivity
- of superficial deposits: a case study from the Thames Basin, UK. Quarterly Journal of Engineering
- 842 Geology and Hydrogeology, 47, 223-236. http://doi.org/10.1144/qjegh2013-072
- 843 Brown, J., Wyers, A., Aldous, A., Bach, L., 2007. Groundwater and biodiversity conservation: A
- 844 methods guide for integrating groundwater needs of ecosystems and species into conservation plans
- 845 in the Pacific Northwest. The Nature Conservancy report. 123 pages.
- 846 Brunke, M., Gonser, T., 1997. The ecological significance of exchange processes between rivers and
- 847 groundwater. Freshw. Biol. 1–33.
- 848 Bunn, S.E., Arthington, A.H., 2002. Basic Principles and Ecological Consequences of Altered Flow
- 849 Regimes for Aquatic Biodiversity. Environ. Manage. 30, 492–507. doi:10.1007/s00267-002-2737-0
- Caissie, D., 2006. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406.
- 851 doi:10.1111/j.1365-2427.2006.01597.x
- 852 Camargo, J.A., Alonso, A., Salamanca, A., 2005. Nitrate toxicity to aquatic animals: A review with new
- data for freshwater invertebrates. Chemosphere 58, 1255–1267.
- doi:10.1016/j.chemosphere.2004.10.044
- 855 Carluer, N., de Marsily, G., 2004. Assessment and modeling of the influence of man-made networks
- on the hydrology of a small watershed: Implications for fast flow components, water quality and
- 857 landscape management. J. Hydrol. 285:76–95.
- 858 Centraal Bureau voor de Statistiek, 2017. Dierlijke mest en mineralen; productie, transport en
- 859 gebruik per regio. Accessed on July 10 2017.

- http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=7311slmi&D1=88&D2=81&D3=a&HDR=T,
 G2&STB=G1&VW=T
- Centre for Ecology and Hydrology, 2017. UK Droughts:SPI. https://eip.ceh.ac.uk/apps/droughts/ last
 downloaded 29 June 2017
- 864 Clayton, H.J., Morris, S.E., McIntyre, N.R., Greaves, M., 2008. The hydrological impact of low-flow
- alleviation measures. Proceedings of the Institution of Civil Engineers and Water Management, 161,
 171–180
- 867 Conant, B., 2004. Delineating and quantifying ground water discharge zones using streambed
- 868 temperatures. Ground Water, 42, 243-257
- 869 Conley, D.J., Carstensen, J., Ærtebjerg, G., Christensen, P.B., Dalsgaard, T., Hansen, J.L.S., Josefson,
- A.B., 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 17(sp5),
 165-184.
- Custodio, E., 2000. Effects of groundwater development on the environment. Bol. Geol. y Min. 111,
 107–120.
- Dahl, M., Nilsson, B., Langhoff, J.H., Reefsgaard, J.C., 2007. Review of classification systems and new
 multi-scale typology of groundwater–surface water interaction. Journal of Hydrology 344, 1–16.
- 876 Darling, W. G., Bowes, M. J. 2016. A long-term study of stable isotopes as tracers of processes
- governing water flow and quality in a lowland river basin: the upper Thames, UK. Hydrol. Process.,
- 878 Vol. 30, Iss. 13, pp. 2178-2195.
- Bowning, R.A., Price, M., Jones, G.P., 1993a. The hydrogeology of the Chlak of North-West Europe.
 Pub. Clarendon Press, Oxford. 300pp.
- 881 Downing, R.A., 1993b. Groundwater resources, their development and management in the UK: an
- historical perspective. Quarterly Journal of Engineering Geology, 26, 335-358

- 883 Dupas, R., Gruau, G., Gu, S., Humbert, G., Jaffrézic, A., Gascuel-Odoux, C., 2015. Groundwater control
- of biogeochemical processes causing phosphorus release from riparian wetlands. Water Res. 84,
- 885 307–314. doi:10.1016/j.watres.2015.07.048
- 886 Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T.,
- 887 Seabloom, E. W., Shurin, J. B., and Smith, J. E.: Global analysis of nitrogen and phosphorus limitation
- of primary producers in freshwater, marine and terres- trial ecosystems, Ecol. Lett., 10, 1135–1142,
- doi:10.1111/j.1461-0248.2007.01113.x, 2007.
- 890 Environment Agency, 2015. ENV15 Water abstraction tables.
- 891 https://www.gov.uk/government/statistical-data-sets/env15-water-abstraction-tables last
- downloaded 29 June 2017
- 893 Environment Agency, 2016a. Thames river basin district River basin management plan. Pub.
- 894 Environment Agency, December 2015 LIT 10319. Available at:
- 895 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/500548/Thames_
- 896 RBD_Part_1_river_basin_management_plan.pdf
- 897 Environment Agency, 2016b. Management of the London Basin Chalk Aquifer. Environment Agency,
- 898 Status Report 2016.
- 899 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/536792/2016_Lon
- 900 don_GWL_Report.pdf last downloaded 29 June 2017
- 901 European Commission, 2008. Groundwater Protection in Europe. The New Groundwater Directive-
- 902 Consolidating the EU Regulatory Framework. doi:10.2779/84304
- 903 European Commission, 2000. Directive 2000/60/EC of October 23 2000 of the European Parliament
- 904 and of the Council establishing a framework for community action in the field of water policy. Off J
- 905 Eur Comm 2000;L327:1–72.

- 906 European Environmental Agency, 1999. Environment in the European Union at the turn of the907 century. Copenhagen: EEA.
- 908 European Environmental Agency, 2012. European waters assessment of status and pressures. EEA
- 909 Report No 08/2012. ISSN 1725-9177. Copenhagen: EEA.
- 910 Feld, C.K., Birk, S., Bradley, D.C., Hering, D., Kail, J., Marzin, A., Melcher, A., Nemitz, D., Pedersen,
- 911 M.L., Pletterbauer, F., Pont, D., Verdonschot, P.F.M., Friberg, N., 2011. From Natural to Degraded
- 912 Rivers and Back Again : A Test of Restoration Ecology Theory and Practice, 1st ed, Advances in
- 913 Ecological Research. Elsevier Ltd. doi:10.1016/B978-0-12-374794-5.00003-1
- 914 Feld, C.K., Hering, D., 2007. Community structure or function: effects of environmental stress on
- 915 benthic macroinvertebrates at different spatial scales. Freshw. Biol. 52, 1380–1399.
- 916 doi:10.1111/j.1365-2427.2007.01749.x
- 917 Ferreira, T., Panagopoulos, Y., Bloomfield, J., Couture, R.M., Ormerod, S., et al. (MARS Project
- 918 Workpackage 4 Team). 2016. Case study synthesis Final Report. MARS Project Deliverable 4.1.
- 919 Available at: http://mars-project.eu/index.php/deliverables.html.
- 920 Fleckenstein, J.H., Krause, S., Hannah, D.M., Boano, F., 2010. Groundwater-surface water
- 921 interactions: New methods and models to improve understanding of processes and dynamics.
- 922 Advances in Water Resources, 33, 1291-1295
- 923 Folland, C.K., Hannaford, J., Bloomfield, J.P., Kendon, M., Svensson, C., Marchant, B.P., Prior, J.,
- 924 Wallace, E., 2015 Multi-annual droughts in the English Lowlands: a review of their characteristics and
- 925 climate drivers in the winter half-year. Hydrology and Earth System Sciences, 19(5), 2353-2375
- 926 Gari, S.R., Newton, A., Icely, J.D., 2015. A review of the application and evolution of the DPSIR
- 927 framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 103, 63–77.
- 928 doi:10.1016/j.ocecoaman.2014.11.013

- 929 Gkemitzi, A., Hunkeler, D., Kania, J., Kløve, B., Kupfersberger, H., Kübeck, C., Kværner, J., Lundberg,
- 930 A., Meeks, J., Haro, S.P., Posavec, K., Stumpp, C., Manuel Pulido Velazquez, K.R., Wachniew, P.,
- 931 Witczak, S., 2011. GENESIS Project Deliverable D2.2. Guidelines on flowpath characterization,

932 dynamics and GW renewal.

- 933 Gooddy, D.C., Ascott, M.J., Lapworth, D.J., Ward, R.S., Jarvie, H.S., Bowes, M.J., Tipping, E., Dils, R.,
- 934 Surridge, B.W.J., 2017. Mains water leakage: Implications for phosphorus source apportionment and

935 policy responses in catchments. Sci. Total Environ. 579, 702–708.

- 936 Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H., Aureli, A.,
- 937 2011. Beneath the surface of global change: Impacts of climate change on groundwater. Journal of
- 938 Hydrology, 405, 532-560
- Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A., et al., 2015. MARS Deliverable 2.1 : Cook-book
 for ecosystem service assessment and valuation in European water resource management.
- Gustard, A., Bullock, A., Dixon, J.M., 1992. Low flow estimation in the United Kingdom. Institute of
 Hydrology Report No. 108. Wallingford, UK.
- Habib, A., Sorensen, J.P.R., Bloomfield, J.P., Muchan, K., Newell, A.J., Butler, A.P., 2017. Temporal
- scaling phenomena in groundwater-floodplain systems using robust detrended fluctuation analysis.
- 945 Journal of Hydrology, 549, 715–730
- 946 Hamilton, S.K., 2012. Biogeochemical time lags may delay responses of streams to ecological
- 947 restoration. Freshw. Biol. 57, 43–57. doi:10.1111/j.1365-2427.2011.02685.x
- 948 Hancock, P.J., Boulton, A.J., Humphreys, W.F., 2005. Aquifers and hyporheic zones: Towards an
- 949 ecological understanding of groundwater. Hydrogeol. J. 13, 98–111. doi:10.1007/s10040-004-0421-6
- Hannah, D.M., Garner, G., 2015. River water temperature in the United Kingdom: Changes over the
- 20th century and possible changes over the 21st century. Progress in Physical Geography, 39, 68–92.

- Hatton, T., Evans, R., 1998. Dependence of Ecosystems on Groundwater and its Significance to
 Australia. LWRRDC Occasional Paper No 12/98.
- 954 Hendriks, D.M.D., Kuijper, M.J.M., van Ek, R., 2014. Groundwater impact on environmental flow
- 955 needs of streams in sandy catchments in the Netherlands. Hydrol. Sci. J. 59, 1–16.
- 956 doi:10.1080/02626667.2014.892601
- 957 Hendriks, D.M.D., Mens, M., Kramen, N., Borren, W., Diermanse, F., 2015a. Changing e-flows
- 958 resulting from land use change and altered groundwater conditions in the Regge catchment, the
- 959 Netherlands. In: Angelopoulos, N., Buijse, T., et al. [eds.] Proceedings of the International
- 960 Conference on River and Stream Restoration "Novel Approaches to Assess and Rehabilitate Modified
- 961 Rivers". FP7 REFORM deliverable 7.5. p 170–175.
- 962 Hendriks, D.M.D., Okruszko, T., Acreman, M.C., Grygoruk, M., Duel, H., Schutten, J., Henriksen, H.J.,
- 963 Sanchez, R., Broers, H.P., Lewandowski, J., Old, G., Whiteman, M., Johns, T., Kaandorp, V., Baglioni,
- 964 M., Holgersson, B., Kowalczyk, A., 2015b. Bringing groundwater to the surface; Groundwater-river
- 965 interaction as driver for river ecology. REFORM D7.7, Policy Discussion Paper no. 2.
- 966 Henriksen, H.J., Troldborg, L., Højberg, A.L., Refsgaard, J.C., 2008. Assessment of exploitable
- 967 groundwater resources of Denmark by use of ensemble resource indicators and a numerical
- groundwater-surface water model. J. Hydrol. 348, 224–240. doi:10.1016/j.jhydrol.2007.09.056
- 969 Hering, D., Carvalho, L., Argillier, C., Beklioglu, M., Borja, Á., Cardoso, A.C., Duel, H., Ferreira, T.,
- 970 Globevnik, L., Hanganu, J., Hellsten, S., Jeppesen, E., Kodes, V., Solheim, A.L., Nõges, T., Ormerod, S.J.,
- 971 Panagopoulos, Y., Schmutz, S., Venohr, M., Birk, S., 2014. Managing aquatic ecosystems and water
- 972 resources under multiple stress An introduction to the MARS project. Sci. Total Environ.
- 973 doi:10.1016/j.scitotenv.2014.06.106
- Higler, L.W., Repko, F.F., Sinkeldam, J.A., 1981. Hydrobiologische Waarnemingen in Springendal. RINrapport 81/16. (In Dutch)

- House, A.R., Sorensen, J.P.R., Gooddy, D.C., et al., 2015. Discrete wetland groundwater discharges
 revealed with a three-dimensional temperature model and botanical indicators (Boxford, UK)
 Hydrogeol J, 23, 775-787.
- 979 House, A.R., Thompson, J.R., Acreman, M.C., 2016a. Projecting impacts of climate change on
- 980 hydrological conditions and biotic responses in a chalk valley riparian wetland. Journal of Hydrology,
 981 534, 178–192.
- 982 House, A.R., Thompson, J.R., Sorensen, J.P.R., Roberts, C. and Acreman, M.C. 2016b. Modelling
- 983 groundwater/surface-water interaction in a managed riparian chalk valley wetland. Hydrological

984 Processes, 30(3), 447-462

- 985 Howden, N.J.K., Burt, T.P., Worrall, F., Mathias, S., Whelan, M.J., 2011. Nitrate pollution in
- 986 intensively farmed regions: What are the prospects for sustaining high-quality groundwater? Water
- 987 Resour. Res. 47, 0–13. doi:10.1029/2011WR010843
- 988 Howden, N.J.K., Burt, T.P., Worrall, F., Whelan, M.J., Bieroza, M., 2010. Nitrate concentrations and
- 989 fluxes in the River Thames over 140 years (1868-2008): Are increases irreversible? Hydrol. Process.
- 990 24, 2657–2662. doi:10.1002/hyp.7835
- 991 Hughes, A.G., Vounaki, T., Peach, D.W., Ireson, A.M., Jackson, C.R., Butler, A.P., Bloomfield, J.P.,
- 992 Finch, J., Wheater, H.S., 2011. Flood risk from groundwater: examples from a Chalk catchment in
- 993 southern England. Journal of Flood Risk Management, 4(3), 143-155
- Humborg, C., H.E. Andersen, T. Blenckner, M. Gadegast, R. Giesler, J. Hartmann, G. Hugelius, J.
- 995 Hürdler, P. Kortelainen, G. Blicher-Mathiesen, M. Venohr, G. Weyhenmeyer. 2015. Environmental
- 996 impacts: Freshwater biogeochemistry. In: The BACC II Author Team (Eds.), Second Assessment of
- 997 Climate Change for the Baltic Sea Basin. Springer International Publishing, Berlin, Germany pp 307-
- 998 336.

- 999 Irwin, R.W., Whiteley, H.R., 1983. Effects of land drainage on stream flow. Canadian Water
- 1000 Resources Journal / Revue canadienne des ressources hydriques, 8:2, 88-103, DOI:

1001 10.4296/cwrj0802088

- 1002 Isaak, D.J., Wollrab, S., Horan, D., Chandler, G., 2012. Climate change effects on stream and river
- 1003 temperatures across the northwest U.S. from 1980-2009 and implications for salmonid fishes. Clim.
- 1004 Change 113, 499–524. doi:10.1007/s10584-011-0326-z
- 1005 Jackson, C.R., Bloomfield, J.P., Mackay, J.D., 2015 Evidence for changes in historic and future
- 1006 groundwater levels in the UK. Progress in Physical Geography, 39(1), 49-67
- 1007 Jenkins, G.J., Perry, M.C., Prior, M.J., 2009. The climate of the United Kingdom and recent trends.
- 1008 Met. Office Report, Hadley Centre, Exeter, UK.
- 1009 King, K. W., Fausey, N. R., Williams, M. R., 2014. Effect of subsurface drainage on streamflow in an
- agricultural headwater watershed. Journal of Hydrology 519, pp 438-445.
- 1011 Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., Ilmonen, J., Karakaya,
- 1012 N., Kupfersberger, H., Kværner, J., Lundberg, A., Mileusnić, M., Moszczynska, A., Muotka, T., Preda,
- 1013 E., Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., Angheluta, V., Widerlund, A., 2011. Groundwater
- 1014 dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 14, 770–781.
- 1015 doi:10.1016/j.envsci.2011.04.002
- 1016 Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J.J., Kupfersberger, H., Kværner, J., Muotka, T., Mykrä,
- 1017 H., Preda, E., Rossi, P., Uvo, C.B., Velasco, E., Pulido-Velazquez, M., 2014. Climate change impacts on
- 1018 groundwater and dependent ecosystems. J. Hydrol. 518, 250–266.
- 1019 doi:10.1016/j.jhydrol.2013.06.037

- Kristensen, P., 2004. The DPSIR Framework. In: Workshop on a comprehensive / detailed assessment
 of the vulnerability of water resources to environmental change in Africa using river basin approach.
 September 2004. UNEP Headquaters, Nairobi, Kenya.
- 1023 Kronvang, B., Bøgestrand, J., Ovesen, N.B., Nygaard, P. and Troldborg, L., 2007. Background
- 1024 concentration of nitrogen and phosphorus in groundwater and surface waters. In: Bøgestrand, J.
- 1025 (red.) 2007: Vandløb 2006. NOVANA. Danmarks Miljøundersøgelser, Aarhus Universitet. 96 s. –
- 1026 Faglig rapport fra DMU nr. 642 http:// www.dmu.dk/Pub/FR642.pdf (In Danish).
- 1027 Kuijper, M.J.M., D.M.D. Hendriks, R.J.J. van Dongen, S. Hommes, J. Waaijenberg, B. Worm, 2012.
- 1028 Steering base flow: an analysis of summer discharge for the managed area of water authority Regge
- and Dinkel and how to proceed into the future. Deltares report, 1202530-000, Utrecht (in Dutch).
- 1030 Lamontagne, S., Graham, D., Household, I., Middlemis, H. and Ross, A. 2012. Groundwater–surface
- 1031 water interactions: Implications for water resources management. Workshop Summary Report,
- 1032 National Water Commission, Canberra
- 1033 Lange, B., Holman, I., Bloomfield, J.P., 2017. A framework for a joint hydro-meteorological-social
- analysis of drought. Sci. Total Environ. 578, 297–306. doi:10.1016/j.scitotenv.2016.10.145
- 1035 Larsen, M.A.D., Soegaard, H., Hinsby, K., 2008. Temporal trends in N & P concentrations and loads in
- 1036 relation to anthropogenic effects and discharge in Odense River 1964-2002. Hydrology Research1037 39(1), 41-54.
- 1038 Lu, S., Kronvang, B., Audet, J., Trolle, D., Andersen, H.E., Thodsen, H., et al., 2015. Modelling
- sediment and total phosphorus export from a lowland catchment: comparing sediment routing
 methods. Hydrol Process 29, 280-94.
- 1041 Lytle, D.A., Poff, N.L., 2004. Adaptation to natural flow regimes. Trends Ecol. Evol., 19, 94–100.

- 1042 Maas, F.M., 1959. Bronnen, bronbeken en bronbossen van Nederland, in het bijzonder die van de
- 1043 Veluwezoom. Een plantensociologische en oecologische studie. Mededelingen van de
- 1044 landbouwhogeschool te Wageningen, Nederland 59(12) 1-66. (In Dutch)
- 1045 Macdonald, D., Dixon, A., Newell, A., Hallaways, A. 2012 Groundwater flooding within an urbanised
- 1046 flood plain. Journal of Flood Risk Management, 5(1), 68-80
- 1047 Matheswaran, K., Blemmer, M., Thorn, P., Rosbjerg, D., Boegh, E., 2014. Investigation of stream
- 1048 temperature response to non-uniform groundwater discharge in a Danish lowland stream. River Res.
- 1049 Appl. doi:10.1002/rra.2792
- 1050 Meisner, J.D., Rosenfeld, J.S., Regier, H.A., 1988. The Role of Groundwater in the Impact of Climate
- 1051 Warming on Stream Salmonines. Fisheries 13, 2–8. doi:10.1577/1548-
- 1052 8446(1988)013<0002:TROGIT>2.0.CO;2
- 1053 Miljø- og Fødevareministeriet, 2016. MiljøGIS. Available at: http://miljoegis.mim.dk. Accessed: 211054 03-2017 (in Danish).
- 1055 Ministry of Infrastructure and the Environment, 2015. River basin management plans 2016-2021 of
- 1056 the Netherlands, Summary. 2015.
- 1057 https://www.helpdeskwater.nl/publish/pages/35920/summary_rmbp.pdf
- 1058 Modica, E., Reilly, T.E., Pollock, D.W., 1997. Patterns and Age Distribution of Ground-Water Flow to
- 1059 Streams. Ground Water, Vol. 35, No. 3, pp 523-537
- 1060 Molina-Navarro, E., Andersen, H.E., Nielsen, A., Thodsen, H., Trolle, D., 2018. Quantifying the
- 1061 combined effects of land use and climate changes on stream flow and nutrient loads: a modelling
- approach in the Odense Fjord catchment (Denmark). Sci. Total Environ. 621, 253–264.
- 1063 National Rivers Authority, 1993. Low Flows and Water Resources. Facts on the Top 40 Low Flow
- 1064 Rivers in England and Wales. National Rivers Authority report, Bristol, UK, pp. 1–30.

- 1065 Nijboer, R.C., Wiggers, R., Van den Hoek, T.H., Van Rhenen-Kersten, C.H., 2003. Herstel van een
- 1066 brongebied in natuurreservaat het Springendal. Kolonisatie van nieuwe bronnen door macrofauna.
- 1067 Alterra-rapport 857, Alterra, Wageningen, 102 pp. (In Dutch)
- 1068 Nõges, P., Argillier, C., Borja, Á., Garmendia, J.M., Hanganu, J., Kodes, V., Pletterbauer, F., Sagouis, A.,
- 1069 Birk, S., 2015. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and
- 1070 ground waters. Sci. Total Environ. 540, 43–52. doi:10.1016/j.scitotenv.2015.06.045
- 1071 OECD, 1993. OECD core set of indicators for environmental performance reviews. OECD
- 1072 Environmental Directorate Monographs No.83.
- 1073 Palmer, M.A., Lettenmaier, D.P., Poff, N.L., Postel, S.L., Richter, B.D., Warner, R., 2009. Climate
- 1074 change and river ecosystems: protection and adaptation options. Environ. Manage. 44, 1053–68.
- 1075 doi:10.1007/s00267-009-9329-1
- 1076 Patrício, J., Elliott, M., Mazik, K., Papadopoulou, K.-N., Smith, C.J., 2016. DPSIR—Two Decades of
- 1077 Trying to Develop a Unifying Framework for Marine Environmental Management? Front. Mar. Sci. 3,
- 1078 1–14. doi:10.3389/fmars.2016.00177
- 1079 Piggott, J.J., Townsend, C.R., Matthaei, C.D., 2015. Reconceptualizing synergism and antagonism
- 1080 among multiple stressors. Ecol. Evol. 5, 1538–1547. doi:10.1002/ece3.1465
- 1081 Poff, N.L., Zimmerman, J.K.H., 2010. Ecological responses to altered flow regimes: a literature review
- to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205.
- 1083 doi:10.1111/j.1365-2427.2009.02272.x
- 1084 Power, G., Brown, R.S., Imhof, J.G., 1999. Groundwater and fish insights from northern North
- 1085 America. Hydrol. Process. 13, 401-422.

- Rozemeijer, J.C., Broers, H.P., 2007. The groundwater contribution to surface water contamination in
 a region with intensive agricultural land use (Noord-Brabant, The Netherlands). Environ. Pollut. 148,
- 1088 695–706. doi:10.1016/j.envpol.2007.01.028
- 1089 Rozemeijer, J.C., Van Der Velde, Y., Van Geer, F.C., Bierkens, M.F.P., Broers, H.P., 2010. Direct
- 1090 measurements of the tile drain and groundwater flow route contributions to surface water
- 1091 contamination: From field-scale concentration patterns in groundwater to catchment-scale surface
- 1092 water quality. Environ. Pollut. 158, 3571–3579. doi:10.1016/j.envpol.2010.08.014
- 1093 Schilling, K.E., Libra, R.D., 2003. Increased baseflow in Iowa over the second half of the 20th century.
- 1094 J. Am. Water Resour. Assoc. 39, 851–860. doi:10.1111/j.1752-1688.2003.tb04410.x
- 1095 Schlosser, I.J., 1990. Environmental variation, life history attributes, and community structure in
- stream fishes: Implications for environmental management assessment. Environ. Manage., 14, 621–
 628.
- 1098 Schülting, L., Feld, C.K., Graf, W., 2016. Effects of hydro- and thermopeaking on benthic
- 1099 macroinvertebrate drift. Sci. Total Environ. doi:10.1016/j.scitotenv.2016.08.022
- 1100 Singh, R. D. and C. P. Kumar, 2010. Impact of Climate Change on Groundwater Resources,
- 1101 Proceedings of 2nd National Ground Water Congress, 22nd March 2010, New Delhi, pp. 332-350
- SKM, 2012. Synthesis of groundwater surface water connectivity knowledge for the Murray-Darling
 Basin. Published by the Murray-Darling Basin Authority.
- Smakhtin, V.U., 2001. Low flow hydrology: A review. J. Hydrol. 240, 147–186. doi:10.1016/S00221694(00)00340-1
- 1106 Smed, P., 1982. Landskabskort over Danmark [Geomorphological map of Denmark]. Sheet 2–4.

1107 Copenhagen: Geografforlaget.

- Sophocleous, M., 2002. Interactions between groundwater and surface water: the state of the
 science. Hydrogeology Journal, 10, 52-67
- 1110 Stendera, S., Adrian, R., Bonada, N., Cañedo-Argüelles, M., Hugueny, B., Januschke, K., Pletterbauer,
- 1111 F., Hering, D., 2012. Drivers and stressors of freshwater biodiversity patterns across different
- 1112 ecosystems and scales: A review. Hydrobiologia 696, 1–28. doi:10.1007/s10750-012-1183-0
- Stuart, M.E., Lapworth, D. J., Thomas, J., Edwards, L., 2014. Fingerprinting groundwater pollution in
 catchments with contrasting contaminant sources using miroorganic compounds. Sci. Total Environ.
 468, 564-577.
- 1116 Svarstad, H., Petersen, L.K., Rothman, D., Siepel, H., Watzolde, F., 2008. Discursive biases of the
- 1117 environmental research framework DPSIR. Land Use Policy, 25, 116-125
- 1118 Tague, C., Grant, G., Farrell, M., Choate, J., Jefferson, A., 2008. Deep groundwater mediates
- streamflow response to climate warming in the Oregon Cascades. Clim. Change 86, 189–210.
- 1120 doi:10.1007/s10584-007-9294-8
- 1121 Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M.,
- 1122 Famiglietti, J.S., Edmunds, M., Konikow, L., Green, T.R., Chen, J., Taniguchi, M., Bierkens, M.F. P.,
- 1123 MacDonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D.M., Shamsudduha, M.,
- 1124 Hiscock, K., Yeh, P.J.-F., Holman, I., Treidel, H., 2013. Ground water and climate change. Nature
- 1125 Climate Change, 3, 322–329
- 1126 Thodsen, H., Andersen, H.E., Blicher-Mathiesen, G., Trolle, D., 2015. The combined effects of
- 1127 fertilizer reduction on high risk areas and increased fertilization on low risk areas, investigated using
- the SWAT model for a Danish catchment. Acta Agr. Scand. B S P. 65, 217-227.
- 1129 Troldborg L, Højberg AL, Nyegaard P, Stisen S, Christensen BSB, Ondracek M (2010) DK-model2009:
- 1130 Modelopstilling og kalibrering for Fyn. GEUS Rep 2010/76, Copenhagen (in Danish).

- 1131 Upton, K.A. and Jackson, C.R. 2011 Simulation of the spatio-temporal extent of groundwater flooding
- using statistical methods of hydrograph classification and lumped parameter models. Hydrological
- 1133 Processes, 25(12), 1949-1963
- 1134 Van Loon, A.F. 2015. Hydrological drought explained. WIREs Water, 2, 359–392
- 1135 Verdonschot, P.F.M., van den Hoek, T.H., van den Hoorn, M.W., 2002. De effecten van
- bodemverhoging op het beekecosysteem van de Springendalse beek. Alterra report, Wageningen.(In Dutch)
- 1138 Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matston, P.A., Schindler, D.W., Schlesinger,
- 1139 W.H., Tilman, D.G., 1997. Human Alteration of the Global Nitrogen Cycle : Sources and
- 1140 Consequences. Ecol. App 7, 737–750.
- 1141 Wang, L., Butcher, A.S., Stuart, M.E., Gooddy, D.C., Bloomfield, J.P., 2013. The nitrate time bomb: A
- 1142 numerical way to investigate nitrate storage and lag time in the unsaturated zone. Environ.
- 1143 Geochem. Health 35, 667–681. doi:10.1007/s10653-013-9550-y
- 1144 Wang, L., Stuart, M.E., Bloomfield, J.P., Butcher, A.S., Gooddy, D.C., Mckenzie, A.A., Lewis, M.A.,
- 1145 Williams, A.T., 2012. Prediction of the arrival of peak nitrate concentrations at the water table at the
- regional scale in Great Britain. Hydrol. Process. 26, 226–239. doi:10.1002/hyp.8164
- 1147 Watts, G., Battarbee, R.W., Bloomfield, J.P., Crossman, J., Daccache, A., Durance, I., Elliott, J.A.,
- 1148 Garner, G., Hannaford, J., Hannah, D.M., Hess, T., Jackson, C.R., Kay, A.L., Kernan, M., Knox, J.,
- 1149 Mackay, J., Monteith, D.T., Ormerod, S.J., Rance, J., Stuart, M.E., Wade, A.J., Wade, S.D.,
- 1150 Weatherhead, K., Whitehead, P.G., Wilby, R.L., 2015. Climate change and water in the UK past
- 1151 changes and future prospects. Prog. Phys. Geogr. 39, 6–28. doi:10.1177/0309133314542957
- 1152 Winter, T.C., Harvey, J.W., Franke, O.L., Alley, W.M., 1998. Ground Water and Surface Water: A
- 1153 Single Resource. U.S. Geological Survey Circular 1139.

- Woessner, W.W., 2000. Stream and fluvial plain ground water interactions: rescaling hydrogeological
 thought. Ground Water, 38, 423-429
- 1156 Worrall, F., Howden, N.J.K., Burt, T.P., 2015a. Evidence for nitrogen accumulation: the total nitrogen
- 1157 budget of the terrestrial biosphere of a lowland agricultural catchment. Biogeochemistry, 123(3),
- 1158 411-428
- 1159 Worrall, F., Howden, N.J.K., Burt, T.P., 2015b. Time series analysis of the world's longest fluvial
- nitrate record: Evidence for changing states of catchment saturation. Hydrol. Process. 29, 434–444.
- 1161 doi:10.1002/hyp.10164
- 1162 Wriedt, G., Spindler, J., Neef, T., Meißner, R., Rode, M., 2007. Groundwater dynamics and channel
- activity as major controls of in-stream nitrate concentrations in a lowland catchment system? J.
- 1164 Hydrol. 343, 154–168. doi:10.1016/j.jhydrol.2007.06.010
- 1165 Xue, Y., David, M.B., Gentry, L.E., Kovacic, D.A., 1998. Kinetics and modeling of dissolved phosphorus
- 1166 export from a tile-drained agricultural watershed. J. Environ. Qual., 27, 917–922.
- 1167 Zhou, Y., 2009. A critical review of groundwater budget myth, safe yield and sustainability. Journal of
 1168 Hydrology 370, pp 207-213.