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Abstract:  

At 06:50 on Monday 14
th

 August 2017, a hillslope on the Freetown Peninsula, Sierra Leone, 

collapsed, sending 300,000 m
3
 of debris into the flooded valley below. As this debris mixed 

with floodwater it became a sediment-laden flood which entered a drainage channel and 

travelled 6 km to the coastline. The event destroyed nearly 400 buildings, claimed the lives of 

an estimated 1,100 people and affected approximately 5,000 people. The mechanism was a 

two-stage rainfall-triggered landslide followed by a channelised debris-laden flood. The 

processes were similar to the nearby 1945 event in Charlotte, which killed at least 13 people. 
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Geomorphological mapping has identified evidence of hundreds of other large landslides that 

occurred before modern records, providing an appreciation of the slope processes affecting 

the Freetown Peninsula.  

Following the 2017 Regent Landslide, rehabilitation of the affected area involved a risk 

reduction strategy that centred on reducing population exposure. These events are a reminder 

that the steep slopes and valleys across the Freetown Peninsula are highly susceptible to 

rainfall-triggered landslides which, given the topography have a high propensity to generate 

high intensity landslides and debris-laden floods. Future urbanization must consider whole-

catchment management, flooding and slope engineering issues to provide lasting landslide 

risk reduction. 

Main body of paper: 

Sierra Leone is situated on the west coast of Africa and shares borders with Guinea to the 

north and Liberia to the south. The capital city of Sierra Leone, Freetown is located on a 

mountainous peninsula in the far west of the country on the Atlantic Ocean Coast (Figure 1). 

The peninsula is approximately 38 km long and 16 km wide, with a topographic relief of over 

700 m. Dense forest covers the highest areas of the peninsula, while many of the lower slopes 

have been deforested leaving a cover of sparse forest, grasslands and urbanised built-up 

areas. The city of Freetown itself is located at the northern tip of the peninsula, bounded by 

the Atlantic Ocean to the west and the deep natural harbour at the mouth of the Sierra Leone 

River to the north and east.  

Part of the Freetown Peninsula was declared a forest reserve in 1916. The forest reserve area 

covers many rainwater catchments which are vital for the drinking water supply to Freetown 

(including the site of the 2017 Regent Landslide). If protected, the city’s reservoirs, which are 

located across the peninsula, have enough capacity to supply Freetown with clean water. 
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However, the forest reserve is seriously threatened by deforestation for charcoal burning, 

farming, quarrying and construction. Rapid urbanisation in Freetown has contributed to the 

development of informal, unplanned settlements. Internal displacement during the civil war, 

and migration in search of employment opportunities in Freetown, has further contributed to 

the growth of the city’s population (Arup et al. 2018). 

2. Geology, climate and natural hazards 

2.1 Geology 

Bedrock geology across the Freetown Peninsula is dominated by the Freetown Layered 

Complex, a 65 km long, 14 km wide, 7 km thick tholeiitic intrusion which intruded the West 

African Craton during the Early Jurassic ~200 Ma (Callegaro et al 2017; Chalokwu et al. 

1995; Chalokwu, 2001). The intrusion has an arcuate outcrop towards the west and extends 

out under the Atlantic Ocean. It is composed of a layered complex of gabbro, norite, troctolite 

and anorthosite. The igneous layering dips southwest and is transected by several steeply-

dipping late faults, with both NE-SW and WNW-ESE trends (Umeji 1983). The bedrock 

geology of Sierra Leone is dominated by Archaean basement, formed between 3.5 and 2.8 Ga 

(Rollinson, 2016).  The western margin of that cratonic block, along the coast of Sierra 

Leone, is marked by Proterozoic terranes that were most probably accreted at the end of the 

Neoproterozoic (de Waele et al. 2015). The Freetown Layered Complex was intruded into 

this margin at c. 200 Ma (Callegaro et al. 2017) as part of the voluminous Central Atlantic 

Magmatic Province (CAMP). Finally, the Bullom Group marine and estuarine sediments 

were deposited unconformably onto the coastal strip of Sierra Leone during the Cenozoic 

(Dixey, 1922; Williams, 1978; Morel, 1979; MacFarlane et al., 1979; MacFarlane et al. 1981; 

Umeji, 1983; Chalokwu, 2001).  
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The present-day topography is the product of a combination of rock weathering processes 

during the Quaternary when a thick saprolite soil mantle developed, and periods of erosion of 

soil and bedrock on slopes by landslides. Laterites consisting of ferricrete surfaces formed at 

the foot of slopes, with recent marine and river alluvium along the coast and in river tracts 

(Fookes, 1990).  

2.2 Geomorphology 

The topography of the central part of the peninsula is dominated by steep hillslopes, ridges 

and valleys. Valleys in the mountain region are deeply incised and steeply sided, with a 

dense, though diminishing, tree cover. The drainage pattern is strongly influenced by a series 

of NE-SW orientated parallel mountain ridges (Dixey 1922) and two main NW-SE orientated 

valleys, probably associated with major unloading joint systems, and bedrock faults 

respectively. Rivers and groundwater pathways have exploited the mechanically weaker 

(more fractured and deeply weathered) materials that occur along these features. Where the 

rivers reach the coastal platforms or the flat embayments on the peninsula, they become 

sharply entrenched but the hard lateritic crust confines the rivers to narrow, steep-sided 

valleys (Wells, 1962). There are several man-made reservoirs (Guma Dam No. 1 and No. 2, 

Tacugama, Bathurst) that exploit the elevated valleys to supply water and hydropower to 

Freetown (Williams, 1965). Dixon and Robertson (1970) provide a review of the weathered 

tropical soils encountered during the construction of the Guma Dam. 

2.3 Climate 

Sierra Leone has a humid, tropical climate and a seasonal rainfall pattern that peaks between 

July and September (McSweeney et al., 2010). Recently, periods of drought have occurred 

due to the delayed onset of the monsoon rains. When the heavy rain has arrived there has 

often been extensive flooding (Tarawalli, 2012). This rainfall season is largely controlled by 
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the movement of the tropical rain belt, also known as the Inter-Tropical Convergence Zone 

(ITCZ), which oscillates between the northern and southern tropics over the course of a year 

and affects Sierra Leone when in its northern position. The ITCZ produces the West African 

Monsoon, resulting in exceptionally high coastal rainfall during the wet season. 

2.4 Natural hazards 

The geology, topography, and physical location of Freetown make it prone to seasonally 

recurring natural hazards, chiefly flooding and landslides (Arup et al. 2018). Flooding in 

Sierra Leone is most common in the rainy season between May and November. While 

flooding occurs across Sierra Leone, flood events in Freetown can be particularly damaging 

as the steep terrain with narrow incised gulleys can cause rapid flash flooding. These high 

energy, rapid flows can cause substantial destruction and pose a significant threat to life.  

 2.4.1 Landslide hazard 

Landslide hazards on the Freetown Peninsula are frequent and landslide hazard is widely 

recognised by government and to a lesser extent by the resident population (Freetown City 

Council, 2014). Landslide types include deep-seated rotational slides, translational slides 

which typically initiate as debris slides and develop into debris flows, rock falls and single 

boulder rolls (Cruden and Varnes 1996; Thomas 1998). Some apparent rock outcrops are 

merely the projecting tip of large residual blocks embedded in the weathered mantle and 

these can be distinguished from displaced boulders by the orientation of the gabbro layering. 

Whilst these largely remain in situ some creep is inevitable on steeper slopes (Thomas, 1994).  

Geomorphological evidence of old translational slides is widespread on the slopes around 

Freetown (Thomas, 1994). Detachment of the slide mass along the bedrock-soil interface, 

often leaves a relatively fresh bedrock scar, which is recognisable on high-resolution aerial 

photographs and digital elevation models by absent or sparse forest cover and a dark grey 
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reflective surface. In the 1970s and1980s M. Thomas mapped several hundred slide scars 

(Figure 1) in the central highlands from 1:12,500 scale aerial photo interpretation with some 

field observations to ground truth remote assessments (Thomas, 1998).  

On the Freetown Peninsula, colluvium covered slopes tend to fail at angles of >26° (Thomas, 

1983; 1998). The thickness of soil and rock weathering profiles is locally affected by bedrock 

texture, geochemistry and mechanical discontinuities (joints, faults, and shears) and the 

degree/depth of laterisation and saprolite development. The landslide material tends to consist 

of debris: a mix of laterite, fine and coarse soils and weathered rock corestones. Chinsman 

(1977) investigated the geotechnical implications of unfavourable kinematic relationships 

between bedding (igneous layering), joints/fractures and major faults in north east Freetown. 

Slope parallel sheet joints are a commonly observed feature at landslide sites in other 

tropically weathered igneous terrains, such as in Hong Kong, and impart a structural control 

on slope instability (Parry, 2016).  

Table 1 lists significant landslide events which have affected Freetown. One notable example 

is the 11
th

 August 1945 Charlotte Landslide, which occurred in Charlotte Village near 

Bathurst, in the Orugu Valley. This landslide was triggered following significant rainfall 

amounting to more than 1,000 mm over a period of five days, culminating in approximately 

400 mm of rainfall in the 24 hours preceding failure. The landslide is noted to have resulted 

in at least 13 fatalities and partially blocked the Orugu Valley, causing flooding.  

3. The Regent-Lumley Disaster 

On the morning of Monday 14th August 2017, a major landslide occurred in the Regent 

ward, Western Area Rural, Freetown. The combined effects of the landslide and flooding 

resulted in one of the largest natural disasters to affect Sierra Leone in the last century. No 

natural disaster anywhere in the world claimed more lives in 2017. The event sparked an 
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international response, which included the activation of the International Disaster Charter and 

a World Bank-led Post-Disaster Damage and Loss Assessment (DaLA) (World Bank, 2017).  

The rock-debris slide in Regent and ensuing debris flow is referred to as the Regent 

Landslide, whilst the rock-debris slide, debris flow, flooding and ensuing effects were often 

referred to in the press as the Regent-Lumley Disaster. The river which ephemerally flows 

down the channel between Regent and Lumley is called the Babadorie River and hence the 

valley is referred to as the Babadorie Valley. 

3.1 Sequence of events 

The following presents a summary of the sequence of events which led to and included the 

Regent Landslide. The interpretation of events is compiled from eyewitness accounts, 

photographs taken immediately following the disaster, aerial photography, satellite imagery, 

and engineering geological and geomorphological fieldwork carried out between August 

2017 and April 2018 by Arup and the British Geological Survey (BGS) for the World Bank 

and United National Office for Project Services (UNOPS). Figure 2 presents an overview of 

the 6 km long hazard footprint. 

3.1.1 Precursors to failure 

Precipitation totals in Sierra Leone were above average during the 2017 rainy season. The US 

National Weather Service’s Climate Prediction Center states that 1040 mm of rain fell in 

Sierra Leone between 1
st
 July 2017 and 14

th
 August 2017 – three times more than expected 

for the same period during a typical rainy season. Overnight on Sunday 13
th

 August – 

Monday 14
th

 August 2017, severe rainfall caused significant flooding in Regent and in the 

uppermost parts of the Babadorie Valley. The US National Oceanic and Atmospheric 

Administration (NOAA) Africa Rainfall Climatology Version 2.0 (ARC2) model reported 

total rainfall anomalies of up to 100 mm more than normal for the period 10
th

-16
th

 August 
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2017. This equates to almost 200% of the normal rainfall totals for the period. On 14
th

 August 

2017 the NOAA ARC2 satellite recorded 25-50 mm rainfall across the area encompassing 

Freetown (Arup et al. 2018). Accurate rainfall time series data are not available for the 

Freetown Peninsula area, making the identification of location-specific values not possible. 

Flooding in Regent and along the Babadorie Valley at this time was such that some people 

were already being forced to abandon their properties for their own safety. Many properties 

in Regent are constructed across or near to natural drainage lines and many have concreted 

yards and driveways. There is little to no provision for surface water management and hence 

such surface runoff here is erosive and can be rapid. 

3.1.2 Initiation 

The Regent Landslide initiated on a north-north easterly facing slope, at approximately 06:50 

on Monday 14
th

 August 2017 (Figure 3). During post-failure inspection water seepages were 

observed draining from open joints on the upper parts of the landslide scar. The compound 

effect of softening of clay-infill within discontinuities, loss of pore suctions due to saturation 

under an extreme rainfall event, and increased pore-water pressures on key joint sets within 

the gabbro rock mass are considered to be key factors which led the slope to fail. The 

landslide is understood to have occurred in two phases, as indicated by eyewitness accounts. 

3.1.3 First stage translational rock-debris slides 

Two clear failure mechanisms can be identified from the upper part of the landslide scar 

(Figure 4): 

(A) In the upper scar area, the fracture orientation facilitated wedge-type sliding failure 

mechanisms (recognised in the immediate aftermath of the landslide by Usamah, 2017), 

along weathered joints within the gabbro, which released large angular blocks of variously-

weathered gabbro (Figure 5); 
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(B) On the lower part of the upper scar the joint pattern is different, with highly persistent and 

broadly undulating slope-parallel sheet jointing lined with softened clay infill within 

partially-weathered gabbro being the principal discontinuity set, favouring a more planar 

translational sliding mechanism.  

The exact sequence of the reported two-stage failure remains unclear as it was not caught on 

camera and visibility was low due to the morning mist. It is difficult to infer which of the 

above processes occurred first, or indeed if there was some preliminary failure, evidence of 

which was subsequently eradicated by the catastrophic main failure of the slope. Broadly, the 

failure mechanism is most accurately characterised as a deep-seated translational rock slide 

which displaced a mantle of variously weathered gabbro, weathered saprolite and residual 

soil and trees with it. Unlike many of the historical failures observed on the Freetown 

Peninsula, the main failure surface was, in places, below the bedrock-soil (regolith) interface 

which was a contributing factor to the large volume of debris released by the landslide.  

The discovery of in situ remains of a house foundation in the mid-slope area, below a 

prominent bench feature located at approximately 350 mAMSL (Figure 6) points to a slope 

failure contained entirely within the upper slope area, and rules out a basal or toe failure. 

Quite why the failure broke out at mid-slope and formed a bench feature rather than 

continuing to some deeper level remains unclear. Broad ~10 m wavelength undulations with 

an amplitude of ~1 m along the controlling surface-parallel gabbro sheet joints may have 

brought the failure plane closer to the ground surface here, causing it to daylight in the slope. 

The debris then ran out and stripped off the slope vegetation and topsoils from the lower 

slope but did not fail through it (Figure 7).  
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3.1.4 Second stage transition to channelised debris flow 

From approximately halfway down to the foot of the slope, material was no longer falling and 

sliding from the hillside by wedge and translational mechanisms, but processes shifted to 

sliding, rolling and flowing over the ground surface. Once this vast volume of material 

reached the lower parts of the slope, it mixed with the gathering floodwaters at the foot of the 

slope. The flooding here would have been locally static, accumulating in the natural 

topographic depressions in this part of Regent. Some of the floodwaters would have 

continued to flow rapidly from east to west down the Babadorie Valley and out to sea.  

At this point along its path the landslide began to display predominantly flow-like behaviour 

with debris and large boulders entrained in a dense slurry. Internal deformation (abrasion) 

within the slurry further disaggregated weak weathered rock particles and water content was 

sustained by incoming surface water. This sort of debris flow commonly develops when 

landslide debris mixes with surface runoff (Iverson, 1997). The transition from sliding to 

flow-like behaviour can occur rapidly (Santi et al., 2011).  

As the debris flow became channelised it gained mass and greater mobility due to scour 

erosion of river bank deposits and entrainment of debris picked up from the river bed. The 

velocity of such debris flows can be as high as 15 m/s (Hungr et al., 2001). At this point, the 

path of the debris flow was controlled by the alignment and confinement of the east-west 

trending Babadorie Valley. 

Due to the presence of natural pinch-points in the Babadorie Valley, it is probable that the 

channel may have, at times during the event, become partially blocked or ‘choked’ by 

boulders, trees or other entrained debris. The occurrence of temporary dams would have 

permitted the build-up of material until such a time that the blockage burst suddenly, 

releasing a further surge of fast-flowing debris along the channel. These natural pinch-points 
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would also have facilitated acceleration of the flow in places. These factors may account for 

the extent and scale of building damage and devastation as far as 3 km downstream along the 

channel in Kamayama. 

3.1.5 Third stage: debris-laden flooding 

The destructive force of the debris flow would have gradually reduced from east to west as its 

load was deposited, the topographic gradient reduced, and the floodplain widened. By the 

time the debris flow reached Lumley, it would have resembled a large, relatively fast flowing 

flood (compared to what might be a typical seasonal flood in the channel). The floodwaters 

then flowed out into the Atlantic Ocean, depositing their remaining load as a sediment plume, 

which can be clearly seen in post-event satellite imagery (Figure 2). 

4. Causes and mechanisms 

While there were a significant number of properties built into the pre-failure slope profile, 

and these were generally facilitated by the cutting of a construction platform into the 

hillslope, it is believed that these works were not a major contributing factor to triggering the 

landslide. This is because the landslide has liberated much debris of intact, partially-

weathered gabbro, indicating a deeper failure surface than could be linked to shallow building 

cuts on the slope. Construction was limited to the lower half of the slope, which is not the 

source for the majority of the landslide debris as some foundations remain in situ. 

4.1 Discontinuities within the rock mass 

The bedrock geology in the landslide source area is olivine-rich layered gabbro, with layers 

dipping between 20 and 45° to the southwest. The rock mass also contains basalt dykes, some 

oriented parallel to the slope. The bedrock has been altered in the upper 10 m, producing 

fresh gabbro core stones typically surrounded by a rind of extremely weak to very strong 
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rock. This rind disaggregates to loose soil with little mechanical agitation. Material between 

corestones contains concentric layers of strong red iron cements and low strength (stiff) clay.  

The first stage landslide mechanism involved a combination of translational (planar) and 

wedge sliding along discrete pre-existing bedrock discontinuities, principally weathered sheet 

joints. The gabbro layering is not a significant structural control on the landslide mechanism 

on this north facing slope as the rock is tight along layers which are differentiated by slight 

mineralogical differences (olivine content). The main rupture surface for the Regent 

Landslide was 5-10 m below ground level, making it a deep-seated movement. This main 

failure surface follows a persistent undulating joint set with variable dips of between 20 and 

45° to the north-northeast, parallel to the slope face (Figure 6). This controlling basal 

discontinuity may have effectively daylighted at the mid-slope, forming the wide bench 

feature evident in the landslide scar. The joint characteristics largely control rock mass 

strength in high intact-strength rocks such as gabbro and provide an indication of the 

weathering processes. The characteristics of the important joint sets were inspected in the 

main backscarp. The rock materials along the joint surfaces are heavily altered by weathering 

and display both red and white discolouration. The presence of kaolinite may indicate that the 

gabbro along these joints was initially altered by hydrothermal flow when the Freetown 

Layered Complex was emplaced. Subsequent supergene weathering exploited and further 

weakened these joint planes. The rock joint material is low strength, such that 1-20 mm thick 

slabs can be readily dislodged from exposed surfaces by hand, and easily broken by heavy 

hand pressure and disaggregated to dust between thumb and forefinger. Joints located 5-10 m 

below the pre-slide ground surface are filled with clay (Figure 8) and several types of 

secondary mineralisation occur as soft white kaolin and hard red iron oxide. The geological 

origin and history of all the fracture sets and their infill materials is unclear and the role of 
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previous phases of slope movement, or possible tectonic and/or hydrothermal activity could 

be important for engineering geology across the Freetown Peninsula. 

4.2 Engineering properties and behaviour 

Soil classification and mineralogical testing was carried out on bulk samples collected from 

the debris of the Regent Landslide at the BGS laboratories in Nottingham. Initial particle size 

distribution analyses on the landslide debris (matrix, excluding cobbles and boulders) 

returned 31% gravel, 36% sand, 19% silt and 14% clay. PSD analyses were done to British 

Standards (BS1377:1990) and with X-ray sedigraph for the fine fraction. Given the 33% fines 

content the landslide debris should resemble a fine-grained well-graded engineering soil, but 

inclusion of extremely strong gabbro boulders and cobbles, affects its field-scale properties. 

The accumulated soil has reasonably poor drainage properties and is prone to development of 

excess pore water pressures when saturated and sheared (undrained loading), explaining the 

‘quicksand-like behaviour’ described by local geologists on the ground in the hours after the 

landslide.   

Mineralogical testing of the clay fraction of the landslide debris by XRD identified 14% 

halloysite group clays with natural moisture contents of 29-31%. Halloysite clays have a 

hollow needle-like morphology that is microstructurally metastable and linked with 

‘collapsible soil’ behaviour, whereby saturated soils can yield very suddenly when rapidly 

loaded (Moon, 2016). This may account for some aspect of the apparent rapid loss of shear 

strength that occurred along surface-parallel joints during the first stage translational and 

wedge failures and the second stage transition to flowing behaviour of the slide mass. 

These values should be treated with due caution as the data is based on only a very small 

number of samples. Furthermore, hydrated halloysite clay morphologies are highly sensitive 

to environmental and storage conditions which can occur between the field (Sierra Leone) 

ACCEPTED M
ANUSCRIPT

 by guest on April 23, 2019http://qjegh.lyellcollection.org/Downloaded from 

http://qjegh.lyellcollection.org/


and laboratory (UK). Other thick clay seams were identified in the bedrock 2 km to the west 

of the Regent Landslide in the Babadorie Valley. Atterberg Limit tests found these to be high 

to very high plasticity clays with NMC of 48-55%. XRD returned 28% halloysitic clays. 

Further XRD, SEM and geotechnical characterisation work is being carried out by BGS to 

further ascertain the material properties and behaviour.  

The identification of clay filled fractures in the gabbro host rock is highly significant to slope 

stability and ground engineering projects on the Freetown Peninsula, due to the marked 

reduction in shear strength and rock mass strength these features introduce. Local sources 

suggest the nearby Sugar Loaf Mountain gets its name from a colloquial understanding of this 

problematic geotechnical behaviour, whereby hard granular soils rapidly disintegrate to a 

‘syrup-like slurry’ on wetting.  

4.3 Deforestation 

Comparison of 2005 and 2017 Google Earth imagery highlights the marked reduction in the 

density of slope vegetation in Regent. Burnt tree stumps and long grass were observed at the 

top of the ridge behind the rear scarp, indicating that the ridge slope has undergone recent 

deforestation. Significant deforestation is also apparent on the southerly side of the slope 

behind the Regent Landslide (Usamah, 2017). Deforestation increased the susceptibility of 

the slope to failure in two ways: firstly, by reducing the canopy protection and water-uptake 

associated with dense tropical forest cover, meaning increased seepage of rainwater into the 

ground; and secondly, by removing the mechanical stabilising effect offered by tree roots, 

which can be particularly beneficial for slope stability in weathered tropical soils. The 

stabilising effect of tree roots is evidenced by the retention of a large block of ground on the 

eastern flank of the landslide scar, which coincides with the elevation at which dense forest 
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cover is present on the adjacent hillslope. This area is referred to as ‘The Return’ (marked on 

Figure 3 and Figure 4).  

Despite the obvious negative effects of deforestation on slope stability at the Regent 

Landslide, it should be noted that several other smaller landslides also occurred at around the 

same time in forested areas. One of these was located on the back-slope of the Regent 

Landslide and is shown schematically on Figure 7. Historically, landslides have occurred 

across the Freetown Peninsula in areas unaffected by deforestation (Table 1; Figure 1). This 

serves to illustrate that landslides are a natural part of terrain evolution on the Freetown 

Peninsula and that although more recent deforestation unquestionably has a negative effect on 

slope stability, it is not the only factor which increases the landslide susceptibility. The 

answer to the question of whether the Regent Landslide would have occurred were it not for 

deforestation on the steep hillslopes near Regent is not a straightforward one. Quantitative 

investigation of this potential effect by experiment or test, and process modelling, is 

necessary to check whether this assessment is correct or not. 

5. Impacts and losses 

The Regent-Lumley Disaster claimed the lives of approximately 1,100 people and directly 

affected more than 5,000 people. Those who survived the disaster were, in many cases, left 

without family, homes, possessions, savings, transport, jobs, schools and general livelihoods.  

The impacts of the disaster varied along the length of the Babadorie Valley. In Regent, 

despite larger and apparently more structurally robust buildings, the number of fatalities and 

proportion of buildings destroyed was highest. This can be attributed to the devastating high-

energy nature of the landslide which affected this area. To the west, although further from the 

source of the landslide, damage to properties in the channel near Kamayama was still 

extensive (Figure 9), which demonstrates the debris-laden nature of the flooding here. In 
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Lumley, 6 km from the Regent Landslide, the effects of the disaster were still significant due 

to increased vulnerability of the population in these areas, many of whom live in informal 

buildings. 

In total, the disaster was assessed to have caused approximately $31M USD damage and loss 

(World Bank, 2017), the majority of which was in the housing sector (approximately $14M 

USD) followed by both social protection and healthcare sectors (each approximately $5M 

USD). It has been further estimated that a total of approximately $82M USD is required to 

support short, medium and long-term recovery efforts following the Regent-Lumley Disaster. 

6. Rehabilitation 

Rehabilitation works at the site of the Regent Landslide have been ongoing since April 2018 

and have largely comprised the regrading and management of the slopes and watercourses at 

the foot of the Regent Landslide in Regent (Figure 10). Moving forward, landslide risk in this 

area will be managed by reducing exposure by preventing rebuilding and resettlement in the 

Babadorie Valley, much of which, including the affected areas in Regent, is already 

designated as a National Forest Reserve. Managing risk by more traditional hard-engineering 

approaches which typically seek to reduce hazard (by rock-bolting or netting etc.) was not 

appropriate given the urgent need to implement risk reduction measures at the site prior to the 

2018 rainy season and other logistical and financial considerations. The site has also been 

much re-planted which will act to both deter resettlement and promote the local stability of 

the reprofiled channels. Much of this rehabilitation work and replanting was done by the local 

population, many of whom were affected by the disaster. 

7. Conclusions 

The Regent-Lumley Disaster comprised a three-stage hazard event: first stage translational 

failures through partially weathered gabbro in mountainous uplands; second stage transition 
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to channelised debris-flows on the lower slopes above partially flooded valleys; and third 

stage debris-laden channelised flooding. The large volume of material involved may be 

attributed to a deeper-seated failure through partially-weathered gabbro rather than at the soil-

bedrock interface as has historically been observed in Freetown. This mechanism liberated 

extremely large mega-boulders that contributed to the destructive force of the first and second 

stage processes. The transition to debris-flowing may have been further encouraged by the 

presence of highly collapsible halloysitic clays, however this remains the subject of further 

investigation. Downstream from the Regent Landslide, the energy of the flow may have been 

maintained and surged by the formation of temporary debris-dams at natural pinch-points in 

the river valley. 

This event shares similarities to the 1945 Charlotte Landslide which resulted in 13 fatalities. 

Perhaps the most striking difference between the two events is not the nature of the hazard, 

but the increase in population exposure within the landslide footprint due to urbanization and 

population growth. Looking forward, climate change may well bring more intense seasonal 

rainfall patterns, and population exposure is set to rise in Freetown, increasing landslide risk 

further. Future work must focus on the implementation of practical, effective and 

implementable risk reduction strategies across the Freetown Peninsula including improved 

understanding of how and where fractures affect slope stability on natural and man-made 

slopes. 
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Table 1: Recorded landslide events in Freetown. Based on compilation of media reports; 

Thomas (1998), his unpublished work and updated by BGS in 2017 (Arup et al. 2018). 

Date   Location Impact 

Pre – 1945 (ages unknown) Western Area, includes 

Salpon and Funima 

≥415 landslide scars, impact 

unknown. 

11
th
 August 1945 Charlotte Community, near 

Bathurst 

At least 13 fatalities. 

1963 Guma Dam, Guma valley  No fatalities, construction 

delays. 

2004-2014 Freetown  8 events, no fatalities 

2008 Freetown 1 fatality 

May 2009 Freetown 2 fatalities 

13
th
 August 2009 Kissy Brook 7, 15 injuries  

September 2010 Mountain Cut 14 fatalities,  

3
rd

 August 2011 Moyiba 1 fatalities, 4 seriously 

injured. 

8
th
 August 2013 Wallace Jonson Street 15 fatalities  

4
th
 May 2014 Grey Bush neighbourhood  5 fatalities 

August 2014  Bridge collapse 8 fatalities 

13 October 2014 Oloshoro community, Murray 

Town 

4 fatalities 

14
th
 August 2017, ~06:50 

[Regent Landslide] 

Regent – Lumley. Babadorie 

Valley.   

1,100 fatalities, 5,000 

affected.  
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Figure 1: The Freetown Peninsula, showing historical landslide scars (Thomas, 1998, his 

unpublished work and updated by BGS in 2017 – Arup et al., 2018) and the 2017 Regent-

Lumley Disaster. Basemap by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, 

under CC BY SA. Inset map shows the location of Freetown (as a red dot) in West Africa. 

  ACCEPTED M
ANUSCRIPT

 by guest on April 23, 2019http://qjegh.lyellcollection.org/Downloaded from 

http://qjegh.lyellcollection.org/


 

Figure 2: The Regent-Lumley Disaster between along the Babadorie Valley. Imagery shown 

with a hatched outline of the Regent-Lumley Disaster (centre) by EDA for the World Bank 

(30
th
 August 2017) and by TYB for UNOPS (24

th
 May 2018). Background imagery by 

DigitalGlobe (main image 3
rd

 March 2017 imagery, sediment plume shown from 15
th

 August 

2017 imagery), under CC Attribution-NonCommercial 4.0 International 

(https://creativecommons.org/licenses/by-nc/4.0/legalcode). 
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Figure 3: The Regent Landslide (shown hatched black). Imagery by EDA for the World Bank 

(30
th
 August 2017) and by TYB for UNOPS (24

th
 May 2018). 
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Figure 4: The Regent Landslide formed a large ~250 m wide ~200 m tall scar on the 

landscape on the north-facing side of a mountainous valley in Regent, Western Area Rural, 

Freetown (view looking south, image by Arup, 24
th

 August 2017). 
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Figure 5: The first stage rock slide processes released angular blocks of gabbro depositing 

boulders up to 15 m long. (image by Arup, 10
th
 December 2017). 
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Figure 6: The morphology of the slope features an upper bedrock scar exposing weathered 

steeply dipping persistent undulating sheet-joints and a flat bench on the mid-slope (centre 

image), where the deep-seated basal slide surface probably emerged. The lower slope is 

covered by colluvium with large boulders. All slope vegetation was stripped away and most 

buildings destroyed (view looking west, image by Arup, 10
th

 December 2017). 
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Figure 7: Schematic cross section showing main tectonic, geological and geomorphological 

features. 
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Figure 8: Surface parallel joints located 5-10 m below the pre-slide ground surface (now 

exposed by the Regent Landslide) are filled with clay (image by Arup, 10
th

 December 2017). 
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Figure 9: Damage to buildings resulting from the second stage debris-flow and third stage 

debris-laden flooding was significant. This image shows a property destroyed by debris 

carried by the flood in Kamayama, ~3 km downstream from the site of the Regent Landslide 

(image by Arup, 25
th

 August 2017). 
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Figure 10: Oblique aerial photograph of the Regent Landslide in 2018 after partial 

completion of rehabilitation works, improvement of drainage and replanting in the toe area of 

the Regent Landslide (image by TYB for UNOPS, 8
th

 October 2018). 
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