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Abstract The Barents Sea is among the most productive

areas in the world oceans, and its shallow banks exhibit

particularly high rates of primary productivity reaching over

300 g C m-2year-1. Our study focused on the Svalbard

Bank, an important feeding area for fishes and whales. In

order to investigate how benthic community structure and

benthic secondary production vary across environmental

gradients and through time, we sampled across the bank and

compared results with a similar study conducted 85 years

ago. Considerable variability in community structure and

function across bank corresponded with differences in the

physical structure of the habitat, including currents, sedi-

mentation regimes and sediment type, and overlying water

masses. Despite an intensive scallop fishery and climatic

shifts that have taken place since the last survey in the 1920s,

benthic community structure was very similar to that from

the previous survey, suggesting strong system resilience.

Primary and secondary production over shallow banks plays

a large role in the Barents Sea and may act as a carbon

subsidy to surrounding fish populations, of which many are

of commercial importance.

Introduction

The Arctic Ocean and its marginal seas overlie more than

25 % of the world’s continental shelves, and many of these

shallow areas are characterized by seasonally high primary

production which settles rapidly to the benthos, supporting

rich communities of fishes, birds, and mammals (Gre-

bmeier et al. 2006). Studies of biotic processes on these

shelves help identify the important links between pelagic

and benthic systems, and the role of environmental factors

such as depth, ocean currents, and climate variability on

benthic community structure.

The fate of primary production in Arctic shelf seas

depends upon numerous water-column processes related to

spatial and temporal variability in vertical export, including

feeding intensity of zooplankton in the upper layers

(Wassmann and Reigstad 2011). Typically, about 44–67 %

of primary production in the Barents Sea reaches the sea

floor (Wassmann et al. 2006a, b). In Arctic systems, ben-

thic faunal assemblages respond rapidly to deposition of

primary production (e.g., McMahon et al. 2006; Renaud

et al. 2008). Primary production is spatially heterogeneous

and often occurs in the form of episodic pulses of pelagic-

and ice-related organic carbon (Ambrose and Renaud

1997; Ambrose et al. 2005; Carmack and Wassmann 2006).

This results in close relationships between food availability
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and macrofaunal abundance, community structure, bio-

mass, biodiversity, and benthic carbon cycling (Grebmeier

et al. 1988; Grebmeier and McRoy 1989; Renaud et al.

2007, 2008; Carroll et al. 2008; Cochrane et al. 2009, 2012)

and gives a strong support to the paradigm of tight pelagic-

benthic coupling on Arctic shelves (Grebmeier and Barry

1991; Piepenburg 2005). Our understanding of many of

these links, however, remains qualitative. Quantitative data

on carbon demand and benthic secondary production are

crucial for parameterizing ecosystem models for further

investigation of the role of the benthos in system func-

tioning, now and in the future.

Benthic secondary productivity is one parameter that

quantitatively links pelagic and benthic communities and at

the same time can be a valuable parameter for regional

comparisons of potential contribution to fisheries produc-

tion. Additionally, the proportion of benthic production

relative to primary productivity has been hypothesized as

being greater at high latitudes due to tight pelagic-benthic

coupling in Arctic and sub-Arctic seas (Brey and Clarke

1993; Cusson and Bourget 2005; Grebmeier et al. 2006).

Consequently, these vital rates provide an important

baseline for regional comparisons and assessment of pos-

sible system change.

The Barents Sea is one of the most productive marginal

seas of the world’s oceans (Sakshaug and Slagstad 1991;

Sakshaug 1997; Carmack and Wassmann 2006), with an

estimated overall average annual primary productivity of

about 100 g C m-2 year-1 (Sakshaug et al. 2009). The

Barents Sea and Svalbard waters are highly productive

provinces accounting for 49 % of the total pan-Arctic shelf

primary production (Sakshaug 2004). Deeper ([200 m),

depositional areas accumulate soft sediments, the infaunal

inhabitants of which provide nutrition for economically

valuable shrimp and demersal fish populations. Benthic

community structure throughout much of the deeper Barents

Sea has been well characterized (e.g., Zenkevich 1963;

Dahle et al. 1998; Carroll et al. 2008; Cochrane et al. 2009),

and there is some understanding of factors influencing ben-

thic processes (Piepenburg et al. 1995; Renaud et al. 2008).

Less well-studied are shallow banks, which make up

more than one-third of the area of the Barents Sea

(Jakobsson 2002) and can exhibit high rates of primary

productivity. The waters over Svalbard Bank, which at

their shallowest are less than 40 m deep, are estimated to

have primary production over 300 g C m-2 year-1

(Sakshaug et al. 2009), have supported a commercially

viable scallop fishery, and represent an important feeding

area for fish (Loeng and Drinkwate 2007), and whales

(Skern-Mauritzen et al. 2011). Combined epi- and infauna

analysis (dredge and grab sampling) is important in com-

prehensive marine environmental studies (Jørgensen et al.

2011). However, the last detailed combined epifaunal and

infaunal survey of Svalbard Bank was conducted in 1925

(Idelson 1930). In the 85 years between that study and the

present investigation, the area has seen fluctuating periods

of warming (1930s–1950s) and cooling (1960s–1980s), an

intense scallop fishery (1987–1992), and the current

extended period of climate warming. All of these events

may well have influenced seafloor communities (e.g.,

Blacker 1965). Prolonged warming and its predicted con-

sequences for primary production (Ellingsen et al. 2008)

are likely to continue to affect the structure and function of

marine benthos, which may further affect predators such as

shrimp, fishes, birds, and large mammals. Thus, a com-

parison of current community structure with historical data

provides information on the resilience/resistance of these

shallow benthic communities to a variety of potential

agents of ecological change and may provide a model for

other shallow banks which are common features on the

shelf of the Arctic Ocean.

In an effort to fill some of these important knowledge

gaps, we investigated how benthic densities, biomass,

diversity, community structure, and productivity vary

across depth and water mass gradients over the Svalbard

Bank. We compared these data with those from a similar

study conducted more than 80 years previously. Finally,

we provide the first estimates of benthic secondary pro-

duction and carbon demand from the Barents Sea. These

results have implications for ecosystem resilience and

carbon cycling and provide important data for future

studies of temporal fluctuations in benthic fauna and eco-

system functioning.

Materials and methods

Study area

The Svalbard Bank is a shallow area in the western Barents

Sea with a minimum depth of less than 40 m (Fig. 1). It is

the largest open-shelf cold-water carbonate platform in the

Arctic, built from barnacle sands (Balanus balanus,

B. crenatus), mollusk shell fragments (Mya truncata,

Hiatella arctica, and Chlamys islandica), and mixed with

very coarse sand and gravel (Elverhøi and Solheim 1983;

Henrich et al. 1997). On the slopes, the sediment compo-

sition varies from gravel and boulders, to mud and silt

(Elverhøi and Solheim 1983; Henrich et al. 1997). In

winter and spring, water over the bank is usually ice cov-

ered (Shapiro et al. 2003) while the proximity of Atlantic

water keeps the southern slope ice-free throughout the year.

Even north of the Polar Front, sea ice is easily advected by

winds, and large areas may open up in a relatively short

time, potentially leading to ice-edge blooms and high new

production to the north of the Polar Front when light is
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available (Sakshaug 1997). The entire bank area is domi-

nated by strong tidal currents and pronounced vertical

mixing (Midttun 1985; Anderson et al. 1988; Kowalik and

Proshutinsky 1995; Schauer 1995), which keeps the water

column at the bank top mixed from surface to bottom

throughout the year. Consequently, Svalbard Bank is the

most productive area in the Barents Sea (Slagstad and

McClimans 2005; Carmack and Wassmann 2006; Wass-

mann et al. 2006a), with annual productivity estimates over

300 g C m-2 year-1 (Sakshaug et al. 2009) and one of the

most productive in the arctic marginal seas.

Sampling

A 200-km-long hydrographic transect was made between

August 9 and 10, 2009, aboard r/v Oceania with the ‘‘tow-

yo’’ Sea-Bird Electronics, Inc. (SBE) 49FastCAT CTD

Sensor, cycling up and down through the water column,

starting from the southern bank of the Storfjord Trough in

the northwest, crossing the shallow bank top, and reaching

the northern slope of the Bear Island Trough in the

southeast. In total, data from 320 up and down casts were

collected. Based on these measurements the distribution of

main physical parameters (potential temperature and

salinity) was drawn along the section (Fig. 2, modified

from Węsławski et al. 2012), and the main water masses

were identified. Water masses were classified based on a

modified version of the criteria employed by Loeng (1991),

Hopkins (1991), and Harris et al. (1998).

Faunal material was collected during the same cruise

from 11 stations located across the Svalbard Bank at depths

varying from 40 to 150 m. A van Veen grab (0.1 m2 sample

area) was used to collect infaunal samples whenever pos-

sible from the east and west bank slopes, resulting in 26

samples from seven stations (Fig. 1; Table 1). At some

stations, due to the sediment properties (station 6) and bad

weather (station 15), it was not possible to obtain five grab

replicates (Table 1). Material was sieved onboard through

0.5-mm mesh and fixed in buffered 10 % formalin. Later in

the laboratory, macrofauna was sorted, counted, weighed

(wet formalin weight), and identified to the lowest possible

taxonomic level. To obtain estimates of epifaunal density

and organisms sizes, an underwater ‘‘bottom-looking’’ drop

camera was deployed at four stations at the top of the bank,

and digital video footage was recorded from three replicate

transects per stations (Fig. 1; Table 1). Fifteen-minute
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video transects were taken at epifaunal stations during ship

drift. In all, 10 video records from stations 4–7 were ana-

lyzed in detail using frame captures approximately every

10 s (n = 40 - 125 frames per transect). To complement

underwater video information, epifauna was collected at the

same transect stations with a triangular dredge (1 m on each

side; Table 1). Fauna collected by dredge was identified,

measured (a selection of different sizes of organisms was

made), and weighed. For each species a size–biomass

relationship was established. On the basis of supplemental

information gathered by the dredge, organisms on the video

were identified to the lowest possible taxonomic level,

counted from each snapshot, and measured. Biomass was

determined later using the empirical relationships calcu-

lated from dredge samples.

Conversions and calculation of P/B ratio

To convert biomass (dry mass/m2, g) into energy (KJ) and

thereafter to production values (KJ/year), data were first

transformed using published conversion factors (Brey 2001).

Subsequently, P/B ratios were calculated by employing a

multiple regression model incorporating habitat (e.g., water

temperature, depth, etc.)- and taxon (e.g., phylum level,

motility)-specific data (Brey 2001; Bolam et al. 2010). For

the video samples where the size of each organism was
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Fig. 2 Temperature (h) and salinity (S) distribution on the section

across the Svalbard Bank during the r/v Oceania 2009 summer cruise.

Four individual parts were separated to analyze water masses

distribution: the northwestern Atlantic-dominated part, the middle

shallow part, Arctic-dominated Polar Front zone, and Atlantic-

influenced southeastern part (from left to the right). The major water

masses: Atlantic Water (AW), Arctic Water (ArW), Svalbard Bank

Water (SBW), Surface Water (SW), and Polar Front Water (PFW) are

marked. NW northwest and SE southeast directions are shown.

Modified from Węsławski et al. (2012)

Table 1 Sampling effort and

basic station information on

samples used in the present

study

Where more than one gear is

used, the number of replicates is

given for each gear type

Station Sampling gear Location Depth [m] Replicates Sediment type

3 Dredge/grab 75� 21 24� 09 137 3/4 Mud and gravel

4 Dredge/camera 75� 25 23� 35 95 3/3 Stones, gravel, and mud

5 Dredge/camera 75� 34 22� 35 65 3/3 Stones and gravel

6 Dredge/camera/grab 75� 44 21� 38 40 3/3/1 Shells, stones, and gravel

7 Dredge/camera 75� 50 20� 47 43 3/3 Shells, stones, and gravel

8 Dredge/grab 76� 00 20� 00 100 3/5 Stones, gravel, and mud

11 Grab 75� 58 20� 13 94 5 Mud and gravel

12 Grab 75� 59 20� 03 103 5 Mud and gravel

13 Grab 76� 01 19� 56 113 5 Mud and gravel

14 Grab 76� 01 19� 52 133 5 Mud

15 Grab 76� 02 19� 46 150 2 Mud
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estimated, a P/B ratio was calculated for up to three size

categories (large, medium, and small) for each species,

depending upon how much the P/B ratio varied with organ-

ism size. To calculate secondary production, the biomass per

area of each organism was multiplied by the size-dependent

P/B ratio. Total production values for each replicate were

then calculated as the sum of production values for each

individual aggregated at the phylum level of taxonomic

resolution. Production at each station was represented as the

average of the replicates. For the grab samples, production

values were similarly calculated for each organism and

again, aggregated at the phylum level (i.e., calculated pro-

duction values for all individuals within a phylum were

summed). Finally, average production values were trans-

formed to carbon using the conversion factor 45.7 J = 1 mg

C (Salonen et al. 1979), and all data were standardized to a

per m2 basis.

Data analysis

Nonmetric Multidimensional Scaling (nMDS) of Bray–

Curtis similarities, computed after fourth-root transfor-

mation of taxa-level abundance data, was conducted. The

term Community Structure, as later used in the paper,

encompasses species richness, density, and biomass. We

tested for differences in community composition among

stations using one-way ANOSIM permutation tests of the

Bray–Curtis similarity data (Clarke and Warwick 2001).

Species richness (S—number of species in sample) was

calculated for each sample. Differences in density, spe-

cies richness, biomass, and productivity among stations

were tested with the use of the nonparametric Kruskal–

Wallis test and Dunn’s post hoc multiple comparisons

test.

The data analyses were performed using the PRIMER

package v. 6 (Clarke and Warwick 2001) and the Statsoft

software STATISTICA v. 6. CTD data were first checked

and corrected by hand and then processed in the SBE Data

Processing Software. Profiles were vertically averaged with

5-dbar intervals. Further calculations and visualization

were developed in MathWorks Matlab environment.

Results

Hydrography

The northwestern part of the section deeper than 40 m was

occupied by warm and salty Atlantic Water (AW) origi-

nating from the West Spitsbergen Current, distinguishable

as a subsurface maximum of temperature and salinity. The

surface layer was warm, about 33.5 PSU Surface Water

(SW), which forms in summer due to solar-driven ice

melting. The southeast part of the section was the Polar

Front location where cold and low-saline Arctic Water

(ArW) coming from the Arctic Ocean east of Svalbard was

present. In the deeper layer, however, this water was sub-

ducted by saltier and slightly warmer water produced from

AW transformation during mixing and cooling in the

Barents Sea. The transition state between them is the Polar

Front Water—saltier than ArW but colder than AW. The

surface layer was occupied by warm and fresh SW, simi-

larly as in the northwestern part of the section. In the

middle, shallow part of the Svalbard Bank, water was well

mixed due to strong tidal and wind forcing, forming a local

water mass—Svalbard Bank Water (SBW)—that was

relatively warm and with lower salinity (Fig. 2).

Benthic epi- and infaunal characteristics

The top of the bank was characterized by shell debris with

stones and gravel, and as the depth increased (90–150 m),

sediments were mainly mud-mixed gravel and stones

(Table 1). Some depth-related differences in species
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richness, density, and wet weight and carbon values were

observed for epifauna (station 4—the deepest, and stations

6 and 7, the shallowest at the top of the bank), while for

infauna the pattern was not so obvious (Figs. 3, 4, 5).

Stations under 100 m had rich epifaunal communities, and

these communities were themselves quite different across

the bank (ANOSIM test: R: 0.36, p \ 0.05; all pairwise

comparisons significant except for pair stations: 6 and 7;

Figs. 3, 4). Epifaunal species richness, as determined from

the video, was low and varied across the bank (Fig. 4), and

the most abundant taxa visible in the video at the top of the

bank were suspension feeders, with more deposit feeders

occurring at the 95-m station (st. 4) where muddier sedi-

ments were found (Fig. 6). Station 5 (65 m) had signifi-

cantly greater density and species richness than stations 6

and 7 (Kruskal–Wallis test and post hoc comparison,

p \ 0.05; Fig. 4). Epifaunal biomass reached a maximum

at the top of the bank at station 7 (43 m depth) with an

average wet weight of 1,436 ± 5,277 g m-2 (Fig. 4). At

95 m on the eastern edge of the bank top, the echinoid

Strongylocentrotus droebachiensis and bivalve Chlamys

islandica dominated in abundance and biomass (75 and

98 % of the species present, respectively; Table 2). At the

shallower station 5 (65 m), the hydrozoan, Hydrallmania

falcata and Sertularia mirabilis, and the echinoid,

S. droebachiensis, were most abundant (with S. droeba-

chiensis and the sea star Crossaster papposus dominating

in terms of biomass; Table 2). There was a dense com-

munity of the bryozoans, Eucratea loricata and Alcyoni-

dium gelatinosum, the sea cucumber, Cucumaria frondosa,

and the hydroid, Sertularia mirabilis, at the very top of the

bank (*40 m), with C. frondosa reaching highest biomass

(55–89 %; Table 2). Epifaunal productivity varied from a

minimum of 0.4 and maximum of 33.4 g C m-2 year-1

across the bank top and was highest (average: 21.8 g C

m-2 year-1) at station 5 (65 m), with mainly mollusks,

cnidarians, and echinoids contributing[75 %. At station 7

(43 m), sea cucumbers (C. frondosa) were responsible for

over half of the secondary production (9.4 of 15.8 g C m-2

year-1, Fig. 7).

Infauna dominated at bank slopes, in the deeper, mud-

dier sites at depths greater than 100 m (Fig. 5), and sig-

nificant differences in the community structure were found

among different locations across the bank (ANOSIM test:

R: 0.79, p \ 0.05; all pairwise comparisons were signifi-

cant except for station pairs: 13 and 14, and all pairs with

station 6 and 15; Fig. 3). Biomass (wet weight) was the

highest at the east slope (station 3, 1,160 ± 748 g wet

weight m-2), below 260 g m-2 at most of the other sta-

tions, and below 10 g m-2 in the single grab at station 6 on
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top of the bank (Fig. 5). Species richness and density

varied across the bank, but no significant differences were

found among stations (Kruskal–Wallis test; p [ 0.05);

however, significantly higher biomass and production were

found at the east slope of the bank (Kruskal–Wallis test;

p \ 0.05; significant differences (post hoc test) between

station 3 and 8, and 3 and 14; Figs. 5, 7). Here mollusks

occurred in high numbers, while the western slope was

mainly occupied by polychaetes (Table 2; Fig. 7). Most of

the infaunal species were surface deposit- and subsurface

deposit-feeding polychaetes except from the top of the

bank where carnivores and suspension feeders dominated

(Fig. 6). Infaunal productivity varied 0.01 g C m-2 year-1

at the top of the bank and 1.1–3.7 g C m-2 year-1 on the

sides and was highest at the eastern side with mollusks

contributing 3.8 of total 4.3 g C m-2 year-1, Fig. 7).

Discussion

Faunal patterns

There was considerable variability in community structure

and function across the bank that corresponded with dif-

ferences in both the physical structure of the habitat and

prevailing water masses. There were significant differences
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between epifaunal species richness, density, wet weight,

and productivity across the stations as well as in infaunal

biomass and productivity. In the Barents Sea, benthic

faunal composition is highly dependent on the predomi-

nating water masses (Arctic or Atlantic), bottom substrate,

and depth, generally as they impact carbon supply for food-

limited communities (Carroll et al. 2008; Cochrane et al.

2009). Sediment type, adequate attachment sites, and bot-

tom current flows are important factors for megafaunal

distribution (Piepenburg et al. 1995) and also appear to be

important in defining habitat structure over short distance

and depth differences across the bank. Moreover, the

physical dynamics can play an important role in commu-

nity function with fauna shifting to suspension feeders in

dynamic areas and deposit feeders in depositional areas

(Feder et al. 2005, 2007).

The top of Svalbard Bank is characterized by very

coarse substrate: mainly gravel, and mollusk and barnacle

shells, while the areas below 90 m are covered with mud

mixed with large stones and gravel. Strong residual cur-

rents over the central part of the bank (Kowalik and Pro-

shutinsky 1995) continually resuspend recent, organic-rich

Fig. 7 Mean production [g m-2 year-1] for A—infauna and B—epifauna

Table 3 Summary of epi- and infauna biomass (average g m-2 wet weight) for different locations in the Arctic

Area Depth Epifauna Infauna References

Barents Sea 199–503 10–152 Carroll et al. (2008)

North of Svalbard 132–510 43.2–253.4 Carroll and Ambrose (2012)

Chukchi Sea \60 1.6–217.0 4.6–1420

(4000 in Barrow Canyon)

Grebmeier et al. (2006), Feder et al. (1991, 2007),

Bluhm et al. (2009)

Laptev Sea 14–45 15.95 Piepenburg and Schmid (1997)

Northern Bering Sea 300–400 Grebmeier et al. (2006)

Beaufort Sea 32–90 0.27–81.22* Renaud et al. (2007)

Beaufort Sea 200–680 Dunton et al. (2005)

Svalbard Bank 40–150 217–1552 79.7–275.0 This study

* Minimum biomass (only ophiuroids and sea urchins included)
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sediments in these shallow areas. The coarse sediments at

the top of the bank were largely dominated by suspension-

feeding animals (cnidarians, bryozoans, and sea cucum-

bers) and surface predators (nemerteans, polynoid poly-

chaetes). Since it is very difficult to sample infauna from

the bank-top substratum, we have only a single grab from

this area. This sample was full of shell debris, and although

a full grab was taken and many small organisms (mainly

suspension-feeding bivalve Mysella dawsoni) were found

(2,600 ind. m-2), their contribution to the total community

biomass was negligible (below 10 g m-2). Similar results

were obtained from the few bank stations sampled by

Cochrane et al. (2012), who found mainly sessile suspen-

sion feeders and motile carnivores at the depths of 60 m of

the Svalbard Bank. The predominance of suspension

feeders at the shallow part of the bank is consistent with

strong, turbulent particle-rich currents, likely providing

high food input to the seafloor and a high level of resus-

pension of organic material. The low representation of

burrowing fauna on the shallow bank is consistent with the

thin layer of surface sediment present (this study).

The percentage of surface and subsurface deposit feed-

ers increased with depth and increasing proportion of mud

in the sediment. The percentage of these feeding groups

exceeded 60 % below 90 m for both epi- and infauna. On

the eastern side (station 3: 115 m), burrowing polychaetes

and bivalves, and carnivorous taxa such as polychaetes

(Pholoe spp., Nothria conchylega) and brittlestars (Ophi-

ura robusta) were observed in this study and by Cochrane

et al. (2012). The polychaetes N. conchylega and Thelepus

cincinnatus were found in relatively high numbers on the

banks of the Northeast Water Polynya in the Greenland Sea

(Piepenburg et al. 1997), and T. cincinnatus has been noted

as characteristic of undisturbed bank habitats (Hermsen

et al. 2003). We did not find T. cincinnatus in our samples,

but it was abundant in some of the same stations at the

study of Idelson (1930).

The infaunal biomass ranged between 79.7 and 275.0 g

ww m-2 (and 7.5 g ww m-2 at the top of the bank) which

is similar to other Arctic localities (Table 3). However,

infauna prevailed only at the sites where a significant

percentage of mud was present, as also noted for the

Chukchi Sea infauna (Feder et al. 1994, 2007), while epi-

fauna dominated on the top of the bank. Epifaunal biomass

ranged from 217 to 1,552 g ww m-2 which is higher than

other Arctic locations (Table 3).

Ophiuroids are among the most abundant megafauna on

Arctic continental shelves (Piepenburg 2000). They occur

in high densities on bank areas of the Barents Sea (Piep-

enburg and Schmid 1996a), as well as on other shallow

shelf areas including Laptev, Beaufort and Chukchi Seas,

and northeast Greenland (Piepenburg and Schmid 1996b,

1997; Piepenburg et al. 1997; Ambrose et al. 2001; Feder

et al. 2005; Grebmeier et al. 2006; Renaud et al. 2007;

Bluhm et al. 2009; Cochrane et al. 2012). Our data are

consistent with these findings (ophiuroid densities about

150 ind. m-2 at the eastern slope, below 100 ind. m-2 on

the west side). Densities of other echinoderms were found

to be similar or more abundant in the more shallow areas,

including sea cucumbers on the top of the bank and sea

urchins on the eastern side. Ophiuroids are probably not

able to resist strong currents in these areas, in contrast to

the heavy sea cucumbers and sea urchins that were present

(Jewett et al. 1999). The absence of ophiuroids in the

shallowest waters of bank habitats was noted in the Laptev

Sea (Piepenburg and Schmid 1997). Ophiura sarsi in the

southeastern Chukchi Sea was also absent or uncommon in

shallow water and abundant in deeper water (Feder et al.

2005).

Benthic faunal densities are likely related to large-scale

water-column processes that determine food availability

(Ambrose et al. 2001; Piepenburg 2000; Grebmeier et al.

2006), and benthic assemblages often reflect different

hydrographic regimes and advective processes (Piepenburg

et al. 1997; Feder et al. 2005, 2007; Carroll and Ambrose

2012). In the Barents Sea, sea ice, water masses, and pri-

mary production impact faunal distribution and density

(Cochrane et al. 2009). We found significant differences in

infaunal species composition, biomass, and productivity

between eastern and western sides of the Svalbard Bank,

which are likely due to different habitat properties

including currents, sediment, and water-column properties.

The station on the eastern side had the highest infaunal

biomass (1,160 g m-2) in the sampled area with a rela-

tively low productivity (4.37 g C m-2 year-1), mainly due

to a high density of suspension-feeding mollusks, including

Hiatella arctica, Macoma calcarea, and Ennucula tenuis.

Studies of the Northeast Water Polynya in Greenland show

that densities and composition of infauna and epifauna are

largely influenced by dynamics of the overlying water

column (Piepenburg et al. 1997). This demonstrates the

importance of mesoscale pelagic processes in food pro-

viding and thus the importance of benthic pelagic coupling

for benthic communities patterns. The circulation regime,

sea-ice dynamics, and pelagic productivity can have a

profound impact on benthic fauna. In our study, the eastern

side of the Svalbard Bank is under the influence of the

Polar Front with cold Arctic Water, while in the western

part warm Atlantic waters prevail. The latter waters in this

area are known to be two times more productive in phy-

toplankton (av. 90 g C m-2 year-1 in contrast to Arctic

Waters \40 g C m-2 year-1) (Sakshaug and Slagstad

1992). The primary productivity of the water over the

eastern side of Svalbard Bank contradicts our findings on

benthic biomass. However, even if the eastern side does not

have high water-column productivity like the western side,

Mar Biol (2013) 160:805–819 815
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the rich fauna there may be supported by large amounts of

particulate organic carbon (POC) brought in by the stron-

ger currents to the abundant suspension feeders present.

High benthic biomass may also suggest different sedi-

mentation regimes and resuspension rates on the east and

west side of the bank.

There was a distinct peak of epifaunal density at 60 m

depth where a well-mixed relatively warm and low-saline

water mass is present with currents that are not as strong as

on the bank top. The highest biomass (station 7;

1,552 g m-2) was at the top of the bank, while productivity

(avg. 21.8 g C m-2 year-1) was the highest at the depth of

65 m. The shallow water above the bank is well mixed due

to winds and tides, providing considerable amounts of fresh

organic matter and resuspended material for resident fauna

(Fer and Drinkwater 2012). This food supply, however, is

only available to suspension feeders able to withstand the

high currents on the shallow bank top. This pattern is dif-

ferent from the one reported from the Beaufort Sea where

epifaunal density and biomass were highest at the depth

range of 60–90 m, with sharp declines in both shallower

and deeper areas. The shallow waters in latter study were

characterized by significant ice scour and high sediment

discharge from the Mackenzie River (Renaud et al. 2007).

Shallow banks in the Barents Sea, even though recog-

nized as important diversity and productivity ‘‘hot spots,’’

remain largely understudied in terms of species composi-

tion and function. Difficulties with quantitative sampling in

areas where coarse substrate and high currents dominate

most likely lead to this undersampling. Many Arctic

shelves have complex bathymetries with shallow banks and

deeper trough areas, including shallow platforms of the

Chukchi and Greenland Seas, and very shallow (\20 m)

banks in the Laptev Sea. Most of the shallow banks are

characterized by rich and diverse epifaunal communities

and high primary productivity compared to the deeper

areas (Grebmeier et al. 2006; Piepenburg and Schmid

1996a, 1997; Piepenburg et al. 1997), and even though

there are some exceptions (e.g., Beaufort Sea; Renaud et al.

2007), the fauna of the Svalbard Bank follows this pattern.

In deep parts of the Barents Sea, benthic biomass can reach

on average of about 100 g m-2 wet weight (Gulliksen et al.

2009), while on the bank it was on average about

600 g m-2 and maximum of over 3,500 g m-2 (this study,

Idelson 1930). It confirms the considerable importance of

this shallow bank in overall Barents Sea productivity.

Temporal patterns: evidence for recovery of benthic

communities?

Our results are consistent with the results obtained from

similar station locations on the Svalbard Bank occupied

approximately 85 years ago by Idelson (1930). Not only is

the species composition described by Idelson (1930) sim-

ilar to that found in our study, but also most of the species

have similar densities and biomass. These results are sur-

prising considering the heavy fishery activities (Gulliksen

et al. 2009) and some significant climate and faunal shifts

that have taken place since the 1920s (Blacker 1965;

Drinkwater 2006).

Chlamys islandica was heavily fished in western Barents

Sea from 1987 until 1992 when fisheries collapsed due to

depletion of the scallop stock. Dredging and trawling

activities can have different impacts depending on the

habitat type, but can cause a significant decrease in bio-

mass of epifaunal species such as sponges, hydroids, soft

corals, bryozoans, and echinoderms dominant in our study

(Kaiser et al. 2002; Lokkeborg 2005; Boulcott and Howell

2011). Since many of these taxa are characterized by long

life spans (e.g., C. islandica can live up to 25–30 years

(Gulliksen et al. 2009), sea urchins up to 42–75 years

(Bluhm et al. 1998)), they are likely sensitive to anthro-

pogenic and natural disturbance, and overfishing, espe-

cially since many need years to achieve a reproductive age

(e.g., C. islandica at the age of 3.5 years).

Twenty years after cessation of heavy fishing on the

Svalbard Bank, our results show that the benthic commu-

nities in the Svalbard Bank area are recovering from the

damage they sustained. Collapsed stocks of scallops are

apparently recovering, although the densities (2 ind. m-2)

and biomass (12 g m-2) in our study are lower than in

1920s (average 10 ind. m-2, 467 g m-2; Idelson 1930).

Since there are no records of sampling at these sites

immediately following scallop harvesting, we cannot be

certain that this transect was targeted by fishers or to what

effect it experienced reductions in epifaunal densities. This

area, however, is very accessible (no major obstructions

such as coral reefs that trawlers would avoid) and had

significant quantities of harvestable scallops, and trawlers

are quite efficient at exploiting available resources. Thus,

although our interpretation of system recovery is specula-

tive, it is likely that 20 years may be a sufficient time for

the shallow Svalbard Bank fauna to initiate recovery from

trawling and dredging.

Studies on the recovery rate of benthic populations in

other fished areas (e.g., Georges Bank) showed a steady

and marked increase in the production of the benthic

megafauna after 5 years since cessation of trawling and

dredging activities by fishers (Hermsen et al. 2003). Deep

sites, unlike the shallow areas, seemed to be greatly

affected by fishing disturbance (Hermsen et al. 2003).

Atlantic sea scallops (Placopecten magellanicus) and sea

urchins dominated production at the recovering shallow

sites, while deeper disturbed areas were characterized by

the bivalves Astarte spp. and P. magellanicus. The poly-

chaete T. cincinnatus, present on Svalbard Bank, made

816 Mar Biol (2013) 160:805–819
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only a small contribution to the fauna in disturbed shallow

sites on Georges Bank. On the contrary, it dominated in the

deeper undisturbed areas. This species was present on

Svalbard Bank in 1920s (Idelson 1930), but absent from the

present study. This suspension-feeding soft-bodied tube-

building polychaete was presumably unable to recover in

contrast to bivalves which can survive in the wake of a

scallop dredge or fish trawl (Hermsen et al. 2003). It is

likely that shallow high-energy areas recover more quickly

or that fauna living there is more resilient as a result of

their lifestyle.

In the 1920–1930s, there was a dramatic warming of the

northern Atlantic Ocean, with warmer than normal sea

temperatures, that reduced sea ice conditions and increased

input of Atlantic waters into the Barents Sea. This resulted

in northward expansion of boreal species including benthic

invertebrates and fish species, while Arctic species

retreated northward (Blacker 1965; Drinkwater 2006). The

Barents Sea appears to be exposed to cycles of ‘‘warm’’

years with large northward transports of heat and ‘‘cold’’

years (Loeng 1991), and there has been a warming trend

over the past 10–15 years. Most of the species living on the

Svalbard Bank are of boreal or of arcto-boreal origin,

which means that they can adjust and even benefit from

warmer conditions. Moreover, changes in fisheries pres-

sures might be even more important for the biomass fluc-

tuations than the temperature (Denisenko 2007). This may

be the reason why, despite large climatic shifts over the last

85 years, little change was observed in the current study.

Productivity and carbon cycling patterns

Shallow banks in the Barents Sea may play a dispropor-

tionally large role in this ecosystem since the primary

production in these areas is about 2–3 times higher than in

the adjacent, deeper waters. Unlike these deeper areas,

Svalbard Bank is continuously exposed to strong tidal

currents that provide nutrients for continuous primary

production throughout the period of the year with available

sunlight. Maximum secondary (epifaunal) production was

above 21 g C m-2 year-1 on the bank top (present study),

while at sites between 110 and 150 m, infaunal production

only averaged around 2.5 g C m-2 year-1. Assuming a

liberal 30 % ecological efficiency (Piepenburg and Schmid

1997), this suggests a total epifaunal carbon demand of

between 6 and 70 g C m-2 year-1. Although bacterial

carbon demand may be considerable on some Arctic

shelves (e.g., Renaud et al. 2007) and has been implicated

to be important on Svalbard Bank (Węsławski et al. 2012),

experimental studies show most benthic carbon cycling on

Arctic shelves is related to the macro/megafauna (Clough

et al. 2005; Renaud et al. 2007).

This has important implications for spatial patterns of

carbon consumption and distribution of organic matter

available for export. The high bank-community consump-

tion and carbon demand are still considerably lower than

the annual primary production, suggesting the possibility

for considerable export of carbon to the deeper areas of the

Barents Sea, even if planktonic consumption is around

50 % (Wassmann et al. 2006a). Despite large variability in

benthic biomass and diversity in the Barents Sea, the car-

bon burial flux is relatively constant (19 ± 5 mg C m-2

day-1) regardless of location or bloom stage (Reigstad

et al. 2011). A new modeling study indicates that carbon

deposition in shallow areas of Svalbard Bank is likely zero

as any material reaching the sea floor is rapidly resus-

pended (Ellingsen et al. in prep). Advection of organic

material from areas of high production has been shown to

enhance distant benthic communities (Grebmeier et al.

2006) and fisheries dependent on benthos (De Leo et al.

2010). However, further work is required to balance the

Svalbard Bank carbon budget, and ecological models are

perhaps the best method for achieving this goal. Consid-

ering the commercial importance of benthic invertebrates

and demersal fish fauna in the Barents Sea (e.g., Joh-

annesen et al. 2012), carbon enhancement from highly

productive banks can play an important role for local

fisheries.
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