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ABSTRACT

Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and mortality, associated with
up to 8.9 million deaths/year worldwide. Measurement of personal exposure to PM is hindered by poor spatial resolution of
monitoring networks. Low-cost PM sensors may improve monitoring resolution in a cost-effective manner but there are doubts
regarding data reliability. PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were
deployed at each of two schools in Southampton, UK, for around one year and sensor performance was analysed. Comparison
of sensor readings with a nearby background station showed moderate to good correlation (0.61<r<0.88, p<0.0001), but
indicated that low-cost sensor performance varies with different PM sources and background concentrations, and to a lesser
extent relative humidity and temperature. This may have implications for their potential use in different locations. Data also
indicates that these sensors can track short-lived events of pollution, especially in conjunction with wind data. We conclude
that, with appropriate consideration of potential confounding factors, low-cost PM sensors may be suitable for PM monitoring
where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised
airborne PM concentrations.

Introduction
Exposure to particulate matter (PM) air pollution is one of the leading causes of morbidity and mortality globally, being
responsible for between 4.2 million to 8.9 million deaths per year worldwide1–4. PM exposure is associated with increased
risk of lung cancer, asthma, ischaemic heart disease and strokes, while there is growing evidence for associations with chronic
obstructive pulmonary disease (COPD), type 2 diabetes mellitus, and dementia5. PM is classified by its mean aerodynamic
diameter, into size bins, usually of <10 µm (PM10), <2.5 µm (PM2.5) and <0.1 µm PM0.1), the latter two referred to as fine and
ultrafine PM, respectively. At a diameter <10 µm, PM can be inhaled into the respiratory tract. Fine PM is respirable and can
reach bronchioles and potentially alveoli, while ultrafine PM is able to cross the air-blood barrier and enter the circulation6, 7.

PM originates from a variety of sources - a recent global review of source apportionment studies, estimated that 25% of
PM2.5 pollution originates from traffic, 22% from unspecified sources of human origins, 20% from domestic fuel burning,
18% from natural dust and salt and 15% from industrial activities8. Within urban areas, relative and total contribution of these
sources varies spatially and temporally, being further modulated by weather conditions9. While reference-level monitoring
stations can capture temporal fluctuations in PM concentration, their cost, expertise for maintenance and size mean it is not
feasible to use them to obtain the spatial granularity required to understand spatially heterogeneous PM concentrations across
urban environments strongly influenced by localised sources of pollution10–12.

The most common reference techniques for monitoring PM are the Tapered Element Oscillating Microbalance (TEOM) and
Beta Attenuation Monitor (BAM), both of which measure properties of PM directly related to PM mass. Commercially available
low-cost PM sensors may provide an opportunity to complement the existing monitoring network13. Unlike reference-grade



instruments, these PM sensors generally utilise light-scattering and can detect particles with aerodynamic diameters 0.3−10 µm.
Particles with diameter <0.3 µm do not scatter light sufficiently, while PM >10 µm are not easy to draw into the sensor14. Since
such sensors work by detecting particles by number, they are only able to infer PM mass.

These sensors are more suitable for deployment in large numbers in terms of their cost but questions remain regarding the
quality of data produced15–17 and their precision and accuracy may not be sufficient for regulatory use18. Various models of
low-cost PM sensors have been tested both under controlled conditions and in the field but the validity and variability of the
data they produce is poorly understood19. The available evidence suggests PM concentrations reported by low-cost PM sensors
are of questionable accuracy20, with their reliability varying depending on PM concentration20–22 and meteorological factors23

such as relative humidity24, 25. This has led to suggestions that each low-cost PM sensor should be tested under conditions
as close as possible to those at its potential deployment site19. Moreover, low-costPM sensors are strongly influenced by
aerosol composition19 and it is thus necessary to study them in different environments. The low-cost PM sensors selected here
(see Table 1) have been studied before21, 23–33 (with the exception of the Honeywell HPMA115S0). Such studies generally
analysed the data produced by the sensors over short period of time (a few days to some weeks)21, 23–28, 30, 33. Sayahi et al.32

compared two Plantower PMS1003 and two Plantower PMS5003 in the field for 320 days, over two different periods of time,
comparing hourly and daily readings to a collocated TEOM; Badura et al.29 compared a total of 12 sensors from four different
manufacturers (three of each) including the Plantower PMS7003 and the Alphasense OPC-N2 against a TEOM for half a year
with four different time average period ranging from 1 min to 1 h; Feinberg et al.31 compared a total of 21 low-cost PM sensors
from seven different manufacturers (three of each) including the Alphasense OPC-N2 for seven months against a GRIMM
EDM 180 dust monitor for 1 h, 12 h and 24 h data.

In this study, we have characterised the field-based performance of different PM sensors at two school sites in Southampton,
UK, over ≈a year. The aim of this study was the long-term evaluation of: (1) the capacity of the sensors to produce hourly data,
informing about trends in pollution, with correlation with reference instruments; (2) the need to host several low-cost sensors at
the same place; (3) the usefulness of the sensors to produce spatial information about air pollution; (4) the capacity of these
sensors to detect short-lived event not detected by Automatic Urban and Rural Network (AURN) stations. We also provide some
recommendations and best practices about the use of these sensors in the context of real-world monitoring situation. To our
knowledge, this is the first study to collocate multiple sensors of different models in a field setting configured as a network of
sensors for an extended duration (≈a year long) and compare them against each other as well as against reference instruments.
This allows us to determine the effects of external factors such as background pollution and meteorological conditions on sensor
performance over a full year of environmental conditions, as well as studying their response to a range of short-lived events of
pollution. It is also the first to conduct a long-term sensor evaluation of these sensors in a coastal port city.

Methods
Area of the study
In February 2018, we deployed a network of low-cost sensors to monitor PM concentrations at two schools in Southampton,
UK34, 35. The data analysed in this study covers the period from 13/03/18 until 28/02/19, the full datasets used are available
in the Additional Information. Southampton is located on the south coast of England with population ≈236,900 and area
≈52 km2. The city is surrounded on three sides by motorways (M3, M27, M271). In the south of the city is the busiest cruise
port in Europe and one of the largest ports in the UK36, leading to Southampton water and the Solent, a strait of the English
Channel. A passenger airport is located 5 km NNE of the city centre. Southampton has been identified by the UK Government
as one of a number of cities which need to improve air quality.

PM2.5 monitoring in Southampton
In Southampton, PM2.5 is monitored by a single AURN background station located in the city centre37 with a roadside AURN
station (A33 station) monitoring PM10 and nitrogen oxides. The next nearest AURN station monitoring PM2.5 is located
in Portsmouth, 40 km to the East. The background station is equipped with a FDMS 8500 and a TEOM 1400ab Ambient
Particulate Monitor which report the PM2.5 concentration levels hourly along with the volatile and non-volatile PM2.5. The
inlet is situated on the roof of the AURN station at 4 m above ground level. The FDMS TEOM reads concentration changes on
a 12 min cycle. Hourly averages are available at http://www.airquality.co.uk.

Meteorological conditions and PM2.5 during the study
Supplementary Figure S2 shows the daily mean of temperature, humidity and wind direction and speed over the study and
PM2.5 concentrations recorded by the AURN station. The meteorological data presented here was recorded by Southampton
Weather station and the data is readily available from http://www.southamptonweather.co.uk/. This weather
station is located in the city centre (latitude: 50.899,7◦; longitude: −1.395,5◦). Mean air temperature was 8.8 ◦C (range
−6.3 ◦C-32.1 ◦C) and mean relative humidity 76.4% (range 23-98% ). Wind was predominantly from North-East or South-West
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Model Size (mm)
(H×W×D)

Price
(USD)

Detection range
(µm)

Concentration
range (µg/m3)

Declared
Accuracy
(µg/m3)

Sampling
interval (s)

Particle
count

Alphasense
OPC-N2

60×64×75 443 0.38 to 17 0.01 to 1,500 Not known 1 to 10 Yes

Plantower
PMS5003

38×21×50 28 0.3 to 10 0 to 500 ±10 1 Yes

Plantower
PMS7003

37×12×48 28 0.3 to 10 0 to 500 ±10 1 Yes

Honeywell
HPMA115S0

36×43×24 33 Not known 0 to 1,000 ±15 <6 No

Table 1. Main characteristics of the fan assisted low-cost PM sensors used in the study. Adapted34, 35. Prices accurate at the
time of construction.

with fewer occurrences of wind events coming from the South-East. Supplementary Figure S1 presents the wind roses per
month during the study.

Low-cost sensor selection
Four PM sensors were compared: Plantower PMS500338, Plantower PMS700339, Honeywell HPMA115S040 and Alphasense
OPC-N241. Table 1 lists their main characteristics. These sensors are controlled remotely through a Raspberry Pi and they
are sufficiently small to be deployed in an enclosure small enough for mobile or wearable applications. They all report PM2.5
and PM10 concentrations in µg/m3. The Plantower PMS5003, the Plantower PMS7003 and the Alphasense OPC-N2 also
report PM1 and particle count for different bin sizes - the Plantowers report size distribution for 0.3, 0.5, 1.0, 2.5, 5.0 and
10 µm bins and the Alphasense OPC-N2 reports 16 bins ranging from 0.38 µm and 17 µm. The Plantower sensors claim a
counting efficiency of 98% for particles of diameter 0.5 µm and 50% for diameter 0.3 µm38. All use a sampling interval <10 s.
According to the manufacturers, their accuracy is between ± 10-15 µg/m3.

Deployment
The sensors were assembled into an Air Quality Monitor (AQM) as described previously34, 35. A brief description of the AQM
is available in Supplementary Section 1. AQMs were deployed outdoor in two schools in distinct areas of Southampton from
February 2018. The two schools were selected as part of a pilot project by Southampton City Council and had the added interest
of monitoring PM exposure of a vulnerable population5. School A is located 1.3 km SW of the background AURN station
and School B is located 2.7 km E of the AURN station. For each school (Figure 1), one AQM was sited <10 m away from
the school driveway to record exposure near road PM (AQM A.1 and AQM B.1) while the two others were located further
from the road (≈40 m for School A and ≈100 m for School B), in the playground (AQM A.3 and AQM B.2) with the third one
placed sited to obtain a good coverage of the school away from the two other monitors. The height of the AQM (<2 m below
AURN inlet, see Table 2) was imposed by physical constraints (access to power supply, protection against vandalism, protection
against ball games in the playground, safety). In each case, the AQM have been placed as close to the ground as possible.

Data analysis methods
Sensor performance was assessed by determination of the Pearson coefficient (r), the Spearman coefficient (ρ), the slope, the
Root Mean Square Error (RMSE) and the Coefficient of Variation (CV). The slope is reported with a confidence interval of two
standard errors, computed using a linear model based on total least square which is a non-symmetric optimisation algorithm
hence the slope is non-symmetrical. RMSE characterises error against other readings, and for two measurements is calculated
as RMSE =

√
mean((X −Y )2). We also calculated the CV each hour for each sensor defined by CV = σ

µ
where σ is the

standard deviation of the sensor during the hour considered and µ is the average of the concentration of PM2.5 of the three
sensors of the same model on the same site, providing a measure of the variability between sensors and is a measure of the
precision of individual sensors43. A CV of zero represents a perfect agreement between sensors and a CV of 0.1 is judged to be
sufficient for monitoring PM concentrations44. Statistical tests were conducted using a Shapiro-Wilk test of normality and a
Friedman Analysis of Variance (ANOVA) followed by a Dunn post-hoc test. Data were analysed using Prism 8 (GraphPad
Software, San Diego, USA) and R 3.5.1 using the packages ‘openair’, ‘lattice’, ‘dplyr’, ‘psych’ and ‘MASS’.

The sensors sampled with different time periods (between 1-6 s depending on the model) and it was necessary to take the
median readings obtained over a period of time greater than the sampling period of each sensor. With short time windows, a
high variability was observed for each sensors. Wider averaging windows reduce the noise of the measurements. Timeseries
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Figure 1. Locations of the Air Quality Monitors (AQM) deployed at School A and School B. To be noted that the vignette and
the main maps have different scales. background map adapted from OpenStreetMap42. The cartography in the OpenStreetMap
map tiles is licensed under CC BY-SA (www.openstreetmap.org/copyright) . The licence terms can be found on the following
link: http://creativecommons.org/licenses/by-sa/2.0/.
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comparing different averaging windows are presented in Supplementary Figure S3 for each sensors. To reduce the noise while
preserving a high degree of temporal resolution the best averaging windows appears to be between 1-5 min. One of the goals of
this study is to compare the behaviour of these sensors while monitoring short-lived events such as fires in the city or local
sources of pollution such as the 15 min during which parents come to drop-off or pick-up their children from school. A 5 min
averaging window would only provide 3 measurements for this period of time, compared to 15 measurements with 1 min
averaging period. As such, it was decided that the averaging window should not exceed 1 min.

Data quality and outlier detection
Traditional methods to detect and remove outliers use standard deviation or median absolute deviation45. We tested these
methods with different time windows (10 min, 15 min, 30 min, 1 h, 8 h). However, we found negligible differences in correlation
with the reference stations when applying these methods (∆r<0.01) and given the currently limited understanding of the data
produced by the sensors it was decided not to use these techniques.

To determine whether a transient signal was reliable, it was required that any peak needed to be registered by the reference
station or by multiple sensors in the same AQM or in another AQM. For each sensor, the data was visualised week by week, and
processed according to a non-automated algorithm presented in Figure 2: (1) verify the logs of the sensors for error messages,
(2) remove the values that are >10,000 µg/m3, (3) compare the weekly mean of the sensors, (4) compare the readings of the
sensor to the reference station week by week to detect peaks that are present on the sensor but not on the AURN station, (5)
compare the sensor with the other sensors week by week in the same Air Quality Monitor (AQM), (6) compare the sensor
with the sensors of the same model week by week in the other AQM. The six steps of the process define six categories of data.
Categories 1 and 2 are considered as time when the sensor was not operational. Category 3, combined with a visual inspection,
enabled detection of invalid readings from the Plantower PMS7003 in AQM A.3 between 19/09/18 and 03/10/18, at which
point the sensor was reset and gave reliable measurements again. It also enabled detection of a fault in the Plantower PMS5003
of AQM B.1 from the 06/10/18 which could not be resolved. The mean of the sensors during these periods are presented in
Supplementary Table S1. All the other peaks identified in the dataset fell into category 4, 5 or 6 and as such were not removed
from the analysis. Supplementary Figures S4, S5 and S6 present an example for each category.

The majority of the peaks observed in the dataset on multiple sensors are hypothesised to result from large fires in the city or
spatially localised sources of pollution in the vicinity of the AQM such as barbecues or car emissions. Supplementary Figure S7
describes peaks of pollution recorded by one of the AQM during a fire in the city and Supplementary Figures S13 and S14
present other peaks recorded at School B which are discussed further in the study.

Results
Supplementary Figures S8 and S9 show the time series of PM2.5 concentration reported by the sensors at each location averaged
by hour over the study period and compare them with the reference station. For both sites, the sensors follow similar trends to
the reference station suggesting that there is similarity between PM2.5 concentrations at each site.

Sensor operating period
Sensor uptime was generally high but due to technical issues, not all of the sensors were operational during the whole study
(Table 2). An error occured configuring the Honeywell HPMA115S0 (a 5 V logic was used instead of a 3.3 V logic) which
could only be fixed for AQM A.1 due to limited resources and access restrictions. The Alphasense OPC-N2 performed correctly
in four out of six AQM. For AQM B.2, the Alphasense OPC-N2 experienced intermittent communication issues falling into
categories 1 and 2 of the data quality check process from 13/03/18 until 21/06/18 and from 13/09/18 until 19/11/18 (average
2,000 error messages/day). For AQM B.1 the Alphasense OPC-N2 had unresolvable communication problems. The data
produced by these sensors was discarded from this analysis. The two Plantower models performed correctly in each AQM
except for Plantower PMS7003 AQM A.3 which did not perform from February to March 2018 and for the period of time
detailed in the ‘Data quality and outliers detection’ section. The Honeywell HPMA115S0 stopped reporting correct data on
23/02/19 reporting a constant PM2.5 concentration of 1 µg/m3. The AURN station was not operational from the 12/07/18
until 27/07/18 and from 08/08/18 until 13/08/18. The background reference station had 92.8% uptime with downtime due to
maintenance shut downs.

Performances of the sensors between the different air quality monitors
Figure 3 shows the correlation between the reported PM2.5 concentrations for the different sensor models, with the data
merged across the six AQMs. The Plantower PMS5003 and Plantower PMS7003 reported very high correlations (Pearson
and Spearman), slope close to 1 and a RMSE of 2.22 µg/m3. The Alphasense OPC-N2 shows a different behaviour vs. the
Plantower PMS5003 and Plantower PMS7003 with a high correlation for Pearson and a moderate correlation for Spearman,
higher RMSE <12.1 µg/m3 and over-reporting by a factor of 2 compared to the Plantower models.
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Figure 2. Flow chart presenting the data quality check process applied to the data from each sensor: (1) verify the logs of the
sensors for error messages, (2) remove the values that are >10,000 µg/m3, (3) compare the weekly mean of the sensors, (4)
compare the readings of the sensor to the reference station week by week to detect peaks that are present on the sensor but not
on the AURN station, (5) compare the sensor with the other sensors week by week in the same Air Quality Monitor (AQM), (6)
compare the sensor with the sensors of the same model week by week in the other AQM. Categories 1 and 2 are considered as
time when the sensor was not operational.

Honeywell Plantower Plantower Alphasense Height above Location
HPMA115S0 PMS5003 PMS7003 OPCN2 ground (m)

AQM A
1 91 % 94.5% 94.7% 92.6% 3.8 School entrance, East

facing
2 — 96.6% 96.6% 95.9% 2.4 School employees car park

(6 parking spaces), East
facing

3 — 99.5% 52.1% 98.9% 3.5 School playground, East
facing

AQM B
1 — 57.4% 99.7% 0 % 2.1 School entrance, South

facing
2 — 98.9% 98.9% 56.6% 3.4 School playground, North

facing
3 — 95.7% 96.5% 95.7% 3.4 Opposite from the

playground, South facing

Reference station 92.8% 4

Table 2. Individual sensors uptime per location and comparison with the reference background station. For AQM B.1 the
Alphasense OPC-N2 reported a random signal. The Honeywell HPMA115S0 was only operational for AQM A.1. The table
also presents some characteristics of the different sites.
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Figure 3. Correlation of the concentration of PM2.5 in µg/m3 reported by different PM sensor models. Graphs show reported
PM2.5 concentrations from Plantower PMS7003 (n = 5,906,616 ), Plantower PMS5003 (n = 5,523,274 ), Alphasense OPC-N2
(n = 4,420,042 ) and Honeywell HPMA115S0 (n = 946,372 ), with the data combined from each model at each location of the
study except for Honeywell HPMA115S0 (only one location available). The x-axis corresponds to the sensor named above the
graph and the y-axis correspond to the sensor named to the right of the graph. The upper 0.0001% of the datapoints are not
displayed. Slope is reported ±2 standard error (***: p < 2×10−16 )
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Sensors AQM CV
Mean Median 95th percentile

Alphasense OPC-N2 A.1 0.17 0.14 0.35
A.2 0.13 0.10 0.30
A.3 0.11 0.08 0.24

Plantower PMS5003 A.1 0.25 0.17 0.70
A.2 0.26 0.16 0.76
A.3 0.21 0.14 0.57

B.1 0.23 0.16 0.59
B.2 0.24 0.14 0.57
B.3 0.23 0.15 0.59

Plantower PMS7003 A.1 0.24 0.16 0.63
A.2 0.24 0.16 0.66
A.3 0.22 0.15 0.59

B.1 0.25 0.18 0.67
B.2 0.23 0.15 0.60
B.3 0.25 0.17 0.66

Table 3. Mean, median and 95th percentile of the Coefficient of Variation (CV) per sensor and per AQM from 13/03/18 to
09/03/19. The Plantower PMS5003 in School B.1 stopped working after 06/10/18, calculations for this sensor at School B only
include the period from 13/03/18 to 06/10/18.

The Alphasense OPC-N2 plots present three modes - one reporting higher values than the other three sensors, one reporting
similar values and one reporting lower values, the latter having fewer datapoints. This behaviour can also been observed for
each AQM on Supplementary Figure S10, apart for AQM B.2. Supplementary Figure S11 presents the ratio of the PM2.5
concentrations reported by the sensors with relative humidity divided into 20 quantiles. The Alphasense OPC-N2 reports higher
values than the Plantower PMS5003 for relative humidity >83%, while reporting lower values at lower relative humidity. This
behaviour may therefore at least partly explain the three aforementioned modes.

The comparison of the Plantower PMS5003 and the Honeywell HPMA115S0 with relative humidity does not reveal a clear
effect of relative humidity on the values reported across the two sensors, although it should be noted they correlated more at
higher relative humidity potentially explaining the two trends observed between the two sensors.

The analysis of the CV between sensors of the same model within each site is presented in Table 3. For the Alphasense
OPC-N2, the data is only available for School A as only one sensor of this model functioned correctly in School B. The
Alphasense OPC-N2 displayed a CV of 0.11-0.17 with an upper 95th percentile 0.24-0.35. The Plantower PMS5003 and the
Plantower PMS7003 obtained higher values with similar results over the two locations. The Plantower PMS5003 showed a
CV of 0.21-0.26 with an upper 95th percentile 0.57-0.76. The Plantower PMS7003 obtained similar results. The intra-class
correlation (ICC) applied to the CV with the model of sensors as subjects and the sites as raters for two-way mixed effect,
consistency, single raters (ICC(3,1))46 yields a value of 0.94 with a p-value of 2.18×10−7 and 95th confidence interval of
0.75-0.999 indicating excellent reliability of the CV and a low intra-model variability.

Supplementary Figure S12 presents the evolution of the CV and the concentration measured for each sensors in School A
during the period ranging from 14/03/18 to 31/05/18. The CV increased as the PM concentration measured by the sensors
decreased suggesting a better agreement between sensors when PM concentrations are higher.

Correlation with the background AURN reference station
After comparing inter-sensor performances, we studied their performance against the AURN background reference station. To
study the correlation of individual sensors with the background AURN reference station, the data from each sensor was averaged
to give the mean PM2.5 concentration per hour to match the frequency reported by the background station. Figure 4 shows the
readings per AQM compared to the readings from the reference station. At School A, the Plantower PMS7003 demonstrated
statistically significant high positive correlations, slopes between (1.15±1.65)×10−2 and (1.22±1.69)×10−2 and RMSE
<6.8 µg/m3. The Plantower PMS5003 records very similar values across the three locations of School A. The Alphasense
OPC-N2 presents more variability across the three locations of School A with moderate positive correlations, slopes between
(1.01±3.16)×10−2 and (1.34±3.72)×10−2 and RMSE <14.7 µg/m3.

In School B, the two Plantower models had very similar coefficients to School A for AQM B.2 and B.3 but the correlation
coefficients were lower for AQM B.1 (r=0.79/0.82 and ρ=0.79/0.82) with a slope close to 1. For AQM B.2, the Plantower
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Pearson-r: 0.58 ***

Spearman-�: 0.49 ***

Slope: 1.06 ± 5.42.10-2

RMSE: 14.2

Pearson-r: 0.86 ***

Spearman-�: 0.84 ***

Slope: 1.15 ± 1.65.10-2

RMSE: 6.6

Pearson-r: 0.87 ***

Spearman-�: 0.85 ***

Slope: 1.15 ± 1.55.10-2

RMSE: 6.5

Pearson-r: 0.61 ***

Spearman-�: 0.58 ***

Slope: 1.01 ± 3.16.10-2

RMSE: 12.9

Pearson-r: 0.85 ***

Spearman-�: 0.82 ***

Slope: 1.17 ± 1.74.10-2

RMSE: 7.0

Pearson-r: 0.86 ***

Spearman-�: 0.84 ***

Slope: 1.19 ± 1.73.10-2

RMSE: 6.9

Pearson-r: 0.65 ***

Spearman-�: 0.57 ***

Slope: 1.31 ± 3.76.10-2

RMSE: 14.8

Pearson-r: 0.88 ***

Spearman-�: 0.85 ***

Slope: 1.20 ± 1.56.10-2

RMSE: 6.2

Pearson-r: 0.88 ***

Spearman-�: 0.85 ***

Slope: 1.25 ± 1.61.10-2

RMSE: 6.5

Pearson-r: 0.63 ***

Spearman-	: 0.55 ***

Slope: 1.01 ± 3.05.10-2

RMSE: 11.7

Pearson-r: 0.85 ***

Spearman-
: 0.83 ***

Slope: 1.18 ± 1.75.10-2

RMSE: 7.0

Pearson-r: 0.84 ***

Spearman-�: 0.83 ***

Slope: 1.05 ± 1.61.10-2

RMSE: 6.8

Pearson-r: 0.87 ***

Spearman-�: 0.85 ***

Slope: 1.22 ± 1.69.10-2

RMSE: 6.8

Pearson-r: 0.67 ***

Spearman-
: 0.61 ***

Slope: 1.34 ± 3.72.10-2

RMSE: 14.7

Pearson-r: 0.88 ***

Spearman-�: 0.85 ***

Slope: 1.21 ± 1.65.10-2

RMSE: 6.6

Pearson-r: 0.82 ***

Spearman-�: 0.79 ***

Slope: 1.03 ± 2.41.10-2

RMSE: 6.9

Pearson-r: 0.79 ***

Spearman-�: 0.79 ***

Slope: 0.96 ± 1.76.10-2

RMSE: 7.4

Figure 4. Correlation between PM2.5 concentrations reported by low-cost PM sensors and data from background reference
station. Graphs show comparison of the PM2.5 concentration from Plantower PMS7003 (n = 49,255 ), Plantower PMS5003 (n
= 46,066 ) and Alphasense OPC-N2 (n = 36,870 ), with the data combined from each model at each location of the study
against the background Automatic Urban and Rural Network (AURN) station except for the Honeywell HPMA115S0 (only one
location available). The upper 0.000005% of the datapoints is not displayed. The slope is given ±2 standard error (***: p-value
< 2×10−16 )

PMS5003 presents a lower slope than the Plantower PMS7003 which can be attributed to a variability in the calibration of
these sensors, further illustrated by the slope obtained in Supplementary Figure S10. For this AQM, Alphasense OPC-N2 also
presents lower results than in the other locations (which performed 56.6% of the time at this location). AQM B.2 is also the
AQM reporting the highest concentrations with >10 peaks during the month of August - these peaks may have resulted from
barbecues nearby or wood burning. Some of these peaks were detected with a short time delay by the two other AQM of the
School and mainly by AQM B.1 (a building separated AQM B.2 and AQM B.3) as presented in Supplementary Figures S13
and S14.

Factors impacting the correlation with the background reference station
To evaluate the impact of external factors, we compared the Pearson coefficient for each sensor against the reference station,
with variations in (1) month, (2) quartile of background PM2.5 (PM2.5) concentration, (3) quartile of relative humidity, (4) wind
direction and (5) quartile of temperature.
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Figure 5. Effect of pollution and climate factors on correlation between readings from low-cost sensors and AURN
background station. Graphs show variation in Pearson coefficient between the three sensor models and the background AURN
reference station per site with (1) months (excluding the Alphasense OPC-N2 for AQM B.2 due to the lack of data), (2) quartile
of background PM2.5 concentration (µg/m3), (3) quartile of relative humidity (RH), (4) wind direction and (5) quartile of
temperature. August has been excluded from the graphs except for (1). Each box represents median, the 25th and 75th

percentiles with maximum and minimum whiskers of Pearson coefficient for the locations considered (n=4 for the Alphasense
OPC-N2 and n=6 the Plantowers). Data analysed using a Friedman analysis of variance (ANOVA) with Dunn’s post-hoc test
for pairwise comparison, *p<0.05, ** p<0.01,*** p<0.001,**** p<0.0001.
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The Shapiro-Wilk tests of normality conducted on the different subsets of data revealed that some groups of Pearson
coefficients were not normally distributed. To verify the statistical significance observed between the different categories, we
conducted a non-parametric statistical analysis on the groups of data with a Friedman ANOVA with Dunn multiple comparison
test to determine pairwise comparisons driving the differences. The analysis was not conducted on the Honeywell HPMA115S0
due to the paucity of sites. Figure 5 shows the Box and Whisker plots of the Pearson coefficients for the different sensors at
the different sites with the five potential confounding factors. The graphs for relative humidity, background pollution, wind
direction and temperature does not include the data collected in August (see ‘Month’ and ‘Combined effects’ below). The
analysis including August is presented in Supplementary Figure S15.

Month
The Alphasense OPC-N2 for AQM B.2 has not been included in this analysis due to the lack of data for this sensor. The
significant differences observed are mostly involving August, driven down by the AQM located in School B and in particular
by AQM B.2 for which the three sensors performing registered notable peak of pollution, recorded to a lesser magnitude by
AQM B.1 and AQM B.3 as presented in Supplementary Figure S13 and with a zoom on one specific spike in Supplementary
Figure S14 where we can see the spike monitored successively by AQM B.2, then AQM B.3 and finally AQM B.2 with a 1 min
interval between each location wind speed being <0.8 m/s. These peaks were not recorded by the reference station or by the
AQMs in School A. Given that these readings are present on the three AQM at School B, they may indicate a very localised
source of pollution illustrating the capacity of these sensors to detect highly localised sources of pollution. To remove the
effect observed during August on the analysis of the other environmental factors, the data produced during this month has been
excluded from the analysis. The two Plantowers do not show a drop in performances but the Alphasense OPC-N2 appears
to show a trend for decreasing correlation with months although no significant differences could be observed between the
beginning and the end of the study.

Background concentration
All sensors showed increasing correlation with the background station as background pollution increased with Pearson
coefficients >0.6 for the Plantowers and >0.4 for the Alphasense OPC-N2 for background pollution in the upper quartile
(17.8 to 77.4 µg/m3). This value fell with decreasing pollution for all sensors, but the drop was more pronounced for the
Alphasense OPC-N2, whereas the lowest Pearson coefficient was at a background concentration in the second quartile
(8.2 µg/m3-11.4 µg/m3, p<0.01) vs. upper quartile. For the 3 sensors, the second background PM2.5 quartile showed a
significantly lower Pearson correlation than the highest group.

Relative humidity
The two Plantower sensors presented a better correlation with the background PM2.5 station at the upper quartiles of relative
humidity (76-98% RH). For the Alphasense OPC-N2, there was no significant difference between the different quartiles while
the correlation dropped for the third quartile. Supplementary Figure S16 presents the same analysis conducted using ventiles of
relative humidity showing that the correlation increases with relative humidity up to the last ventile (96-98%). At lower relative
humidity there is also more variability across the sites illustrated by the spread of the boxes with the Alphasense OPC-N2
presenting the widest range of values. The two Plantower sensors present significant differences between their upper quartile
and their first and second quartiles.

Wind direction
The two Plantower sensors present little variability with wind direction. The Alphasense OPC-N2 has lower correlation
coefficients for wind from S, SW and W. All of the significant differences observed involve at least one of these directions and
are more pronounced for the sensors located in School B. The differences observed are likely to result from the combined effect
of environmental factors as these three directions are the one for which the lower background concentration were registered by
the reference station with W being the direction recording the lowest background concentration. These directions are from the
coast and are likely subject to fewer sources of pollution than directions coming from inland.

Temperature
The correlation between AQM sensors and background station readings was higher at temperatures in the second quartile
(7.3-11.2 ◦C). The Alphasense OPC-N2 showed a drop in correlation for the first and third quartile and shows more variability
with temperature compared to the Plantower models. Conversely, the Plantower models show significant differences between
their quartiles but with little variation of correlation.

Combined effects
A linear model predicting background concentration with month, wind direction, relative humidity and temperature gave a
statistically significant adjusted R2 of 0.11. A linear model including only wind direction and months also obtained a statistically
significant adjusted R2 of 0.11 (adjusted R2 of 0.07 when only taking into account months only) and a linear model including
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only relative humidity and temperature obtained a statistically significant adjusted R2 of 0.001 suggesting a strong effect of
months on background concentration and a more limited effect wind direction. The lowest correlations were during August. The
analysis of the wind direction during this month showed that the wind was blowing mostly from SW which is also the direction
for which we observed the lowest correlation between AQM sensor and background reference station readings. This difference
is further illustrated by the differences observed between Figure 5 and Supplementary Figure S15 which suggest a confounding
source of pollution from SW in August. Two possible explanations for this are local combustion events in particular barbecues,
burning of garden waste or PM generating works taking at the school during the summer holiday. Supplementary Figures S13
and S14 focus on these period of time and support the hypothesis of burning of garden waste or barbecues given the times when
these events happens after 7pm during a particularly warm August.

Discussion
We have evaluated the performance of four models of low-cost PM sensor characterising inter-model performance as well as
performance against the nearest reference station, examining potential confounding conditions. The sensors generally operated
reliably with 14 sensors out of 19 (five sensors being misconfigured) having uptime greater than the reference station. The
sensors showed medium to high correlation between each other while performing differently with variable relative humidity.
The correlation of the sensors with the reference station is strongly influenced by the background concentration and drift
over-time was observed for the Alphasense OPC-N2. Relative humidity and temperature have a limited influence in general,
albeit statistically significant for the Plantowers. Month and wind direction have a combined effect on the correlation suggesting
different performances with different sources of pollution.

The comparison of the two Plantower models confirms the manufacturer statement that these two sensors have the same
performances. Zheng et al.27 obtained similar Pearson coefficients and slope when comparing 3 Plantower PMS3003 (one
month in the field). The Plantower models also have a non-linear relationship with the Honeywell HPMA115S0 which may be
explained by the effect of relative humidity on both sensors the latter reporting lower PM2.5 concentrations compared. The
Alphasense OPC-N2 exhibits a different behaviour to the other sensors with three apparent modes of operation which may be
linked to a combined effect of different environmental factors. The inter-comparison of the sensors by relative humidity reveals
that the three makes of sensor behave differently at different relative humidity, with reported values diverging increasingly
with relative humidity. This is further illustrated by the greater variability of the coefficient of correlation with the reference
station for the Alphasense OPC-N2 for different levels of relative humidity. An analysis of the CV revealed a limited variation
between sensor models with the Alphasense OPC-N2 presenting better values. Chen et al.26 tested nine Plantower PMS3003
sensors (36 h in the field) and found a CV < 0.4 suggesting a limited inter-sensor variability further supported by Kelly et
al.21 calculation of R2>0.99 between the two sensors. Longer field studies with a greater number of sensor are required to
precisely evaluate the inter-model variability of the Plantower models. Similarly, in studies of the Alphasense OPC-N2 against
reference instruments, Crilley et al.24 found a inter-unit agreement with a CV of 0.25±0.14 across 14 units while Badura et
al.29 observed a CV of 0.2 across three units, values similar to those obtained in this study.

In terms of the correlation of sensor-reported PM2.5 concentrations with those from the nearby reference station, the two
Plantower models presented very similar coefficients. During a two-day outdoor collocation of 17 Plantower PMS7003 with a
TEOM, Wang et al.28 obtained R2 between 0.72-0.78 for PM2.5, very similar to our results. This suggests that these sensors
may be suitable for reporting hourly concentration of pollution. The two Plantower models also have similar coefficients across
the two sites which are 2 km apart and the time series of the hourly data shows that the six AQMs were measuring in similar
surroundings. While the Alphasense OPC-N2 has lower coefficients than the Plantower models, it shows more variability
across the three locations of School A which may reflect higher precision of the Alphasense OPC-N2 and a better capacity to
monitor short-term localised events or be linked to external environmental factors. To confirm their precision, an extended
collocation study is required.

All three sensors tended to report greater concentrations of PM2.5 compared to the reference station, but it should be noted
that the sensors record concentrations every 1-10 s, while the TEOM records hourly averages. Moreover, the TEOM is sampling
only half of the time on a 12 min cycle47 in a background location, so it may not detect the same temporal variations as the
low-cost sensors. The sensors may be also more susceptible to local short-lived events as illustrated by the fire event and
episodes at School B in August 2018. Suitability for monitoring highly spatially resolved events would be best evaluated against
a reference-grade instrument with the same frequency of measurement and reporting. Sousan et al.30 also found over-reporting
by the Alphasense OPC-N2 suggesting that this may be a more general property of these sensors, while Kelly et al.21 suggests
this behaviour may be environmentally specific for the Plantowers sensors, although a collocation is needed to confirm that this
is not simply due to higher concentrations at the AQM sites.

Wang et al.48 studied the response of Shinyei PPD42NS, Samyoung DSM501A and Sharp GP2Y1010AU0F sensors, in
controlled conditions, and found that responses depended strongly on particle composition and size and that relative humidity
affected the readings across a wide range of concentrations (0 µg/m3-1,000 µg/m3). Thus, we expected to find variability with
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wind direction and months for which the sources of pollution may vary changing the particle composition and size. The results
obtained here for the month of August, exhibited a clear impact of wind direction on the correlation with the background AURN
station suggests the importance of particle composition and particle size, hence sources of pollution, on PM2.5 concentrations
reported by the sensors, confirmed by a number of studies15, 19.

Our sensors obtained Pearson coefficients >0.6 when background concentration levels were in the highest quartile which
is confirmed by other studies22. There was no significant difference between the correlations for the two lower quartiles of
background concentration <11.2 µg/m3. This value is similar to the Lower Limit of Detection (LLOD) advertised by the
manufacturers (10 µg/m3). For low background concentration, the readings will likely be influenced to a greater extent by local
sources of pollution. The sensors were located away from the reference station, possibly explaining the drop in correlation. To
the best of our knowledge no studies have evaluated the LLOD of the Alphasense OPC-N2. For the Plantowers, Kelly et al.
determined a LLOD of 10.5 µg/m3 in outdoor environments and LLOD from 1 µg/m3-3.22 µg/m3, in a laboratory. Sayahi et
al.32 extended the duration of the study conducted by Kelly et al.21 from 28 datapoints to 320 days and obtained LLOD
≈6 µg/m3. For the Shinyei PPD42NS in laboratory conditions, Wang et al.48 reported a LLOD, of 4.28 µg/m3-26.9 µg/m3,
and Austin et al.20 of 1 µg/m3. During a field deployment, Zikova et al.49 calculated a LLOD of 10 µg/m3 for 58 Syhitech
DSM501A, although across only two days of deployment. We showed that the CV decreased with increasing background
concentration. Zikova et al.50 used the value obtained for the LLOD to correct the data for measurements that were lower than
the LLOD and obtained a better CV between sensors with the corrected data. Therefore, a higher variability between sensors is
to be expected at levels of pollution below the stated LLOD.

The sensors studied presented very limited effect of relative humidity. Gao et al.51 observed a strong effect of relative
humidity and temperature on sensor readings with a background of 167 µg/m3 while Wang et al.28 noted increased correlation
between low-cost sensors and a TEOM for relative humidity 67-75% but decreased correlation for low and high relative
humidity (20% and 90%), for PM concentrations 0 µg/m3-1,000 µg/m3. Conversely, Jiao et al.52 found no effect of relative
humidity on the sensors readings, with average concentrations of PM2.5 of 10 µg/m3 suggesting that relative humidity may
exert more of an effect at higher PM concentrations. Crilley et al.24 developed a correction factor for the Alphasense OPC-N2
for relative humidity > 85%. Feinberg et al.31 reported peaks for relative humidity > 90%. Jayaratne et al.25 studied the impact
of relative humidity on a Plantower PMS1003 and observed that the sensor over estimated PM2.5 concentrations for relative
humidity > 80%. They suggested that the deviation observed at high relative humidity may result from the absence of heated
inlet on the low-cost sensors. The sensors respond to relative humidity differently, which may be a result of testing in different
environments, with different PM characteristics. In our study, the Alphasense OPC-N2 presents a higher variability with wind
direction suggesting that it is more susceptible to differences in PM composition. In a recent study, Di Antonio et al.33, studied
the Alphasense OPC-N2 and suggested that data should be corrected for relative humidity based on particle-size distribution
rather than on PM mass and according to PM composition. However, it is unclear whether this suggestion is also applicable to
other models of low-cost PM sensors given the different behaviour we observed for relative humidity between sensor model.

Temporal drift has been observed for gas sensors, with attempts made at correction53. Drift over time of low-cost PM
sensors may result from degradation of electrical components, or dust accumulation. We saw no consistent drift over time for
the two Plantowers but trend to drift was observed for the Alphasense OPC-N2. In our AQMs, the sensors facing downward
may help reduce the build-up of dust inside the sensors but accumulation of particles inside the AQMs cannot be not excluded.
Mukherjee et al.23 attributed drift over time for the Alphasense OPC-N2 (12 weeks in the field) to the potential build up of dust
inside the sensor and on the fan.

Conclusion
In this study, we have shown that there is general agreement in readings between the four models sensors tested, despite the
differences in the way in which these sensors derive reported PM mass concentrations. The low-cost sensors show more
variability at low PM concentrations and may be differentially affected by varying temperature and humidity implying the
potential need for different correction methods. Despite these issues, these low-cost sensors are suitable for monitoring
short-lived pollution events especially where coupled with wind data and they may provide useful information on personal
exposure to PM. They may also be suitable for reporting hourly data to produce data to inform the public. The inter-model
variability suggests that they should not be deployed individually, with collocation of multiple sensors also providing redundancy
facilitating fault/outlier detection and ensuring full data coverage. Further work, including long-term collocation studies and
laboratory testing under controlled conditions, is required to determine the precise nature and magnitude of the effects of
confounding factors, leading to a better understanding of the behaviour of these low-cost sensors. Given future characterisation,
low-cost sensors may be a cost-effective means to improve spatial resolution of PM monitoring in urban networks.
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