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ABSTRACT

A new lithostratigraphical framework for Singapore is proposed, based on the analysis of c. 

20,000 m of core recovered from 121 c. 205 m deep boreholes and augmented with 218 field 

localities from across Singapore. The new framework describes a succession dating from the 

Carboniferous to the Quaternary. New U-Pb detrital zircon dates and fossil analysis were 

used to constrain the ages of key sedimentary units. The oldest known sedimentary rocks in 

Singapore are found to be the deformed Carboniferous (Mississippian) Sajahat Formation. 

These are succeeded by the newly erected, Middle and Upper Triassic, marine to continental 

Jurong Group and Sentosa Group successions that accumulated in the southern part of the 

Semantan Basin. The Jurong Group comprises four formations: the Tuas Formation, the 

Pulau Ayer Chawan Formation, the Pandan Formation and the Boon Lay Formation. The 

Sentosa Group contains two formations: the Tanjong Rimau Formation and the Fort Siloso 

Formation. In Singapore, the depositional record during this time is related to late Permian to 

Triassic arc magmatism in the southern part of the forearc basin to the Sukhothai Arc. The 
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Jurong and Sentosa groups were deformed and weakly metamorphosed during the final stages 

of the Late Triassic to Early Jurassic orogenic event, deformation that led to the formation of 

the syn-orogenic conglomerates of the Buona Vista Formation. Following this, two distinct 

Lower Cretaceous sedimentary successions overstepped the Jurong and Sentosa group strata, 

including the Kusu Formation and the Bukit Batok Formation, both deposited in the southern 

part of the Tembeling Basin. A series of Neogene to Quaternary formations overly the 

Mesozoic and Palaeozoic stratigraphy, including the Fort Canning Formation, Bedok 

Formation and the Kallang Group.

Keywords: Lithostratigraphy, U-Pb geochronology, Jurong Group, Sentosa Group, 

Singapore, Southeast Asia



  

1. Introduction

Singapore lies beyond the southern end of Peninsular Malaysia, some 50 to 100 km east of 

the southerly continuation of the Bentong-Raub Suture Zone and along strike from both the 

Central and Eastern belts (Sukhothai Arc and Indochina‒East Malaya in Fig. 1). The two 

regions share a complex geological history (Hutchison and Tan, 2009), though much of the 

detail has remained obscure due in large part to poor exposure. In the last decade, the 

Government of Singapore has addressed a need to improve national geological 

understanding, in part by collecting new subsurface geological datasets, and by 

commissioning geological investigation programs to examine the new data and re-evaluate 

existing data. The new data include world-class examples of arc-related magmatism and 

associated sedimentation, and have much to offer in terms of regional geological 

understanding in Southeast Asia.

A number of significant interpretations of Singapore geology – including those by 

Scrivenor (1924), Alexander (1950), Burton (1964), and Kobayashi and Tamura (1968) – 

predate the first official treatise, the “Geology of the Republic of Singapore” (PWD, 1976). A 

revised version of this document published by the Defence Science and Technology Agency 

(DSTA, 2009) presented a stratigraphical framework of ten units that was largely unaltered 

from the previous version. Much of the original mapping was not subject to assessment by 

techniques such as sedimentary facies analysis (Walker, 1992), and was hampered by 

extensive weathering of accessible outcrop (a problem that continues today and which is 

further exacerbated by modern urban development). Nevertheless, the unit names used in the 

PWD (1976) and DSTA (2009) accounts have become established and are used by geologists 

and geotechnical engineers active in Singapore.

In the DSTA framework, a single ‘formation’, the late Triassic to early Jurassic ‘Jurong 

Formation’, encompassed much of the layered rock succession in Singapore. The Jurong 



  

Formation' was subdivided into seven lithological associations or ‘facies’, namely the 

Tengah, Queenstown, Ayer Chawan, St. John, Jong, Rimau and Pandan facies (DSTA, 2009; 

Lat et al., 2016). The stratigraphy was designed in this way as a consequence of the poor 

exposure, structural complexity and heterolithic character of the bedrock in outcrop and in 

short lengths of borehole core available at the time. Although the various units and facies 

were assigned relationships that could be consistent with a stratigraphical classification, they 

do not comprise a robust lithostratigraphical framework that is fully consistent with 

International Commission on Stratigraphy (ICS) guidelines (cf. Murphy and Salvador, 1999), 

and have not achieved formal ICS-compliant status. DSTA (2009) stated that ‘none of the 

facies can be assumed to form continuous units … they have no stratigraphic order’ and do 

not robustly follow fundamental geological concepts such as the Law of Superposition 

(developed by Nicholas Steno in 1669). Therefore, previous stratigraphical models for 

Singapore are based on a conceptually unsound stratigraphical framework model; for this 

reason, a need to review the lithostratigraphy of Singapore using new information and a 

modern approach was identified (Lat et al., 2016).

In order to support subsurface development, the Singapore Building and Construction 

Authority (BCA) implemented a comprehensive ground investigation programme, which 

recovered c. 20,000 m of borehole core from 121 c. 205 m deep boreholes (Fig. 2). The 

wealth of new data has shown that the geology of Singapore is more complicated than 

previously thought. The British Geological Survey (BGS) was engaged by BCA to resolve 

key questions about the geology and to produce an ICS-compliant lithostratigraphical 

framework for Singapore. BGS has examined the borehole cores and collected new data from 

some 218 field localities across Singapore (Fig. 2).

This paper documents and describes a new, ICS-compliant lithostratigraphical framework 

for Singapore (Fig. 3). The lithostratigraphical framework was developed in conjunction with 



  

a new lithodemic framework for the plutonic rocks of Singapore (Gillespie et al., this issue); 

both were supported by a re-examination of the structural geology (Leslie et al., this issue).

2. Geological setting

Southeast Asia is made up of a collage of continental blocks and volcanic arc terranes that 

are welded together along suture zones marking the sites of destroyed Palaeo-Tethys Ocean 

basins (Fig. 1; cf. Hall, 2012; Sone and Metcalfe, 2008; Searle et al., 2012; Metcalfe, 2017a). 

The geology of the Singapore–Peninsular Malaysia region is described in terms of three 

approximately N-S trending tectonostratigraphic belts, the Western, Central, and Eastern 

belts (Metcalfe, 2013). The Bentong–Raub Suture Zone forms the collisional boundary 

between the Sibumasu block and the Sukhothai Arc along the length of Peninsular Malaysia. 

After the Sibumasu block was rifted from Gondwana in the Carboniferous to Permian, its 

northward movement was accommodated by subduction of Palaeo-Tethys oceanic crust 

beneath the Indochina–East Malaya block, leading to the development of the Sukhothai Arc 

from the Permian at least and into the Triassic (Hall, 2009, 2012; Metcalfe, 2011, 2013, 

2017a; Sevastjanova et al., 2011, 2016).

The volcanic arc system initially began to form on the continental margin of the 

Indochina-East Malaya block, but separated from it as a back-arc basin system developed in 

the Carboniferous to Permian (Sone and Metcalfe, 2008; Oliver et al., 2014). Subsequent 

back-arc collapse, initiating in the Permian, led to the active volcanic arc system being finally 

accreted back onto the continental margin (Sone and Metcalfe, 2008; Metcalfe, 2013).

Consequently, the Permian to Triassic geology of the Central Belt is dominated by 

stratigraphical successions and I-type granitoid plutons that record the evolution of the 

Sukhothai Arc (Hutchison and Tan, 2009). Widely distributed I-Type granitoid plutons in the 

Central and Eastern belts of Peninsular Malaysia, and in Singapore, are also a product of this 

arc magmatism (Ng et al., 2015a; Searle et al., 2012). These plutons show emplacement ages 



  

that span both the active and late-stage arc and back-arc settings (c. 265 – 220 Ma, see Oliver 

et al., 2014; Ng et al., 2015a, b; Gillespie et al., this issue; Leslie et al., this issue).

The Triassic successions in the Central Belt of Peninsular Malaysia, including the 

Semantan Formation, were deposited in the Semantan basin depocentre, which in Singapore 

formed the forearc basin to the Sukhothai Arc (Hutchison and Tan, 2009). These sediments 

comprise a diverse range of lithologies, including carbonaceous shale, siltstone, tuff, chert, 

and crystalline limestone (Ahmad, 1976; Metcalfe et al., 1982). Deposition is interpreted to 

have occurred through turbidity currents and debris flows (Metcalfe et al., 1982; Ismail et al., 

2007) which transported sediment into the basin from broadly east to west (Metcalfe et al., 

1982). The tuffs and abundant volcaniclastic detritus, together with evidence of basin 

instability, likely reflect arc activity (Abdullah, 2009). In Singapore, the presence of ‘red-bed 

facies’, including massive to finely laminated mudstones and lenses of fine-grained 

sandstone, have been documented in the Upper Triassic, and are thought to be deposited in a 

lacustrine (Oliver and Prave, 2013) or beach environment (Vilpponen, 1988).

Following the collision of the Sibumasu and Indochina-East Malaya blocks, the Mesozoic 

record is somewhat limited but suggests that much of what constituted the continental core of 

Southeast Asia at that time (Sundaland) was emergent by the early Cretaceous (Lee et al., 

2004; Hall, 2009). Lower Cretaceous sedimentary successions were accumulated in fault-

bounded basins, often as fluvial red-bed successions. These basins formed as dextral 

transcurrent movements became established across the Singapore-Peninsular Malaysia region 

of Sundaland perhaps associated with elements of extension in a new back-arc region relative 

to the evolving Sunda Arc (Hutchison and Tan, 2009). Small fault-bounded basins likely 

joined up to form a series of basins into which the Tembeling Formation (Koopmans, 1968) 

or Tembeling Group (Khoo, 1977; Hutchiston and Tan, 2009) and the Ma’Okil Formation 

(Loganathan, 1977) were deposited in Peninsular Malaysia.



  

3. Data, methodology, and approach

Building a ‘classical’ lithostratigraphy for the layered rocks of Singapore that is solely 

based on lithological character and using normal stratigraphical principals (as defined in 

Murphy and Salvador, 1999) is extremely challenging, for the reasons described above. 

Consequently, units have been identified and characterised using a combination of: bulk 

lithological character and stratal relationships determined from logging core and outcrop; 

sedimentary facies analysis and the interpretation of environments of deposition; 

geochronological dating; micro and macro fossil analysis; and structural information. 

Sequence stratigraphic examination of boreholes was not attempted due to a general lack of 

correlative chronostratigraphic data and the degree to which the rocks have been folded and 

faulted.

3.1 Borehole core logging and fieldwork

Twenty-thousand meters of borehole core recovered between 2012 and 2017 was the 

principal source of the data used to constrain a new bedrock lithostratigraphy for Singapore. 

Boreholes are typically vertical; most reach 205 m below surface, and the recovered cores are 

61 mm in diameter. The boreholes are distributed widely across Singapore (Fig. 2), with the 

majority that intersect sedimentary strata located in the south-western part of the mainland.

A provisional lithostratigraphical framework for Singapore was developed by examining 

high quality photographs of all new core and preliminary logs based on obvious lithological 

variations in each core. On this basis, twenty-two cores (c. 4,500 m in total), were selected 

for detailed logging. The character and dip of unit boundaries, lithology, grain size, and 

sedimentary structures were recorded for all beds thicker than 100 mm. The approach to rock 

description and classification followed the BGS ‘Rock Classification Scheme’ (RCS; 

Gillespie and Styles, 1999; Robertson, 1999; Hallsworth and Knox, 1999, modified after 

Tucker, 2009), which is based on several separate schemes that are widely used 



  

internationally. Field sedimentological logging on islands in southern and south-western 

Singapore (Fig. 2) was completed at 500 to 1,000 mm-scale, capturing information on grain 

size, lithology, and sedimentary structure. Fieldwork facilitated observation of the lateral 

variation in sedimentary facies, focussing particularly on sedimentary architectural elements. 

All of the cored sections and outcrop localities in sedimentary rocks have been assigned to a 

formation, group, or member in the new stratigraphical framework (Fig. 3; Table 1).

3.2 Facies analysis and depositional environment

The sedimentary logging data in a subset of ten cores (Table 2; and supplementary 

information) and an outcrop (on Sentosa Island; Fig. 2) has been subjected to standard 

techniques of facies analysis (as described by Walker, 1992), allowing a detailed 

interpretation of strata from grain scale to basin scale, culminating in an interpretation of the 

environment of deposition. These sections were chosen to undergo facies analysis as they 

were identified as stratotype sections for each of the formations and therefore required a 

higher level of understanding. These stratotypes borehole cores have been retained by BCA 

and are accessible upon request.

Facies analysis provides a tool for the identification of various sedimentary processes from 

their deposits and eventually permits an accurate interpretation of the environment of 

deposition. A single (litho) facies describe a process, or set of processes, by which sediments 

were transported and eventually deposited. Facies have been combined into facies 

associations and distinctive successions that define characteristic packages of sediment within 

the new lithostratigraphical framework. Finally, interpretation of depositional environments 

has taken account of the sequential association of various sedimentary processes (facies 

successions), the sedimentary element-scale character, and both vertical (in borehole core) 

and horizontal (in outcrop) relationships. The original sedimentary logs of these ten borehole 

cores (Table 2) are provided as electronic supplementary data.



  

3.3 U-Pb detrital zircon geochronology

The study analysed a total of seventeen samples to determine depositional age constraints 

from either detrital zircons in sedimentary rocks (this study, Fig. 4) or eruptive zircons in 

volcaniclastic rocks (see Gillespie et al., this issue) preserved in key units of the stratigraphy 

in Singapore.

Zircon grains were separated using standard methods, then hand-picked and mounted in 

epoxy disks and polished to reveal their interiors. All zircon grains were imaged using 

cathodoluminescence prior to analysis to allow targeting of laser spots. U-Pb analyses for 

zircon grains were carried out using a multicollector Nu Plasma HR mass spectrometer with a 

New Wave 193SS solid state laser, typically using a 20-25 µm laser spot. Hafnium isotope 

composition of zircons was carried out using a Thermo-Electron Neptune Plus mass 

spectrometer, coupled to a New Wave 193 UC Excimer laser. A 50 µm spot was used, 

targeting previously dated zircon domains. Supporting information, including detailed 

methodologies, data tables and interpretations is supplied as electronic supplementary data. 

For completeness, the age information obtained for each formation within the Jurong Group 

has been included in the relevant sub-sections below.

Unfortunately, U-Pb zircon ages obtained for pyroclastic rocks occurring within all four 

formations of the Jurong Group are statistically indistinguishable from each other, and so do 

not precisely constrain the lithostratigraphical succession. Collectively, these pyroclastic 

rocks have a mean depositional age of 242 ±3 Ma, making the Jurong Group either Anisian 

or Ladinian in age relative to the dated tuffs in the established succession.

3.4 Micro and macrofossil analysis

Forty-three mudstone samples from borehole cores were processed for microfossil 

analysis. This technique was largely unsuccessful in the provision of discriminatory age 

determinations, mainly as a consequence of the style and degree of deformation affecting 



  

these strata that has destroyed the majority of any fossil evidence. Thirteen samples of 

borehole core were analysed for macrofossil content providing three positive identifications, 

all being Triassic in age (identified in section 4.2.4). Consequently, neither micro nor macro 

fossil analysis has provided any additional constraint to the stratigraphy than was previously 

the case. However, in some units, positive macrofossil identification has provided additional 

control on the environment of deposition for those strata. The supporting evidence, including 

images and descriptions of the identified macrofossils is supplied as electronic supplementary 

data.

3.5 Structural information

Jurong Group and Sentosa Group strata have both experienced Late Triassic–Early 

Jurassic orogenic ductile deformation that has resulted in a single, locally strongly-developed, 

tectonic cleavage (Leslie et al., this issue). Younger, overstepping Cretaceous and Quaternary 

age formations were deposited after this deformation, and do not therefore exhibit such a 

cleavage. Consequently, presence or absence of a tectonic cleavage has been a useful 

constraint on stratigraphical position.

3.6 Construction of a Lithostratigraphical Classification

The new lithostratigraphical framework for Singapore follows International Commission 

on Stratigraphy guidelines (cf. Murphy and Salvador, 1999). Formations have been identified 

as the ‘fundamental units’ of the stratigraphy using diagnostic lithological characteristics and 

a justification of their stratal relationships (Table 1), supported wherever possible by 

geochronological (Figs 3 and 4; Gillespie et al., this issue) and palaeontological data. Where 

appropriate, the formations have been aggregated into groups or, in some cases, subdivided 

into members when the lithological properties were deemed sufficiently different from the 



  

rest of the parent formation. The newly defined stratigraphy described in this study provides 

the first ICS-compliant lithostratigraphical model for Singapore.

4. Lithostratigraphical Framework for Singapore

The new lithostratigraphical framework for Singapore (Fig. 3) is described below, starting 

with the oldest formation. For each named lithostratigraphical unit, its stratotype, diagnostic 

features, justification for stratal position, estimated maximum thickness, and borehole data 

sources are provided in Table 1.

4.1 Sajahat Formation – Carboniferous (Mississippian)

The Sajahat Formation is named after Pulau Sajahat (PWD, 1976), a small island c. 1.5 km 

west of the natural coastline on west side of Pulau Tekong (Fig. 2). The formation is only 

known to outcrop in this eastern region of Singapore, Pulau Sajahat was considered to be the 

‘type locality’ (DSTA, 2009). No significant new data has come to light in this study.

The formation comprises weakly to moderately deformed and regionally metamorphosed 

(up to lower greenschist facies) quartz-rich sandstone (quartz-arenite and possibly quartz-

wacke) and mudstone, lithologies referred to as ‘quartzite’ and ‘argillite’ respectively in 

DSTA (2009). The quartzites display ‘Bouma-type graded bedding and cross-bedded 

lamination’ (Oliver and Gupta, 2017). At least two tectonic fabrics are identified within the 

Sajahat Formation, including a low-angle, regionally penetrative foliation and a second 

upright spaced cleavage that cross-cuts the low angle foliation (Oliver and Gupta, 2019). 

Sample descriptions also report the effects of contact metamorphism (DSTA, 2009); spotted 

metamudstone (hornfels) from Pulau Sajahat and Tanjong Renggam on Pulau Tekong contain 

porphyroblasts of possible cordierite (cf. Oliver and Gupta, 2017, 2019).

U-Pb detrital zircon age information has previously been reported for the Sajahat 

Formation, within samples of quartzite encountered in two boreholes at Punggol. The 



  

samples indicate the Sajahat Formation ‘was deposited at or later than 337 ±3 Ma and before 

the intrusion of a diorite dyke into the quartzite, dated as 285 ±1 Ma (Pan et al., 2018), 

providing a range of possible ages between the early Carboniferous through to the early 

Permian. Since that publication, a U-Pb zircon date of 335 ±1 Ma has been obtained from a 

granite vein that cross-cuts the Sajahat Formation (sensu Ng and Oliver, unpublished, cited in 

Oliver and Gupta, 2019), suggesting the Sajahat Formation can be further constrained to the 

Mississippian (Carboniferous).

The age of the Sajahat Formation was not measured directly in this study, but it is agreed 

that the formation must be older than the 285 Ma (Artinskian) Choa Chu Kang pluton, which 

has recently been dated (see Gillespie et al., this issue). Xenoliths of Sajahat Formation are 

enclosed within this pluton in the Punggol area of northern Singapore (Gillespie et al., this 

issue). Correlation with the similar ‘Mersing beds’ of eastern Johor (Oliver and Gupta, 2017, 

2019), thought to be Carboniferous (Lee, chapter 5 in Hutchison and Tan, 2009) or perhaps 

even the Permian age Dohol Formation (Foo, 1983; Rajah, 1986; Hutchison and Tan, 2009), 

further support a Palaeozoic age.

4.2 Jurong Group – Middle Triassic

The Jurong Group (Fig. 3) is named after Jurong Town, Singapore. Chin (1965) first 

identified the Jurong Formation and Pasir Panjang Formation as two lithologically distinct 

successions underlying the south-west part of mainland Singapore. Burton (1973a) and 

Burton (1973b) combined both units as the Jurong Formation. The ‘Jurong Formation’ 

outcrops in Singapore and extensively in Johor but has not been assigned formal status in 

Peninsular Malaysia (Lee et al., 2004). Based on the new data acquired in Singapore, the 

former Jurong Formation is here assigned group status (the Jurong Group), and contains four 

formations. The Jurong Group underlies most of the western parts of mainland Singapore 

(Fig. 5).



  

4.2.1 Tuas Formation

The formation is named after and largely encountered in the Tuas planning area and is 

predominantly observed in boreholes in south-westernmost Singapore (Fig. 6). It is composed 

of interbedded, cyclic successions of limestone and siliciclastic sediments (Fig. 7A). 

Limestone units are 1–20 m thick, alternating with 1–20 m thick successions of very fine-

grained to medium-grained sandstone and minor amounts of bioturbated siltstone. The 

limestone is predominantly micritic with subordinate patches of allochem-rich zones that 

include oncoids and peloids. Parallel laminated, well-sorted, medium-grained sandstone units 

form coarsening-upwards packages often displaying mud-drapes and moderate bioturbation. 

Other sandstone intervals display erosive bases, normal grading, and occasional trough and 

planar cross-bedding. The sandstone units are typically dark grey, and contain an elevated 

concentration of clay-grade material in the matrix, with little in the way of incorporated 

volcaniclastic material.

The Tuas Formation is of Anisian or Ladinian in age as determined from a sample of tuff 

recovered from borehole (BH) 1A1 that gives a U-Pb zircon age of 243 ±2 Ma (Fig. 3; 

Gillespie et al., this issue).

4.2.2 Pulau Ayer Chawan Formation

The formation is named after Pulau Ayer Chawan, a natural island that was joined together 

with six other natural islands via land reclamation to form the largely man-made Jurong 

Island (Fig. 2) and is mostly encountered in south-western Singapore (Fig. 6). The unit 

comprises interbedded sandstone and mudstone, with subsidiary, but upwards increasing 

occurrences of volcanogenic rock (tuff, lapilli-tuff, and tuffite) and conglomerate (Fig. 7B). 

Sandstone units typically are quartz-rich, sub-angular to sub-rounded and very fine- to 

medium-grained but occasionally coarse-grained. They often display structureless bed bases, 

which pass upwards into bed tops displaying parallel lamination, asymmetrical ripple 



  

lamination, and normal grading. Although the majority of bed-geometries are tabular, 

lenticular bedding is also present within the formation. Mudstones are often dark grey in 

colour, parallel laminated with rare occurrences of weak bioturbation. Conglomerate units are 

typically structureless, dominantly composed of carbonate clasts, but also contain minor 

quantities of granitic and volcanic rock fragments. The effects of soft-sediment deformation 

on discrete, stratified intervals of sandstone and mudstone are ubiquitous throughout the 

formation.

The Pulau Ayer Chawan Formation is of Anisian age, as determined from a sample of tuff 

recovered below the Nanyang Member from BH1A9 that gives a U-Pb zircon age of 

245 ±1 Ma (Fig. 3; Gillespie et al., this issue).

4.2.2.1 Nanyang Member (of the Pulau Ayer Chawan Formation)

The member is named after Nanyang Technological University, the site of the only known 

occurrence (see inset in Fig. 6). The Nanyang Member comprises pyroclastic rocks, 

specifically hydroclastic (quenched) lapilli-tuff, and lapillistone (Fig. 7C). More than 80% of 

the clasts are formed of brownish grey to green andesitic rock with much smaller proportions 

of dark grey mudstone and grey limestone. The igneous clasts have distinctive polygonal 

shapes and are concentrically zoned due to alteration. The unit consists of meter-scale layers 

in which normal grading is commonly visible.

The Nanyang Member is of Anisian age as determined from a sample of hydroclastic 

lapillistone in BH1B2, which produced a U-Pb zircon age of 245.5 ±2.6 Ma (Fig. 3; Gillespie 

et al., this issue).

4.2.3 Pandan Formation

The formation is named after Pandan Road (and the nearby Pandan Reservoir). The 

reservoir is the site of the first borehole to intersect a substantial section of limestone in 



  

Singapore (Fontaine and Lee, 1993). The formation is mainly found in southern and south-

western Singapore (Fig. 6). It comprises thickly bedded carbonate rock, with subsidiary 

interbedded sandstone, mudstone, and pyroclastic rock (Fig. 7D). The carbonate rock is 

dominantly limestone with subordinate dolomite. The limestone is micritic and recrystallised 

to varying degrees, but in places displays sparsely distributed allochem-rich zones consisting 

of broken shelly material, ooids, and pisoids. Where mudstone is present, the rock commonly 

has a ‘nodular’ character with irregular to sub-spherical bodies up to 100 mm scale 

comprising dark grey mudstone enclosed in grey limestone. Occasional beds of sandstone 

and mudstone interrupt carbonate deposition; these are typically dark grey, moderately- to 

well-sorted, and have a carbonate cement. The Pandan Formation contains several thin (10-

100 mm) occurrences of tuff and one much thicker unit (the Kent Ridge Member, see below).

The Pandan Formation is Anisian in age, as determined from a sample of tuff recovered 

from near the base of formation in BH1A8, which gives a U-Pb zircon age of 245 ±1 Ma 

(Fig. 3; Gillespie et al., this issue), but deposition could extend into the Ladinian. A Middle 

Triassic age is supported by rare examples of foraminifera Citaella cf. pusilla observed in 

BH1F7 that argue for an Olenekian to Anisian age.

4.2.3.1 Kent Ridge Member (of the Pandan Formation)

The member is named after Kent Ridge, located in the Queenstown area of Singapore, 

where the thickest occurrences have been found (Fig. 6; see Figure 1 in Gillespie et al., this 

issue). It comprises mainly lapilli-tuff with subordinate proportions of tuff and lapillistone 

(Fig. 8A). The volcaniclastic rocks are composed of an ash-grade matrix with fiamme, lithic 

fragments, and crystals. The fiamme are green and typically 20–50 mm long, but can be 

larger. Fiamme aspect ratios (typically 4:1 to 8:1, but locally can be up to 20:1) indicate the 

rock has been compacted and welded to varying degrees. Lithic clasts consist dominantly of 

porphyritic volcanic rock, but clasts of non-porphyritic volcanic rock and coarse-crystalline 



  

granitic rock can be present. The crystal component consists of roughly equal proportions of 

bluish-grey quartz and white to pinkish feldspar (typically up to 4 mm in diameter).

The Kent Ridge Member is Ladinian in age, as determined from a sample of lapilli-tuff 

recovered from BH1F13 that gives a U-Pb zircon age of 240.3 ±1.4 Ma and a sample of tuff 

from BH1B6 that gives a U-Pb zircon age of 240.4 ±1.1 Ma (Fig. 3; Gillespie et al., this 

issue).

4.2.4 Boon Lay Formation

The formation is named after several locations, including Boon Lay Drive, Boon Lay 

Place, and Boon Lay MRT station, which are close to BH2B10 (the stratotype for the unit; 

Fig. 2). The formation is encountered in western and northern Singapore (Fig. 6) and is 

composed dominantly of sandstone with subordinate interbedded mudstone and pyroclastic 

rock (Fig. 8B). The sandstone units are fine- to very fine-grained, but locally can be medium- 

to very coarse-grained, moderate- to well-sorted, and quartz-rich. The sandstone units tend to 

lack a clast component, but when present it is encountered directly above scour surfaces. The 

dominant sedimentary structures include erosive bases and trough cross-bedding, which 

passes up into planar cross-bedding, and bed tops characterised by parallel lamination and 

asymmetrical ripple lamination. Occasionally, up to 5 m thick intervals of flasar-laminated 

sandstone are encountered within coarsening-upwards packages of sediment. The bivalves 

Lopha cristagalli (Linnaeus), Halobia and Mysidioptera have been positively identified 

within mudstone units from the formation in BH2F3. Volcaniclastic sandstone is quite 

common and is usually yellowish-green. Mottled texturing is often present within the 

siliciclastic and volcaniclastic sandstone units. Rare and thin intervals of carbonate rock can 

develop within the formation, typically forming as nodules in mudstone.

The Boon Lay Formation is interpreted to be of Ladinian or Asinian age, based largely on 

a sample of tuff recovered in BH2B8 that gives a U-Pb zircon age of 243 ±1 Ma and a sample 



  

of tuff from BH2B10 that gives a U-Pb zircon age of 243 ±2 Ma (Fig. 3; Gillespie et al., this 

issue). These dates are corroborated by macrofossils encountered in BH2F3, including poorly 

preserved specimens of the foraminifera Citaella cf. pusilla, which had an age range of 

Olenekian to Anisian; the bi-valves Lopha and Halobia that suggest an Anisian to basal 

Ladinian and a Ladinian to Norian age, respectively (cf. Kobayashi and Tamura, 1984); and 

Mysidioptera supports a Triassic age (Newton, 1923).

4.2.4.1 Clementi Member (of the Boon Lay Formation)

The member is named after the Clementi planning and residential area which coincides 

with the main outcrop of the unit (Fig. 6). It comprises dominantly siliciclastic rocks, mainly 

interbedded mudstone, siltstone, sandstone, and tuff (Figs 8C and 9C). Mudstones and 

siltstones display a mottled, reddened texture, mudcracks and occasional drab-root halos. The 

mudstones typically lack any sedimentary structuring other than the mottled texturing. 

Sandstones are often not reddened and contain sedimentary structures including erosive 

bases, trough cross-bedding, passing up into planar cross-bedding, capped by parallel 

laminated and asymmetrical ripple lamination. Thin beds of reddened carbonate rock 

(limestone) or carbonate-rich rock are developed locally.

The Clementi Member is of Ladinian or Anisian age, as determined from a sample of tuff 

recovered from BH1F12 that gives a U-Pb zircon age of 243 ±3 Ma (Fig. 3; Gillespie et al., 

this issue).

4.2.5 Pengerang Formation

The formation is named for its ‘type area’ at Pengerang, an area and small settlement at 

the south-eastern tip of Johor, Peninsular Malaysia (Fig. 2). The formation comprises mainly 

pyroclastic rocks, primarily lapilli-tuff and tuff. Embedded rock fragments are usually less 

than 50 mm in diameter suggesting that the lithology is generally lapilli-tuff. A thin section of 



  

Pengerang Formation rock from an unidentified location in Singapore consisted of “lithic tuff 

with andesitic fragments set in a groundmass of irregular feldspar laths, glass, and opaque 

ore” (DSTA, 2009). Similar rocks outcrop further across south-east Johor where they are 

named the Sedili Volcanic Formation (Rajah, 1986; Hutchison and Tan, 2009).

Published radiometric U-Pb zircon age dating of a volcanic rock sample of 238.4 ±1.9 Ma 

(Oliver et al., 2014), suggests the Pengerang Formation is Ladinian or Carnian in age.

4.3 Sentosa Group – Upper Triassic

The Sentosa Group (Fig. 3) is named after Sentosa Island (Fig. 2) in the ‘Southern Islands’ 

planning area of Singapore. The group as a whole is located offshore, but also occurs in the 

Southern Islands and Western Islands (Fig. 10) as well as in Labrador Park on mainland 

Singapore (see figure 4 in Leslie et al., this issue). The Sentosa Group comprises the Tanjong 

Rimau Formation and the Fort Siloso Formation; the stratotypes for both formations are well-

exposed on Sentosa Island, along with the boundary-stratotype.

4.3.1 Tanjong Rimau Formation

The formation is named after Tanjong Rimau on the north-westernmost point of Sentosa 

Island (Fig. 10), which represents the stratotype section for the formation. The formation is 

composed of interbedded conglomerate, sandstone, and mudstone (Figs 9A, 9D and 11A). 

The conglomerate has a distinctive clast assemblage that includes conspicuous white vein 

quartz, volcanic rocks, extra-formational siliciclastic rocks, and metamorphic rocks. The 

sandstone is very fine-grained to very coarse-grained, typically thickly bedded and displays 

erosive bases, planar cross-bedding, trough cross-bedding, and normal grading. Stacked 

successions of up to 1 m thick beds of tabular, planar cross-bedded, very coarse-grained 

sandstone are common. Mudstone units are typically dark to light grey, thinly bedded, and 

sometimes display well-developed starved asymmetrical ripple-lamination. A range of 



  

structures observed towards the top of the formation includes sigmoidal cross-bedding; 

Skolithos burrows (Fig. 12A); flaser lamination (Fig. 12B); hummocky cross-stratification 

(Fig. 12C) and reactivation surfaces in cross-bedded sandstones that display opposing foreset 

dips and thin mud-drape reminiscent of herringbone cross-stratification (Fig. 12D). Layers of 

pyroclastic rock and carbonate rock are largely absent.

A youngest detrital zircon age of 209 ±2 Ma (Oliver et al., 2014) from a sample of 

conglomerate in the Labrador Nature Reserve, which is along strike from Tanjong Rimau 

(see Figure 4 in Leslie et al., this issue), suggests the unit may be no older than Norian or 

Rhaetian Age. However, the youngest population of detrital zircons in two new samples of 

the Tanjong Rimau Formation, one from Telok Blangah Park (‘AGLE_65_01’ in Figure 4), 

and the other from Tanjong Rimau on Sentosa Island (‘157a’ in Figure 4) produced identical 

ages of 224 ±2 Ma (Norian; Fig. 3), and this result may provide a more robust estimate for 

the maximum age of deposition.

4.3.2 Fort Siloso Formation

The formation is named after Fort Siloso, located at the north-west tip of Sentosa Island in 

southern Singapore (Fig. 10). The unit forms the bedrock beneath the fort and is well exposed 

in the area to the northeast on Sentosa Island; the shore section provides the stratotype for the 

formation. The unit comprises interbedded mudstone and sandstone (Fig. 11B). The 

mudstone is dark red to brown, mottled, and bioturbated, while the sandstone typically is very 

fine-grained, occasionally fine-grained, very well-sorted and quartz-rich. Sedimentary 

structures include: flaser lamination, asymmetrical ripple-lamination, parallel laminations, 

and rare occurrences of trough cross-bedding in the fine-grained sandstones. The sandstone 

units often form as discrete lenses, which display shallow bases and common internal re-

activation surfaces, interpreted as inclined heterolithic stratification. Skolithos burrows are 

present in some locations. The formation lacks volcanic material, other than isolated 



  

examples of volcanoclastic palaeosol (Andisol) on Sentosa Island. Detrital zircon age data for 

the underlying Tanjong Rimau Formation (see above) indicate the Fort Siloso Formation 

must be Norian or younger.

4.4 Buona Vista Formation – latest Triassic to ?Lower Jurassic

The Buona Vista Formation is named after the Buona Vista residential district and the 

MRT station in the Queenstown planning area of Singapore. The unit is distributed across 

central and western Singapore (Fig. 10), tentatively associated with the occurrence of major 

thrust structures (Leslie et al., this issue). It comprises interbedded sandstone and 

conglomerate (Figs 9B and 11C). The sandstone is coarse- to very coarse-grained, pebbly, 

and often displays meter-scale planar cross-bedding. The conglomerate can be clast-

supported or matrix-supported, and is characterised by rounded, cobble-grade clasts of 

diverse lithologies, which includes volcaniclastic rock, granitic rock, quartz, and 

extraformational sandstone and mudstone.

New geochronological results from the formation in BH1B2 produced a diverse range of 

zircon ages with populations between c. 243-300 Ma, and a maximum depositional age of 

245 ±2 Ma indicated by the youngest population (Fig. 4). These diverse age determinations 

indicate a geologically-varied source area, which supports an interpretation that the Buona 

Vista Formation conglomerates are syn-orogenic (Leslie et al., this issue), probably sourced 

from a nearby emergent thrust system. The age of the formation could therefore be 

contemporaneous with the timing of the final (late Triassic) stages collision of the Sibumasu 

block against Sukhothai Arc–Indochina–East Malaya (Oliver et al., 2014; Metcalfe, 2017a), 

but could be as young as Lower Jurassic (as discussed in Leslie et al., this issue). The 

possibility for the Buona Vista Formation extending into the Lower Jurassic is postulated on 

the youngest granite age determination reported from the Western Belt (Main Range 

Province) of Peninsular Malaysia (not including much younger, Upper Cretaceous-aged 



  

igneous bodies), being 198 ±2 Ma (Liew and McCulloch, 1985; summarised in Ng et al., 

2015b). This youngest granite age can be used to infer the timing of terminal orogenic 

docking (cf. Leslie et al., this issue), before which time the Buona Vista Formation needed to 

have formed.

4.5 Kusu Formation and Bukit Batok Formation – Lower Cretaceous

The Lower Cretaceous stratigraphy of Singapore comprises two formations: the Kusu 

Formation and the Bukit Batok Formation (Fig. 3). Both formations lack any sign of the 

effects of brittle-ductile deformation associated with the Late Triassic–Early Jurassic 

orogenic event (i.e. no evidence of a penetrative tectonic cleavage), and they must therefore 

overstep the older penetratively deformed Triassic Jurong and Sentosa group strata.

4.5.1 Kusu Formation

The formation is named after Kusu Island (Fig. 2) and its known distribution is mainly 

through south-eastern and eastern Singapore (Fig. 10). On Kusu Island, the formation 

comprises sandstone and subordinate conglomerate, dipping 30° towards the southeast. The 

sandstone is white, grey or reddish-brown, quartz-rich, contains scattered floating pebble 

clasts of metamorphic rock and is massive to thickly bedded (beds 0.3–1 m thick), in planar 

units up to 1 m thick, some with low-angle cross-bedding. The lower formation boundary is 

represented by an unconformity that separates the Kusu Formation from all older (deformed) 

units (Fig. 12E). This angular unconformity is exposed in Telok Blangah Park (Fig. 2) where 

the older Sentosa Group strata (Tanjong Rimau Formation) beneath the unconformity surface 

dip c. 40º to the south-west, strata above the plane of unconformity dip consistently south-

east at c. 20º. Sentosa Group strata (the Tanjong Rimau Formation) on the north-western 

shore of Kusu Island (Fig. 2) dip steeply to the south-west and are cleaved. An alternative 

interpretation of this particular outcrop is presented in Oliver and Gupta (2019), whereby 



  

these geometries represent ‘a large intra-formational fluvial channel within the Jurong 

Formation’ (i.e. within the Tanjong Rimau Formation).

The youngest population of detrital zircons from a sample in the lower-most beds of the 

Kusu Formation at Telok Blangah Park (Fig. 3; AGLE_65_02 in Figure 4) indicates a 

maximum age for deposition of 225 ±2 Ma. However, a sample of Kusu Formation sandstone 

from Kusu Island (Ng and Oliver, unpublished data, cited in Oliver and Gupta, 2019) 

produced a youngest detrital zircon age of 156 ±1 Ma (Kimmeridgian), and a sample from 

sandstone boulders in the ‘Fort Canning Boulder Bed’ — which were probably sourced from 

weathered Kusu Formation bedrock (Oliver and Gupta, 2019) ― provided a youngest detrital 

zircon age of 145 ±1 Ma (Tithonian or Berriasian; Ng and Oliver, unpublished data, cited in 

Oliver and Gupta, 2019). These dates suggest that the Kusu Formation was deposited during 

or after the uppermost Jurassic (Tithonian), or probably more likely in the Lower Cretaceous 

(Berriasian).

4.5.2 Bukit Batok Formation

The formation is named after the Bukit Batok planning area in west-central Singapore and 

its known distributions are restricted to small areas in central to western Singapore (Fig. 10; 

see inset). It comprises interbedded sandstone and mudstone (Figs 9A, 9C and 11D); the 

sandstone typically is moderately- to well-sorted and very fine- to very coarse-grained. The 

organic-rich mudstone is dark grey to black and typically displays either a faint parallel 

lamination or mottling. Isolated erosive-based units are developed locally, characterised by 

immature, very poorly sorted, fine- to very coarse-grained, angular, quartz-rich sandstone.

The youngest population of detrital zircon grains in four samples from the Bukit Batok 

Formation (Fig. 4) indicates a maximum age for deposition of 123 ±1 Ma (BH2B4(top); Fig. 

3).



  

4.6 Fort Canning Formation, Bedok Formation and Kallang Group – Neogene to 

Quaternary

A number of Neogene to mid-Pleistocene stratigraphical units (Lat et al., 2016) have been 

identified that overlie the Mesozoic stratigraphy of Singapore, namely the Fort Canning 

Formation and the Bedok Formation (Fig. 3). These units are overlain by the late Pleistocene 

to Holocene Kallang Group that represent the youngest strata in Singapore.

4.6.1 Fort Canning Formation

The Fort Canning Formation is named after Fort Canning Park in the Central Area 

planning area and occurs exclusively in the Central Business District area of downtown 

Singapore. There currently are no known archived core materials, and no formal type area or 

type section exists for the Fort Canning Formation; this formation was not examined as part 

of this study.

From the literature, the formation consists entirely of boulders of fresh sandstone or 

quartzite set in a hard matrix of sandy clayey silt or sandy silty clay (Shirlaw et al., 1990; 

2003). Boulders up to 9 m in diameter (e.g. Nowson, 1954) and over 200 m3 have been 

reported (Pitts, 1984; Shirlaw et al., 1990, 2003), but they are commonly significantly 

smaller. The matrix is unstratified, consisting mainly of quartz and kaolin (Wong et al., 

1996), and can enclose small, angular rock fragments between the larger boulders. The matrix 

is characteristically mottled in deep red, red and white, or red, yellow and white, but can be 

purple where weathered (Shirlaw et al., 2003).

The formation is placed within the ‘Cretaceous to Neogene’ in Lat et al. (2016), although 

the basis for this age determination is not indicated and no new geochronological information 

was produced as part of this study. It is possible the formation was deposited between the 

Neogene and the Quaternary; more work is required to fully understand the age relationships 

in this part of the stratigraphy.



  

4.6.2 Bedok Formation

The formation is named after the Bedok planning area in south-east Singapore. This new 

name (sensu Lat et al., 2016) replaces several older names, including High Level Alluvium 

(Scrivenor, 1924), Older Alluvium (Alexander, 1950; Burton, 1964), and Old Alluvium 

(introduced by Walker [1956] in the Kinta Valley of Western Peninsular Malaysia and 

extended to the Johor–Singapore area by Stauffer, 1973; Gupta et al., 1987). It comprises an 

extensive sheet of weakly consolidated to unconsolidated gravel, sand, silt, and clay (Gupta et 

al., 1987; DSTA, 2009; Lat et al., 2016), largely encountered in eastern and northern 

Singapore (Fig. 10). The gravel beds, which typically lie on scoured surfaces, are clast 

supported and consist largely of sub-angular to sub-rounded pebbles with a matrix of coarse 

sand. Gravel beds typically are overlain by coarse sand with scattered granules and small 

pebbles. These mostly lack structure but in some cases show normal grading. Beds of well-

sorted, pebbly, silty and clayey, coarse to medium sand locally contain planar or trough 

cross-bedding. Pebbles consist mainly of quartz, but rhyolite, chert and mudstone also occur 

(DSTA, 2009).

The formation is placed within the ‘Neogene to early mid-Pleistocene’ in Lat et al. (2016), 

although the basis for this age determination is not indicated and no new geochronological 

information was produced as part of this study. It is probable the formation was deposited 

between the Neogene and the Quaternary; more work is required to fully understand the age 

relationships in this part of the stratigraphy.

4.6.3 Kallang Group

The Kallang Group (or Kallang Formation), which represents the youngest part of the 

stratigraphy in Singapore (Fig. 3), unconformably overlies the Bedok Formation and, locally, 

all other older strata. The Kallang Group (Formation) is described as having five internal 

units, including: the reef, transitional, littoral, alluvial and marine members (Pitts, 1984). It is 



  

thought the Kallang Group represents a Quaternary succession (‘late Pleistocene and Recent’ 

in Pitts, 1984), and is therefore much younger than other units in Singapore. The sediments of 

the Kallang Group were not examined as part of this study; however, work to create a revised 

allostratigraphical framework for the group is ongoing (Chua et al., in prep).

5.0 Discussion

The sedimentary rocks of Singapore have a complex and diverse history, recording 

depositional processes and events in a number of different sedimentary basins and the effects 

of at least two different tectonic regimes. Through the analysis of this data and the 

construction of the lithostratigraphical framework of Singapore a number of significant 

geological events have been identified that have the potential to contribute to the overall 

geological understanding of Southeast Asia.

5.1 The Sajahat Formation

The argillites and quartzites of the Sajahat Formation are thought have been deposited as 

thin-bedded turbidites (Oliver and Gupta, 2017), possibly in a deep sea fan (Oliver and 

Gupta, 2019). This meta-sedimentary succession represents the most likely candidate for the 

basement rocks into which the Bukit Timah Centre was intruded (as described in Gillespie et 

al., this issue).

5.2 Singapore’s Record of Deposition in the Semantan Basin

Deposition within the Semantan Basin is recorded in the rocks of Singapore through the 

Jurong and Sentosa Groups and the Buona Vista Formation.

5.2.1 The Jurong Group

The earliest deposition in the Semantan Basin, recorded in Singapore, is documented by 

the Tuas Formation. This formation records deposition within a shallow marine, carbonate 

platform or shelfal setting (Fig. 13A). It is characterised by a mixture of low-energy 



  

carbonate deposits and interbedded siliciclastic sediment, forming typically cyclical 

packages. The siliciclastic material was brought into the setting by in-draining fluvial systems 

and was subsequently reworked in a shallow marine environment. The introduction of 

siliciclastic material may have periodically acted to shut-down carbonate production. The 

effects of volcanism were relatively small during this time, signified by a general absence of 

interbedded tuffaceous material suggesting a relatively stable platform. The cyclical nature of 

the carbonate and siliciclastics deposits is likely related to variations in relative sea level and 

siliciclastic supply. Overall, the formation records a shallowing-upwards pattern.

The succeeding Pulau Ayer Chawan Formation records deposition in a predominantly 

deep, but occasionally shallow, marine environment (Fig. 13B). The deep marine deposits 

include hemi-pelagic mudstones, medial to distal turbidite fans, and debris flow cones. The 

shallow marine deposits, represented by lenticular-bedded sandstones and siltstones, 

accumulated on a distal shelf that was well below the storm wave base. The two 

environments alternated as the succession accumulated, probably due to fluctuations in 

relative sea level. These sediments represent the most-distal (deepest-water) deposits 

observed within the Singapore sector of the Semantan Basin.

The transition from a shallow marine carbonate environment of the Tuas Formation into 

the deep marine setting of the Pulau Ayer Chawan Formation signifies a deepening event 

within the Semantan Basin during this time. The boundary between the Pulau Ayer Chawan 

Formation and the underlying Tuas Formation is conformable but quite abrupt, indicating a 

sudden change in water depth. This may be related to rapid generation of accommodation 

space through tectonic subsidence and/or through a eustatically influenced rise in relative sea 

level, both of which may have contributed to the transgression of the shallow marine shelf of 

the Tuas Formation.



  

Evidence for an increasingly unstable shelfal environment during the deposition of the 

Pulau Ayer Chawan Formation is provided by an upwards increase in the occurrence of 

thickly-bedded volcanogenic deposits, debrites, and soft sediment deformation. Together, 

these observations suggest significant tectonic, seismic, and volcanic instability, which were 

likely associated with the nearby active volcanic arc.

Concomitant with deposition of the Pulau Ayer Chawan Formation, the Nanyang Member 

was forming through a series of sub-aqueous eruptions from a subsea vent (cf. Yamagishi, 

1991) within the deep to shallow marine environment (Fig. 13B). This resulted in the 

immediate quenching of hot magmas by cold sea water, forming a layered succession of 

palagonite tuffs and interstitial pillows (hyaloclastites). Their layered and normally graded 

character likely represents multiple eruption events or could be attributed to reworking on the 

flanks of a volcanic edifice. The possibility of the Nanyang Member forming through 

effusive eruptions on land, draining into a basin, forming prograding lava deltas (cf. Watton 

et al., 2013) cannot be discounted, although given the deep marine characteristics of the 

surrounding sediments of the Pulau Ayer Chawan Formation, the model of a subsea vent may 

be more likely. Future work is required in order to determine the exact nature of the 

hyaloclastite of the Nanyang Member.

The next period of deposition in Singapore is recorded by the Pandan Formation which 

documents deposition in a shallow marine, carbonate lagoon environment (Fig. 13C). The 

sharp and likely disconformable boundary between the Pulau Ayer Chawan Formation and 

the overlying Pandan Formation (Fig. 3) indicates an abrupt shallowing in relative sea level, 

likely through the reconfiguration of basin margin geometries subsequent to the eruption and 

formation of the preceding Nanyang Member. In this setting, sparsely distributed allochem-

rich zones, comprising ooids and pisoids, indicate environmental perturbations resulting in 

shoaling and/or short periods of high bio-productivity.



  

Contemporaneously, deposition of thickly-bedded volcanic deposits of the Kent Ridge 

Member were being formed by sub-aerial pyroclastic flows that travelled into the carbonate 

lagoon (Fig. 13C). These deposits provide evidence for near-field eruptive volcanism 

adjacent to the low energy, stable carbonate environment. The eruptions introduced vast 

quantities of material into the basin that may have led to a temporary re-alignment of the 

palaeo-shoreline. The thickest intervals of this member are interpreted as the product of 

major, caldera-forming eruptions (Gillespie et al., this issue). Thinner intervals may represent 

the distal products of the same eruption, or the products of smaller eruptions that preceded or 

succeeded the main eruption; however, thickness may simply be a function of palaeo-seafloor 

topography.

The transition into the overlying Boon Lay Formation is marked by the re-introduction of 

clastic material into this region of the Semantan Basin, eventually culminating in the 

dominance of siliciclastic deposition and associated shut-down of carbonate production. The 

Boon Lay Formation was deposited in a range of sedimentary environments, from shallow 

marine to marginal-marine at the base, transitioning into a more terrestrial-dominated 

environment toward the top (Fig. 13D). The sediment was transported predominantly by in-

draining fluvial systems and was subsequently re-worked in the marginal-marine and shallow 

marine settings.

The Boon Lay Formation displays evidence for short-lived rises in relative sea level 

throughout, represented by periodic marine transgressions into the marginal marine and 

fluvial settings. Evidence for marine transgressions is provided by the positive identification 

of bivalves Lopha cristagalli (Linnaeus), Halobia and Mysidioptera identified in BH2F3, 

found within thicker intervals of mudstone and interbedded flaser-laminated sandstones. 

These relatively short-lived marine incursions are superimposed on an overall shallowing-

upwards pattern that typifies the Boon Lay Formation. Consequently, the upper-most parts of 



  

the Boon Lay Formation are more terrestrially-dominated. The cause of this shallowing 

upwards may have been related to limited development of accommodation space in the 

Semantan Basin.

The well-developed volcanic landscapes of the Clementi Member are interpreted as the 

fully terrestrial part of the Boon Lay Formation (Fig. 13D), formed coevally with the 

marginal and shallow marine parts. The well-developed, reddened palaeosols that dominate 

the unit indicate a well-drained floodplain. Two types of palaeosols have been identified: 

Ultisols and Alfisols (palaeosol classification after Retallack, 1994) dominate in the 

stratigraphically lower part, while Andisol units and pyroclastic rocks dominate in the upper 

part, suggesting an increase in volcanic activity over time. Each Andisol unit typically takes 

10,000 to 100,000 years to form in a tropical climate (Solleiro-Rebolledo et al., 2015) and 

therefore represents a long period of non-deposition. These palaeosols are interbedded with 

channelised sandstone units, likely deposited by fluvial systems, and layers of pyroclastic 

rock. Most of the channelised units consist of fine- to medium-grained sandstone, suggesting 

a relatively low-energy, meandering fluvial system. Occasional beds of carbonate-rich, 

palustrine, and lacustrine sediment, suggest standing water developed from time to time, 

drying-out periodically to create carbonate nodules and mudcracks in the sediment. Clementi 

Member deposition passes in and out of the marginal and shallow marine Boon Lay 

Formation. As the proportion of Andisol and pyroclastic rock increases upwards however, the 

evidence for marine transgression decreases, suggesting the volcanic events may have altered 

the coastal geomorphology. It is likely that there is a causal link at this time between volcanic 

activity, uplift of the hinterland, and input of clastic material into the basin. Age information 

from the two formations suggests the volcaniclastic Pengerang Formation and Clementi 

Member are broadly contemporaneous, although the former is not likely part of the Semantan 

Basin fill.



  

5.2.2 The Sentosa Group

The boundary between the Jurong Group and the Sentosa Group is separated by an 

unconformity, which is not observed in core or outcrop, but is inferred from a c. 30 Ma time 

gap in deposition (Fig. 3). It is possible this unconformity is related to slab break-off below 

the volcanic arc, which resulted in a regional-scale uplift event during this time (Leslie et al., 

this issue). Sediments of the Sentosa Group, which outcrop on Sentosa Island, were 

previously examined and interpreted for depositional environment and palaeogeography. 

Vilpponen (1988) suggested a ‘transgressive beach or shore environment’, whereas Oliver 

and Prave (2013) interpreted ‘a continental red-bed molasse succession recording alluvial-

lacustrine sediments’ deposited in a half-graben setting, referred to as Lake Sentosa. This 

study presents an alternative interpretation of sedimentation and depositional environments 

during Sentosa Group times; one that takes into account differences in the structural 

arrangement of Singapore (as discussed in Leslie et al., this volume) and additional 

sedimentary evidence from the group exposed on neighbouring islands (Fig. 2).

The Tanjong Rimau Formation represents the lowermost unit of the Sentosa Group and 

was deposited largely under terrestrial fluvial conditions. It records the return of large 

volumes of immature sediments into the Singapore region of the Semantan Basin, signifying 

active erosion of an uplifted hinterland. The sediment was transported predominantly through 

braided to meandering fluvial systems (Fig. 13E) that produced thick, trough cross-bedded to 

planar cross-bedded sandstones as a series of longitudinal bars, transverse bars, point bars, 

and channel elements. Thinly interbedded, laminated mudstone and very fine-grained 

sandstones represent some element of overbank preservation. These fluvial systems may have 

eroded into and re-worked the underlying Jurong Group strata. The stratigraphically highest 

parts of the Tanjong Rimau Formation display upwards-increasing evidence of marine 

indicators including: Skolithos burrows (Fig. 12A); flaser lamination (Fig. 12B); hummocky 



  

cross-stratification (Fig. 12C); reactivation surfaces in cross-bedded sandstones that display 

opposing foreset dips and thin mud-drapes, reminiscent of herringbone cross-stratification 

(Fig. 12D), together suggesting a progressive marine incursion into the fluvial setting during 

this time. This is supported by the interpretation of a ‘beach’ or ‘shore’ environment, 

observed in outcropping sediments on Sentosa Island by Vilpponen (1988). This marine 

incursion event may have been related to retarded uplift rates following the initial slab break-

off, accompanied by eustatically influenced rise in sea level in the late Triassic.

The transition from the Tanjong Rimau Formation into the overlying Fort Siloso 

Formation depositional environment is marked by the final dominance of marine process over 

fluvial process and upwards absence of coarse-grained sediments. The Fort Siloso Formation 

was deposited in a low energy, marginal marine to fluvio-deltaic/fluvio-lacustrine setting 

(Fig. 13F) where tidal processes influenced deposition. A low-energy, tidal flat likely 

surrounded a suite of low-relief tidal channels, depositing repeated successions of very fine-

grained sands, formed inclined heterolithic stratification (cf. Thomas et al., 1987; Hovikoski 

et al., 2008). The absence of coarser-grained sediments was likely controlled by the flooding 

of the hinterland during the transgression, resulting in reduced topography in the source area. 

The transgression probably formed part of a transgressive systems tract during this time, 

suggesting relative sea level, in the Semantan Basin was heading towards high-stand by late 

Triassic times.

5.2.3 The Buona Vista Formation

The boundary between the Fort Siloso Formation and the overlying Buona Vista 

Formation could be interpreted as a disconformity surface, representing a period of hiatus 

within later stages of development of the Semantan Basin. The Buona Vista Formation was 

deposited by alluvial and fluvial processes, most likely forming in an alluvial fan setting (Fig. 

13G), which often signify major periods of uplift within basins. The size and roundness of the 



  

clasts in the cobble-grade conglomerate, and the localised preservation of cross-bedded 

sandstone in borehole core suggests they were water-lain, with limited transportation, likely 

by high-energy fluvial and/or alluvial processes. Sediments were transported into adjacent 

depocentres by a mixture of debris flow and fluvial processes, where they were then 

preserved.

The Buona Vista Formation occurs within spatially restricted areas immediately north of 

the Murai and Pasir Laba thrusts (Leslie et al., this issue.). The geographical association 

between these major thrust structures, combined with the locally intensely-deformed nature 

of the rock in zones up to c. 5 m thick, suggests a genetic link between these sediments and 

the fold and thrust deformation structures (Leslie et al., this issue.). The diverse clast 

assemblage within the conglomerates, along with the observed detrital zircon dates, testifies 

to a highly mixed sediment source area. Therefore, the Buona Vista Formation is interpreted 

as syn-orogenic conglomerate and sandstone units, deposited in alluvial fan systems that 

drained off and across emerging thrust structures (Fig. 13G) during the Late Triassic–Early 

Jurassic orogenic event.

5.2.4 Semantan Basin Depositional Summary and Correlation

The Jurong Group records an overall shallowing upwards pattern with the oldest deposits 

forming in deep-marine to shallow-marine settings, succeeded by progressive in-filling of the 

Semantan Basin. Sedimentation was taking place during basin-closure, which was largely 

controlled by contemporaneous compressional tectonics (see Leslie et al., this issue), 

resulting in the gradual size reduction of the sediment-sink. Regional-scale, thermally-driven 

uplift may also have played a role in gradual basin shallowing in response to intrusion of 

igneous bodies. All of these factors can ultimately be linked to the large-scale closure of the 

Palaeo-Tethys Ocean (as described in Sone and Metcalfe, 2008). Sentosa Group sediments 

rest unconformably on Jurong Group strata following a break in deposition within the 



  

Semantan Basin. The final deposition in this basin is recorded by syn-orogenic conglomerates 

of the Buona Vista Formation, formed as the compressional features breached the land 

surface, supplying immature sediments through alluvial fan and fluvial systems deposited on 

the Jurong and Sentosa group strata. These later stages of deposition may reflect uplift and 

erosion of the mature arc, perhaps after slab break-off had occurred towards the end of the 

Upper Triassic (Leslie et al., this issue).

The Jurong Group strata are readily correlated on the basis of lithology, age, and 

deformation record with the ‘Jurong Formation’ in South Johor (cf. Lee et al., 2004). More 

widely, these sedimentary packages can be correlated with the stratigraphy of the Semantan 

Formation (basin) in Peninsular Malaysia (Jaafar, 1976; Khoo, 1983; Metcalfe, 1990; 

Hutchison and Tan, 2009; Metcalfe, 2013; Metcalfe 2017a, 2017b).

5.3 The Kusu and Bukit Batok Formations – Regional Correlation and the Tembeling Basin

Following the final closure of Palaeo-Tethys, a relatively significant hiatus in 

sedimentation occurred in Singapore. This hiatus probably persisted until 

extensional/transtensional tectonism began to affect the area during early Cretaceous and into 

the Cenozoic (Hutchison and Tan, 2009; Leslie et al., this issue). This new regime led to the 

formation of a new basin, permitting the deposition and preservation of younger, undeformed 

sedimentary successions on top of the older, deformed strata of the Semantan Basin. In 

Singapore, the Kusu Formation and Bukit Batok Formation represent this Lower Cretaceous 

sedimentary package.

The sediments of the Kusu Formation were deposited within a braided fluvial system that 

introduced coarser-grained clastic material into the basin. The presence of: abundant 

metamorphic clasts in these deposits sourced from an emergent meta-sedimentary hinterland; 

evidence for down-cutting of fluvial systems; and age dating of ≤145 ±1 Ma for the Kusu 



  

Formation (Ng and Oliver, unpublished data, cited in Oliver and Gupta, 2019), suggest a 

period of uplift in the region during the early Cretaceous.

The unconformable, overlying sedimentary succession of the Bukit Batok Formation was 

deposited by a large, distributive river delta (Fig. 13H). The large size of the fluvial system is 

inferred from the ubiquitous moderately- to well-sorted nature of the sandstone, implying 

these sediments were transported significant distances. The abundant organic material 

preserved in the finer-grained sediments may have accumulated in: isolated and anoxic 

lacustrine bodies that show evidence for liquefaction (soft-sediment deformation); channel 

cut-offs in a fluvial environment; or in standing bodies of water that typically form in a delta-

top or flood plain settings. These strata are only known in Singapore to the north-west of the 

Henderson Road Fault and in close spatial proximity to the Bukit Timah Fault Zone (BTFZ; 

inset to Fig. 10; Leslie et al., this issue), suggesting a measure of local fault control on the 

distribution. Such faulting could potentially be linked to the strike-slip displacements that 

were becoming important across the wider region during the Cretaceous (cf. Hutchison, 2007; 

Hutchison and Tan, 2009). It is possible that the Bukit Batok fluvial system occupied a series 

of linear depocentres that acted to control the distribution of and eventually, after faulting, 

conserve this remnant of the sedimentary succession.

These two formations in Singapore can be correlated with post-orogenic, fluviatile-deltaic-

lacustrine sediments in Peninsular Malaysia, namely the Tembeling Formation (Koopmans, 

1968), the Tembeling Group (as defined in Khoo, 1977; Hutchison and Tan 2009), and the 

Ma’Okil Formation (Loganathan, 1977, 1978; Hutchison and Tan, 2009). On this basis, and 

for simplicity, the Cretaceous basin that preserved all of these Lower Cretaceous units is 

hereby referred to as the Tembeling Basin.

5.4 Cenozoic Formations – Insights into deposition



  

Sediments from the Cenozoic formations were not examined in this study. However, a few 

inferences can be made with regards to these formations and their relationship with, and 

within, the new lithostratigraphical framework.

The character of the Fort Canning Formation has led to past interpretations of it being a 

discrete colluvial deposit (sensu Shirlaw et al., 2003). In Shirlaw et al. (2003), the apparent 

absence of corestone weathering in ‘Jurong Formation’ rocks compared to that observed in 

igneous rocks (in Singapore) is a key indicator for the Fort Canning Formation being a 

Cenozoic deposit. However, the apparent close spatial association of the Fort Canning 

Formation and the Kusu Formation, along with ubiquitous deep-weathering profiles in all 

formations may allow for a different interpretation. It is possible the ‘sandstone boulders’ of 

the Fort Canning Formation, referred to in Pitts (1984) and Shirlaw et al. (1990), are 

corestones formed in-situ by weathering of Kusu Formation strata. In this scenario, the clay-

grade matrix may have formed, at least in part, through in-situ weathering of alkali feldspars, 

originally within the sediments, into clay. Further work should focus on re-examining the 

Fort Canning Formation in order to test these theories. The source of the boulders within the 

Fort Canning Boulder Bed having been ‘…derived from the Unfoliated Kusu Formation’ has 

previously been suggested (Oliver and Gupta, 2019).

The youngest pre-Kallang Group sedimentary deposits in Singapore are represented by the 

Bedok Formation. The Bedok Formation was likely deposited by alluvial fans that inter-

fingered with laterally adjacent fluvial systems. Reactivation of pre-existing normal faults, 

particularly at the base of the footwalls along developing normal faults, may have resulted in 

the rejuvenation of alluvial fan systems. In general, the formation appears to have been 

derived largely from a granite source, with a smaller contribution from metamorphic 

basement (Gupta et al., 1987). Consequently, it is inferred to be sourced from localised areas 

that became uplifted through reactivation of pre-existing faults. The formation is thought to 



  

be Neogene to early mid-Pleistocene (DSTA, 2009), although there is no direct evidence for 

the age of the unit in Singapore. Further analysis of these younger formations is required in 

order to improve the geological understanding in this part of the stratigraphy in Singapore.

6.0 Conclusions

 The depositional record of the bedrock geology in Singapore is complex, 

documenting an diverse suite of sedimentary, structural, and igneous processes 

represented in the bedrock geology. Despite this, Singapore presents and excellent 

record of the geological evolution of a forearc basin, including its sedimentary, 

collisional and post-collisional history.

 A new ICS-compliant lithostratigraphical framework for Singapore has been 

developed, which comprises three groups, thirteen formations and three members. 

The new framework provides a record of sedimentation in Singapore that ranges from 

the Carboniferous (Mississippian), Middle to Upper Triassic, Lower Cretaceous and 

up until the Quaternary.

 The formations were deposited in a range of sedimentary environments, including 

deep marine, shallow marine, marginal marine, and fluvial settings, indicating a 

diverse and dynamic suite of basin-fill successions.

 Mesozoic deposition occurred within two main basins: the Middle Triassic to Lower 

Jurassic Semantan Basin and the younger, Lower Cretaceous Tembeling Basin. 

Sedimentary processes during Semantan basin times were influenced by a 

tectonically-active setting that received the ejecta products and effects of the adjacent 

volcanic arc system.
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Figures Captions 

All figures are intended for colour reproduction, on both the web and in print

Figure 1.) The distribution of major continental blocks, fragments and terranes in the 

modern-day tectonic settings of Southeast Asia, modified after Metcalfe (2011; cf. Hall, 

2009). Singapore lies at the southern end of Peninsular Malaysia. The Bentong-Raub Suture 

Zone defines the westerly limits of the Eastern and Central belts of Peninsular Malaysia 

(Metcalfe, 2013, 2017a), and the easterly limit of the Western Belt. The rocks of the Central 

and Eastern belts record deposition within the Permian to Triassic Sukhothai Arc that now 

occupies an area between Sibumasu and East Malaya. The bedrock geology of Singapore 

shares much of its history with that of the Central and Eastern belts.

Figure 2.) The distribution of BCA boreholes and field localities analysed as part of this 

study. The location of stratotype sections, in both borehole and as field localities, has been 

provided (in yellow); supporting information for these is contained within Table 1. In 

general, this study focuses on the boreholes and field localities in the southern and western 

parts of Singapore. The results of the analysis of boreholes and field localities in the northern 

and eastern areas are presented in Gillespie et al. (this issue). Noteworthy locations, pertinent 

to this study, include: Jurong Island, Telok Blangah Park, Sentosa Island, Pulau Tekukor, 

Fort Canning Park, Kusu Island, Pulau Tekong, and Pengerang.

Figure 3.) The ICS compliant lithostratigraphical framework for Singapore developed in this 

study. The lithostratigraphical framework contains three groups, thirteen formations, and 

three members. In addition, ‘depositional age’ information, including new U-Pb age 

determinations of both eruptive and detrital zircons (green and red text, respectively), along 

with already published geochronological information (blue text), has been summarised per 

unit. The overall ‘depositional environment’ for each formation, regional-scale ‘formation 



  

level correlative units’ (mainly using Hutchison and Tan, 2009), and observed ‘geological 

events’ that may have regional-scale geological implications have been described per unit 

(BGS © UKRI 2019).

Figure 4.) Kernel Density Estimation (KDE) plots of samples analysed for detrital zircon, U-

Pb age determination, by formation. In general, the samples from the Tanjong Rimau, Buona 

Vista, and Kusu formations each show a single, large peak at their maximum depositional 

age. In comparsion, the four samples from the Bukit Batok Formation show a highly varied 

suite of maximums. The results of these analysis, along with the geochronological data from 

the pyroclastic rocks (from Gillespie et al., this issue), are summarised in Figure 3 (BGS © 

UKRI 2019).

Figure 5.) The distribution of the Jurong Group and Sentosa Group strata across Singapore. 

Linework, including faults, thrust faults, anticlines, synclines, and stratigraphical boundaries 

for this map is derived from Leslie et al. (this issue). The Jurong Group and Sentosa Group 

strata are offset by the southwest-northeast trending Henderson Road Fault (HRF), and both 

of their northerly limits are defined by the Bukit Timah Fault Zone (BTFZ).

Figure 6.) The distribution of the Jurong Group and it’s four composite formations (Tuas 

Formation, Pulau Ayer Chawan Formation, Pandan Formation, and Boon Lay Formation) and 

three members (Nanyang Member, Kent Ridge Member, and Clementi Member) across 

Singapore. Linework, including faults (HRF–Henderson Road Fault; BTFZ–Bukit Timah 

Fault Zone), thrust faults, anticlines, synclines and stratigraphical boundaries for this map, is 

derived from Leslie et al. (this issue). BCA boreholes and field localities are shown; labels 

for these boreholes can be found on Figure 2. The Nanyang Member known distribution (see 

inset map) is restricted to the area of, and around, Nanyang Technological University (NTU).



  

Figure 7.) Example images of borehole core data from the Jurong Group. Each core stick is 

1 m long, with the top of the core in the upper right corner and the base in the lower left 

corner of each set. A.) Carbonate rocks, sandstone, and mudstone units of the Tuas Formation 

(BH1A1, 199–191 m). B.) Turbidite sandstone units, pelagic mudstone units and debrite 

conglomerate units of the Pulau Ayer Chawan Formation (BH2A4, 190–182 m). C.) 

Hydroclastic lapillistone and lapilli tuff units within the Nanyang Member of the Pulau Ayer 

Chawan Formation (BH1B2, 85–77 m). D.) Thickly-bedded, micritic, carbonate rocks of the 

Pandan Formation (BH1A8, 73–65 m).

Figure 8.) Example images of borehole core data from the Jurong Group. Each core stick is 

1 m long, with the top of the core in the upper right corner and the base in the lower left 

corner of each set. A.) Green, bedded tuff units of the Kent Ridge Member of the Pandan 

Formation (BH1B6, 190–182 m). B.) Cross-bedded, poor and well-sorted sandstone units, 

and mottled mudstone units of the Boon Lay Formation (BH1B3, 178–170 m). C.) Reddened, 

mottled Andisol and Ultisol units within the Clementi Member of the Boon Lay Formation 

(BH2B15, 105–97 m).

Figure 9.) Example images of borehole core data that contain and document important unit 

boundaries within the lithostratigraphy, with the top of the core in the upper right corner and 

the base in the lower left corner of each set. A.) Red coloured silliclastic rocks of the Tanjong 

Rimau Formation (left), unconformably overlain by the light-grey coloured, finer grained 

sillisiclastic rocks of the Bukit Batok Formation (right; BH1F5, 149–139 m). B.) 

Hydroclastic rocks of the Nanyang Member of the Pulau Ayer Chawan Formation (left), 

unconformably overlain by sillisiclastic sediments of the Buona Vista Formation (right). The 

boundary is marked by a zone of intense deformation, a dark colouration, and an abrupt 

change from hydroclastic to silliclastic rocks across the boundary (BH1B2, 67–59 m). C.) 

Dark red sillisiclastic rocks of the Clementi Member of the Boon Lay Formation (left), 



  

unconformably overlain by sediments of the Bukit Batok Formation (right; BH2B15, 51–

41 m). D.) Pyroclastic tuffs of the Kent Ridge Member of the Pandan Formation (left), 

unconformably overlain by altered sillisiclastic rocks of the Tanjong Rimau Formation (right; 

BH1F13, 93–83 m).

Figure 10.) The distribution of the Triassic-aged Tanjong Rimau Formation and Fort Siloso 

Formation of the Sentosa Group, along with the Buona Vista Formation in Singapore. The 

distribution of the Kusu and Bukit Batok formations are also shown, along with the likely 

distribution of the Bedok Formation across Singapore. Linework, including faults, thrust 

faults, anticlines, synclines and stratigraphical boundaries for this map, is derived from Leslie 

et al. (this issue). The Sentosa Group strata are mainly encountered south of the Henderson 

Road Fault (HRF). The Buona Vista Formation strata are found in proximity to broadly 

northwest-southeast trending thrust faults. The Bukit Batok Formation (see inset) has a 

limited distribution, along with a spatial association with the Bukit Timah Fault Zone 

(BTFZ). The younger Kusu and Bedok formations have a spatial association with the Nee 

Soon Fault (NSF), with the western limit of the Bedok Formation coinciding with this fault 

for c. 15 km north to south across Singapore.

Figure 11.) Example images of borehole core data from the Sentosa Group, Buona Vista 

Formation, and Bukit Batok Formation. Each core stick is 1 m long, with the top of the core 

in the upper right corner and the base in the lower left corner of each set. A.) Poorly-sorted, 

very coarse-grained sandstone units and moderate- to well-sorted, medium-to fine-grained 

sandstone units of the Tanjong Rimau Formation (BH1F6, 173–165 m). B.) Very well-sorted, 

very fine-grained to fine-grained, flaser laminated sandstone units and dark brown, mottled, 

bioturbated mudstone units of the Fort Siloso Formation (BH1F2, 94–86 m). C.) Rounded, up 

to cobble-grade, matrix and clast-supported conglomerate units and fine-grained, moderate- 

to well-sorted sandstone units of the Buona Vista Formation (BH1B2, 45–37 m). D.) 



  

Moderate- to well-sorted, mud-clast-rich sandstone units and reddened, mottled, 

pedogenically-altered sandstone and mudstone units of the Bukit Batok Formation (BH2B15, 

45–37 m).

Figure 12.) Example images of outcrop from Sentosa Island, Pulau Tekukor and Telok 

Blangah Park in Singapore. A.) Vertical, mud-filled Skolithos burrows in a fine-grained, well-

sorted sandstone from the upper part of the Tanjong Rimau Formation, exposed on Sentosa 

Island. B.) Mud-draped ripple cross-lamination structures, representing flaser lamination 

from the upper part of the Tanjong Rimau Formation, exposed on Sentosa Island. C.) 

Hummocky cross-stratification (HCS) from the Tanjong Rimau Formation, exposed on Pulau 

Tekukor. D.) Reactivation surfaces in cross-bedded sandstones, which display opposing 

foreset dips and thin mud-drapes, reminicent of herringbone cross-stratification. The example 

is from the upper part of the Tanjong Rimau Formation, exposed on Sentosa Island. E.) The 

interpreted unconformity between the Tanjong Rimau Formation of the Sentosa Group and 

the overstepping Kusu Formation, exposed at Telok Blangah Park (BGS © UKRI 2019).

Figure 13.) 3D, schematic block diagrams of the depositional enviornments for the 

formations within the new lithostratigraphical framework for Singapore. A.) The shallow 

marine carbonate platform/lagoon environment of the Tuas Formation. B.) The deep marine 

to shallow marine environment of the the Pulau Ayer Chawan Formation, which experienced 

volcanic eruptions from subsea vents that produced the hydroclastic Nanyang Member. C.) 

The shallow marine carbonate lagoon environment of the Pandan Formation, which 

periodically received substantial volcaniclastic input through pyroclastic flows that formed 

the Kent Ridge Member. D.) The shallow marine to terrestrial environment of the Boon Lay 

Formation and near-field eruptions that formed the volcanic landscape of the interdigitating 

Clementi Member. E.) The fluival, braided to meandering environment of the Tanjong Rimau 

Formation. F.) The low energy, marginal marine depositional environment of the Fort Siloso 



  

Formation, which was deposited following the marine transgression of the underlying 

Tanjong Rimau Formation. G.) The alluvial fan to fluvial environment of the Buona Vista 

Formation, which formed immediately around and down-slope from emerging thrust 

structures, developed during the culmination of the Late Triassic–Early Jurassic orogenic 

event. H.) The fluvio-deltaic environment of the Bukit Batok Formation, with deposition 

likely controlled within a series of extensional grabens formed during this time (BGS © UKRI 

2019).

Table Captions

Table 1.) Diagnostic criteria for the all units within the lithostratigraphical framework of 

Singapore. For each unit, the unit name and stratotype section have been indicated. The 

diagnostic features for each unit provide a means of identifying the formation in both 

borehole core data and in outcrop. The ‘Justification for Stratal Position’ describes where 

formation boundaries and the order of succession were observed and established. The 

estimated thickness for each unit remains one of the key uncertainties in Singapore; these 

estimated thicknesses are consistent with borehole-derived constraints on the stratigraphical 

succession, as well as the results of 3D modelling and cross-section construction (Leslie et 

al., this volume). All unit assignations within each interval in the BCA boreholes are 

provided in the final column.

Table 2.) The ten critical boreholes that were logged in detail as part of this study, which 

underpin the lithostratigraphial framework. Consequently, the detailed logs for these 

boreholes underwent full facies analysis. Most of these boreholes form the stratotype sections 

for individual, or multiple lithostratigraphical units within the new framwork. The stratotypes 

borehole cores have been retained by BCA and are accessible upon request. The location 



  

information is provided in the table, which are also plotted on the map in Figure 2 (in 

yellow).



  



  



  



  



  



  



  



  



  



  



  



  



  



  

Unit 
Name

Stratotype (s) Diagnostic Features Justification for Stratal Position Estimated Maximum 
Thickness

Borehole Data Sources

Bukit 
Batok 
Formation

BH1F5 (10.5–
144.80 m)

Sandstones are fine- to medium-
grained and well- to very-well 
sorted. Mudstones are dark grey to 
black and rich in organic matter and 
may show evidence of liquefaction. 
The rock lacks the recrystallisation 
and penetrative fabric that would be 
associated with deformation and 
metamorphism.

The lower boundary separating the Bukit 
Batok Formation from the underlying 
Tanjong Rimau Formation is observed in 
BH1F5 at 144.80 m (Fig. 9A). The formation 
does not display the same degree of 
deformation as the Jurong and Sentosa 
Groups. The upper boundary is not observed 
in core or at outcrop but is probably 
unconformable with any overlying Cenozoic 
units.

Not measured directly. A 
maximum thickness is 
probably several 
hundred metres based 
on the thickest 
intersection in core at 
194 m (in BH2B5).

BH2B4 (24.10–205.00 m); 
BH2B5 (11.00–205.00 m); 
BH2B13 (12.60–205.00 m); 
BH2B15 (15.00–46.80 m); 
BH1F5 (10.50–144.80 m); 
BH1F11 (27.50–205.00 m); 
BH1F11a (28.20–29.20 m).

Kusu 
Formation

Kusu Island is 
the stratotype 
for the Kusu 
Formation in 
Singapore

Quartz-rich, thickly-bedded 
sandstone comprised of rounded to 
very well rounded, medium- to 
coarse-grained quartz grains with 
well-developed quartz overgrowths. 
The rock lacks the recrystallisation 
and penetrative fabric that would be 
associated with deformation and 
metamorphism.

The lower boundary is an unconformity 
between the Kusu Formation and all older 
units exposed at Telok Blangah Park. The age 
of the formation is determined as Lower 
Cretaceous, based on a ≤156 ±1 Ma date 
from Kusu Island, and a younger date of 
≤145 ±1 Ma from a boulder of Kusu 
Formation in the Fort Canning Boulder Bed 
(Oliver and Gupta, 2019). On both accounts, 
the Kusu Formation is considerably younger 
than the underlying Triassic successions (c. 
245–215 Ma). Furthermore, the formation 
does not display the same degree of 
deformation, with no evidence for a 
penetrative cleavage. The upper formation 
boundary corresponds with the present-day 
erosion surface.

Not measured directly. A 
maximum thickness in 
Singapore is at least 
400 m, based on the 
national 3D geological 
model.

None

Buona 
Vista 
Formation

BH2B8 
(144.6–
205.0 m)

Conglomerate beds characterised by 
rounded, cobble-grade clasts. These 
beds are distinctive, and lack the 
clast assemblage of conspicuous 
white vein quartz, volcanic rocks, 
extra-formational siliciclastic rocks, 
and metamorphic rocks that 
characterises the Tanjong Rimau 
Formation.

The lower formation boundary between the 
Buona Vista Formation and the Nanyang 
Member of the Pulau Ayer Chawan 
Formation is observed in core data from 
BH1B1 and BH1B2 (Fig. 9B). The lower 
boundary is characterised as structural, with 
intense ductile deformation and mylonitic 
rock. The upper boundary is not observed in 
core or outcrop, but the difference in likely 
ages of the Buona Vista Formation (between 
245 and 198 Ma) and the overlying Bukit 
Batok Formation (<123 Ma) suggests the 
latter is significantly younger.

Not measured directly. 
Its minimum thickness is 
likely to be at least 
several hundred metres, 
based on the thickest 
intersection in core at 
179 m (in BH2F4).

BH1B1 (27.05–114.40 m); 
BH1B2 (32.60–62.99 m); 
BH2B8 (144.60–205.00 m); 
BH1F8 (35.00–104.00 m); 
BH1F8a (34.00–110.80 m); 
BH2F4 (25.80–205.00 m); 
BH2F4a (25.80–36.00 m).

Fort Siloso 
Formation

A coastal 
section on the 
north-west 
corner of
Sentosa Island 
is the 
stratotype for 
the Fort Siloso 
Formation.

Composed dominantly of clay- to 
silt-grade, siliciclastic mudstones 
interbedded with very-fine- to fine-
grained, very well sorted, very 
mature sandstones with sub-angular 
sand grains.

The lower boundary between the Fort Siloso 
Formation and the underlying Tanjong Rimau 
Formation is observed in outcrop at the 
north-west corner of Sentosa Island, where 
the succession is the right way-up. The upper 
boundary between the Fort Siloso Formation 
and younger formations is not observed in 
outcrop or in borehole data. The significant 
time gap between deposition of the Fort 
Siloso Formation and the overlying Kusu and 
Bukit Batok formations (Fig. 3) indicates the 
upper boundary is likely unconformable.

Not measured directly. It 
is known to be in excess 
of 190 m based on the 
thickest intersection of 
Fort Siloso Formation 
strata (in BH1F2).

BH1F2 (15.50–205.00 m).

Tanjong 
Rimau 
Formation

The coastal 
section in the 
north-west 
part of 
Sentosa Island 
(Tanjong 
Rimau)

1–30 metre-thick packages of fine- 
to very-coarse-grained, poorly 
sorted, angular to sub-angular, 
quartz-rich sandstones, and 1–4 
metre-thick mudstones thinly 
interbedded with very-fine- to 
medium-grained, well-sorted 
sandstones. Conglomerate beds 
have a distinctive clast assemblage 
that includes conspicuous white vein 
quartz, volcanic rocks, extra-
formational siliciclastic rocks, and 
metamorphic rocks, and lack the 
rounded, cobble to boulder-grade 
clasts that characterise the Buona 
Vista Formation.

The lower boundary between the Tanjong 
Rimau Formation and the underlying Pandan 
Formation is observed in BH1F13 and is 
unconformable. This relationship suggests 
the sediments of the Sentosa Group, of 
which the Tanjong Rimau Formation forms 
the lowest unit, rests unconformably on the 
Jurong Group. The upper boundary between 
the Tanjong Rimau Formation and the 
overlying Fort Siloso Formation is observed 
in outcrop on Sentosa Island.

Not measured directly. It 
is at least 165 m as 
observed in BH1F6; a 
much greater maximum 
thickness of 1,000–
2,000 m is possible 
based on outcrop maps, 
average dip, and the 3D 
geological model of 
Singapore.

BH1F5 (144.80–201.00 m); 
BH1F6 (36.00–201.00 m); 
BH1F13 (8.90–89.80 m); 
BH2F9 (2.30–56.55 m).

Pengerang 
Formation

None in 
Singapore - 
Pengerang 
area of Johor, 
in Malaysia

The dominant lithology is pyroclastic 
rock, probably primarily lapilli-tuff 
and tuff. Embedded rock fragments 
are usually less than 50 mm in 
diameter suggesting that the 
lithology is generally lapilli-tuff. 
A thin section of Pengerang 
Formation rock from an unidentified 
location in Singapore consisted of 
“lithic tuff with andesitic fragments 
set in a groundmass of irregular 
feldspar laths, glass, and opaque 
ore” (DSTA, 2009)

Both the lower and upper boundaries of the 
Pengerang Formation were not observed in 
core data, or in outcrop. The Pengerang 
Formation has been placed in the 
stratigraphy on the basis of it being the 
product of a pyroclastic flow and it being 
time-equivalent with the Clementi Member 
of the Boon Lay Formation. It not thought to 
be part of the same Semantan Basin fill as 
the rest of the succession in Singapore.

Unknown. Current 
information is 
insufficient to place a 
meaningful constraint 
on the maximum 
thickness of this unit in 
Singapore; modern-day 
reef outcrops exposed in 
Selat Johor between 
Pulau Tekong and the 
Pengerang area of Johor 
(Fig. 2) indicate a 
thickness of at least a 
few tens of metres.

None

Clementi 
Member

BH2B15 
(46.80–

The unit consists mainly of reddened 
palaeosol, typically Andisol and 

The lower boundary between the Clementi 
Member and the Boon Lay Formation is 

Not measured directly. A 
maximum thickness in 

BH2B15 (46.80–179.30 m); 
BH1F1 (45.10–205.60 m); 



  

179.30 m) Ultisol in beds 5–20 metres thick 
interbedded with unreddened fine 
to medium grained sandstones The 
reddened palaeosols are also found 
in the Boon Lay, Fort Siloso and 
Bukit Batok formations, but in those 
units the reddened intervals 
typically are 1–5 metres thick. The 
alteration associated with palaeosol 
development produces strong 
colours, which are diagnostic. In 
terms of the Munsell colour system, 
the colours range from ‘weak red’ 
(10R 5/4) or ‘reddish brown’ (2.5YR 
5/4) to ‘reddish gray’ (2.5YR/10R 
5/1). Coarse-grained sedimentary 
rock (e.g. conglomerate) is absent.

observed in core data from BH2B15. 
However, the Clementi Member 
interdigitates with the Boon Lay Formation, 
and the two units can alternate within a 
single core. The upper boundary between 
the Clementi Member and the overlying 
Bukit Batok Formation is observed in core 
data from BH2B15 (Fig. 9C), where it is 
unconformable.

excess of several 
hundred metres is likely, 
based on the thickest 
intersection recorded in 
core at 160 m (in 
BH1F1).

BH1F3 (7.00–205.00 m)*; 
BH1F4 (24.07–133.7 m); 
BH1F10 (19.00–113.50 m); 
BH1F12 (7.00– 86.40 m); 
BH2F5 (103.50–205.00 m); 
BH2F6 (33.00–107.30 m). * 
The unit interdigitates with 
the Boon Lay Formation in 
this borehole

Boon Lay 
Formation

BH2B10 
(32.10–
188.71 m)

Sandstone are dominant, typically 
laminated, very fine- to medium-
grained, with clay rich laminae. 
Common mud drapes on 
sedimentary structures in the 
sandstone (‘flaser lamination’). 
Sandstone packages commonly 
coarsen upwards and have 
interbedded, thin layers of 
mudstone. Thin (1‒3 metre thick) 
units of micritic limestone are 
developed occasionally.

The lower boundary between the Boon Lay 
Formation and the underlying Pandan 
Formation is observed in core data from 
BH1F7 and BH2B10. The upper boundary 
between the Boon Lay Formation and the 
overlying Tanjong Rimau Formation is 
observed in core data in BH2F9 (at 56 m).

Not measured directly. A 
maximum thickness of 
several hundred metres 
is likely based on the 
thickest intersection in 
core at 155 m (in 
BH2B15).

BH1B3 (71.00–201.00 m); 
BH1B5 (43.04–205.00 m); 
BH1B7 (24.00–204.00 m); 
BH2B8 (17.00–144.60 m); 
BH2B10 (32.10–188.71 m); 
BH2B12 (33.50–180.00 m); 
BH2B14 (4.00–33.00 m); 
BH2B14a (18.00–58.00 m); 
BH2B15 (179.30–205.00 m); 
BH1F4 (133.70– 205.00 m); 
BH1F7 (15.80–44.10 m); 
BH1F8 (104.15–117.00 m); 
BH1F8A (110.80–205.00 m); 
BH1F10 (113.50–205.00 m); 
BH2F3 (23.67–201.00 m); 
BH2F6 (107.30–205.00 m); 
BH2F9 (56.55–205.00 m).

Kent 
Ridge 
Member

BH1F9 
(17.20–
205.00 m)

The rock consists almost entirely of 
structureless lapilli-tuff, with 
significant proportions of fiamme, 
lithic fragments and crystals in an 
ash-grade matrix. Most fiamme are 
green, less than 50 mm long, 
moderately flattened (aspect ratios 
<8:1) and aligned. Most lithic clasts 
are less than 30 mm in size and 
formed of porphyritic volcanic rock; 
entrained crystals up to 4 mm in 
diameter consist of quartz and 
feldspar.

The lower boundary between the Kent Ridge 
Member and the Pandan Formation is 
observed in BH1B6 is sharp and 
conformable. The upper boundary between 
the Kent Ridge Member of the Pandan 
Formation and the Tanjong Rimau Formation 
of the Sentosa Group is observed in BH1F13 
(Fig. 9D), where it is unconformable. This 
relationship proves that, in some location, 
the Sentosa Group is erosive and 
unconformable on the Jurong Group.

Not measured directly. A  
maximum thickness is 
likely in excess of 200 m, 
based upon the thickest 
section recorded in core 
at 188 m (in BH1F9)

BH1B6 (74.00–206.00 m); 
BH1F9 (17.20–205.00 m); 
BH1F13 (89.80–205.00 m); 
BH2F8 (16.50–205.00 m); 
BH2F8A (16.50–21.20 m).

Pandan 
Formation

BH1A8 
(16.15–
138.17 m)

Thickly bedded, homogenous 
micritic limestone in intervals 5–50 
metres thick; a general lack of 
carbonate allochems (including 
peloids and oncoids), though these 
do occur in places. Occasional 
isolated, thinly and thickly bedded 
layers of tuff and tuffite. Rare, 
interbedded layers of sandstone and 
mudstone. 

The lower boundary between the Pandan 
Formation and the Pulau Ayer Chawan 
Formation is observed in BH1A8 and BH2B7. 
The upper boundary between the Pandan 
Formation and the overlying Boon Lay 
Formation is observed in core data in BH1F7 
and BH2B10.

Not measured directly. A 
maximum thickness in 
excess of several 
hundred metres is likely 
based on the thickest 
intersection in core 
recorded at 181 m (in 
BH2F7).

BH1A8 (16.15–138.17 m); 
BH1B4 (54.00–113.00 m); 
BH1B4a (53.00–206.00 m); 
BH1B6 (17.50–74.40 m); 
BH2B7 (54.15–60.44 m); 
BH2B10 (188.71–200.53 m); 
BH1F7 (44.10–205.00 m); 
BH2F1 (70.10–153.00 m); 
BH2F2 (20.50–201.00 m); 
BH2F7 (19.80–201.00 m).

Nanyang 
Member

BH1B2 
(62.99–
118.90 m)

The rock is clastic, and dominated by 
clasts of one type (andesitic rock). 
The igneous rock clasts typically 
have polygonal shape and a 
concentrically zoned character (dark 
green rims and paler cores). 
Pyroclastic rocks erupted sub-
aerially lack these features. Clasts of 
dark grey mudstone and grey 
limestone usually are present in 
subordinate proportions. Metre-
scale, normally graded layers.

The lower boundary between the Nanyang 
Member and the Pulau Ayer Chawan 
Formation is observed in BH1B1, BH1B2, 
BH2B3, and BH2B7 where it is always 
conformable, though in detail the two units 
inter-digitate. The upper boundary between 
the Nanyang Member and the overlying 
Pandan Formation is observed in BH1A8 and 
BH2B7.

The maximum Nanyang 
Member thickness 
intersected in the gently 
dipping strata in BH1B2 
is 56 m. The Nanyang 
Member rocks are 
unconformably overlain 
by strata assigned to the 
Buona Vista Formation 
and a unknown 
thickness of the 
Nanyang Member will 
have been eroded.

BH2A13 (147.50–170.30 m); 
BH1B1 (114.40–167.70 m); 
BH1B2 (62.99–118.95 m); 
BH2B3 (171.85–188.20 m); 
BH2B7 (60.44–104.55 m).

Pulau 
Ayer 
Chawan 
Formation

BH2A3 
(39.00–
205.00 m)

Interbeds of sandstone and 
mudstone are on a centimetre to 
metre-scale; layers of sandstone 
typically are slightly muddy, 
moderate to well-sorted, and 
quartz-rich. Sand grains typically are 
sub-angular to sub-rounded. 
Intraformational mud-clasts are 
common. Layers of mudstone 
typically are dark grey to black, 
laminated, and siliciclastic; Layers of 
conglomerate (debris flow deposits) 
typically are rich in clasts of 
carbonate rock and granitic rock. Re-
worked volcanogenic material, 
typically manifesting as layers of 
greenish sandstone, tuffite and fine 
tuff, is common.

The boundary between the Pulau Ayer 
Chawan Formation and the underlying Tuas 
Formation is intersected and observed  in 
BH2A12, where the succession is overturned 
and beds are the wrong way up, but the 
boundary between the two formations 
appears to be sharp and conformable. The 
upper boundary between the Pulau Ayer 
Chawan Formation and the overlying Pandan 
Formation is recorded in BH1A8 and BH2B7.

Not measured directly. A 
maximum thickness of c. 
2,000 m based on 
outcrop width, average 
dip, and 3D geological 
modelling (Leslie et al., 
this issue).

Cores: BH1A4 (33.00–
205.03 m); BH1A5 (30.00–
200.00 m); BH1A6 (34.52–
205.00 m); BH1A8 (138.17–
205.00 m); BH1A9 (48.10–
205.00 m); BH1A10 (28.50–
205.00 m); BH1A11 (66.00– 
205.00 m); BH2A2 (28.70–
205.00 m); BH2A3 (39.00–
205.00 m); BH2A4 (22.00–
205.00 m); BH2A5 (36.00–
201.00 m); BH2A8 (16.50–
205.00 m); BH2A12 (11.50–
179.00 m); BH2A13 (51.00–
147.50 m and 170.30–
205.00 m); BH1B1 (167.70–
205.00 m); BH1B2 (118.95–
205.00 m); BH2B3 (38.00–
171.85 m and 188.20–
205.00 m); BH2B7 (104.55–
201.00 m).

Tuas 
Formation

BH1A1 
(52.38–
205.00 m)

Interbedded, cyclic successions of 
typically 10–15 metre scale of 
carbonate rock and siliciclastic rock. 

The lower boundary is not observed at 
outcrop or in boreholes; defining features of 
a boundary are not known. Although 

Not measured directly. A 
maximum thickness of at 
least several hundred 

BH1A1 (52.38–205.00 m); 
BH1A2 (42.08–205.00 m); 
BH2A1 (47.20–155.00 m); 



  

Carbonate units typically 1–20 
metres thick, commonly with a 
subordinate proportion of mudstone 
forming irregular patches, and 
commonly containing allochems 
including oncoids and peloids. 
Siliciclastic units typically 1–20 
metres thick; volcanogenic material 
(tuff and tuffite) is rare.

overturned, the upper boundary between 
the Tuas Formations and the overlying Pulau 
Ayer Chawan Formation is observed in 
BH2A12 to be sharp and probably 
conformable.

metres is implied by 
continuous Tuas 
Formation successions 
intersected in various 
boreholes.

BH2A1a (45.62–201.00 m); 
BH2A12 (179.00–205.00 m).

Sajahat 
Formation

Pulau Sajahat Glassy, grey, siliciclastic rock with a 
faintly banded and metamorphosed 
character.

Neither upper or lower boundaries of this 
formation have been observed at any 
location. The formation is placed at the base 
of the lithostratigraphy on the basis of age 
determinations of metasandstone xenoliths 
in the Choa Chu Kang pluton as a minimum 
of 285 Ma (see Gillespie et al., this issue), 
and by Carboniferous aged zircons from 
quartzites encountered in boreholes at 
Punggol (Pan et al., 2018; Oliver and Gupta, 
2019).

Not measured directly. A 
maximum thickness is 
likely to be at least 2–
3000 m based on 
outcrop width and 
average dip around 
Pulau Sajahat and Pulau 
Tekong.

BH2C3 (66.45–67.45 m; 
71.10–73.30  m; 89.15–
89.25 m; 99.03–103.35 m; 
107.10–108.40 m; 116.80–
117.40 m; 117.70–119.00 m; 
119.20–124.00 m; 125.30–
126.15 m; 148.00–148.40 m; 
and 149.40–149.80 m); 
BH2B16 (40.50–50.00 m). 
Note: all occurrences in 
BH2C3 and BH2B16 are 
interpreted to be xenoliths of 
the Sajahat Formation 
entrained in the Choa Chu 
Kang pluton.

Borehole 
Name

Location
(Northing, 
Easting)

Stratotype for 
Unit:

Geological Significance

BH1F5 30873.75, 
20935.59

Bukit Batok 
Formation

Contains deposits of the Tanjong Rimau Formation; 
the overlying Bukit Batok Formation, and 
documents the nature of the boundary between the 
formations

BH2B4 31755.15, 
17742.67

None Contains deposits of the Bukit Batok Formation 

BH2B8 35776.69, 
11121.99

Buona Vista 
Formation

Contains deposits of the Buona Vista Formation and 
the Boon Lay Formation

BH2B15 36208.60, 
18589.70

Clementi 
Member

Contains deposits of the Boon Lay Formation; 
Clementi Member; and overlying Bukit Batok 
Formation, and documents the nature of the 
boundaries between these units

BH2B10 36399.80, 
14781.34

Boon Lay 
Formation

Contains deposits of the Pandan Formation overlain 
by the Boon Lay Formation, and documents the 
nature of the boundary between the two formations

BH1A8 33556.64, 
8056.08

Pandan 
Formation

Contains deposits of the Pulau Ayer Chawan 
Formation overlain by the Pandan Formation, and 
documents the nature of the boundary between the 
two formations

BH1B2 36873.09, 
11223.61

Nanyang 
Member

Contains deposits of the Pulau Ayer Chawan 
Formation; Nanyang Member; and overlying Buona 
Vista Formation, and documents the boundaries 
between these units

BH2A3 28265.03, 
8619.71

Pulau Ayer 
Chawan 
Formation

Contains deposits of the Pulau Ayer Chawan 
Formation

BH1A9 35556.18, 
5925.54

None Contains deposits of the Pulau Ayer Chawan 
Formation

BH1A1 21459.02, 
6770.81

Tuas Formation Contains deposits of the Tuas Formation



  

Highlights

 A new, ICS-compliant Paleozoic to Cenozoic lithostratigraphy for Singapore is 
proposed, which comprises 3 groups, 13 formations, 3 members

 Two new groups are proposed: the Jurong Group and Sentosa Group, the former 
correlatable with strata of the Semantan Formation of the Central Belt in Peninsular 
Malaysia

 The Jurong and Sentosa group strata were deformed during the Late Triassic–Early 
Jurassic orogenic event

 Mesozoic sedimentary rocks of Singapore record deposition in the Semantan forearc 
basin and the Tembeling transcurrent basin

 Deposition occurred in environments that range from deep marine to terrestrial, 
forming complex sedimentary bedrock geology in Singapore
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