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There exists an increasing need to understand the impact of climate change on the hydrological extremes of 

flood and drought, collectively referred to as ‘hydro-hazards’. At present, current methodology are limited in 

their scope, particularly with respect to inadequate representation of the uncertainty in the hydroclimatological 

modelling chain. 

This paper proposes spatially consistent comprehensive impact and uncertainty methodological framework 

for the identification of compound hydro-hazard hotspots – hotspots of change where concurrent increase in 

mean annual flood and drought events is projected. We apply a quasi-ergodic analysis of variance (QE-ANOVA) 

framework, to detail both the magnitude and the sources of uncertainty in the modelling chain for the mean 

projected mean change signal whilst accounting for non-stationarity. The framework is designed for application 

across a wide geographical range and is thus readily transferable. We illustrate the ability of the framework 

through application to 239 UK catchments based on hydroclimatological projections from the EDgE project (5 

CMI5-GCMs and 3 HMs, forced under RCP8.5). 

The results indicate that half of the projected hotspots are temporally concurrent or temporally successive 

within the year, exacerbating potential impacts on society. The north-east of Scotland and south-west of the UK 

were identified as spatio-temporally compound hotspot regions and are of particular concern. This intensification 

of the hydrologic dynamic (timing and seasonality of hydro-hazards) over a limited time frame represents a major 

challenge for future water management. 

Hydrological models were identified as the largest source of variability, in some instances exceeding 80% of 

the total variance. Critically, clear spatial variability in the sources of modelling uncertainty was also observed; 

highlighting the need to apply a spatially consistent methodology, such as that presented. This application raises 

important questions regarding the spatial variability of hydroclimatological modelling uncertainty. In terms of 

water management planning, such findings allow for more focussed studies with a view to improving the projec- 

tions which inform the adaptation process. 
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. Introduction 

Hydrological hazards are defined as extreme events associated with

he occurrence, movement and distribution of water, specifically floods

nd droughts ( National Research Council, 1999 ; Collet et al., 2018 ).

lood hazards are the result of excess water from one or multiple sources

e.g. coastal, fluvial, or surface/sub surface water), while drought haz-

rds arise from a deficit of river flow or precipitation over a prolonged
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eriod. Henceforward, we collectively term flood and drought as ‘hydro-

azards’. 

Climate change is significantly altering hydrological dynamics, with

 general tendency to amplify hydrological extremes ( Fischer and

nutti, 2016; Schleussner et al., 2017; Marx et al., 2018; Samaniego

t al., 2018; Thober et al., 2018; Vousdoukas et al., 2018 ) and thus in-

rease the influence on exposed populations and economic assets. At

resent, these changes are not widely understood due to the complex

nteractions between climate & hydrological systems and their regional
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Table 1 

Classification of compound hydro-hazards in this study. 

Name Definition 

Compound hydro-hazard hotspot Concurrent increase in hydro-hazard (metrics) above a defined threshold. No 

additional spatial or temporal aspect. 

Spatially compound hydro-hazard hotspot(s) Compound hydro-hazard hotspot AND spatially compound at the intra-catchment 

level (nested sub-catchments, e.g. headwaters) and/or inter-catchment level (i.e. 

adjacent hotspots). 

Temporally compound hydro-hazard hotspot Compound hydro-hazard hotspot AND temporally compound (i.e. seasonal 

hotspots), where inter-annual drought and flood events are likely to occur 

concurrently within a given season (e.g. flood and drought occurring in JJA) or in 

consecutive seasons (e.g. flood occurring in JJA, followed by drought in SON). 

Spatio-temporally compound hydro-hazard 

hotspot regions 

Regions where the compound hydro-hazard hotspots are both spatially and 

temporally compound. 
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ariations (e.g. Manfreda and Caylor, 2013; Devkota and Gyawali, 2015;

ollet et al., 2018; Li et al., 2018 ). During the period 2000–2015, hydro-

azards directly affected almost one million people in the UK, at a total

stimated cost of 36 billion GBP ( Guha-Sapir et al., 2018 ). Accordingly,

t is necessary to consider changes in hydrological dynamics and flow

egimes at present and in the future. 

Typically, hydro-hazards are considered independently in water

anagement planning. In the UK, hydrological impact assessments of

limate change have, largely, focussed exclusively on either high flows

 Prudhomme et al., 2012; Kay et al., 2014a , 2014b; Sayers et al., 2016;

ollet et al., 2017 ) or low flows ( Christierson et al., 2012; Watts et al.,

015; Marx et al., 2018 ). Further, inconsistencies in methodology lead

o conflicting reports of the hydrological impact of climate change in

he UK. Examples include disparities at the spatial scale ( Kay et al.,

014a , 2014b; Watts et al., 2015 ) or in the climate projections used

 Collet et al., 2017; Marx et al., 2018; Thober et al., 2018 ). Overall,

ollet et al. (2018), Marx et al. (2018) and Thober et al. (2018) suggest

 general increase in hydrological extremes across the UK, especially in

he south west of England, west of Wales and north-east of Scotland,

hilst, Kay et al. (2014a and b ) report the greatest change in high flows

n the north-west of Scotland. To ensure a holistic understanding, there

s a clear need to consider changing hydro-hazards concurrently, i.e.

oth ends of the hydrological cycle must be explored at the same time. 

In addition to the increased severity and frequency of hydro-hazards

nder climate change, compound events may exacerbate the impact on

ociety ( Hao et al., 2018 ). In IPCC (2012) , the Intergovernmental Panel

n Climate Change (IPCC) define compound events as (1) two or more ex-

reme events occurring simultaneously or successively, (2) combinations of ex-

reme events with underlying conditions that amplify the impact of the events,

r (3) combinations of events that are not extremes in themselves but lead to

n extreme event or impact when combined (i.e. clustered multiple events).

hese compound events need not occur simultaneously, they may also

e the result of successive contrasting extremes, such as drought and

ood ( IPCC, 2012 ). Examples include the successive drought and flood

vents of 2010–2012 and 2015–2016 in the UK ( Parry et al., 2013 ) and

asmania, Australia respectively ( CSIRO, 2018 ), and the ongoing con-

urrent drought-flood in Queensland, Australia ( Butterworth and Mar-

olis, 2019 ). In order to build resilience for climate change adaptation,

here is a need to further characterise the spatial and temporal clustering

f compound extremes ( Hao et al., 2018 ). 

The flow projections used in climate change impact assessment stud-

es are the outputs of a long and complex modelling chain: General Cir-

ulation Models (GCMs) are forced by emissions scenarios, the outputs

f which are downscaled to the regional scale, where hydrological mod-

ls (HMs) propagate the climate signal, producing hydrological outputs

uch as discharge, soil moisture and groundwater recharge. With each

f these (modelling) steps, uncertainty (in the model structure, input

nd parameters) cascades, propagating (or constraining) the uncertainty

hrough the modelling chain ( Warmink et al., 2010; Smith et al., 2018 ).

ifferences in HM structure have been identified as a source of uncer-

ainty that should not be neglected ( Dankers et al., 2014; Donnelly et al.,

s

78 
017; Gosling et al., 2017 ). One approach to the portioning of uncer-

ainty is the quasi-ergodic analysis of variance (QE-ANOVA) ( Hawkins

nd Sutton, 2009; Hingray and Saïd, 2014; Vidal et al., 2016; Hingray

t al., 2019 ), which through a quasi-ergodic assumption, is able to ac-

ount for the non-stationarity of climate change. 

This paper proposes a spatially consistent comprehensive impact

nd uncertainty methodological framework for the identification of

ompound hydro-hazard hotspots. In the context of the framework,

our classes of compound hydro-hazard hotspots are defined ( Table 1 ):

ompound, spatially compound, temporally compound and spatio-

emporally compound. The framework sees the determination of the

oncurrent change in the mean annual hydro-hazard from the base-

ine to future. In this way, it is possible to identify hotspots of change

here hydro-hazards intensify or emerge under a changing climate. We

erm these compound hydro-hazard hotspots (i.e. intra-annual “succes-

ive contrasting extremes ”, as per the IPCC definition previously). Con-

ideration of the spatial and temporal clustering of hotspots determines

hether these compound hydro-hazard hotspots are spatial and/or tem-

orally clustered. 

The framework is presented through application to 239 catchments

cross the UK using transient climate projections (1970–2099). Com-

ound hydro-hazard hotspots are identified for the far-future, 2071–

099. The objectives of the framework are two-fold: 

1) To identify, classify ( Table 1 ) and analyse compound hydro-hazard

hotspots; 

2) To quantify and characterise the sources of uncertainty in the hy-

droclimatological modelling chain using a QE-ANOVA framework;

with a view to understanding the total and fractional uncertainty

associated with the hydro-hazard projections. 

The novelty of this impact and uncertainty framework lies in the

lassification of the compound hydro-hazard extremes in a spatial and

emporal context. The proposed framework allows for the explicit quan-

ification of the uncertainty in the projected hydro-hazard hotspots,

hereby facilitating a greater understanding of future water (in) secu-

ity. 

. Data 

In this study, the methodological framework was applied across the

nited Kingdom of Great Britain and Northern Ireland (UK). Daily flow

rojections were drawn from the EDgE project (End-to-end Demon-

trator for improved Decision-making in the water sector in Europe;

3S, 2018 ), a two-year proof-of-concept funded by the Copernicus Cli-

ate Change Service. The EDgE project combined climate data and

tate-of-the-art hydrological modelling to estimate river flows, as well

s a range of Sectoral Climate Impact Indicators, across the European

omain ( http://edge.climate.copernicus.eu ). For additional information

ee Wanders et al. (2018) . 

http://edge.climate.copernicus.eu
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Fig. 1. Spatial distribution and population (in millions) of the 142 parent catch- 

ments considered in this study. Population data is based on gridded 1 km data 

from Reis et al. (2017) . For reference, administrative regions are labelled and 

outlined in black. 
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.1. Models 

The EDgE project utilised a multi-model ensemble of GCMs and

Ms to capture uncertainty in the modelling process. Known to pro-

ide good coverage of the CMIP5 range of uncertainty ( McSweeney and

ones, 2016 ), the EDgE project utilised the ISI-MIP (Inter-Sectoral Im-

act Model Intercomparison Project; https://www.isimip.org ) subset of

ve GCMs ( Warszawski et al., 2014 ): HadGEM2-ES, GFDL-ESM2, IPSL-

M5A-LR, MIROC-ESM-CHEM and NorESM1-M . Details on the process-

ng of the GCM projections can be found in Marx et al. (2018) . The

our HMs used in EDgE are mHM ( Samaniego et al., 2010; Kumar et al.,

013 ), Noah-MP ( Niu et al., 2011; Yang et al., 2011 ), VIC ( Liang et al.,

996; Cherkauer et al., 2003 ), and PCR-GLOBWB2 ( Sutanudjaja et al.,

018 ). The HMs simulate surface and subsurface runoff as well as other

and states/fluxes (e.g. evapotranspiration and soil moisture). The mod-

ls Noah-MP and VIC are classified as land-surface models, capturing

and-atmosphere interactions, whilst mHM and PCR-GLOBWB2 are fo-

ussed on water balance components only. 

For consistency and efficiency, a single river routing model mRM

 Samaniego et al., 2010 ) was used to derive river flows based on gridded

unoff calculations output by the HMs. The mRM model is based on the

uskingum algorithm and is able to estimate streamflow at various spa-

ial resolutions without recalibration of parameters ( Thober et al., 2018 ,

019 ). The HMs were validated for high, medium and low flows across

 diverse range of European catchments ( Marx et al., 2018; Samaniego

t al., 2018; Thober et al., 2018 ). 

In the validation of the flow projections, outputs from PCRGLOB-

B2 were, often, uniform in nature, failing to capture the processes

eading to high/low flows. The lack of clearly defined peak flows meant

hat the necessary event extraction was not possible (see Section 3.1 .).

onsequently, flow projections from PCRGLOB-WB2 were not consid-

red in this study. The validation of the EDgE flow projections is further

onsidered in Appendix A.1 . 

.2. Emissions scenarios 

The EDgE project considered simulations of transient historical

1971–2000) and future (2011–2099) climate under both RCP2.6 and

CP8.5, the lowest and highest representative concentration pathways

RCPs), respectively. The focus of this study is RCP8.5, which formed

art of the core experiments under CMIP5 ( Taylor et al., 2011 ). RCP8.5

epresents a high-emission trajectory, the result of no explicit implemen-

ation of climate policy, leading to a global mean temperature increase

f 2.6–4.8 °C by the end of the century ( Riahi et al., 2011 ). 

.3. Catchments 

The catchment selection process is detailed in Appendix A.2. In this

tudy, a total of 239 gauges were considered across 142 parent and 97

hild (sub) catchments. The total catchment area covers 47,785 km 

2 of

he UK; their spatial distribution is illustrated in Fig. 1 . Fig. 1 also high-

ights a north-south division in population distribution, ranging from

00,000 in the North of Scotland, to over 3,000,000 in the East Mid-

ands and South-east England. Thirty-six percent of the population of the

K (based on an estimate of 66 million in November 2018; ONS, 2018 )

re located within the modelled catchment areas. From the perspective

f the number of people exposed, a greater proportion of the popula-

ion is likely to be impacted due to incurred losses (e.g. water supply,

nfrastructure, crop yield, etc.). 

. Methods 

This paper proposes a spatially consistent comprehensive impact and

ncertainty methodological framework for the identification of com-

ound hydro-hazard hotspots. An overview of the three stages of the

roposed framework is presented in Fig. 2 . In stage 1, hydro-hazard
79 
vents are identified and event metrics extracted per modelling chain,

er catchment. From this, annual summary metrics and mean annual

etrics are determined. The second stage sees the determination of the

hange signal, the mean change (across the modelling chains) in the

ean annual metrics from the baseline (1971–2000) to the far-future

2071–2099) per catchment; compound hydro-hazard hotspots are sub-

equently classified ( Table 1 ). In stage 3, the uncertainty is charac-

erised following the QE-ANOVA approach: a noise-free-signal is deter-

ined per modelling chain, per catchment, followed by application of

he ANOVA at the catchment level. The application of the framework is

iscussed with reference to the 239 catchments across the UK described

n the previous section. 

.1. Stage 1. Identification of hydro-hazards 

Stage 1 begins with event extraction ( Fig. 2 , 1.1). Following

ollet et al. (2018) , catchment streamflow thresholds for the extrac-

ion of flood and drought events were defined on the baseline (historic

imulations 1971–2000) for a mean of three independent events per an-

um across the 15 hydroclimatological modelling chains (5 GCMs and

 HMs). For each catchment and modelling chain, flood events were

xtracted from the peak over threshold (POT) time-series, following

ayliss and Jones (1993) , where a flood event is defined as a period

hen daily flow is continuously above the defined threshold (for an av-

https://www.isimip.org
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Fig. 2. The proposed impact and uncertainty method- 

ological framework for the identification of compound 

hydro-hazard hotspots. Each step is numbered, and the 

start points for each stage of the framework shaded. 
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Fig. 3. Matrix describing the four regions of increase in the annual compound 

hydro-hazard. The change is concurrent for the mean annual frequency, magni- 

tude and duration metrics for flood and drought. TF and TD represent the flood 

and drought thresholds respectively. 

Table 2 

Mean change signal thresholds for compound 

hydro-hazard hotspot identification. 

Mean annual metric Drought Flood 

Frequency (events per year) ≥ 1 ≥ 1 

Magnitude (% per year) ≥ 50 ≥ 5 

Duration (days per year) ≥ 10 ≥ 3 

e  

T

 

d  

a  

s  
rage of three POT per annum). Drought equivalent characteristics were

etermined using the R package lfstat (version 0.9.4; Koffler et al.,

016 ). In lfstat , a drought event occurs when daily flow falls be-

ow a given threshold; here, a varying Q90 threshold (defined as the

ow equally or exceeded 90% of the time) was specified per Julian day

i.e. 365 thresholds). Independent drought events were identified by ap-

lying the inter-event time and volume criterion method ( Gustard and

emuth, 2009 ; Koffler et al., 2016 ); events were pooled where the inter-

vent time is less than 5 days and the drought to inter-event volume ratio

ell below 0.1. 

Three event metrics (1.2), describing the duration, timing (day of

ear) and magnitude (peak flow and flow deficit volume below thresh-

ld for flood and drought respectively) were determined for each inde-

endent event (for details, see Fig. A3 ). From these event metrics, an-

ual summary metrics (1.3) were subsequently determined; a count of

he number of independent events per year (frequency) was also made.

he annual mean, per metric, was then determined (1.4); for the his-

oric simulation (1971–2000) this represents the 30-year mean, whilst

or the transient future projections (2005–2099) a 30-year rolling mean

as determined (for example, 2011–2040, 2012–2041 and so on). The

ean annual metrics represent the data input to stages 2 and 3 ( Fig. 2 ).

.2. Stage 2. Compound hydro-hazard classification 

Stage 2 utilises the outputs from stage 1, 1.4. For each catchment, the

ean change signal (2.1) from the baseline (1971–2000) to far-future

2071–2099) was determined for the frequency, magnitude and dura-

ion metrics per catchment, per modelling chain. The mean change sig-

al across the 15 modelling chains was subsequently determined per

atchment. 

In the framework, a compound hydro-hazard is the concurrent

ncrease in the mean annual frequency, magnitude and duration of

ood and drought events (total six metrics). A compound hydro-

azard hotspot represents a concurrent increase in these six metrics

bove a defined threshold, T ( Table 1 and Fig. 3 , region IV). After

ollet et al. (2018) , a sensitivity analysis was applied to determine
80 
xceedance thresholds above which 20% of the catchments lie (2.2;

able 2 ). 

The hydro-hazard hotspots (2.3) were further classified (2.4) into

ifferent types of compound hydro-hazard as per Table 1 . The temporal

spect is represented by the mean annual time of year and the degree of

easonality in the far-future (2071–2099; 1.4b). Seasonality is defined
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Fig. 4. Spatial distribution of (a) all catchments where there is an increase in the compound hydro-hazard in the far-future. Inset (b) to (e): 2.5 × magnification of 

nested catchments where hotspots are projected. Parent catchments are outlined in black, child catchments (nested sub-catchments) are outlined in grey; arrows 

indicate the direction of flow from headwaters to outflow. 

a  

t  

J  

s  

l  

y  

t  

o

3

 

t  

r  

a  

i  

m  

s  

p  

d  

a  

i  

a  

v  

s  

m  

a

b  

s  

s  

s  

1  

s

 

t  

e  

t  

m  

t  

p  

i  

m

𝑁  

f

𝑁  

f

 

t  

G  

2  
s the concentration of events around the 30-year mean Julian Day (de-

ermined using circular statistics following the approach of Bayliss and

ones, 1993 and Institute of Hydrology, 1999 ; for example calculations

ee supplement in Formetta et al., 2018 ). A value of zero indicates a

ack of seasonality, where events are widely dispersed throughout the

ear, whilst a value greater than 0.6 indicates that events are concen-

rated at a particular time of year ( Formetta et al., 2018 ), i.e. seasonally

ccurring events. 

.3. Stage 3. Characterisation of uncertainty 

The spatial variability of the hydroclimatological modelling uncer-

ainty associated with the annual mean frequency, magnitude and du-

ation metrics was determined through the application of a QE-ANOVA

pproach per catchment. Thus, the total uncertainty may be partitioned

n terms of the relative contribution of each source of uncertainty. This

ethod is based on the quasi-ergodic assumption for transient climate

imulations ( Hingray and Saïd, 2014 ), where, for a sufficiently long time

eriod, it is assumed that all possible states are captured, thereby re-

ucing the extrapolation out with the sample space. The QE-ANOVA

pproach accounts for both modelling uncertainty and internal variabil-

ty. The internal variability represents the variation of climate on both

 large- and local-scale, representing natural fluctuations of climate and

ariation in local meteorology respectively; this variation may be ob-

erved through multiple evolutions of a given GCM and downscaling

odel. In this study, the residuals capture both the internal variability
81 
nd statistical downscaling uncertainty (as only one method is applied –

ased on geostatistical, External Drift Kriging; see Marx et al., 2018 ). It

hould be noted that the quasi-ergodic assumption is only applicable for

ufficiently large sample sizes, the ratio of the time-series length to the

ize of the sliding window. Here, the sample size of 4.17 (1971–2099,

25/30 yr) is deemed suitable, being comparable with previous studies

uch as Vidal et al. (2016) , sample size 4.25 (1980–2065, 85/20 yr). 

The first stage of the QE-ANOVA approach sees the determination of

he noise-free signal (NFS; 3.1) per catchment, per modelling chain. For

ach metric, linear trendlines were fitted to both the baseline simula-

ions and transient projections. After Vidal et al. (2016) , a linear trend

odel was selected to prevent overfitting of inter-annual fluctuations;

he baseline linear model was also fixed due to a relatively short baseline

eriod. The NFS per modelling chain, m , at time t represents the change

n the trend model output y relative to the average of the baseline trend

odel, Y 0 . Following Hingray and Saïd (2014) , the NFS is defined as: 

𝐹 𝑆 ( 𝑚, 𝑡 ) = 𝑦 ( 𝑚, 𝑡 ) − 𝑌 𝑜 (1)

or the absolute change in frequency and duration, and: 

𝐹 𝑆 ( 𝑚, 𝑡 ) = 

𝑦 ( 𝑚, 𝑡 ) 
𝑌 𝑜 

− 1 (2)

or the relative change in magnitude. 

Following a classical two-way ANOVA framework (3.2), without in-

eraction, the NFS was partitioned into the variance associated with the

CM & HM, and residuals (for a three-way ANOVA see Vidal et al.,

016 ). For further details see Hingray and Saïd (2014) . The sum of these
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Fig. 5. Temporal clustering across the compound hydro-hazard hotspots. 
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Fig. 6. Mean change signal from the baseline to far-future, per mean annual 

metric, for each compound hydro-hazard hotspot. Note that colour scales are 

metric specific. For drought frequency, all hotspots see an increase of one event 
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ariances is equal to the total uncertainty, T(t) . The fraction of total vari-

nce T(t) explained by each source of uncertainty U(t) , was determined

s U ( t )/ T ( t ) (3.3). 

. Results 

.1. Compound hydro-hazard hotspots 

.1.1. Classification 

Under RCP8.5, for the mean change signal (mean result from the

ulti-model ensemble), a total of 230 out of 239 catchments see an

ncrease in the compound hydro-hazard in the far-future (2071–2099;

ig. 4 a). Of these 230, more than half (144) lie within region II ( Fig. 3 ),

.e. the concurrent increase in the mean annual flood metrics is in ex-

ess of the Table 2 flood thresholds; conversely, only 39 catchments lie

ithin region III. Forty-seven compound hydro-hazard hotspots (region

V) were identified, accounting for 35% (47,785 km 

2 ) of the total catch-

ent area considered in this study. 

The 47 compound hydro-hazard hotspots were further classified as

er Table 1 . Taking spatially clustered catchments first, the majority

f these hotspots are concentrated in the south-west of England and

ales, as well as localised areas in the midlands and east of England

see Fig. 1 for regions). In Scotland, hotspots are located across East

cotland and the Highlands & Islands. Northern Ireland features a single

otspot in the east on the Upper Bann at Movallen. These hotspot regions

ay be described as being spatially compound at the inter-catchment

evel. Nine further catchments were identified as spatially compound
82 
t the intra-catchment level, i.e. contain child catchments identified as

otspots ( Fig. 4 b–e). Across the UK, the hotspots are primarily headwa-

er sub-catchments, or headwaters and the downstream outlet. 

Fig. 5 further highlights two spatio-temporally compound hydro-

azard hotspot regions. The first is the North and East of Scotland re-

ion, containing six hotspots, including the Loch Ness and River Tay

atchments, the largest lake and river by volume in the UK respec-

ively. Drought is projected to occur in the summer months (JJA) for

ll hotspots in the region; the pressure in the region is further increased

y the presence of the two concurrent hotspots. The second spatio-

emporally compound hotspot region is located in the south-west, en-

ompassing the south of Wales and South-west England. As shown in

ig. 4 , a number of the catchments in this region are nested, with a

umber of headwaters identified as hotspots. In this region, there is a

lustering of consecutive flood and drought events occurring over MAM

nd JJA respectively. With flood events preceding the drought, there

ay be an opportunity to store floodwaters and thereby offset the effect

f drought in these regions. 

.1.2. Change signal 

Fig. 6 shows the projected mean change signal for the frequency,

agnitude and duration metrics, for the 47 compound hydro-hazard

otspots identified. Beginning with drought frequency ( Fig. 6 a), a uni-

orm increase of one event per annum is projected for all hotspots; this

imited change is in part due to their longer temporal nature (relative

o high flow events) and is therefore unsurprising ( Collet et al., 2018 ).
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Fig. 7. Boxplots of the fraction of total variance explained by each source uncertainty, GCM, HM & residuals, across the 239 catchments (generalised trend). 
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ith regards to flood frequency ( Fig. 6 b), the largest increases (up to

 8 events per annum) are projected in Scotland (east and Highlands and

slands) and the south-west more generally (England and Wales). 

The projected change in magnitude ( Fig. 6 c and d) reveals greater

patial variation across the compound hydro-hazard hotspots. In Scot-

and, floods are projected to increase by up to 14%, compared to a dou-

ling for droughts (i.e. 110%). In the south-west of England, there is a

imilar picture for floods. By contrast, across east Wales and the west

idlands droughts generally see the greater increase in magnitude. For

he drought mean change signal, a clear north-south divide is evident,

ith the flow deficit volume in the south at least double that of the

orth. 

Fig. 6 e and f reveals regional changes in event duration. In the south-

est of the UK (Wales, the west Midlands and the south-west of England)

he drought duration is projected to be 2–2.5 times greater than the rest

f the UK. This trend is reversed for floods, with the largest increases

rojected across Scottish catchments (up to 20 days), by contrast, in the

outh, the increase in flood duration is, on average, 5–10 days. 

In summary, the mean change signal suggests that the projected in-

rease in drought magnitude is likely a product of the increase in dura-

ion rather than frequency ( + 1 event per annum). By comparison, flood

vents are projected to become more frequent, with smaller increases

n the magnitude and duration of individual events. The spatial distri-

ution and scale of the projections for magnitude and duration are con-

istent with Collet et al. (2018) (CMIP3, SRES A1B medium emissions

cenario). The principle difference lies in the projected change in event

requency, with Collet et al. (2018) reporting parity in flood and drought

requency. The use of different emissions scenarios, HMs and GCMs may

ccount for some of this lack of agreement. Despite these differences, it

s appreciable to see the similarity in results. 

.2. Partitioned uncertainty 

.2.1. All 239 catchments 

The focus herein is on the uncertainty corresponding to the mean

hange signal projections and compound hydro-hazard hotspots, i.e. the
83 
ar-future (2071–2099). Fig. 7 shows the fraction of total variance as-

ociated with each source of uncertainty, for all 239 catchments, for

he mean annual frequency, magnitude and duration metrics. By gen-

ralising across all catchments in this way, it can be seen that the HMs

onsistently represent the largest source of variability, whilst GCMs are

he smallest. This finding is consistent with the validation, where GCMs

ere observed to converge for the majority of catchments. By metric, the

overall) greatest certainty can be seen to lie in the duration projections,

s indicated by the limited range of values. 

.2.2. Compound hydro-hazard hotspots 

Figs. 8 and 9 (for drought and flood respectively) highlight spa-

ial variability in the fraction of total variance across the compound

ydro-hazard hotspots; it should also be noted that this is a UK specific

nding and may not be the case in other parts of the world. In Scot-

and, the fraction of total variance associated with drought frequency

s, relatively, evenly distributed across the three sources ( Fig. 8 a–c),

hilst in the south the HMs represent the dominant source of un-

ertainty. The dominance of the HMs continues across the magnitude

nd duration ( Fig. 8 d–i), with limited localised variation. Van Lanen

t al. (2013) show that groundwater representation and parameteri-

ation was the dominant influence in HMs when reproducing drought

haracteristics. Consequently, the dominance of the HMs is most likely

ue to the fact that flows during drought conditions are typically dom-

nated by groundwater, which is represented in different ways in the

Ms. 

In spite of the general trends observed in Fig. 7 previously, the GCMs

epresent the dominant source of uncertainty in flood frequency projec-

ions in Scotland ( Fig. 9 a). In the midlands and south of England this

s more strongly dominated by the HM uncertainty ( Fig. 9 b), whilst in

he south-west of England and south Wales the uncertainty is equally

plit across the sources. This may be attributed to the hydrogeological

omposition of the catchments; northern catchments tend to be faster-

esponding (low baseflow index, BFI; e.g. the Wensum at Fakenham),

hilst catchments in the south tend to be dominated by groundwater

high BFI, e.g. the Dee at Polhollick). For flood magnitude ( Fig. 9 d–f),
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Fig. 8. Compound hydro-hazard hotspots, drought 

hazard. Fraction of total variance (%) explained by 

each source of modelling uncertainty: GCM, HM and 

residuals. 
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he GCMs have very little influence on the total variance across the UK;

n the south-west and Wales the total variance is most strongly influ-

nced by the structure of the HM (e.g. the model’s ability to reproduce

ast runoff processes). This is mirrored, albeit less strongly, in duration

 Fig. 9 g–i). 

Broadly, Figs. 8 and 9 show agreement in the sources of uncertainty

n the compound hydro-hazard hotspots and the catchments more gen-

rally. The additional understanding of the spatial variability of the total

ariance (uncertainty) and its components reveals a broad consistency
 t  

84 
or droughts, with the exception of drought frequency, where differences

n the north-south are in evidence. The sources of flood uncertainty are

ubject to greater localised variability, which may, in part, be due to

opographical variation having a greater influence on results. 

. Discussion 

In the context of future water insecurity, it is clear that considera-

ion of the impact of compound hydro-hazards is essential. To build the
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Fig. 9. Compound hydro-hazard hotspots, flood 

hazard. Fraction of total variance (%) explained 

by each source of modelling uncertainty, GCM, HM 

and residuals. 
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ecessary resilience for climate change adaptation, there is a need to

haracterise the spatial and temporal clustering of compound extremes

 Hao et al., 2018 ) and the associated uncertainty. To address this re-

earch gap, this study proposed a multi-stage ( Fig. 2 ) impact and un-

ertainty framework for the identification of compound hydro-hazard

otspots. 
85 
In terms of the spatial distribution of the hazards, the results are

onsistent with multiple studies, thereby engendering greater confi-

ence in the outputs. Marx et al. (2018) and Thober et al. (2018) saw

imilar regional trends for low and high flows respectively. Whilst

hese studies do use the same underlying data, these findings remain

ncouraging as the flow analyses are independent and employ different
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ethods. Additionally, as noted in the results, the location and scale of

he mean change signals are also consistent with Collet et al. (2018) ,

here the hydro-hazard hotspots arising from the SRES A1B emissions

cenario across Great Britain were investigated. 

.1. Compound hydro-hazard hotspots 

Satisfying objective one, the classification of compound hydro-

azard hotspots facilitates greater understanding of the spatial and tem-

oral extent of concurrent changes in hydro-hazards. By focussing on

he change per annum, the increase in intra-annual pressure was high-

ighted. To better understand the impact of the increase in hydro-hazard

xtremes, the identified compound hydro-hazard hotspots where further

lassified spatially and temporally. Whilst the impacts may propagate

ownstream, it is notable that in a number of cases, the hydro-hazard

s less extreme in the lowest catchment. Half of the catchments were

dentified as temporally compound, with the majority projected as suc-

essive flood-drought events. 

Consideration of the spatio-temporally compound hydro-hazard

dentified two hotspot regions, the north-east and south-west of the UK.

n the north-east, approximately 10,000 m 

2 is projected to be in drought

n the summer months, with concurrent drought and flood in two catch-

ents. Whilst Fig. 1 indicates that the population in these catchments

s small, the large number of private water supplies in the region means

he financial burden may still be high. Successive flood-droughts pro-

ected over MAM-JJA for a number of catchments in the south-west.

ith this improved understanding of the spatio-temporal nature of the

ydro-hazards, it is possible to guide suitable adaptations, for example,

toring flood waters for use during periods of drought. These findings

learly highlight the need for informed and tailored adaptation to im-

rove overall resilience. Lastly, it is notable that the majority of the

dentified hotspots are projected to experience drought conditions in

JA, suggesting that a large proportion of the country may be subject to

igh levels of stress at the same time on an annual basis. 

.1.1. Spatial distribution 

When we explore the mean change signal associated with each met-

ic, we can see that, under RCP8.5, confidence is greatest (least un-

ertainty) for changes in magnitude for both flood and drought (see

ig. 6 ). This change signal suggests that the UK should prepare for up to

 25% increase in high flow magnitude and a more extreme increase of

00–150% in the annual low flow deficit volume. Greater uncertainty

urrounds the frequency and duration metrics. Differences in the mean

hange signal are clear across the UK, alongside variation in the source

f this uncertainty. The high spatial discretisation across the UK makes

hese results particularly useful to modellers, consultants, water man-

gers and planners; discussed in Section 5.3 Implications for water man-

gement. 

.1.2. Characterisation of uncertainty 

In this study, the dominant source of uncertainty associated

ith the hydroclimatological modelling arises from the HMs. The

CMs are, broadly, shown to converge, consistent with findings in

arx et al. (2018) and Thober et al. (2018) (across the UK). Knutti and

edláček (2012) suggest that over the UK there is good robustness in

odel projections, thus a reasonably consistent change signal for the

K could indeed be expected. However, these findings are not replicated

cross Europe, where GCMs are shown to play a greater role in the un-

ertainty in the mean change signal ( Marx et al., 2018; Thober et al.,

018 ). Similarly, studies in Australia suggest that the GCMs and RCMs

ontributed greater uncertainty than the HMs ( Bennett et al., 2012 ).

onsequently, it is important to understand the dominant controls upon

ncertainty in climate modelling chains, and their roles locally. 

As observed in this study, hydrological modelling may introduce sub-

tantial uncertainty ( Vidal et al., 2016 ); their calibration to specific char-

cteristics of the hydrological regime (e.g. high flows; Westerberg et al.,
86 
011; Pushpalatha et al., 2012 ) can play a significant role in this. Addi-

ional complexity is added when there is a lack of uniformity across the

atchments considered, for example due to the hydrology (snowmelt,

arx et al., 2018; Thober et al., 2018 ; or groundwater, Collet et al.,

017 or geomorphology (karst, Hartmann, 2017 ). 

An additional source of HM uncertainty is the portioning of precip-

tation into direct runoff and groundwater recharge. This is especially

elevant in regions that have a strong groundwater influence (e.g. south-

ast UK) or where flow paths are short (disconnected from groundwater;

.g. urban areas). 

.2. Limitations 

.2.1. EDgE dataset 

The HMs within the EDgE project were calibrated to provide high

odel performance over the European domain using one parameter set

er model. The specific catchments used in EDgE are not used to adjust

he general pan-European parameter fields. It has been shown in earlier

ork that coherent parameter estimation on larger regions and catch-

ents can help to reduce the difference in hydrological model parame-

erization ( Samaniego et al., 2017 ), and thus could prove a valuable way

orward to further reduce the hydrological uncertainty over Europe. 

Additionally, the current version of the EDgE modelling chain does

ot include human water interactions. Reservoir operations, water with-

rawals and irrigation all have an impact on the hydrological cycle

nd are likely to affect flow projections (particularly during periods of

rought; Collet et al., 2015; Wanders and Wada, 2015 ). Although some

f the models have the capacity to consider these processes, i.e. PCR-

LOBWB2, within EDgE increased consistency in the runoff routing (by

sing the mRM module) was deemed more important by the end-users.

Within EDgE, both the HMs have been deployed at a 5 km spatial

esolution. For the GCMs specifically, this is below their native resolu-

ion of ∼100 km, which affects their realism at smaller spatial scales.

ownscaling with E-OBS data ensures that the statistical distribution of

he meteorological variables within Europe is consistent with observa-

ions, most importantly accounting for the effect of hills and mountains

hat are not resolved at the native resolution of the GCMs. However,

arger trends are consistent with the ∼100 km resolution. In addition,

ue to computational demands, the large spatial extent of the EDgE do-

ain necessitated the use of HMs which are known to perform well at

oarser spatial resolutions. Consequently, at the local catchment scale,

his might lead to a misrepresentation of the dominant hydrological pro-

esses in smaller UK catchments; a potential reason for the reduced per-

ormance of the HM PCR-GLOBWB2 specifically (see Appendix A.1 ). 

.2.2. Metrics 

Pronounced differences in the frequency of flood and drought events

ere observed. A number of catchments see all metrics exceed the

otspot threshold, with the exception of drought frequency. Conse-

uently, catchments exhibiting severe relative changes, may not have

een selected as hotspots. Following Collet et al. (2018) , the inherent

ifferences in flood and drought were accounted for using thresholds,

efined to obtain a mean of three independent events per year on the

aseline period (framework stage 1). Redundancy is present across the

etrics of change, with magnitude and duration directly linked to fre-

uency. Suggestive, perhaps, that the metrics may be better substituted

or change per event per year, rather than simply per year. 

.2.3. Uncertainty 

An advantage of the QE-ANOVA framework is that it facilitates the

isentangling of internal variability from the modelling uncertainty,

hereby providing a more robust measure of the overall modelling uncer-

ainty ( Hingray and Saïd, 2014 ). However, in this study, it has not been

ossible to partition the uncertainty associated with internal variability

nto its component parts, this is due to (1) each modelling chain being

un once and (2) the consideration of a single statistical downscaling
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ethodology. The effects of these component parts are however em-

edded within the residual uncertainty ( Hingray and Saïd, 2014 ). The

eed for transient projections may be considered the main drawback of

he QE-ANOVA framework. 

.3. Implications for water management 

The results suggest that the future water security of the UK is depen-

ent on the ability to adapt to projected changes in hydro-hazards. The

rst step towards adaptation is improving knowledge and understand-

ng of regional changes, thereby allowing policy and decision makers

o identify where in the UK compound hydro-hazards are most likely to

ntensify (i.e. hotspots). Consequently, a phased and focussed regional

tudy can be directed towards such regions. Understanding of the domi-

ant sources of uncertainty in projections (arising from the hydroclima-

ological modelling chain) means that these studies are able to utilise

ore focused, localised approaches that are aimed at constraining the

ominant sources of uncertainty in the modelling chain. Examples in-

lude the application of sophisticated detailed modelling and the use of

ydrodynamic models ( Beevers et al., 2012; Balica et al., 2013 ), which

ay serve to constrain the uncertainty range of the new outputs (depen-

ent on the physical characteristics of the catchments; e.g. Aitken et al.,

018 ). Further, a larger multi-model ensemble, capturing multiple evo-

utions of GCMs as well as multiple downscaling approaches, would al-

ow to better quantify the sources of modelling uncertainty and internal

ariability. This would provide more detailed and valuable information

o better deal with changes in the future and needed adaptation strate-

ies in water management. 

The intensification of the hydrologic dynamic (timing and season-

lity of hydro-hazards) over a limited time frame represents a major

hallenge for future water management. In light of these observations,

he incorporation of timing into the description of hydro-hazards is use-

ul. For example, events not meeting the critical thresholds may still put

 significant pressure on the system through concurrent action. 

If we can improve our projections and quantify the associated un-

ertainty, we can then use this information in the adaptation process

ore explicitly. For example, understanding that we can be reasonably

onfident in the magnitude of change to high and low flows (as defined

n this study and by Collet et al., 2018 ) allows for water managers to

ake better decisions in the design of adaptation measures. 

. Conclusions 

Climate change is projected to amplify hydrological extremes at both

nds of the spectrum, raising concerns and challenges for future water

ecurity. In response, there is a clear need to build resilience and im-

rove adaptation for climate change. The first step towards achieving

his requires knowledge and understanding of the degree of change in

hese extremes. At the outset of this paper, we argued that previous

tudies investigating this change have been inconsistent and limited in

heir focus. Collet et al. (2018) introduced a spatially coherent method-

logical framework for the projection of change in the compound hydro-

azards of flood and drought, however the ability to examine spatial and

emporal trends was absent; additionally the sources of the uncertainty

ssociated with the climate projections were not assessed which are par-

icularly important for targeting future adaptation efforts. This paper

ets out a novel, comprehensive approach to address both components.

For the UK, in the far-future (2071–2099), this study suggests an in-

rease in compound hydro-hazard hotspots (mean change signal) across

he country. Spatially compound hydro-hazards at the inter-catchment

evel are anticipated in the south-west of England and Wales and into the

idlands where there is a high population density. These areas are also

ndicated as spatially compound at the intra-catchment level, potentially

urther exacerbating impacts. This is also anticipated in the less densely

opulated north east of Scotland. Half of the identified hotspots are an-

icipated to be temporally concurrent or temporally successive within
87 
he year, again exacerbating potential impacts on society. The north-

ast of Scotland and south-west of the UK were identified as spatio-

emporally compound hotspot regions and are of particular concern. 

The uncertainty in climate projections represents a key challenge in

heir practical application. In response, this study introduces a compre-

ensive impact and uncertainty methodological framework for the as-

essment of projected changes in hydro-hazards. The QE-ANOVA frame-

ork is used in this study, quantifying and partitioning the uncertainties

ssociated with the flood and drought concurrently and across multiple

etrics (frequency, magnitude and duration). This holistic depiction of

ncertainty facilitates greater understanding of future water insecurity

enefitting both researchers and water managers alike. The former, con-

tantly seeking to quantify and understand uncertainty, are better in-

ormed as to where to focus their efforts, whilst the latter have access

o information supporting more robust adaptation planning. The ability

nd advantages of the framework were highlighted through application

cross the UK using projections from the EDgE database. The hydro-

ogical models were identified as the largest source of variability in the

rojections of the mean change signal, in some instances exceeding 80%

f total variance. This application raises important questions regarding

he spatial variability of hydroclimatological modelling uncertainty. 

In terms of water management planning, the findings allow for

ore focussed studies on significant areas of the country (with spatially

nd/or temporally compound hydro-hazard increases) with a view to

mproving the projections which inform the adaptation process. Reason-

ble confidence in the magnitude of the change in high and low flows

cross the UK at the end of the century might provide for immediate

mplementation. 
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ppendix A 

.1. Validation 

The EDgE flow projections were validated against NRFA observed

ow data on the baseline period (1971–2000) through graphical com-

arison of catchment cumulative distribution functions (CDF). Given the

http://dx.doi.org/10.13039/501100000266
http://dx.doi.org/10.13039/501100003246
http://edge.climate.copernicus.eu/
https://doi.org/10.1016/j.advwatres.2019.05.019
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Fig. A1. By hydrological model, approximately 60% of catchments were graded 

B and above (see Table A1 ), with the exception of PCRGLOB-WB. 

Table A1 

Grades for the validation of the cumulative 

distribution functions. 

Grade Shape Scale 

A Good Good; < 25% error 

B Good Acceptable; ∼25% error 

C Poor Poor; > 25% error 
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Fig. A2. Rounded to the nearest 25 km 

2 , all selected catchment areas demonstrated

exhibiting no difference. The limitations of the coarse spatial resolution of the EDgE 

88 
ocus on hydro-hazards, the tails of the distribution (0–10th and 90–

00th percentile) were graded (from A to C; Table A1 ) based on the

eplication of (1) the shape and (2) the flow magnitude of the CDF;

ariation in flow magnitude (scale) is expected due to the spread of un-

ertainty, though the ensemble mean should follow the observed CDF. 

As observed in Marx et al. (2018) , the validation revealed strong

imilarities across the five GCMs, with noticeable differences among the

Ms. The HMs, with the exception of PCRGLOB-WB, showed a reason-

ble reproduction of the observed CDF with ∼60% of catchments graded

 and above ( Table A1 and Fig. A1 ). However, flow projections out-

ut by PCRGLOB-WB2 were, often, uniform in nature, failing to capture

igh/low flow processes. Given the need to capture the range of uncer-

ainty, this was not considered grounds for removal; however, the lack

f clearly defined peak flows meant that extraction of events was not

ossible in the same manner as the other three HMs, consequently, flow

rojections from PCRGLOB-WB2 were removed. 

.2. Catchment selection 

In identifying catchments for inclusion, two lists were combined:

atchments included in the National Hydrological Monitoring Pro-

ramme ( NRFA, 2018 ), which are of significant interest for UK water re-
 a percentage difference of less than 200%, with the majority (105 out of 239) 

projections are further considered in Section 5.2 . 
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Table A2 

Equations for the determination of the annual summary metrics. 

Drought Flood 

Frequency Σ Events 

Duration Σ Event duration 

Magnitude Σ Flow deficit Max. peak flow 

Timing Day of year of min. flow Day of year of max. peak flow 

R

A  

 

B  

 

B  

B  

 

B  

 

ources management; and the catchments from the Future Flows Hydrol-

gy dataset ( Prudhomme et al., 2013 ), utilised by Collet et al. (2018) in

he development of the hydro-hazard hotspot methodology. 

The data requirements for the validation and quantification of un-

ertainty led to the rejection of catchments with less than 15 years of

bserved flow data on the baseline period (1971–2000), reducing the

umber of catchments from 254 to 239. The distribution of the selected

atchments is detailed in Fig. 1 . 

Due to the pan-European domain of EDgE, projections are produced

t a 5 km spatial resolution (25 km 

2 grid cell); consequently, catchments

ith an upstream area of less than 25 km 

2 were excluded in this study.

iven the coarse resolution, it was necessary to manually correct to the

earest EDgE grid-cell on the river network, with an upstream contribut-

ng area as close to the NRFA catchment area as possible. Rounded to

he nearest 25 km 

2 , all selected catchment areas demonstrated a per-

entage difference of less than 200%, with 105 out of 239 exhibiting no

ifference ( Fig. A2 ). 

.3. Event extraction 
ig. A3. Example flow time-series with the flood and drought thresholds 

arked. Examples of each event metric are indicated. 

ig. A4. Time-series for an exemplar annual summary metric. The time periods 

epresenting the historic simulations and transient projections are indicated. The 

verlain blue line represents the 30-year rolling mean over 2005–2099, whilst 

he orange points represent the 30-year mean at two particular points in time. A 

0-year rolling mean over the entire time-series is not possible due to a 5-year 

reak between the historic simulations and projections. 
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