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Abstract 31 

 32 

The ability of Nirex Reference Vault Backfill (NRVB), a cement backfill material, to 33 

remove capture carbon dioxide from Iintermediate Llevel Rradioactive waste 34 

packages after repository backfilling, has been assessed. Large-scale trials assessed 35 

the physical and chemical reaction of carbon dioxide with the hardened backfill grout. 36 

A carbonation front, radial in nature, was observed extending in to the grout and . 37 

Tthree distinct regions were identified in the hardened grouts. A carbonated, partially 38 

carbonated and uncarbonated. Within the partially carbonated region, a carbonation 39 

front, and a transition zone were discerned. Potassium, and to a lesser extent sodium, 40 

are were concentrated within a zone in the carbonated region just ahead of the main 41 

reaction front. The area just ahead of the carbonation front wais enriched in both 42 

sulphur and aluminium, while sulphur is was found to be then depleted from the 43 

carbonated material behind the main reaction front indicating that???.  Within the 44 

main carbonated region, virtually all of the hydrated cement phases are were found to 45 

be carbonated, and carbonation extended throughout the . Some carbonation had 46 

occurred throughout the canistergrout, even within material indicated by 47 

phenolphthalein solution to be uncarbonated. Importantly, since the cement backfill 48 

relies upon its high porosity to fulfill its groundwater buffering function, carbonation 49 

was found to significantly impact the porosity of the cement; in the carbonated region 50 

the porosity was significantly reduced, while in the partially carbonated region it was 51 

increased. 52 

The porosity of the carbonated grout is lower than in the uncarbonated material due to 53 

replacement of pore space with precipitated calcium carbonate, but the highest 54 

porosity was measured in the partially carbonated region.  55 

  56 
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1. Introduction 57 

 58 

Geological disposal in an engineered facility underground is the preferred option for 59 

disposal of nuclear waste. A range of generic disposal concepts for High Level Waste 60 

(HLW), spent fuel (SF) and Intermediate and some Low Level Waste (ILW/LLW) 61 

streams are being considered in the UK [Nuclear Decommissioning Authority, 62 

2010a]. Such Geological geological disposal facilities (GDFs) are based on concepts, 63 

also known as Geological Disposal Facilities (GDFs), have been selected based on 64 

three host rock types (higher strength rock, lower strength sedimentary rock and 65 

evaporites). All these concepts the of use a multi barrier containment approach, which 66 

involves the application of engineered barriers,  that would working in combination 67 

with natural geological features, to reduce the rate of radionuclide release to the 68 

biosphere.  and delay ultimate return to the surface environment. In the United 69 

Kingdom, for the disposal of Intermediate Level Waste (ILW) /LLW in a higher 70 

strength rock, it is proposed that packages of grouted waste are proposed towill be 71 

emplaced in sub-surface vaults and surrounded with a Portland cement-based backfill 72 

called Nirex Reference Vault Backfill (NRVB)[Vasconcelos et al. 2018]. The primary 73 

advantages of using this material are: i)  One of the main reasons cementitious grout 74 

is being considered for waste encapsulation and back-filling, is its ability to maintain 75 

highly alkaline pore solutions, which . This reduces the solubility and mobility of 76 

many of the important radionuclides, thereby restricting retarding their migration 77 

from the GDF and into the geosphere; . It also inhibits and slows the corrosion of the 78 

steel waste canisterii) its high porosity and . The NRVB is not a structural cement: in 79 

addition to providing a chemical conditioning function, the NRVB is specifically 80 

formulated to be gas-permeability, which give a high surface area for radionuclide 81 

sorption and allows relief of any pressure from gas egress from the waste packages; 82 

iii) its low strength, which le and to be weak enough to besupports easy ily 83 

excavatedion of waste packages, if required; and iv) it also inhibits and slows the 84 

corrosion of the steel waste canister. in the event of the need for waste recovery. 85 

 86 

It is expected that some of the wastes in a GDF would produce gaseous emissions 87 

T[Nuclear Decommissioning Authority, 2010b], the bulk of gaseous emissions from 88 

ILW packages which willare expected to be hydrogen (H2), mainly produced from the 89 

corrosion of metallic waste products.  and mMethane (CH4)  and carbon dioxide 90 
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(CO2), are also likely to be produced via the microbial degradation of organic waste 91 

materials under aerobic anaerobic or aerobicanaerobic conditions [Nuclear 92 

Decommissioning Authority, 2010b]. A small proportion of the gas produced would 93 

be radioactive which would include radioactive tritium (3H), 14C- labeled species 94 

(including 14CH4 and 14CO2) and radon (Ra). After backfilling, and before and after 95 

the subsequent closure of the vaults, iIt is desired that, after backfilling, either the 96 

cementitious material in the waste packages, or in the backfill, would capture  any 97 

waste CO2 generated in-situ within the grouted waste packages (including 14CO2) 98 

would , thus preventing its egress to the geosphere. react fully with either the 99 

ILW/LLW encapsulation grouts or the cementitious backfill by carbonation of 100 

cationic species, and so would be removed from the gaseous phase and retained in 101 

either the engineered barrier system, the encapsulation grouts, or the backfill, or the 102 

engineered barrier system,. 103 

 104 

Carbon dioxide is known to react with cementitious materials in a process known as 105 

carbonation [Basheer et al., 2001; Hobbs, 2001; Poonguzhali et al., 2008]. While this 106 

may be a durability concern for reinforced concrete, it may also confer benefits, for 107 

example reduced porosity and so improved durability of in fact, deliberate 108 

carbonation of pre-cast concrete members or, in the case of NRVB, sequestration of 109 

carbon dioxide can be used as a means of improving durability. This process is 110 

controlled by the movement of gaseous CO2 into the material, driven by concentration 111 

and/or pressure gradients, and its chemical reaction with calcium-rich phases present 112 

in the binding phase. The extent of carbonation is controlled by the chemistry and 113 

permeability of the cement. The main effect of carbonation in Portland cement-based 114 

binders is a reduction in the alkalinity of the material, along with a possible variation 115 

in mechanical strength, and alteration in permeability of the binder [Bary and Sellier, 116 

2001; Basheer et al., 2001; Fernández-Bertos et al., 2004; Morandeau et al., 2014]. 117 

The combined effect of the changes induced by carbonation in a cement grout can be 118 

detrimental, as the presence of a highly alkaline pore solution is one of the main 119 

criteria used to determine the life-span of the UK geological disposal repository 120 

concept for radioactive wastes [Atkins and Glasser, 1992]. Such conditions reduce the 121 

solubility and enhance the sorption of many radionuclides, which restricts retards 122 

their release from the cement and the repository into the geo- and bio-spheres. 123 

 124 
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The carbonation of cementitious materials has been studied widely in the construction 125 

industry because of its effects on the performance of reinforced concrete engineering 126 

structures exposed to atmospheric CO2 [Thiery et al., 2007; Black et al., 2008]. In 127 

ordinary Portland cements used for construction purposes, CO2 from the atmosphere 128 

diffuses through gas-filled pores and dissolves into the pore solution to forming 129 

aqueous HCO3
-. The uptake of acidic CO2 into the alkaline pore solution reduces the 130 

internal pH of the binder, and the dissolved carbonate also reacts with calcium-rich 131 

hydration products present in the matrix, mainly with portlandite (Ca(OH)2), calcium 132 

silicate hydrate (C-S-H1) and the various calcium aluminate hydrates present, to form 133 

solid calcium carbonates, silica gel and hydrated aluminium and iron oxides 134 

[Johannesson and Utgenannt, 2001; Živica and Bajza, 2001; Fernández-Bertos et al., 135 

2004].  136 

 137 

The effect of carbonation on the ability of a cementitous backfill grout to buffer 138 

groundwater to high pH (as desired to retard release of radionuclides to the 139 

geosphere) has not been fully elucidated.  In addition, carbonation of the cement grout 140 

reduces the ability of the cement to buffer the pore waters to high pH, which is one of 141 

the main geochemical functions of the cement within the engineered barrier system. 142 

The reaction of CO2 with typical waste encapsulation grouts and NRVB has been 143 

studied [Harris et al., 2003a; Harris et al., 2003b; Sun, 2010], but further information 144 

is required to enable a safety case for disposal to be put forward on firm scientific 145 

foundations.  146 

 147 

We report here on full-detailed larger-scale experimental studies investigating the 148 

reaction of gaseous CO2 with hardened NRVB grout to support understanding of 149 

determine the likely interactions between the CO2 wastes and the backfill material 150 

following closure of the GDF. The trials provided new insight into the reaction of 151 

CO2 with hardened NRVB grout, mMaking use of chemical and microstructural 152 

analyses, we show that ….. [need to put conclusions here].high-resolution analytical 153 

tools to provide an unprecedented level of insight into the carbonation process of 154 

NRVB, and its implications for the material in service. 155 

                                                        
1 Calcium silicate hydrate is the principal binding phase in Portland cement based 

systems. C, S and H indicate the oxides of calcium, silicon and hydrogen respectively, 

while the hyphens reflect the variable composition of the material. 
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 156 

 157 

2. Experimental 158 

 159 

2.1 Materials 160 

 161 

Nirex Reference Vault Backfill (The NRVB) was formulated according to [ref] using 162 

Ribblesdale Sellafield specification  powders consisted of: 163 

 Ordinary Portland Cement (- Sellafield Ltd specification ordinary Portland 164 

cement, supplied by Hanson Cement), ex Ribblesdale works [Cann and Orr, 2010], l. 165 

This cement is developed specifically for the UK nuclear waste processing industry 166 

and is different from cements used in construction, in that it does not contain calcium 167 

carbonate and is ground without the use of organic grinding agents. 168 

 Limestone flour (- supplied by Tendley Quarries to BS594-1 [BS594-1, 169 

2005]) and h. 170 

 Hydrated lime ( - Limbux hydrated lime supplied by Tarmac Buxton Lime and 171 

Cement [BS EN 459-1, 2015]). Characterisation of each of these materials (e.g. 172 

particle size, surface area, composition etc. are provided in Vasconcelos et al. (2018)).  173 

 174 

The formulation of the NRVB paste is shown in Table 1; the overall water to :solids 175 

ratio (w/:s) was 0.55. 176 

 177 

 178 

 179 

 180 

 181 

Table 1. NRVB composition [Francis et al., 1997] 182 

 183 

Components Mass 

(g) 

Paste Proportion 

(wt.%) 

Solids Proportion 

(wt.%) 

Ordinary Portland cement 450 26.01 40.36 

Limestone flour 495 28.61 44.39 

Hydrated lime 170 9.83 15.25 
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Water 615 35.55 - 

Total 1,730 100 100 

 184 

 185 

 186 

2.2 Large-scale trial 187 

 188 

Powders sufficient to produce a 500 L batch of grout were weighed and then added to 189 

the desired weight of water at a controlled rate over a 25 minute period into a BNFL 190 

grout mixer (an impeller in- vessel mixer, as used in the Sellafield Wastes 191 

Encapsulation plant (WEP)) and then mixed for a further 15 minutes. The grout was 192 

then poured into a bespoke 400 L stainless steel curing vessel (Figure 1). The vessel 193 

had an internal diameter of 790 mm, an internal height of 780 mm, and incorporated a 194 

stainless steel ILW drum lid (with a standard sintered metal vent at the centre of the 195 

lid) fixed inside. A sealed compartment located directly below the vent provided a 196 

gas-tight reservoir from which the CO2 was emitted. Before the 400L vessel was 197 

filled with grout, the inside faces were roughened.  and coated with anAfter filling 198 

with the NRVB, the edge interface between the top surface of the NRVB and the 199 

vessel was filled with a beading of  epoxy resin-based concrete bonding material to 200 

ensure good adhesion between the grout and the walls of the vessel (and hence reduce 201 

the pathways available for the CO2 to flow around the grout). The vessel was then 202 

filled with 302 L of grout to cover the drum vent and form an interface with the drum 203 

lid; this simulated the backfilling of a GDF vault filled with ILW containers. The 204 

sample was sealed and then cured at 40°C for 28 days to mimic represent potential  205 

repository conditions. After this period the internal gas reservoirs were filled with 206 

CO2 (99.8 % purity) to 0.15 MPa from an external gas bottle through a penetration 207 

connection in the base of the vessel and into the reservoir. CO2 pressure was 208 

measured at the gas inlet reservoir throughout, and gas consumption was calculated 209 

from pressure changes. The carbonation trial was performed at 30°C and autogenous 210 

RH;, and temperature and pressure were recorded for the duration. The vessel was 211 

fitted with a carbon dioxide sensor in the external lid of the 400 L vessel to detect any 212 

release of CO2 from the top surface of the grout, which would indicate either 213 

premature material failure, e.g. by cracking, or CO2 permeation of through the whole 214 

depth of the grout by the CO2. 215 
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 216 

 217 

 218 

Figure 1. The sSchematic shows of the layout of the large-scale trial equipment 219 

layout and a plan view of core locations. showing the location of the cores taken 220 

 221 

 222 

After approximately 2 years of curing and exposure to CO2, the trial was terminated 223 

and three 48 mm diameter cores were drilled perpendicularly to the top surface and 224 

through the full thickness of the grout until the embedded steel ILW drum lid was 225 

reached. Three cores were taken (, and their positions and locations varied were as 226 

shown in Figure. 1). The radial distance from the centre of the vessel to the centre of 227 

both Core 6.1 and Core 12 was 100 mm, whereas that of Core 9 was 150 mm. Water 228 

was used minimally for cooling and lubrication fluid during the drilling process. After 229 

removal, each core was placed and sealed in an argon-purged polythene sleeve that 230 

had previously been purged and filled with technical grade argon, and then double 231 

bagged in a second polythene sleeve. After coring, samples were sprayed with a 232 

solution of 0.2% phenolphthalein in denatured ethanol, and photographed to allow 233 

areas of bulk carbonation to be visually identified. 234 

 235 

2.3 Carbon dioxide uptake and depth of carbonation 236 

 237 

The maximum depth of carbonation at the single exposed face of the large-scale trials 238 

was calculated using information on the maximum measured carbonation extent of 239 

small NRVB cubes exposed to a 99.8% CO2 gas environment until equilibrium 240 

[Heyes et al., 2015], 6200 (±400) mol CO2/m3 NRVB. This calculation is explained in 241 

detail in the Supplementary Material. 242 
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 243 

 244 

2.4 Analytical methods 245 

 246 

Information describing the details of the techniques used is included in 247 

Supplementary Material, but brief summaries are given here. Thermogravimetric 248 

Analysis (TGA) and Differential Scanning Calorimetry (DSC) were performed using 249 

a Netzsch STA409PC Simultaneous Thermal Analyser, using ~30 mg samples in a 250 

nitrogen atmosphere, heated from 50 to 1000°C at 10°C/min. For permeability testing, 251 

a Temco MP-402 ‘mini’- or ‘probe-permeameter’ was used. Measurements were 252 

made on the cut flat face of one half of the intact cement cores in a horizontal 253 

orientation. Flow rate and pressure were recorded and permeability was calculated. 254 

Measurements were repeated several times at the same spot and the mean was taken 255 

as the representative permeability. Measurements were recorded at various points 256 

along the length of each core at intervals of ~10 – 20 mm apart.  257 

 258 

Selected thin sections of each sample were carbon coated (~25 nm layer) and then 259 

examined using backscattered scanning electron imaging (BSEM) and energy-260 

dispersive X-ray microanalysis (EDXA) elemental mapping. This was performed 261 

using an FEI QUANTA 600 environmental scanning electron microscope (ESEM) 262 

equipped with an Oxford Instruments INCA Energy 450 EDXA system. Semi-263 

quantitative EDXA point analyses were recorded from selected X-ray mapped areas 264 

to aid phase differentiation and identification, and processed using the inbuilt 265 

“standardless” calibration Oxford Energy INCA Suite Version 4.15 (2009) software 266 

package. 267 

 268 

Laser ablation-inductively coupled-mass spectroscopy (LA-ICP-MS) was performed 269 

using an Agilent 4500 ICP-MS, combined with a laser ablation function, on 1 mm 270 

thick samples. X-ray microtomography measurements were carried out using a Nikon 271 

Metris Custom Bay instrument, and porosity was calculated by thresholding and 272 

segmentation of the reconstructed data [Provis et al., 2012]. Raman and Fourier 273 

Transform Infra-Red (FTIR) spectroscopy were both used to study material either side 274 

of a visible carbonation front. Raman spectra were recorded using a Renishaw System 275 

2000 Raman spectrometer fitted with an Ar+ laser (514.5 nm). Twenty spectra were 276 
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accumulated, with a 10 second acquisition time, typically over the wavenumber range 277 

200 to -1200 cm-1, and samples were left under the laser light for up to 20 minutes 278 

prior to collection of the spectra to “photobleach” and reduce fluorescence. For FTIR 279 

analysis, mid-IR images were collected using a Varian 680-IR FT-IR spectrometer 280 

fitted with a 64 x 64 mercury-cadmium-telluride focal plane array detector. Three 281 

images were measured in transflection mode (FoV 350 x 350 μm) using a spectral 282 

resolution of 8 cm-1, an integration time of 0.025 and 512 co-additions. Images were 283 

taken either side of, and directly on, the transition zone. For X-ray diffraction (XRD), 284 

samples were finely-ground micronised under acetone with 10% corundum (Al2O3) as 285 

an internal reference to allow validation of quantification results. XRD was carried 286 

out using a PANalytical X’Pert Pro series diffractometer equipped with a cobalt target 287 

tube, X-Celerator detector and operated at 45 kV and 40  mA. The micronized powder 288 

samples were scanned from 4.5 - 85° 2θ at a scan rate of 2.76° 2θ/minute. 289 

Quantification was achieved using the Rietveld refinement technique (e.g. Snyder and 290 

Bish [1989]) using PANalytical HighScore Plus software together with the latest 291 

version of the International Crystal Structure Database (ICSD). 292 

 293 

 294 

3. Results and Discussion 295 

 296 

3.1 Carbonation front and visual characteristics 297 

 298 

Visual analysis of the phenolphthalein staining in the large-scale samples 299 

demonstrated that carbonation does not proceed via a horizontal reaction front 300 

progressing in a direction parallel to the horizontal surface of the sample, but actually 301 

progressesd radially from the vent because of the point source of CO2. However, 302 

pPhenolphthalein staining showed no evidence to suggest that gas travelled along the 303 

drum lid interface and/or up the side of the vessels, suggesting a good circumferential 304 

seal between the grout and the container.  305 

 306 

Phenolphthalein staining does not reveal the precise location of a carbonation front, 307 

but it does show where complete carbonation has occurred. Phenolphthalein staining 308 

(later confirmed by micro-focus techniques) was used to identify three distinct regions 309 

within each core of hardened NRVB grout: (i) the uncarbonated region; (ii) the 310 
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partially carbonated; region, and; (iii) the carbonated regions. The partially 311 

carbonated region was observed as a distinct interface between uncarbonated and 312 

carbonated material, and was likely to be where a carbonation front was located; these 313 

three regions are each analysed in detail below. For each core, the assignment of 314 

uncarbonated, partially carbonated and carbonated regions was made based on the 315 

results obtained using phenolphthalein staining. Phenolphthalein staining was also 316 

used to measure the depth of carbonation in each of the three cores;, and the average 317 

depth was measured to be 26.8 mm, 21.5 mm and 11.8 mm for Core 6.1, 12 and 9, 318 

respectively (these were obtained over by average averagingreadings of between 6 319 

and 8 measurements each). 320 

 321 

3.2 Micropermeametry 322 

 323 

The permeability,  results of micropermeability analyses measured along longitudinal 324 

profiles through the three cores, are shown in Table 2, and varied between 0.12 and 325 

1.07 mD (Table 2). These values are were close to the lower limit of detection of the 326 

permeabilities that can be measured by the micropermeameter instrument, thus and it 327 

was difficult to identify any distinct trends. However, a number of observations could 328 

be made. The permeability of the majority of the uncarbonated cement varied mostly 329 

between 0.12 and 0.26 mD. No relationship was observed between permeability and 330 

distance along the core, other that than in the bottom 1-2 cm of each core (within the 331 

carbonation zones) where it was significantly higher, particularly for samples cores 332 

6.1 and 9. Not only did the carbonation cause an increase in the permeability, but the 333 

texture of the grout was observed to become “chalky” in all carbonated zones. 334 

  335 
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Table 2. Micropermeametry results 336 

 337 

Vertical Positiona 

(cm) 

Intrinsic permeability 

(mD) 

 Core 6.1 Core 12 Core 9 

1 (top) 0.24 0.19 0.23 

3 0.21 0.12 0.22 

5 0.18 0.26 0.21 

7 0.18 0.12 0.20 

9 0.16 0.14 0.19 

10-11 0.17 0.15 0.21 

12-13 0.15 0.22 0.21 

14-15 0.16 0.23 0.23 

15-16 0.18 0.26 0.20 

17-18 0.24 0.26 0.20 

19-20 0.23 0.12 0.20 

21-22 0.20 0.20 0.21 

23-24 0.20 0.15 0.24 

25-27 0.17 - 0.23 

27-29 0.22 0.18 0.15 

29-31 0.23 0.14 0.20 

31-33 0.21 0.19 0.17 

33-36 0.24 0.13 0.18 

34-36 0.17 0.20 0.18 

36-39 0.16 0.20 0.17 

39-40 0.16 0.19 0.19 

40-41 0.17 0.18 0.17 

41-42 0.15 0.20 0.19 

42-43 0.78 0.19 0.17 

43-44 0.72 0.26 0.19 

44 (bottom)   1.07 

Notes. a – from top surface of core. The shaded values represent the depth of 338 

carbonation indicated by phenolphthalein solution (as reported in section 3.1). 339 
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3.3 Acid digestion and LA-ICP/MS 340 

 341 

The chemical profile of the cores Very similar LA-ICP/MSwere similar irrespective 342 

of the core analyzed, therefore results were obtained for each of the cores, so the 343 

results described here are representative results from both are discussed herein. of 344 

each, and it is important to analyse these results based on an understanding of the total 345 

compositional profiles of the samples. For this reason, tThe total elemental 346 

concentrationss of all elements other than Ca determined by acid digestion of each of 347 

the sub-samples taken from each identified region are shown in Figure 2 (Ca is not 348 

shown here due to the very high concentration of ~3 x 105 ppm). By far the major 349 

element in each of the carbonated, partially carbonated and uncarbonated regions was 350 

Ca, the concentration of which was of the order of ~3x105 ppm in each of these three 351 

regions. This was at least 1 order of magnitude greater than any of the other elements, 352 

and so to aid analysis of the other elements present, the Ca data were excluded from 353 

Figure 2. The concentrations of Al, Fe, Mg and Si are were very similar in each of the  354 

regions, indicating that if they migrateion of these elements occurs during 355 

carbonation, it is likely to be only over short distances, as shown below.; the behavior 356 

of these elements immediately around the carbonation front does show subtle yet 357 

important changes which will be addressed below. Compared to the uncarbonated 358 

region, the carbonated and partially carbonated regions appeared to be relatively 359 

enriched in Na and K, and the carbonated region was depleted in S. 360 

 361 

Important trends were also observed in the minor element distributions, Figure 2b. 362 

The concentrations of Sr and Ni were higher in the carbonated region than in the 363 

uncarbonated material (although this was a small difference for Sr, Fig. 2). The Ni 364 

concentration is was very low overall, but was highgreatest in the carbonated 365 

sampleregion; ; this may be because the Ni present is likely to be sorbed on to the C-366 

S-HNi sorbed to C-S-H may be, and will be released during carbonation of this phase; 367 

Ni has been reported to show very limited incorporation into calcite [Hoffmann and 368 

Stipp, 1998]. The elevated concentration of Sr in the carbonated region is likely to be 369 

due to co-precipitation with Ca and incorporation (by solid-solution) in CaCO3, which 370 

is precipitated in pores during the carbonation reaction [Shafique et al., 1998]. The 371 

concentration of metals is also likely to be higher in pore space filled with secondarily 372 

precipitated CaCO3 [Lange et al., 1997]. Within error There there was no little if any 373 
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difference in the concentration of the other minor and trace elements (Ba, Cr, Cu, Mn, 374 

Ti, V, Zn and Zr) between each region. 375 

 376 

 377 

 378 

Figure 2. The charts show the elemental concentrations of (a) the major (excluding 379 

Ca, at ~3 x 105 ppm in all regions) and (b) the minor elements identified in the 380 

carbonated, partially carbonated and uncarbonated regions. The errors reported relate 381 

to are due to anthe ICP-MS instrumental uncertainty (2.5%). 382 

 383 

 384 

Figure 3 shows LA-ICP-MS maps across the carbonated regions in Core 6.1. Figure 3 385 

shows the presence of tTwo distinct regions with differing chemical compositions 386 

were observed: associated with carbonation; one at the reaction front (the carbonation 387 
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front) and the other another region just behind the carbonation front (the transition 388 

zone), indicating that carbonation did not occur in is not a simple single-step process 389 

that occurs at a well-defined single front. The carbonated region was depleted in Ca 390 

due to its release from C-S-H during the carbonation process [Morandeau et al., 391 

2014]) and was rich in Si; the decalcification of C-S-H is known to result in the 392 

formation of a highly-polymerised Si-rich gel [Fernández-Bertos et al., 2004]. Both 393 

Ca and Si were depleted within the transition zone. The contents of Fe and Mg were 394 

similar in both the carbonated and uncarbonated regions, but both these elements were 395 

slightly depleted in the transition zone, which corresponds to the results obtained by 396 

acid digestion (Figure 2a). It is not immediately obvious from thermodynamic or 397 

solubility arguments why this should be the case, but this is a point worthy of further 398 

investigation in the future.  399 

 400 

The most striking difference between regions of carbonated and non-carbonated 401 

NRVB shown in Figure 9 wais the distribution of S. , which was either depleted 402 

(carbonated region), low (non-carbonated region) or enriched (carbonation front).The 403 

carbonated region was completely depleted in S, the non-carbonated region had a low 404 

S concentration, while the carbonation front was enriched in S compared to either of 405 

the other regions. This is also reflected in the concentrations of S found 406 

followingmeasured after acid digestion of each of the samples investigated (Fig.ure 407 

2).; and the S concentrations in the carbonated, partially carbonated and uncarbonated 408 

regions were 280, 3220 and 2500 ppm respectively. This phenomenon may be 409 

becauseA any S present is likely to exist be present in calcium aluminate hydrate 410 

phases (, particularly ettringite (see section 3.7) and maybe also AFm ), which have 411 

phases. These phases have low solubility at high pH but are unstable under lower pH 412 

conditions, such as those prevalent during carbonation (pH 7 – 8.5) [Morandeau et al., 413 

2014]. Therefore, any S is present would likely to dissolve upon carbonation, and 414 

migrate away from the carbonated region towards uncarbonated material before the 415 

carbonation front. This same phenomenon was observed for appears to occur with Al, 416 

where the high elevated concentration of Al concentration before the carbonation 417 

front again suggestsupports the hypothesis that s the decomposition of ettringite or 418 

AFm phases decompose upon carbonation and  Al the migrationes towards the of Al 419 

to uncarbonated material [Nishikawa et al., 1992]. It is possible that other oxyanions, 420 

such as PO4
3-, which are present in the calcium silicate phases of Portland clinker and 421 
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interlayers of C-S-H [Poulsen et al. 2010], may undergo a similar process, as 422 

evidenced by leading to the apparent enrichment of P in the partially carbonated 423 

samples region and depletion in the carbonated samples region, shown in Figure 3. 424 

 425 

 426 

 427 

The differences in the elemental concentrations identified between the partially 428 

carbonated region and the carbonated and uncarbonated regions of NRVB were 429 

investigated further by studying the spatial distribution of specific elements in the 430 

partially carbonated region by LA-ICP-MS; the elemental maps for Ca, Si, Al, S, Mg 431 

and Fe in this region are shown for Core 6.1 in Figure 3. The results for the other 432 

cores were consistent with the data presented here. 433 

 434 
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 435 

Figure 3. LA-ICP-MS maps showing the relative The figures show the distribution of 436 

Ca, Si, Al, S, Fe and Mg in the partially carbonated region of Core 6.1. 437 

 438 

 439 

Further elemental maps (Fig. 4) were acquired on a duplicate sample, taken from a 440 

region which that was also measured using X-ray microtomography (see below), see 441 

Section 3.4. Figure 4 shows the resulting elemental distributions of Ca, Si, Al, and S, 442 

in addition to the alkali elements Na and K. In agreement with the data presented in 443 
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Figure 3, this sample also demonstrated a carbonation reaction front, however the 444 

determination of its location and the analysis of a transition zone was hampered by 445 

the presence of an unreacted particle of cement at the carbonation front (see Si, Al 446 

and S elemental maps, Figure 4) and also by the presence of a crack (see Si, Na and K 447 

elemental maps, Figure 4).  448 

 449 

The distributions of elements Ca, Si, Al and S in Figure 4 appear to bewere broadly 450 

consistent with those observed in Figure 3, giving further evidence for the 451 

decalcification of C-S-H in carbonated regions.  452 

 453 

In agreement with the digest data for Na and K (Fig. 2), , but not yet full carbonation 454 

of an Al-rich ettringite or AFm phase ahead of the carbonation front. these elements 455 

were observed to be The acid digestion concentrations of Na and K were significantly 456 

different in the non-carbonated region from the partially carbonated and carbonated 457 

regions (Figure 2), indicating an enrichment of the alkali elements in the carbonated 458 

region. This is consistent with the elemental maps shown in Figure 4, where both Na 459 

and K are enriched in the carbonated region and depleted in the non-carbonated 460 

region. TFurthermore, the distribution concentration of both Na and K was lower in 461 

the vicinity of the front;. The the implications of these observations will be explored 462 

in more detail in Section 4. 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 
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 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 
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 491 

Figure 4. LA-ICP-MS maps showing the relative concentrations The figure shows the 492 

elemental distributions of Ca, Si, Al, S, Na and K in a partially carbonated sample of 493 

NRVB, corresponding to the region analysed by X-ray microtomography (see Section 494 

3.4. The presence of a carbonation front and transition zone is evident, separating 495 

areas of carbonated and non-carbonated NRVB. 496 

 497 

 498 

 499 
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 500 

 501 

The distributions of Ca, Si, Al and S in Figure 4 appear to be broadly consistent with 502 

those observed in Figure 3, giving further evidence for the decalcification of C-S-H in 503 

carbonated regions, but not yet full carbonation of an Al-rich ettringite or AFm phase 504 

ahead of the carbonation front. The acid digestion concentrations of Na and K were 505 

significantly different in the carbonated, partially carbonated and non-carbonated 506 

samples (Figure 2), indicating an enrichment of the alkali elements in the carbonated 507 

region. This is consistent with the elemental maps shown in Figure 4, where both Na 508 

and K are enriched in the carbonated region and depleted in the non-carbonated 509 

region. Furthermore, the distribution of both Na and K was lower in the vicinity of the 510 

front. The implications of these observations will be explored in more detail in 511 

Section 4. 512 

 513 

3.4 X-ray microtomography 514 

 515 

Selected slices of the representative volume of interest (VOI, 601×601×601 voxels at 516 

5 μm resolution) for samples assessed from Cores 6.1 and 9 are shown in Figure 5. 517 

The brightest isolated phase regions are were assigned to unreacted Portland cement 518 

particles [Galluci et al., 2007]. In the case of the partially carbonated regions (Figure 519 

5(b) and (e)) there is was also a very bright feature corresponding to the accumulation 520 

of carbonation reaction products accumulating inat the carbonation front. This 521 

difference in brightness indicates that the density of the carbonation front is higher 522 

than that of the other material. Voids appeared as darker areas [Galluci et al., 2007] 523 

and were clearly identified by their spherical morphology in all samples assessed. 524 

 525 

 526 
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 527 

 528 

Figure 5. The images show sSelected slices through the VOIs in each region of core. : 529 

(a) and (d) are for the carbonated regions, ; (b) and (e) for the partially carbonated 530 

regions, and; (c) and (f) for the uncarbonated regions, all of Core 6.1 and 9 531 

respectively. 532 

 533 

For quantification of the results, segmentation of the VOI was carried out, thresholded 534 

based on identification of local minima in the greyscale histograms [Landis and 535 

Keane, 2010]. 2D images of selected slices, and 3D reconstructions of the VOI, off 536 

the sample from Core 9 are shown in Figures 6 and 7, respectively. The carbonated 537 

region (Fig.ure 6 (a)) has had a reduced fraction of pores compared with to the 538 

uncarbonated region (Fig.ure 6 (c)) due to the formation of calcium carbonate in the 539 

pore space. In the partially carbonated sample (Fig.ure 6 (b)), at least two carbonation 540 

fronts are were identified in the VOI selected. Although they carbonation fronts are 541 

quite distinct, the formation of more than one front indicates that carbonation is 542 

neither occurring homogeneously throughout the sample, nor as a simple, single-step 543 

process at one sharply defined carbonation front. . This is consistent with the 544 

microstructural changes occurring during hydration, and the gradients in CO2 545 

concentration and humidity induced by the introduction of the CO2 gas from an 546 
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enclosed reservoir here. AThe higher highest porosity was observed in the transition 547 

zone just behind the carbonation front than anywhere else in the samples. 548 

 549 

 550 

 551 

 552 

Figure 6. The images show 2D VOI reconstructions of samples from Core 9. The top 553 

row shows grey scale images, the centre row the images segmented into solid (white) 554 

and pore (black) regions, and the bottom row the images segmented into areas of large 555 

pores (black) of:. The (a) column represents the carbonated region;, the (b) column 556 

the partially carbonated region, and; the (c) columns the uncarbonated region. 557 

 558 

 559 
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The 3D reconstructions of the VOI (Fig.ure 7) are consistent with the observations of 560 

2D results shown in Figure 6. The images in Figure 6 are individual slices (horizontal 561 

orientation) through the samples, whereas the images in Figure 7 are side-on views of 562 

the reconstructed stack of slices. The slices in Figure 6 would thus be viewable if 563 

looking down from the top of the 3-dimensional stacks as shown in Figure 7. It is 564 

clearly seen that thereindicate a is a higher fraction of large pores were present in the 565 

uncarbonated region (Fig.ure 7 (c)) than in the carbonated region (Figure 7 (a)), and 566 

that there is was a high fraction of pores in the vicinity of the carbonation front, 567 

particularly just ahead of the very dense (bright) region in the sample (Fig. 7b). 568 

 569 

 570 

 571 

 572 

Figure 7. The images show 3D reconstructions of the VOI (top row) and the VOI re-573 

thresholded to show only the large pores (bottom row), of the sample from Core 9. : 574 

The (a) column represents the carbonated region, ; the (b) column the partially 575 

carbonated region (carbonation is from top left as showncorner), and; the (c) column 576 

the uncarbonated region. 577 

 578 

 579 

  580 
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The porosity determined from XCT analysis of this data for two samples from Cores 581 

6.1 and 9 is summarised in Table 3. The average segmented porosity of the 582 

carbonated region wais found to be ~30% lower than that in the uncarbonated region, 583 

which confirmsing the hypothesis that carbonation products are precipitatinged in 584 

pore space, resulting in an increase in density.  585 

 586 

 587 

Table 3. Summary of segmented porosity results 588 

 589 

Core Regions 

 Carbonated Partially 

carbonated 

Uncarbonated 

6.1    

Sample 1 33.3 - - 

Sample 2 22.0 41.4 37.9 

9    

Sample 1 36.5 - - 

Sample 2 31.7 43.2 43.5 

Average 30.9 42.2 40.7 

SD1 6.2 1.2 3.9 

Notes: 1 – Standard deviation. 590 

 591 

 592 

3.5 Raman spectroscopy 593 

 594 

Despite leaving the samples to photobleach, all the spectradata recorded were 595 

detrimentally affected still plagued by fluorescence, swamping almost the entire 596 

Raman signal and leaving just the most intense bands visible. Ordinary Portland 597 

cements are known to fluoresce [Richardson et al., 2010], and so while not entirely 598 

unexpected, the fluorescence was more severe than had been anticipated. 599 

 600 

All of the spectra obtained showed the characteristic 1 carbonate band at 1085 cm-1, 601 

attributed to either calcite or aragonite [Black, 2009]. No There was never any 602 
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evidence of any other calcium carbonate polymorphs, or of carboaluminate phases 603 

was observed. In some of the more well-defined spectra it was possible to see a lattice 604 

vibration band at 280 cm-1 or the 4 carbonate band at about 710 cm-1; these bands are 605 

attributed to to calcitecalcium carbonate. There was typically an increase in the 606 

intensity of the carbonate bands within the carbonated zone compared to regions 607 

beyond the carbonation front, indicating higher concentrations of carbonate within the 608 

carbonated zone. Similarly, in isolated spectra away from the carbonation front it was 609 

possible to discern a weak band at ~360 cm-1 attributed to portlandite. It was not 610 

possible to identify any other species within the spectra. Indeed, the region 900 – 611 

1030 cm-1, where characteristic sulfate 1 bands are expectedwould be present, was 612 

examined closely, but no peaks were observed. This should not be taken as there 613 

having been no sulfate species present, but rather that fluorescence obscured any 614 

bands. 615 

 616 

3.6 Mineralogical and elemental analysis 617 

 618 

The distribution of major and minor elements was mapped using BSEM-EDXA for 619 

several regions of Core 6.1 closely matching those examined by other 620 

techniques.using micro-tomography. Data acquired The results for all other cores 621 

were very similar to these. 622 

 623 

The BSEM-EDXA observations across the principal carbonation front are presented 624 

in Figure 8, whereand show that there is a major change in the microstructure of the 625 

hardened grout upon carbonation can be observed. Theis involves the decomposition 626 

of the fine-grained C-S-H gel matrix and the formation of a very fine-grained 627 

intermixture of calcium carbonate and silica-rich material at a micron scale can be 628 

observed, accompanied by the formation development of very concentric fine 629 

shrinkage cracks cemented by secondary calcium carbonate. This in agreement with  630 

has been observed and described previously from and observed in other experiments 631 

on the carbonation of NRVB and other Portland cementsOPC-based cements [e.g. 632 

Rochelle and Milodowski, 2013].  633 

 634 
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In agreement with LA-ICP-MS results, Carbonation also results in significant 635 

chemical changes and movement of major chemical components. Tthe EDXA 636 

elemental maps recorded across the main carbonation reaction front show that 637 

carbonation resulted in significant chemical changes and movement of major 638 

chemical components. In particular,  are consistent with the LA-ICP-MS results, 639 

showing that K and, to a lesser extent, Na weare concentrated within the altered 640 

cement matrix behind the main carbonation front. Ca has wasbeen strongly 641 

concentrated at the reaction front and. S is was depleted from the carbonated region 642 

behind the main reaction front, but and is enriched in the relatively unaltered region. 643 

EDXA mapping shows that Sulfur was is particularly concentrated immediately ahead 644 

of the main carbonation front where the calcium carbonate precipitation is was found 645 

to be dominant. In the uncarbonated region ahead of the reaction front, localized high 646 

concentrations of S, Al and Ca were observed in some samples, , which may facilitate 647 

the formation of ettringite or other calcium aluminosulphates, but this can ould only 648 

be confirmed by XRD. Theise wasere particularly observed in large pores voids 649 

created by due to the presence of air-bubbles entrained within the grout during 650 

mixing, which would allow the expansive formation of ettringite. Chlorine l iswas 651 

present in the epoxy-resin used during sample preparation, so the map for Cl is a 652 

proxy for the resin-impregnated micro-porosity within the grout. The elemental maps 653 

across the reaction front show that Cl wais markedly depleted within the carbonated 654 

front compared to the remaining microstructure, suggesting a lower porosity and 655 

higher density in this region. This reduction in porosity is likely to result from the 656 

precipitation of calcium carbonate within the main porosity of the reaction front. 657 

 658 

 659 
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 660 

Figure 8. The image shows a BSEM image with corresponding colour-contoured 661 

relative-intensity EDXA element distribution maps, recorded from a polished thin 662 

section prepared across the carbonation reaction front for Core 6.1. 663 

 664 

Areas far in front of the reaction front were also mapped, and showed that the cement 665 

paste had not undergone intense alteration when compared to the grout within, and 666 

behind, the main alteration front. In these regions C-S-H, calcium aluminate hydrates, 667 

and partially hydrated cement clinker particles were still present. There However., 668 

may have been some carbonation of the portlandite and C-S-H gel in these regions 669 

hasd clearly occurred (Figure 9). Although “primary” calcium carbonate is present in 670 

the NRVB as limestone flour added during the preparation of the NRVB cement, 671 

these limestone particles are readily distinguished petrographically from the 672 

secondary calcium carbonate produced by cement carbonation. The limestone flour 673 

particles are characterized by angular fragments of calcium carbonate disseminated 674 

throughout the NRVB samples (Figure 9). In contrast, secondary calcium carbonate 675 

formed by carbonation reaction is manifested as fine-grained secondary calcium 676 
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carbonate forming alteration fringes around the margins of portlandite crystals or in 677 

irregular patches replacing C-S-H matrix material (Figure 9). Secondary calcium 678 

carbonate was also sometimes observed nucleating around limestone flour fragments. 679 

EDXA analyses and X-ray maps show that the secondary calcium carbonate forms 680 

fringes around portlandite crystals (Figure 9). Semi-quantitative compositional 681 

estimates from EDXA show the secondary carbonate fringes have a Ca:O ionic ratio 682 

(~0.3) similar to that of the limestone fragments (Ca:O ~0.34), implying that the 683 

carbonation reaction product is essentially CaCO3 (Ca:O = 0.33),  In contrast, the 684 

relatively unaltered cores of the partially-carbonated portlandite crystals have a much 685 

higher Ca:O ionic ratios that vary between calcium carbonate (0.33) and portlandite 686 

(0.5). The armouring of the surface of these portlandite crystals by a reaction rim of 687 

secondary calcium carbonate will probably have protected or limited reaction with 688 

CO2 to some extent. to produce very fine grained calcium carbonate , but this was 689 

difficult to confirm by BSEM.  690 

This phenomenon was best observed around the margins of primary limestone grains, 691 

where secondary calcium carbonate may be nucleating as has been reported elsewhere 692 

[Milodowski et al., 2013]. 693 
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 694 

Figure 9. BSEM image with corresponding colour-contoured relative-intensity 695 

EDXA element distribution maps for Ca and C, showing angular fragments of 696 

limestone flour, and the development of a calcium carbonate alteration fringe around 697 

a patch of poikiloblastic portlandite nucleated within the hydrated cement matrix. 698 

Example EDXA spectra are also illustrated for: (a) a primary limestone flour particle; 699 

(b) the carbonated reaction fringe around poikiloblastic portlandite, and; (c) the 700 

relatively unaltered core of the portlandite. Recorded from a polished thin section 701 
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prepared 100 mm from the vent inlet, and 90 mm ahead of the carbonation front, for 702 

Core 6.1.  703 

 704 

3.7 XRD analysis 705 

 706 

The concentrations of crystalline phases in for theeach of the three cores, and each of 707 

the carbonation zones was determined , and the results are shown in (Table 4)., 708 

together with the geometric relationship of analysed material to the carbonation zone 709 

and main carbonation front defined by petrographic analysis. 710 

 711 

The main crystalline phase present in all samples was calcite (a polymorph of CaCO3) 712 

with smaller amounts of aragonite (another polymorph of CaCO3), dolomite 713 

(CaMg(CO3)2), portlandite (Ca(OH)2), gypsum (CaSO4.2H2O) and quartz (SiO2) also 714 

detected. The very small amounts of quartz and dolomite are unlikely to have formed 715 

during cement hydration and carbonation, and most probably represent impurities in 716 

the limestone additive used in the NRVB. Petrographic observations confirmed the 717 

presence of fine fragments of crushed quartz and dolomite. Other more mMinor 718 

reflections were also tentatively identified for ardealite (Ca2SO4HPO4.4H2O, where 719 

the main reflection is at a d-spacing of 7.78Å), ettringite (Ca6Al2(SO4)3(OH)12.26H2O, 720 

where the main reflection is at ~9.6Å) and a broad reflection with a d-spacing of 721 

7.78Å that may indicate the presence of calcium monocarboaluminate 722 

(Ca4Al2(CO3)(OH)12.5H2O, which has a characteristic diffraction peak at around 7.6Å 723 

(cf. Lothenbach et al., 2008)). The calcium monocarboaluminate appears to be present 724 

throughout the cores and may represent a reaction product formed with the limestone 725 

flour, which would be consistent with other studies that have previously shown that 726 

calcium mono-carboaluminate and calcium hemicarboaluminate 727 

(Ca4Al2(CO3)0.5(OH)13.5.5H2O) phases form in hydrated blended cements containing 728 

limestone additives (Matschei et al., 2007; Lothenbach et al., 2008). Calcium 729 

hemicarboaluminate was not identified in present study on carbonated NRVB grout. 730 

However, its absence is not inconsistent with the observations of Lothenbach et al 731 

(op. cit.) who observed that both mono-carboaluminate and hemicarboaluminate 732 

formed after 2 to 7 days, the monocarboaluminate content then increased with time, 733 

whilst hemicarbonate disappeared after 14 days.  734 

 735 
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Other minor weak reflections at ~14 and ~7.1Å were also identified that may 736 

represent C-S-H phases (e.g. Biagioni et al., 2015). However, the identity of these 737 

phases could not be confirmed. No AFm phases were found in the post-experimental 738 

NRVB grouts. However, Lothenbach et al. (2008) also found the Afm phases to have 739 

very poor crystallinity, and with variable compositions, making them difficult to 740 

detect by XRD analysis. 741 

possibly a chlorite mineral (an aluminosilicate clay mineral possibly containing Fe 742 

and/or Mg, where reflections at ~14 and ~7.1Å were identified). However, the 743 

presence of these minor phases could not be confirmed. 744 

 745 

XRD analyses found no evidence for the presence of monocarbonate or 746 

hemicarbonate phases, which other authors have identified to form in hydrated 747 

blended cements cements containing limestone additives (Lothenbach et al., 2008). 748 

The absence of monocarbonate or hemicarbonate in the present-study may be due to 749 

the way the NRVB grout was cured and maintained during the carbonation 750 

experiments. Lothenbach et al. (2008) undertook their XRD analyses on limestone 751 

blended cement pastes that were cured and maintained water saturated for up to 1 752 

year. They observed that monocarbonate and hemicarbonate formed after 2 to 7 days, 753 

monocarbonate then increased with time, whilst hemicarbonate disappeared after 14 754 

days. In contrast, the NRVB grout was not cured under water and maintained in a 755 

water-saturated state during the carbonation experiments. This may have prevented 756 

the formation of monocarbonate or hemicarbonate in the present study. Afm phases 757 

were also not found in the post-experimental NRVB grouts. Lothenbach et al. (2008) 758 

also found these phases to have low crystallinity, with variable compositions making 759 

it difficult to detect them in XRD patterns. The non-detection of Afm phases in the 760 

present study may also be due to these phases being poorly crystalline or amorphous. 761 

 762 

 763 

Table 4. Summary of XRD results 764 

 765 

Core Dist. 

Fro

m 

Mineralogy 

(wt.%)1 
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6.1 0.1 91.5 - 0.7 - 1.8 3.2 - 0.6 2.2 - 

 0.7 91.2 - 0.6 - 1.7 3.3 - 0.9 2.3 - 

 0.9 91.6 - <0.5 - 1.7 3.2 - 0.9 4.0 - 

 30.7 77.3 8.8 - 3.6 - 5.2 - 1.1 4.0 - 

 48.8 75.5 8.0 - 4.7 - 5.7 - 1.9 4.2 - 

9 0.2 91.8 - 0.6 - - 2.8 2.4 <0.5 2.0 - 

 0.6 90.8 - 0.6 - - 3.2 2.2 0.9 2.3 - 

 1.2 82.3 3.1 <0.5 1.8 2.6 3.3 3.1 1.0 2.6 - 

 20.0 73.2 9.0 - 5.0 3.2 4.7 - 0.9 4.0 - 

 44.8 74.4 7.6 - 5.3 3.1 4.7 - 1.1 3.8 - 

12 0.1 93.6 - 0.6 - - 3.6 - <0.5 - 1.9 

 0.5 90.7 - 0.6 <0.5 2.3 3.4 - 0.9 - 1.8 

 0.7 60.2 - - 24.0 7.7 5.0 - 0.8 - 2.3 

 21.5 61.9 - - 22.5 4.0 4.9 3.9 <0.5 - 2.4 

 41.5 60.0 - - 23.4 4.1 5.3 4.1 0.7 - 2.3 

Notes: 1 – wt.% of all crystalline material present. 766 

 767 

Table 4. Summary of quantitative XRD results for crystalline components 768 

(normalised to 100%) 769 
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6.1 

0.1 96.7  0.7  1.9  0.6 
Mono. 

7.1 Å  
0.000 Carbonated zone 

0.7 96.6  0.6  1.8  1.0 
Mono. 

7.1 Å  
0.000 Carbonated zone 

0.9 97.2    1.8  1.0 
Mono. 

7.1 Å  
0.000 

Main carbonation 

reaction font 
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30.7 85.1 9.7  4.0   1.2 

Mono. 

7.1 Å  0.042 

Relatively unaltered 

NRVB distant from 

reaction front 

48.8 83.8 8.9  5.2   2.1 

Mono. 

7.1 Å  0.056 

Relatively unaltered 

NRVB distant from 

reaction front 

9 

0.2 91.8 - 0.6 - - 2.4 <0.5 
Mono. 

7.1 Å  
0.000 Carbonated zone 

0.6 90.8 - 0.6 - - 2.2 0.9 
Mono. 

7.1 Å  
0.000 

Main carbonation 

reaction font 

1.2 82.3 3.1 <0.5 1.8 2.6 3.1 1 

Mono. 

7.1 Å  0.021 

Matrix immediately 

in front of reaction 

front 

20.0 73.2 9 - 5 3.2 - 0.9 

Mono. 

7.1 Å  0.061 

Relatively unaltered 

NRVB distant from 

reaction front 

44.8 74.4 7.6 - 5.3 3.1 - 1.1 

Mono. 

7.1 Å  0.065 

Relatively unaltered 

NRVB distant from 

reaction front 

12 

0.1 93.6 - 0.6 - - - <0.5 
Mono. 

14.1 Å 
0.000 Carbonated zone 

0.5 90.7 - 0.6 <0.5 2.3 - 0.9 
Mono. 

14.1 Å 
0.000 

Main carbonation 

reaction font 

0.7 60.2 - - 24 7.7 - 0.8 

Mono. 

14.1 Å 0.399 

Relatively unaltered 

NRVB distant from 

reaction front 

21.5 61.9 - - 22.5 4 3.9 <0.5 

Mono. 

14.1 Å 0.363 

Relatively unaltered 

NRVB distant from 

reaction front 

41.5 60 - - 23.4 4.1 4.1 0.7 

Mono. 

14.1 Å 0.390 

Relatively unaltered 

NRVB distant from 

reaction front 
Notes:  771 

1 Normalisation excludes quantification of minor calcium monocarboaluminate and 772 

unidentified 7.1 Å and ~14 Å phases. 773 

2 “Mono.” = calcium monocarboaluminae; “7.1 Å” = unidentified phase; “14 Å” = 774 

unidentified phase. 775 

 776 

Quantification of the absolute composition the NRVB samples by XRD is 777 

problematic. Petrographic observations indicate that there is a significant amount of 778 

C-S-H and AFm material present in the largely unaltered cement matrix ahead of the 779 

main carbonation front. These phases are disordered or amorphous, and are not easily 780 

detectedable by XRD. Therefore, the quantitative XRD data presented in Table 4 only 781 

represent the “relative” proportions of the crystalline phases present. This, together 782 
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with a large proportion of the calcite present representing original limestone flour 783 

additive, means that the extent of carbonation cannot be evaluated simply from the 784 

total relative amounts of calcite and aragonite alone. However, because carbonation 785 

involves the replacement of portlandite (as well as C-S-H) by calcium carbonate (as 786 

shown by petrographic analysis), the amount of portlandite relative to the total 787 

amount of calcium carbonate (calcite + aragonite) should provide an indicator of how 788 

deep carbonation has occurred in the grout.  789 

 790 

The portlandite : total CaCO3 ratios based on the XRD results is presented in Table 4. 791 

The detection of portlandite is a key marker of regions that are not yet fully 792 

carbonated, and appears to correlate with the radial distance of the sample from the 793 

centre of the vent. The XRD data show that portlandite has completely reacted to 794 

form calcium carbonates within the reaction front and the main carbonated zone 795 

behind this front. The relatively unaltered cement ahead of the  main reaction front 796 

still contains significant portlandite. However, the portlandite : total CaCO3 ratios 797 

progressively increase with increasing distance from this front. This implies that 798 

carbonation has occurred in the cement ahead of the main reaction front (where 799 

complete carbonation has occurred) but that this diminishes with increasing distance. 800 

This is consistent with the BSEM-EDXA petrographic observations, which showed 801 

patchily-distributed secondary fine-grained calcium carbonate replacing and 802 

armouring portlandite and C-S-H in the cement matrix ahead of the main reaction 803 

front (see previous discussion in Section 3.6 and illustrated in Figure 9. 804 

 805 

Core 12 appeareds to be anomalous, compared to cores 6.1 and 9, with respect to the 806 

portlandite content of the relatively unaltered grout. The amount of portlandite 807 

preserved in this core appearss to be significantly higher than the other two cores, and 808 

may reflect some degree of heterogeneity of carbonation within the experimental 809 

waste drum. 810 

 811 

Aragonite was identified within the uncarbonated material ahead of the main reaction 812 

front, but is absent in the main carbonated grout regions. Significant aragonite is 813 

metastable and unlikely to have been present in the original limestone flour additive. 814 

Therefore, the aragonite is likely to be a reaction product in the cement, and may 815 

provide some further indication of depth of penetration and reaction of CO2 ahead of 816 
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the main carbonation front. It would appear that if aragonite had  formed initially 817 

within the main carbonated zone, it has subsequently been replaced by calcite as the 818 

degree of carbonation alteration progressed. 819 

 820 

The regions of carbonated grout behind the main reaction front contained high 821 

quantities of calcite (typically >80%). The areas closest to the centre of the vent and 822 

base of the vessel contained the highest calcite content, whereas the least amount was 823 

detected in the areas at the edge of vessel and furthest from the vent. Regions located 824 

between the two contained an intermediate quantity of calcite. 825 

 826 

In most cases portlandite or aragonite were not detected in the carbonated regions, but 827 

small amounts were found distant from the centre of the vent (200mm and at the 828 

vessel edge). The detection of portlandite, which is a key marker of regions that are 829 

not yet fully carbonated, appears to correlate with the radial distance of the sample 830 

from the centre of the vent; portlandite was detected in the main alteration zone only 831 

in the samples furthest from the centre of the vent. 832 

 833 

The uncarbonated zones ahead of the alteration front also contained significant 834 

quantities of calcite as the NRVB contains added limestone flour, but the amounts 835 

were typically lower (55-75%) than in the corresponding carbonated zones. The 836 

uncarbonated regions also typically contained higher quantities of portlandite than in 837 

the carbonated regions.  838 

Aragonite was identified in some samples within the uncarbonated material ahead of 839 

the main reaction front, but there was no identifiable trend between aragonite 840 

concentration and location of the samples from the vent. A significant amount of the 841 

calcite determined by XRD can be attributed to limestone flour that was originally 842 

added in the NVRB formulation (Table 1). However, the amount of calcite present in 843 

the ‘nominally uncarbonated zone’ identified by phenolphthalein staining is too great 844 

(over 80 wt.% in some subsamples: Table 4, Figure 8) to be due to the limestone flour 845 

additive alone. This indicates that significant carbonation of the NRVB cement matrix 846 

has proceeded ahead of the visible carbonation front. This was confirmed by BSEM-847 

EDXA petrographic observations, which showed fine-grained calcium carbonate 848 

replacing the cement matrix in diffuse, irregular patches. 849 

 850 
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In terms of the minor mineral phases, quartz and dolomite are phases within the 851 

limestone flour used in the grout. Gypsum, ettringite and calcium 852 

monocarboaluminate and ardealite are likely to be secondary precipitates formed 853 

during the hydration of the cement in the grout. These minor phases could not 854 

generally be discriminated during petrographic analysis (BSEM-EDXA) because of 855 

their low concentration, their fine grain size and the intimate mixing of the hydrated 856 

cement phases. However, discrete coarse crystals of ettringite were observed in large 857 

voids pore space in the hardened grout that represent air bubbles that were originally 858 

entrained in the cement paste during mixing, and that were previously occupied by air 859 

or water. There was no obvious relationship between the distributions of these minor 860 

phases and the carbonation front. Ardealite was tentatively identified as a very minor 861 

component on the basis of very weak X-ray reflections but no evidence for it was 862 

found during petrographic analysis. 863 

 864 

 865 

4. Further Discussion 866 

 867 

Using LA-ICP-MS, micro-tomography and EDXA three distinct regions were 868 

identified in each sample, 1) carbonated, 2) partially carbonated and 3) uncarbonated. 869 

A carbonation front and a transition zone were identified in the partially carbonated 870 

region. Analysis by LA-ICP-MS and EDXA showed that K and Na are were 871 

concentrated within the carbonated regions behind the main reaction front, and the 872 

concentration wais greatest in a narrow zone up to 1-2mm wide immediately at the 873 

rear of where the Ca is was concentrated within the main reaction front. The 874 

carbonation front is was enriched in S and Al, and the former is was depleted from the 875 

carbonated region at, and behind, the main reaction front. Micro-tomography results 876 

indicated that the porosity of the carbonated region wais lower than in the 877 

uncarbonated region due to deposition of secondary calcium carbonate within the pore 878 

space of the hardened grout (as confirmed by BSEM/EDX); however, micro-879 

permeametry results showed that the grout is was more permeable in the carbonated 880 

region. This higher permeability may be due to greater interconnectivity of micro-881 

fractures within the pore network. 882 

 883 

Similar porosity results to those obtained here have been reported by Hills et al. 884 
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[1999], who used SEM to identify a porosity reduction of up to 26% in hardened 885 

cemented wasteforms subjected to accelerated carbonation. Lange et al. [1996] have 886 

also reported increased mechanical strength in carbonated cement wasteforms, which 887 

they associated with the precipitation of calcium carbonate products in the specimen 888 

pores, and an increase in density and reduction of the total porosity. The porosity of 889 

the partially carbonated region is similar to that of the uncarbonated region, and 890 

Figures 6 and 7 show that there is an increase in porosity near to the carbonation 891 

front. 892 

 893 

The higher permeability of the carbonated regions when investigated by micro-894 

permeametry appears at first to contradict the petrographic observations and the X- 895 

ray micro-tomography results, which indicate that the porosity of the carbonated zone 896 

is reduced in comparison to the unaltered cement. However, this may be because the 897 

micro-porosity in the carbonated cement is more interconnected than in the unaltered 898 

cement matrix. The petrographic analysis showed the presence of micro-fractures in 899 

the carbonated region (described as fine shrinkage cracks), and whilst these micro-900 

fractures largely appeared to be cemented by secondary calcium carbonate reaction 901 

product, the presence of some uncemented micro-fractures may provide a network of 902 

higher permeability pathways within the altered cement. 903 

 904 

The LA-ICP-MS results suggest that alkali ions are released from the cement 905 

component of the NRVB grout during the hydration of the OPC powder, and become 906 

distributed between the aqueous solution and the precipitating C-S-H phases 907 

[Lothenbach et al., 2008]. The results shown here suggest that the carbonation of C-S-908 

H phases corresponds to enhanced alkali concentrations, evidenced by the higher 909 

concentration of Na and K in the carbonated regions of the samples. In their study of 910 

the carbonation of OPC pastes, Anstice et al. [2005] reported a decrease in Na and K 911 

concentration in the pore solution extracted from carbonated samples cf. uncarbonated 912 

material, which is the opposite of the results presented here. They postulated that this 913 

was due to enhanced binding of alkali metals to the solid products of carbonation, 914 

which they stated was most likely to be by the hydrous silica gel formed during 915 

decalcification of C-S-H. Because the concentrations of Na and K were lower in the 916 

immediate vicinity of the carbonation front in our work, it may be hypothesised that 917 

either 1) C-S-H carbonation is not the main process that occurs in the vicinity of the 918 
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carbonation front (which would be consistent with the fact that the large additional 919 

quantity of Ca(OH)2 contributed to the NRVB by the slaked lime component of its 920 

formulation must also carbonate, compared to the much lower content formed in 921 

Portland cement hydration), or 2) that C-S-H carbonation is slower in this region; 922 

these may be the reasons why the interfacial region at the carbonation front in our 923 

work has a higher porosity than the fully-carbonated region. 924 

 925 

The results from the X-ray micro-tomography studies warrant further discussion. In a 926 

recent study, Morandeau et al. [2014] evaluated the carbonation of pure Portland 927 

cement binders via a gamma ray attenuation method (GRAM), and also identified a 928 

reduction in the total porosity of carbonated specimens; however, they observed 929 

densification in the vicinity of the surface where carbonation seemeds to be stabilised, 930 

which differs from the results observed in this study. The discrepancy between that 931 

study and the NRVB results reported here could be associated with differences in the 932 

chemistry of NRVB and hydrated plain Portland cement as noted above, leading to 933 

differences in the kinetics of carbonation of the reaction products forming in these 934 

binders, or the differences in resolution of GRAM vs. micro-tomography, so that the 935 

increase in the porosity near the carbonation front could not be detected by GRAM. It 936 

has been proposed [Villain et al., 2007] that under natural carbonation conditions, the 937 

carbonation of portlandite and C-S-H occurs simultaneously, even though from a 938 

thermodynamic perspective carbonation of portlandite prevails over CSH carbonation 939 

[Glasser and Matschei, 2007]. Morandeau et al. [2014] have observed that the initial 940 

rates of carbonation of these phases are comparable, but while carbonation of C-S-H 941 

continues to take place, the carbonation of portlandite reduces and stops during the 942 

time of CO2 exposure. 943 

 944 

Additionally, it was proposed [Morandeau et al., 2014] that the carbonation of C-S-H 945 

is the main contributor to pore clogging, with the effects depending on its Ca/Si ratio, 946 

while dissolution of portlandite via carbonation can increase the porosity to partially 947 

counteract the pore-blocking effects of CaCO3 precipitation. Considering this, it is 948 

likely that dissolution of calcium hydroxide, along with carbonation of ettringite and 949 

AFm phases, with a limited extent of decalcification of the C-S-H phases, could be 950 

taking place in the vicinity of the carbonation front, thereby reducing the precipitation 951 

of carbonation product in the pores of this region. This hypothesis is consistent with 952 
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the LA-ICP-MS results, where a reduced concentration of alkalis in the vicinity of the 953 

carbonation front was observed, where higher concentrations of alkalis were 954 

associated with their potential binding to solid carbonation products and the hydrous 955 

silica gel forming during decalcification of C-S-H in this area. 956 

 957 

The conditions used to induce carbonation also have a significant impact on how this 958 

phenomenon proceeds, and therefore it is important to consider that the NRVB 959 

evaluated in this study was carbonated under conditions of high CO2 pressure, when 960 

compared to the 1-4kPa partial pressure used in most cement/concrete carbonation 961 

tests (with the exception of 100% CO2 or supercritical conditions used in occasional 962 

specialised work). Under those conditions, the carbonation of the C-S-H phase is 963 

known to prevail over carbonation of calcium hydroxide as a consequence of the 964 

formation of crystalline calcium carbonate on the surface of the calcium hydroxide, 965 

inhibiting its further dissolution [Hidalgo et al., 2008; García-González et al., 2006]. 966 

Densification of samples carbonated under high CO2 pressures has been identified, 967 

consistent with the theory of pore clogging due to carbonation of CSH as suggested 968 

by Morandeau et al. [2014]. This further supports the hypothesis that in the vicinity of 969 

the carbonation front of the NRVB evaluated, dissolution of portlandite via 970 

carbonation to produce calcium carbonate, along with limited decalcification of C-S-971 

H, are the main degradation processes taking place in this region. 972 

 973 

In analysing the XRD results further, it is relevant to discuss the following points in 974 

more detail. There is significant formation of secondary calcium carbonate behind the 975 

main reaction front (defined by the extent of phenolphthalein staining). Within the 976 

main carbonated region behind the reaction front, nearly all the portlandite, C-S-H 977 

and calcium (sulfo)aluminate hydrate phases are replaced by calcite. Calcite is the 978 

principal carbonate phase precipitated, although a small amount of aragonite is 979 

sometimes present. 980 

 981 

THowever, this study also demonstrates that the impact of carbonation extends well 982 

beyond the apparent limit of reaction indicated by phenolphthalein staining, and 983 

reaction has occurred throughout the sample. Even in the regions furthest from the 984 

centre of the vent, where phenolphthalein staining indicates suggests that carbonation 985 

has not taken place, the XRD and petrographic observations results indicate show that 986 
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portlandite and C-S-H have partially-reacted with CO2 to produce secondary calcium 987 

carbonates. This is reflected in the portlandite : CaCO3 ratio, which progressively 988 

decreases with increasing distance from the reaction front, and by the presence of 989 

portlandite crystals armoured by reaction rims of CaCO3 in the “relatively unaltered” 990 

cement. ~55 – 75 % of the crystalline phases present is calcite, and up to 9 % is 991 

aragonite. The total calcium carbonate content of the regions indicated by 992 

phenolphthalein staining to be uncarbonated is well in excess of the 28.61 wt.% of 993 

limestone flour in the original grout (or 44.39 wt.% of the total solids content), so 994 

theThe XRD and petrographic results clearly indicate that the extent of carbonation is 995 

underestimated by phenolphthalein staining. These observations are consistent with 996 

other studies which also found that significant carbonation of NRVB grout occurred 997 

ahead of the main visibly-distinct carbonation reaction front [Rochelle and 998 

Milodowski, 2013]. The petrographic observations clearly showed the growth of 999 

secondary calcite within the partially carbonated grout matrix. Petrographically, it is 1000 

possible to differentiate between the calcite originally present in the limestone flour 1001 

and the secondary calcite formed from the carbonation of other phases, and this 1002 

supports the observations made using XRD. Finally, there appears to be a distinct 1003 

relationship between the amount of carbonation and the radial proximity to the centre 1004 

of the vent; material closest to the vent has been carbonated more than material 1005 

further away from the vent. 1006 

 1007 

Needs a section here on “so what?” for geological disposal of nuclear waste? 1008 

 1009 

 1010 

5. Conclusions 1011 

 1012 

Our investigations have shown that The main conclusions resulting from this work 1013 

are:  1014 

 Ccarbonation of NRVB does not proceed as a horizontal carbonation front, but 1015 

by a radial front with carbonation occurring well beyond the main reaction front.  1016 

 Three distinct regions were identified in the hardened NRVB grouts; 1017 

carbonated, partially carbonated and uncarbonated. Within the partially 1018 

carbonated region, a carbonation front and a transition zone were discerned.  1019 
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 K and to a lesser extent Na are were concentrated within a 1-2 mm deep 1020 

zone in the carbonated region just ahead of the main reaction front, and . 1021 

 Tthe area just ahead of the carbonation front is was enriched in both S 1022 

and Al;, and S is was depleted from the carbonated material behind the main 1023 

reaction front.    1024 

 Within the main carbonated region, virtually all of the hydrated cement 1025 

phases (portlandite, calcium silicate hydrate and calcium aluminate hydrate) are 1026 

were carbonated and calcite is was the predominant phase. Aragonite is also 1027 

formed, but this appears to be initially formed ahead of the main reaction front, 1028 

and is possibly destabilized, replaced and altered to calcite as more extensive 1029 

carbonation proceeds.    1030 

 Some carbonation had occurred throughout the canister. Even within 1031 

material indicated by phenolphthalein solution to be uncarbonated, partial 1032 

carbonation had occurred.  1033 

 The porosity of the carbonated grout is was lower than in the 1034 

uncarbonated material due to replacement of pore space with precipitated 1035 

calcium carbonate. However, the highest porosity was observed in the partially 1036 

carbonated region.    1037 

  1038 
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