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Summary Tick saliva is a complex mixture of peptidic
and non-peptidic molecules that aid engorgement.
The composition of tick saliva changes as feeding
progresses and the tick counters the dynamic host
response. Ixodid ticks such as Ixodes ricinus, the
most important tick species in Europe, transmit nu-
merous pathogens that cause debilitating diseases,
e.g. Lyme borreliosis and tick-borne encephalitis.
Tick-borne pathogens are transmitted in tick saliva
during blood feeding; however, saliva is not simply
a medium enabling pathogen transfer. Instead, tick-
borne pathogens exploit saliva-induced modulation
of host responses to promote their transmission and
infection, so-called saliva-assisted transmission (SAT).
Characterization of the saliva factors that facilitate SAT
is an active area of current research. Besides providing
new insights into how tick-borne pathogens survive
in nature, the research is opening new avenues for
vaccine development.
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Introduction

Ticks are arthropods related to spiders and scorpions.
Nearly 900 tick species are recognized of which 702
are ixodid ticks (family, Ixodidae) while 193 are argasid
ticks (family, Argasidae) and a single species exists in
the Nuttalliellidae [1]. All ticks go through a life cy-
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cle of egg, larva, nymph, and adult (female or male).
Each postembryonic stage generally requires a blood
meal before moulting to the next stage [2]. During
blood-feeding, ticks acquire infections they may sub-
sequently transmit when feeding again. When this
occurs, ticks act as vectors of potential pathogens of
humans and other animals [3]. In fact, ticks are be-
lieved to transmit the greatest variety of infectious
agents of any blood-feeding vector. Notable diseases
of humans caused by tick-borne pathogens include
Lyme borreliosis, tick-borne encephalitis (TBE), tu-
laremia, babesiosis, rickettsiosis, and human granu-
locytic anaplasmosis; however, tick-borne infectious
agents (whether virus, bacterium, or protozoan) typi-
cally circulate in nature in a tick-vertebrate host-tick
cycle without any apparent adverse effect on either
the tick vector or the vertebrate host, be it reptile, bird,
or mammal [4]. Hence, humans are usually oblivious
to their presence making them hard to detect unless
expensive monitoring procedures are implemented.

Tick-borne infectious agents are transmitted in the
saliva of ticks. Importantly, the saliva of infected ticks
is not simply a watery medium carrying pathogens but
a complex mixture of hundreds of different molecules
(Table 1). These saliva constituents help ticks ob-
tain their blood meal while maintaining homeosta-
sis. Increasing evidence reveals that tick-borne infec-
tious agents exploit the activity of saliva molecules to
promote their transmission, so-called saliva-assisted
transmission (SAT). This means of facilitated trans-
mission occurs both when infected ticks feed on a sus-
ceptible vertebrate host and when uninfected ticks
feed on an infected vertebrate host. Ticks may even
facilitate pathogen transmission via exosomes, extra-
cellular vesicles in tick saliva [5]. In this review, the
properties of tick saliva components and evidence of
SAT are considered with particular focus on Ixodes
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Table 1 Composition of tick saliva

Constituent Examples

Water Excess water from host bloodmeal

Ions Na+, Cl– (excess ions from host bloodmeal)

Non-peptidic molecules Adenosine, prostaglandins, endocannabinoids, microRNAs

Tick peptides Variegins, hyalomins, madanins

Tick proteins Chitinases, mucins, ixostatins, cystatins, defensins, glycine-rich, hyaluronidases, Kunitz-type proteins, lipocalins,
metalloproteases

Host proteins Immunoglobulins, haptoglobin, transferrin

Exosomes May contain microRNA, peptides, proteins

ricinus (the wood or sheep tick), the most common
tick species in northern and central Europe.

Properties of tick saliva

Tick saliva is secreted from the relatively large and
complex salivary glands of ticks during blood feed-
ing. Besides water, saliva comprises a rich mixture of
peptidic and non-peptidic molecules derived from the
blood meal or synthesized by the salivary glands (Ta-
ble 1). The volume and composition of saliva changes
as feeding progresses, reflecting the uptake of blood
(greatest during the final 24–48h of engorgement) and
dynamics of the host response. In large ixodid tick
species, the total volume of saliva secreted during
10 days of engorgement may exceed 1ml [6].

At least seven “functions” can be attributed to
tick saliva: water balance, gasket and holdfast, con-
trol of host responses, dynamics, individuality, mate
guarding, and SAT [7]. Given that ixodid ticks in-
crease their body mass 10-fold to 200-fold during
engorgement, excretion of water and ions extracted
from the blood meal is essential to maintain tick ho-
moeostasis [6]. Ensuring attachment is maintained
during the long feeding period of ixodid ticks, and
that nothing leaks out from the feeding site, is the
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Fig. 1 Major functions of tick saliva and their contribution
to saliva-assisted transmission (SAT). Orange arrows indicate
saliva functions contributing (solid line) or potentially contribut-
ing (dashed line) to SAT of tick-borne pathogens. Blue dashed
line indicates potential for SAT to contribute to feeding suc-
cess of infected ticks (modified from [7])

role of the cement plug formed by polymerization
of glycine-rich proteins secreted after initial attach-
ment [8]. The attachment process severs tissues
including nerves, causing pain and provoking host
hemostatic (vasoconstriction, blood platelet aggrega-
tion, and fibrin clot formation), inflammatory, and
immune responses [9, 10]. Most of the constituents of
tick saliva function to counter these host responses.
Such bioactive tick saliva molecules include analgesic
bradykinin inhibitors, antihemostatic prostaglandins,
vasoconstriction modulators, platelet activation and
aggregation inhibitors, anticoagulants, anti-inflam-
matory proteins, immunomodulators and wound
healing inhibitors [11–16]. As the host responses are
dynamic (changing during the course of tick attach-
ment, preparation of the feeding pool, and engorge-
ment) so too is the saliva, changing in composition
to meet the different needs of attachment, and slow
and rapid feeding phases, and to counter the dynamic
host responses [17–19]. Examination of single salivary
glands of adult female I. ricinus confirmed expression
of different clusters of genes at different times of feed-
ing but also revealed differences between individual
ticks [20]. As feeding ticks often cluster together on
a host, they have the potential to pool their molecular
individuality, which may help them feed [7]. Sharing
of saliva resources has been demonstrated for male
ticks as they “mate guard” their female mate [21].
Although mate guarding is not an option for species
such as I. ricinus that mate off the host, sharing saliva
resources is a possibility for all tick species in SAT of
tick-borne pathogens (Fig. 1).

Saliva-assisted transmission (SAT)

The ability of saliva to enhance the infectivity of an
arthropod-borne pathogen was first described for the
sandfly, Lutzomyia longipalpis, and the protozoan
parasite, Leishmania major [22]. Follow-up of this
discovery led to the finding that non-viremic trans-
mission of a tick-borne virus between infected and
uninfected ticks co-feeding on aviremic guinea pigs
could be reproduced by inoculating the experimental
guinea pigs with the virus mixed with an extract of
uninfected tick salivary glands [23, 24]. The phe-
nomenon was named saliva-activated transmission
which was subsequently corrected to saliva-assisted
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transmission, defined as “the indirect promotion of
arthropod-borne pathogen transmission via the ac-
tions of arthropod saliva molecules on the vertebrate
host” [25]. There is now extensive evidence that saliva
of blood-feeding arthropods (mosquitoes, sandflies,
ticks) affects the transmission of vector-borne viruses,
bacteria, and protozoa in addition to simply acting
as a transfer medium [12, 15, 26–30]. Considerable
evidence relates to the immunomodulatory activities
of tick saliva and, more recently, the dynamics of tick
saliva-induced control of host responses (Fig. 1); how-
ever, tick cement may contribute to SAT (vide infra)
as may the individuality of ticks each with its unique
sialome [7].

This review focuses on pathogens transmitted by
I. ricinus, the vector of numerous human pathogens,
most notably TBE virus and certain species of the Bor-
relia burgdorferi sensu lato (s. l.) complex that cause
Lyme borreliosis [31, 32]. Evidence of SAT is also
considered involving the sympatric and parapatric
species, I. persulcatus (found in parts of northern
Europe and northern to north-eastern Asia), and
the allopatric species of North America, I. scapularis
[33–37].

Tick-borne encephalitis virus

At least 10 viruses (including subtypes and strains)
transmitted by I. ricinus have been recorded in Eu-
rope [38]. The most important of these as a human
pathogen is TBE virus, a species belonging to the
virus family, Flaviviridae [39]. The TBE virus is dis-
tinguished into 3 subtypes: European, Siberian, and
Far Eastern [40] and two additional subtypes, found
in Siberia and the Himalayas, are proposed [41, 42].
In most of Europe, TBEV-Eu is the prevailing subtype,
transmitted primarily by I. ricinus, and small rodents
are the principal natural host [32]. Despite ample
evidence that tick saliva facilitates TBE virus trans-
mission and infection, the mechanism and active
saliva ingredients have not been identified for TBE
virus or any other tick-borne virus (Table 2).

Indirect evidence of SAT of TBE virus was first
provided by experimental studies designed to test
whether non-viremic transmission of Thogoto virus
could be reproduced with TBE virus [23]. Unin-
fected I. ricinus nymphs became infected with TBE
virus when co-feeding (in separate retaining cham-
bers) with infected I. ricinus adult ticks on guinea
pigs that did not develop a patent viremia [45]. Sim-
ilar observations were reported when infected and
uninfected ticks fed together; at the time, this was
referred to as transptialonic transmission [67]. Of
major significance was the demonstration of non-
viremic transmission with natural host species of TBE
virus and I. ricinus (Table 2). Wild-caught field mice
(Apodemus flavicollis and A. agrarius), bank voles
(Myodes glareolus), pine voles (Pitymys subterraneus),
hedgehogs (Erinaceaus europaeus) and pheasants

(Phasianus colchicus), all of which had no evidence
of prior exposure to TBE virus (absence of specific
neutralizing antibodies) were infested with TBE virus-
infected I. ricinus adult females and uninfected I. rici-
nus nymphs (in separate chambers). Although field
mice showed undetectable or comparatively low lev-
els of virus infection, they produced the greatest yield
of infected ticks. By contrast, pine voles produced
high levels of viremia and relatively few infected ticks
because the animals died [46]. The study provided
the first evidence that TBE virus transmission from
infected to uninfected ticks occurs during co-feeding
on natural host species and is independent of the
development of viremia. Indeed, models of TBE virus
survival based on estimates of the basic reproduction
number (R0) indicated that TBE virus cannot survive
in nature without non-viremic/co-feeding transmis-
sion [68].

Co-feeding transmission takes advantage of the fact
that ticks show a typical negative binomial distribu-
tion on their hosts: at any one time, a small number
of individual animals are heavily infested with ticks
whereas the majority of the host population are un-
infested or support low numbers of ticks [69]. More-
over, ticks are gregarious feeders; for example, >90%
immature I. ricinus feed together on the ears of ro-
dents or around the bill of birds [70]. Minimization
of the distance between co-feeding infected and un-
infected ticks, as a result of feeding aggregation, facil-
itates non-viremic transmission [67, 71, 72]. Co-feed-
ing/non-viremic transmission may also aid survival
of TBE virus in natural foci of infection by amplify-
ing low levels of transovarial transmission of the virus
from one tick generation to the next [47]. Survival is
also aided by the ability of hosts immune to TBE virus
to support co-feeding/non-viremic transmission, al-
though at reduced levels compared with transmis-
sion involving non-immune natural host species [71].
Given that non-viremic transmission is facilitated by
SAT, the natural history of TBE virus demonstrates the
crucial role tick saliva molecules play in maintaining
a major human pathogen.

Evidence that TBE virus transmission is enhanced
by factors associated with the salivary glands of un-
infected ticks was first indicated experimentally when
tick-infested guinea pigs were inoculated with a mix-
ture of TBE virus and salivary gland extract (SGE) de-
rived from uninfected partially fed adult Dermacentor
marginatus (Table 2). The SGE was considered to act
as an adjuvant, increasing the number of Dermacen-
tor spp. nymphs that became infected while feeding
on the non-viremic guinea pigs [43, 73]. When guinea
pigs infested with uninfected Rhipicephalus appendic-
ulatus nymphs were inoculated with a mixture of TBE
virus and SGE, there was a 3-fold to 5-fold increase
in the number of infected ticks from animals inocu-
lated with TBE virus and SGE from partially fed I. rici-
nus ticks compared with virus alone or virus plus SGE
from unfed ticks [44]. This was the first clear evidence
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Table 2 Saliva-assisted transmission of human pathogens transmitted by Ixodes ricinus

Pathogen Saliva factora Activity Reference

TBE virus (Far Eastern
subtype)

Dermacentor marginatus adult SGE
day 5

“Adjuvant” activity enhancing transmission to ticks [43]

TBE virus (European
subtype)

I. ricinus female SGE day 5 Enhanced transmission from guinea pigs to ticks [44]

TBE virus (European
subtype)

Co-feeding infected and uninfected
I. ricinus

Non-viremic transmission [45–47]

TBE virus (European
subtype)

I. ricinus female saliva day 6 Enhanced replication in murine spleen dendritic cells ex vivo [48]

Louping ill virus Co-feeding infected and uninfected
I. ricinus

Non-viremic transmission [49]

Borrelia burgdorferi s.s. Co-feeding infected and uninfected
I. ricinus

Non-systemic transmission [50]

Borrelia burgdorferi
s.s.; B. lusitaniae

I. ricinus nymph SGE day 2–3 Enhanced spirochete load in mice [51]

Borrelia afzelii I. ricinus female SGE day 5 Enhanced infection of mice and feeding ticks [52]

Borrelia burgdorferi s.s. I. ricinus female saliva/SGE day 6 Enhanced transmission from mice to ticks [53]

Borrelia burgdorferi s.s. Salp15 Iscap Facilitates transmission from ticks to miceb [54]

Borrelia burgdorferi s.s. Salp15 Iric-1 Facilitates needle infection of immune mice [55]

Borrelia burgdorferi
s.s.; Borrelia garnii

Salp15 Iscap and Iric-1 In vitro protection against complement-mediated killing [56]

Borrelia burgdorferi s.s. Salp15 Iric-1 In vitro suppression of borrelia-induced keratinocyte inflammation [57]

Borrelia burgdorferi s.s. TSLPIc Facilitates transmission from ticks to mice and from mice to ticksd [58]

Borrelia burgdorferi
s.s.; B. garinii

TSLPI Iric In vitro reduction of complement-mediated killing [59]

Borrelia garnii Salp20 In vitro protection against complement-mediated killing [60]

Borrelia burgdorferi s.s. tHRFe Promotes late stage feeding and thereby facilitates tick to host trans-
mission

[61]

Borrelia burgdorferi s.s. Sialostatin L2e Increases level of skin infection following syringe inoculation [62]

Borrelia burgdorferi s.s. Salp25De Facilitates transmission from mice to ticks [63]

Borrelia burgdorferi s.s. BIPf In vitro inhibition of OspA and OspC-induced B cell proliferation [64]

Anaplasma phagocy-
tophilum

Sialostatin L2e Promotes infection of mice by impairing inflammasome formation [65]

Francisella tularensis I. ricinus female SGE day 5 Accelerated proliferation in mice [66]

tHRF tick histamine release factor
aSalivary gland extract (SGE) or saliva collected at specified day of feeding, or specific saliva protein; recombinant proteins Iscap from I. scapularis and
Iric from I. ricinus. Most studies involving specific saliva proteins are with I. scapularis-derived recombinant proteins.
bDirect evidence of Salp15-assisted transmission of B. burgdorferi has only been reported for I. scapularis [54]
cTick salivary lectin pathway inhibitor
dDirect evidence of TSLPI-assisted transmission of B. burgdorferi has only be reported for I. scapularis [58]
eDerived from I. scapularis
fB cell inhibitory protein from I. ricinus

that TBE virus transmission is enhanced by factors as-
sociated with the salivary glands of feeding ticks, and
that these factors may explain the efficient transmis-
sion of TBE virus between infected and uninfected co-
feeding ticks in natural non-viremic transmission.

Attempts to identify the salivary gland factor(s)
assisting TBE virus or any other tick-borne virus have
so far been unsuccessful. A study with Thogoto virus
demonstrated similar SAT dynamics for saliva and
SGE collected from the same individual uninfected
ticks at different days of feeding [74]. Maximum ac-
tivity was observed with saliva at day 6 of feeding
and days 6–8 for SGE. The similar dynamics of SAT
activity are a strong indication that the SAT factor(s)
is synthesized in the salivary glands during feeding

and secreted into the skin feeding site in tick saliva.
Interestingly, SAT of tick-borne viruses has only been
demonstrated with arthropod species that are compe-
tent vectors. Thus, SGE of I. ricinus does not promote
SAT of Thogoto virus (for which I. ricinus is not a com-
petent vector) although SAT occurs with TBE virus [44,
75, 76]. This implies that the mechanism underlying
SAT differs for different vector-virus associations.

Further studies using Thogoto virus provided ad-
ditional insights into the mechanism of SAT of tick-
borne viruses. To examine whether the SAT factor has
a direct or an indirect effect on Thogoto virus, the time
interval was varied between virus inoculation and in-
jection of SGE into the same skin site of experimen-
tal guinea pigs. Similar levels of SAT were observed
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when virus+ SGE were inoculated together compared
with an interval between SGE injection followed by
virus inoculation of 72h or less; when the interval was
96h the level of SAT was halved. In the converse ex-
periment, SAT levels were similar when the interval
between virus inoculation followed by SGE injection
was 0h, 24h, or 48h but was significantly reduced at
higher intervals [77]. Moreover, SAT is a localized ef-
fect rather than a generalized response in the host:
when virus+ SGE were inoculated into different skin
sites of experimental guinea pigs, SAT was not ob-
served. In addition, in vitro and in vivo titrations of
Thogoto virus mixed with SGE showed no effect on in-
fectivity [77]. These observations indicate that SAT (at
least for Thogoto virus) results from the effect of saliva
in the feeding site rather than from a direct effect on
the virus and the beneficial effect, whatever it may be,
lasts for several days. They also suggest some dynamic
variance: virus and SAT factor do not need to be de-
livered to the feeding site simultaneously to be effec-
tive. This window of activity may be significant as tick-
borne virus transmission occurs within 24h of tick at-
tachment, and possibly within the first hour of feeding
[78–80]. The onset of feeding enhances virus replica-
tion in the salivary glands [67, 81, 82]. Once initiated,
tick-borne virus transmission may continue through-
out the feeding period [78]. Hence, tick-borne viruses
may experience a broad spectrum of saliva-mediated
activities in the skin site of tick feeding although SAT
activity has only been reported with saliva/SGE col-
lected at least 4 days after commencement of feeding
(Table 2). In addition, the cement plug may act as
a bolus of infection for both TBE virus and B. burgdor-
feri s. l. Removal of attached infected ticks while leav-
ing the cement cone embedded in the skin resulted in
infection with TBE virus within 1h of attachment and
after 20–22h of attachment in the case of B. burgdor-
feri s. l. and I. persulcatus [83].

The SAT factor(s) promoting Thogoto virus trans-
mission by its principal vector, R. appendiculatus,
appears to be proteinaceous as activity was lost fol-
lowing protease treatment [84]. It remains to be
determined whether these features apply to SAT of
other tick-borne viruses including TBE virus although
it seems likely. Enhanced replication of TBE virus
occurs in murine bone marrow dendritic cells treated
with the feeding-induced saliva protein, sialostatin L2
from I. scapularis nymphs [85]; however, sialostatin
L2 has not been characterized in the natural vector
of TBE virus, I. ricinus. Enhanced virus replication
and survival in dendritic cells treated with saliva of
partially fed adult female I. ricinus is attributed to
saliva-induced modulation of the pro-survival phos-
phatidylinositol 3 kinase (P13)/Akt signal transduction
pathway by an as yet unknown mechanism [48, 86].

In contrast to tick-borne viruses, at least two
SAT factors have been identified for mosquito-borne
viruses. A saliva protein from Aedes aegypti, CLIPA3
protease, promotes replication and dissemination of

dengue type 2 viruses in interferon knockout mice
through cleavage of extracellular matrix proteins; re-
sulting dermal liquefaction is thought to facilitate
virus infection of skin immune cells [87]. In a similar
mouse-mosquito model, a 15 kD A. aegypti saliva pro-
tein, LTRIN, augmented pathogenesis of Zika virus by
interfering with signalling through the lymphotoxin-
β receptor [88]. In cultures of human keratinocytes,
a 34 kD A. aegypti saliva protein of unknown func-
tion enhanced dengue type 2 virus replication [89].
Further studies are needed to determine whether this
saliva protein promotes initial skin infection follow-
ing mosquito-borne transmission of dengue virus.
Progress in identifying SAT factors of mosquito-borne
viruses will hopefully inspire research on the saliva
molecules promoting transmission of TBE virus and
other tick-borne viruses.

Borrelia burgdorferi sensu lato

The bacterial complex, Borrelia burgdorferi s. l., in-
cludes 18 species of which 3 species commonly in-
fect humans causing Lyme borreliosis: B. burgdorferi
sensu stricto (s.s.), B. afzelii, and B. garinii [90]. As
in the case of tick-borne viruses (vide supra), the first
hint that saliva plays an enhancing role in the trans-
mission of B. burgdorferi s. l. was in studies showing
efficient non-systemic transmission of B. burgdorferi
s.s. between infected nymphs and uninfected I. rici-
nus larvae co-feeding on uninfected laboratory mice
[50]. In subsequent studies, experimental mice were
inoculated with a mixture of either B. burgdorferi s.s.
(isolated from I. scapularis) or B. lusitaniae (isolated
from I. ricinus) and SGE prepared from either unin-
fected I. scapularis or I. ricinus partially fed nymphs
(Table 2). The SGE promoted infection of the mice;
the effect was tick-spirochete species-specific [51].
Similar results were observed using B. afzelii isolated
from I. ricinus and SGE from partially fed adult fe-
male I. ricinus [52]. Inoculation of mice with saliva
mixed with B. burgdorferi s.s. (isolated from I. ricinus)
showed the same enhancing effect as with SGE [53].

Studies on B. burgdorferi s. l. were the first to iden-
tify a tick-derived SAT factor, Salp15. This saliva
protein was originally identified as a glycosylated
15kD feeding-inducible protein (at a concentration of
1µg/ml saliva) that inhibits CD4+ T cell activation, the
first I. scapularis protein associated with the immuno-
suppressive activity of tick saliva [91]. The Salp15
binds to the CD4 coreceptor of mammalian T cells,
inhibiting subsequent receptor ligand-induced early
cell signalling, which explains its immunosuppressive
activity and specificity for CD4 T cells [92]; however,
Salp15 also binds to the C-type lectin receptor, den-
dritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN, also known as
CD209), inhibiting Toll-like receptor (TLR)-induced
production of proinflammatory cytokines (including
cytokines induced by B. burgdorferi) and dendritic
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cell-induced T cell activation [93]. The activity of
Salp15 appears long lasting, possibly due to Salp15-
induced upregulation of CD73 (5′-ectonucleotidase)
in regulatory T cells, which increases production of
adenosine, a recognized immunosuppressant [94].

An initial indication that Salp15 might be involved
in SAT was the selective enhancement of salp15 ex-
pression observed in I. scapularis nymphs infected
with B. burgdorferi s.s. [54]. Further studies showed
that Salp15 protected B. burgdorferi s.s. from anti-
body-mediated killing by binding to the outer surface
protein, OspC, of the spirochete. This lipoprotein is
expressed when the spirochete infects the tick sali-
vary glands and during the early stages of vertebrate
host infection [95]. Knockdown of salp15 in infected
I. scapularis markedly reduced the spirochete load
in mice on which the nymphs fed (levels of infection
were similar in the salivary glands of engorged salp15-
repressed and control nymphs). These observations
were replicated using white-footed mice, Peromyscus
leucopus (natural hosts of I. scapularis and B. burgdor-
feri s.s. in North America), even when the mice were
immune to the spirochete. The gene knockdown ex-
periments provide the first direct evidence that Salp15
promotes tick-borne transmission of B. burgdorferi
[54]. Protection of Salp15-immunized mice against
I. scapularis-transmitted B. burgdorferi s.s. provides
further supportive data [96].

Following the discovery of Salp15-assisted trans-
mission of B. burgdorferi s.s. by I. scapularis, other
Ixodes species were investigated. Orthologues of
Salp15 were found in all B. burgdorferi s. l. vector
species including 3 homologues in I. ricinus [97]. One
of these homologues (Salp15 Iric-1) shares 82% ho-
mology with the I. scapularis protein and is highly
expressed at 3 days of feeding. Like Salp15 from
I. scapularis, Salp15 Iric-1 binds to OspC. Mice anti-
body-positive for B. burgdorferi s.s. (strain N40) were
more susceptible to infection with strain N40 prein-
cubated with Salp15 Iric-1 compared with needle
challenge with the untreated strain; however, Salp15
Iric-1 did not facilitate infection of B. afzelii-immune
mice with B. afzelii [55].

Comparison of recombinant Salp15 derived from
I. ricinus and I. scapularis revealed protection of
serum-sensitiveB. garinii andB. burgdorferi s.s. strains
of intermediate sensitivity against complement-me-
diated killing by normal human serum. The effect
was significantly stronger for Salp15 from I. ricinus
compared with I. scapularis [56]. Interestingly, Salp15
Iric-1 binding to B. burgdorferi s.s. OspC conferred
protection against antibody-mediated killing whereas
binding of Salp15 Iric-1 to OspC from B. garinii and
B. afzelii was not protective even though binding
affinities were similar [55]. The I. ricinus Salp15 also
shows an antialarmin effect on human primary ker-
atinocytes in vitro, suppressing inflammation induced
by B. burgdorferi s.s. infection [57].

The differential effects of Salp15 in relation to
complement and antibody-mediated killing may help
explain spirochete-vector species specificity [51]. If
these effects of Salp15 (and possibly other saliva pro-
teins) occur when ticks feed on a natural host or
a human, the ensuing inhibition of cutaneous innate
immunity (including suppression of immune cell re-
cruitment) will most likely promote B. burgdorferi
transmission and infection of the host. Note the ef-
fects will also help the infected tick by suppressing
the undesirable (from the tick’s point of view) host
responses to infection by the pathogen.

Characterization of Salp15-assisted transmission of
B. burgdorferi demonstrates the importance of classi-
cal (antibody-dependent) and alternative (antibody-
independent) complement pathways in vertebrate
host control of the spirochete; however, Ixodes vector
species also interfere with the lectin (antibody-inde-
pendent) complement cascade [58, 59]. The lectin
pathway is activated when the pattern recognition
molecules of the lectin pathway, ficolins and col-
lectins (including mannan-binding lectin), bind to
highly glycosylated pathogen-associated molecular
patterns on the surface of pathogens [98]. Tick sali-
vary lectin pathway inhibitor (TSLPI) is a feeding-
induced 8kD saliva protein first identified in I. scapu-
laris and initially designated P8 [99]. Unlike Salp15,
TSPLI does not bind to B. burgdorferi but instead in-
teracts with the lectin pathway pattern recognition
molecules, inhibiting complement activation and re-
ducing complement-mediated lysis of B. burgdorferi
s. l. [58]. In vitro, TSLPI impairs complement-medi-
ated chemotaxis and phagocytosis of B. burgdorferi
s. l. by neutrophils. Heat-inactivated TSLPI antiserum
substantially reduces the complement inhibitory ac-
tivity of I. scapularis SGE in vitro, indicating that
TSLPI is a dominant complement inhibitor in tick
saliva. Heat-inactivated TSLPI antiserum also reduces
the lectin pathway inhibitor activity of I. scapularis
SGE, showing that native TSLPI is a major inhibitor of
tick-borne B. burgdorferi-mediated complement ac-
tivation through the lectin pathway. Compared with
uninfected ticks, infection of I. scapularis nymphs
with B. burgdorferi s.s. results in significantly higher
TSLPImRNA levels in salivary glands 24h after tick at-
tachment [58]. The timing neatly coincides with tick-
borne delivery of Borrelia into the feeding site. Knock-
down of TSLPI in nymphs reduced the Borrelia load in
infected ticks fed on uninfected mice for 72h. Trans-
mission of B. burgdorferi s.s. to uninfected mice by
TSLPI knockdown nymphs resulted in a significantly
lower spirochete load in skin 7 days postinfestation
and reduced dissemination at 21 days. Similar effects
were observed when infected nymphs were fed on
mice which had been passively administered TSLPI
antiserum [58]. Acquisition of B. burgdorferi s.s. by
I. scapularis larvae was impaired on infected TSLPI-
immune mice and the Borrelia load was reduced in
nymphs moulted from the larvae compared with the
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controls. Results of the TSLPI knockdown experiments
provide direct evidence of TSLI-assisted transmission
of B. burgdorferi s.s. by I. scapularis supported by
abrogation of the effect in TSLPI-immune mice. As
killing of Borrelia by the lectin complement pathway
occurs in the absence of B. burgdorferi antibodies,
the protective effect of TSLPI is most likely a critical
factor in tick-borne B. burgdorferi infection of naïve
humans.

Bioinformatic analysis of Ixodes species indicates
TSLPI comprises a family of saliva proteins [59]. An or-
thologue from I. ricinus, upregulated during feeding,
inhibits the lectin complement pathway and protects
B. burgdorferi s.s. and B. garinii from complement-
mediated killing in vitro. Studies of the role of I. rici-
nus TSLPI in tick-borne transmission of B. burgdorferi
have not been reported to date. Additionally, numer-
ous inhibitors of the alternative complement pathway
have been recognized in Ixodes ticks (including I. rici-
nus), the first of which was named Ixodes scapularis
anti-complement (ISAC). The ISAC-related proteins
(designated the IxAC family) target properdin, a posi-
tive activator of the alternative complement pathway
[100]. The family includes Salp20 (I. scapularis salivary
protein 20) which provides partial protection of com-
plement sensitive B. garinii against lysis by normal
human serum in vitro [60]. Although the IxAC family
may aid complement-sensitive B. burgdorferi strains
during the early stages of skin invasion in mammals,
their role in tick-borne borrelia transmission has not
been explored.

Histamine is an important tick deterrent [101].
Not surprisingly, ticks have evolved saliva molecules
that control host-derived histamine [102]; however,
what is surprising is that certain tick species delib-
erately release histamine into the tick feeding site
[103]. The tick histamine release factor (tHRF) of
I. scapularis appears to aid the late (rapid) phase
of feeding and also to promote B. burgdorferi s.s.
transmission [61]. Expression of this feeding-induced
24kD protein is enhanced in B. burgdorferi infected
I. scapularis nymphs, knockdown of tHRF-impaired
feeding and borrelia transmission. As tHRF is critical
for I. scapularis feeding irrespective of B. burgdorferi
infection, and preferentially expressed 48–72h post-
tick attachment (while B. burgdorferi transmission
begins 36–48h post-tick attachment), it seems likely
that the effect on borrelia transmission is due to the
ability of tHRF to promote engorgement rather than
to a specific interaction as with Salp15 (vide supra).
Indeed, it is thought that tHRF promotes engorge-
ment by enhancing blood flow into the tick feeding
site during the final 24h of feeding when ~50% of the
blood meal is taken up. Conceivably, the vasodilatory
effect of histamine may aid dissemination of borrelia
injected by the tick into the feeding site [61]. As yet,
an I. ricinus orthologue of I. scapularis tHRF has not
been characterized.

Evidence that the cysteine protease, sialostatin L2,
is a SAT factor was first observed following syringe in-
oculation of I. scapularis sialostatins and B. burgdor-
feri s.s. into the skin of mice. In the presence of
sialostatin L2, the number of spirochetes in the skin
increased almost 6-fold, 4 days post-inoculation,
whereas sialostatin L had no effect [62]. Sialostatin
L2 does not bind directly to spirochetes and appears
not to affect B. burgdorferi s.s. growth in culture [62].
In borrelia-infected murine dendritic cells, sialostatin
L2 inhibited borrelia-induced chemokine produc-
tion and Toll-like receptor signalling pathways [85,
104]. Thus, sialostatin L2 may assist B. burgdorferi by
suppressing the pathogen-induced inflammatory re-
sponse. An orthologue of sialostatin L2 has not been
reported for I. ricinus although a putative orthologue
has been recorded in I. persulcatus [105].

Most SAT factors are considered in relation to
pathogen transmission from infected ticks to a sus-
ceptible vertebrate host [106]; however, some saliva
proteins appear to aid in the acquisition of the
pathogen by uninfected feeding ticks. One such
protein is Salp25D, an antioxidant protein identified
in both the salivary glands and midgut of I. scapularis
[63]. Knockdown of salivary gland Salp25D dramat-
ically reduces acquisition of B. burgdorferi s.s. by
feeding I. scapularis nymphs and larvae but does not
affect spirochete transmission from infected nymphs
to uninfected mice. Ticks failed to acquire B. burgdor-
feri when fed on mice immunized against Salp25D.
In vitro, oxygen radicals produced by activated neu-
trophils reduce the viability of B. burgdorferi, whereas
in the presence of recombinant Salp25D or adult
I. scapularis saliva, viability was unaffected. Thus,
it appears that Salp25D assists in transmission of
B. burgdorferi from infected mice to uninfected ticks
by protecting borrelia from the toxic products of
neutrophils activated by tick feeding.

An 18kD B cell inhibitory protein (BIP) identified in
the salivary glands of I. ricinus, inhibits B lymphocyte
proliferation induced by B. burgdorferi outer surface
proteins, OspA and OspC [64]. As these lipoproteins
play essential roles in B. burgdorferi infection of the
tick midgut and in tick-borne transmission to a verte-
brate host, respectively, BIP may act as a localized SAT
transmission factor facilitating both tick-borne trans-
mission and tick acquisition of the spirochete.

A number of other saliva proteins, mainly from
I. scapularis, affect B. burgdorferi transmission. These
include subolesin [107, 108] and calreticulin [109].
Their effect appears to result from their critical role in
tick physiological processes rather than acting as SAT
factors per se. Histone H4 isolated from I. ricinus SGE
has a dissociating effect on human primary fibrob-
last and antimicrobial properties although it does not
affect B. burgdorferi s.s. [110]. These characteristics
suggest that histone H4 plays a role in formation of
the tick feeding pool within the skin and thereby may
aid borrelia transmission.
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Other human pathogens transmitted by Ixodes
ricinus

Louping ill virus, a close relative of TBE virus, causes
disease in sheep and red grouse (Lagopus scotica) in
the UK, and is an occupational health risk for vet-
erinarians, game keepers, and farm workers [111].
The discovery that mountain hares (Lepus timidus)
support non-viremic transmission of louping ill virus
(even when the hares have antibodies to the virus),
identified the reservoir host of this virus [49]. This
has led to large-scale culling of mountain hares on
Scottish moorland managed for red grouse, which has
given rise to considerable controversy [112].

The intracellular bacterium, Anaplasma phagocy-
tophilum, has long been known as the etiological
agent of tick-borne fever affecting ruminants and was
only recognized relatively recently as the pathogen
causing human granulocytic ehrlichiosis [113]. Al-
though studies have shown that sialostatin L2 from
I. scapularis plays a role in transmission of A. phago-
cytophilum, the role of I. ricinus saliva proteins in
A. phagocytophilum transmission, including ortho-
logues of sialostatin L2, has not been reported (Ta-
ble 2).

Bartonella spp. are linked with an increasing num-
ber of human diseases of which the most common
are the multiple clinical symptoms associated with
cat scratch disease, ocular infections, and endocardi-
tis caused by B. henselae. Cat fleas are the principal
vector of B. henselae; however, I. ricinus is also a vec-
tor of this intracellular bacterium although the epi-
demiological significance of tick-borne transmission
is unknown [114]. A serine protease inhibitor from
I. ricinus (IrSPI) affects B. henselae salivary gland infec-
tion and tick feeding success [30]. The role of IrSPI in
transmission of B. henselae has not been determined.

The etiological agent of tularemia, Francisella tu-
larensis, is an intracellular bacterium endemic in
European rodent populations and hares (Lepus eu-
ropaeus), and transmitted directly by contact and
inhalation, and by ticks [115]. Mice injected with
a mixture of the live vaccine strain of F. tularensis
and SGE supported accelerated proliferation of the
bacterium in skin and other target organs (Table 2).
As Th1-dependent cell-mediated immunity is critical
for protection against infection with F. tularensis, the
observed SGE-induced polarization to a Th2 cytokine
profile most likely benefited the tularemic bacteria
[66].

Future developments

Just as sandfly saliva-leishmania was the forerunner
to discoveries of the role of tick saliva in tick-borne
pathogen transmission (vide supra), so vaccine de-
velopment using sandfly saliva proteins to control
leishmaniasis is pioneering a new approach to con-
trolling arthropod-borne pathogens [116, 117]. For

mosquito-borne pathogens, this has developed as far
as a phase 1 clinical trial in humans of a vaccine
comprising 4 mosquito-derived saliva antigens [118].
Protection against lethal tick-borne challenge with
TBE virus by immunization of mice with a tick cement
protein, demonstrates the potential of this approach
for controlling tick-borne pathogens [119]. Tick saliva
proteins that facilitate pathogen transmission have
been identified as candidates for development of
anti-tick vaccines [30, 120]. An alternative strategy is
to target tick proteins that have a significant physio-
logical role. For example, salivary gland aquaporins
provide water transmembrane channels crucial for
water homeostasis during blood feeding. Survival of
I. ricinus larvae fed on rabbits immunized with a vac-
cine comprising recombinant I. ricinus aquaporin
was significantly reduced [121]. For leishmania vac-
cine development, the most promising results involve
a dual pathogen plus vector vaccine design [117].
Clearly there is much to do in the development of
new, effective and efficient vaccines for controlling
ticks and important major tick-borne infections. At
least it is now realized that “saliva is mightier than
the needle”—future vaccine development needs to
include challenge with infected ticks and not the typ-
ical needle and syringe inoculation of the challenge
pathogen [122–124].
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