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Abstract In this study we demonstrate the many strengths of scale analysis: we use it to evaluate the
Nucleus for European Modelling of the Ocean model skill in representing sea surface temperature (SST) in
the Southern Ocean by comparing three model resolutions: 1/12◦, 1/4◦, and 1◦. We show that while 4–5
times resolution scale is sufficient for each model resolution to reproduce the magnitude of satellite Earth
Observation (EO) SST spatial variability to within ±10%, the representation of ∼100-km SST variability
patterns is substantially (e.g., ∼50% at 750 km) improved by increasing model resolution from 1◦ to 1/12◦.
We also analyzed the dominant scales of the SST model input drivers (short-wave radiation, air-sea heat
fluxes, wind stress components, wind stress curl, and bathymetry) variability with the purpose of
determining the optimal SST model input driver resolution. The SST magnitude of variability is shown to
scale with two power law regimes separated by a scaling break at ∼200-km scale. The analysis of the spatial
and temporal scales of dominant SST driver impact helps to interpret this scaling break as a separation
between two different dynamical regimes: the (relatively) fast SST dynamics below ∼200 km governed by
eddies, fronts, Ekman upwelling, and air-sea heat exchange, while above ∼200 km the SST variability is
dominated by long-term (seasonal and supraseasonal) modes and the SST geography.

1. Introduction
The choice of spatial and temporal resolution of oceanographic models is a trade-off between computational
cost and the realistic representation of physical, chemical, and biological phenomena. In this study, we
address several questions regarding the optimal spatial resolution of oceanographic models and their forcing
data sets from the point of how the model represents the sea surface temperature (SST) in the Southern
Ocean (SO) above the submesoscale (>10 km). The SST field has an obvious advantage in that there are large
volumes of readily available satellite Earth Observation (EO) data, but SST is also of major interest because
it provides an important ocean feedback to the atmosphere and hence weather (e.g., Byrne et al., 2015;
Frenger et al., 2013). SST variability is also indicative of fronts and baroclinic processes in the upper ocean,
while frontal structure is a key feature responsible for the ocean-atmosphere exchange of heat, carbon, and
other trace gases. The exchange of gases between ocean and atmosphere is particularly important in the SO
where water is ventilated between the deep ocean and the surface. This makes the SO a hugely important
region for understanding Earth's climate and how it may change in future decades (e.g., Carter et al., 2008;
Rintoul, 2018). However, the SO is chronically undersampled and oceanographic models play a key role
in our understanding of the region. Therefore, in climate studies it is critically important to evaluate and
improve the accuracy of how oceanographic models represent SST in the SO. This accuracy depends crucially
on the model spatial resolution, as both mesoscale and submesoscale eddies play critical roles in the vertical
and meridional transport of heat (e.g., Bennett & White, 1986; Bôas et al., 2015; Bishop & Bryan, 2013;
Hausmann & Czaja, 2012; Qiu & Chen, 2005; Roemmich & Gilson, 2001; Su et al., 2018).

Despite a number of existing skill evaluation metrics used in oceanography (Allen & Somerfield, 2009;
Doney et al., 2009; Jolliff et al., 2009; Radić & Clarke, 2011; Saux Picart et al., 2012; Skákala et al., 2016;
Stow et al., 2009; Taylor, 2001), studies comparing the performance of the same model with different reso-
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Figure 1. Diagram describing processes with impact on Southern Ocean sea surface temperature (SST) across a wide
range of spatial (x axis) and temporal (y axis) scales. Both x and y axes are on a log scale. The scales considered by this
study (8 to 1,500 km and 5 day to 1 year) are highlighted by dark, dashed horizontal, and vertical lines. The orange,
dashed vertical line (at ∼200 km) denotes a transition between two SST dynamical regimes that will be discussed in
this study. The processes can be associated with the SST model input drivers as follows: short-wave radiation is linked
to diurnal warming and seasonal forcing, wind stress curl to Ekman pumping, wind stress and bathymetry to
mesoscale frontal structures, and atmospheric heat fluxes to atmospheric fronts. Atmospheric heat fluxes and wind
stress are also fundamentally important for the seasonal and climate processes. A large part of SST variability can be
depicted as “SST geography” (e.g., 105-year time SST average at each spatial point). This has no natural time scale on
the diagram and (from the model input drivers) is mostly associated with short-wave radiation, wind stress,
bathymetry, and atmospheric heat fluxes. The Rossby wave and mesoscale eddy spatial scales can be estimated as
proportional to the first baroclinic Rossby deformation radius (e.g., Chelton et al., 1998; Smith, 2007; Tulloch et al.,
2011). The mesoscale eddy spatial and temporal scales shown in the diagram are consistent with the analysis of
Frenger et al. (2015). The eddy temporal scales in the diagram are however shorter than the eddy lifetime (Frenger et
al., 2015). This is because eddy temporal scale is defined as the time scale of eddy impact on SST at a given spatial
location. Since Southern Ocean mesoscale eddies move (∼22 km per week, Frenger et al., 2015), the eddy temporal
scale will be substantially shorter than the eddy lifetime. ENSO = El Niño–Southern Oscillation; SAM = Southern
Annular Mode; AMOC = Atlantic Meridional Overturning Circulation.

lutions (Bricheno et al., 2014; Bryan et al., 2014; Chen et al., 2013; Hewitt et al., 2016; Winton et al., 2014)
have only recently appeared. In this study we compare the results of three different resolution (1/12◦, 1/4◦,
and 1◦) runs of the Nucleus for European Modelling of the Ocean (NEMO) model against satellite EO SST.
The model representation of SST largely depends on the quality and resolution of the model input forcing.
We therefore analyze the optimal resolution for the model input forcing data deemed likely to have a sub-
stantial impact on SST (later called “model input SST drivers”): latent, sensible, long-wave heat fluxes (sum
of these is the atmospheric heat flux, AHF), short-wave incoming radiation (SWR), zonal and meridional
wind stress (ZWS, MWS), wind stress curl (WSC), and bathymetry. The impact of model input forcing can
be understood through the processes that influence SST across a wide range of spatial and temporal scales.
These processes and their links to the model input SST drivers are summarized in Figure 1 (see also the
figure caption).

A convenient tool to capture SST processes across a range of scales is analyzing the SST variability scale
dependence (SST scaling analysis, e.g., Batchelor, 1959; Obukhov, 1949; Seuront, Schmitt, Lagadeuc, et al.,
1996, Seuront, Schmitt, Schertzer et al., 1996). The SST scaling analysis originates in the theory of turbu-
lent energy spectra (e.g., Gurvich & Yaglom, 1967; Kolmogorov, 1941; Novikov & Stewart, 1964; Panchev
& Leith, 1972), which can be extended to spectral representation of tracers passively advected by turbulent
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flow (Batchelor, 1959; Obukhov, 1949). The theory of isotropic and homogeneous turbulence (Kolmogorov,
1941) predicts SST variability to evolve with spatial (or temporal) scale as a power law with a specific scaling
exponent. This exponent depends on the dimensionality of the problem, in 3-D passive tracers scale in spec-
tral representation as k−5/3 (Batchelor, 1959), while in 2-D as k−1 (Charney, 1971). The SST scaling analysis
would then allow one to determine the range of scales on which (2-D and 3-D) turbulent flow is the pri-
mary SST driver. In reality turbulence is often inhomogeneous and it is not possible to uniquely determine
the relationship between turbulent flow spectra and the passive tracer (e.g., Mandelbrot, 1974; Schertzer &
Lovejoy, 1987; Schmitt et al., 1996). However, with the help of additional arguments a number of studies
concluded (Nieves et al., 2007; Schmitt et al., 1996; Seuront, Schmitt, Lagadeuc, et al., 1996) that turbulent
flow is the primary driver in the smaller-scale SST variability. Departure from the turbulent passive scaling
law was often attributed to specific physical, or biological processes (e.g., De Montera et al., 2010; Seuront,
Schmitt, Lagadeuc, et al., 1996), which motivates us to exploit the general connection between SST processes
and SST variability scaling. SST scaling analysis then becomes a useful tool to understand ocean dynamics in
the SO region, but it is also important from the modeling perspective: it informs us what types of processes
need to be well represented by models at different model resolutions.

In this study, we focus on the range of scales above the submesoscale, by which we simply refer to our limit
of spatial resolution. The EO data we use have high spatial resolution as they incorporate infrared (IR) mea-
surements. However, owing to their dependence upon microwave SST during period of heavy cloud cover,
the resolving capability of the data is degraded. We estimated the effective resolution to be approximately
15–20 km. (That is, the EO data resolve eddy-like anomalies with diameters of 15–20 km or equivalently
wavelengths twice these values.) Thus, our use of the term submesoscale is not very different from the
more classical definition based on nondimensional numbers–i.e., flows characterized by order 1 Rossby
and Richardson numbers (McWilliams, 2016; Thomas, 2008) and which often corresponds to spatial scales
≲10 km and time scales of hours to a day (Buckingham et al., 2016, 2017; Erickson & Thompson, 2018;
McWilliams, 2016; Thompson et al., 2016). This understanding of submesoscales should be distinguished
from another widely used definition, which is based on the scale at which geostrophy begins to break down,
approximately below the radius of deformation (Sasaki et al., 2014; Su et al., 2018; Torres et al., 2018). Due
to lack of sufficient SST data at these smaller scales, we do not address scales ≲15 km. This is not to say that
such scales are unimportant, as they can have a profound effect on climate. For example, a recent study (Su
et al., 2018) comparing two high-resolution global ocean models (at 1/24◦ and 1/48◦) concluded that increas-
ing model resolution to ∼2 km can have a major impact on representation of vertical heat fluxes, SST, and
thus climate.

The precise formulation of the three questions we aim to answer in this study is as follows: Question 1. How
does model resolution impact on model skill in representing SO SST above the submesoscale? Question 2.
Which model input drivers need to be well resolved in order to reproduce the observed SO SST variability
at a given scale? Question 3. What does the scaling of SST variability tell us about SST dynamics above the
submesoscale?

The different aspects of SST scaling analysis used in this study include the following:

• Capturing how well the model reproduces both the magnitude of, and spatial patterns in, SST variability
at a range of spatial scales.

• Identifying how SST and model input drivers (SST drivers) spatial variability distributes over a range of
spatial scales. This allows the deduction of the necessary spatial resolution of each individual model input
driver in order for SST spatial variability to be correctly reproduced.

• Using scaling power law approximations in order to describe spatial variability scaling. Based on this the
variability scaling is split into characteristic scaling regimes, separated by “scaling breaks.” Power laws,
together with their scaling exponents, enable the estimation of how efficiently small scale variability in
SST can be captured by models by increasing the model resolution.

2. Data, Theory, and Methods
2.1. Delimiting and Defining the SO
The SO spreads across the whole range of longitudes, whereas in the south it is bounded by the Antarctic
continental land mass. The definition of the SO northern boundary is to some extent ambiguous, in the liter-
ature being variously defined with a fixed (often somewhere between 45◦S and 60◦S) or a variable northern
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Figure 2. The 2010 annual mean zonal wind stress (N/m2) calculated from the 1/12◦ model outputs. The three regions of interest (left to right: Pacific, Atlantic,
and Indian) are clearly marked.

boundary. The physics of the SO is largely associated with the Antarctic Circumpolar Current (ACC), which
circulates around the globe in the eastward direction. The northern boundary of the ACC varies zonally,
seasonally, and intra-annually (Carter et al., 2008; Moore et al., 1999; Orsi & Whitworth, 2005; Orsi et al.,
1995; Whitworth, 1988). Zonally, the ACC is narrowest at the Drake passage; in the Atlantic basin it expands
substantially toward the southern coast of Africa (Whitworth, 1988). To completely capture the physical
impacts of the ACC, it is desirable that the region of our study envelopes the whole of the ACC and its asso-
ciated fronts. Focusing only on the ACC, it would seem reasonable to study a region with a varying northern
boundary following the shape of the ACC. However, physics can be strongly dependent upon latitude: for
example, the Rossby radius of deformation, or incoming short-wave radiation are meridionally dependent
and this can have important impacts on both SST and model input driver scaling. Using a variable northern
boundary could therefore substantially increase the uncertainty in the interpretation of the scaling anal-
yses. For this reason we decided to choose a region with a constant northern boundary by estimating the
ACC width using the NEMO 1/12◦ resolution model outputs for both the zonal component of wind stress
(Figure 2) and ocean surface current velocity (not shown here) for 2010. Based on these data, we placed
the northern boundary for the studied region at a latitude of 30◦S. A similar choice for the SO northern
boundary was made in other modeling projects, such as The SO State Estimate (e.g., Mazloff et al., 2010).

In order to focus on specific regional ocean basins, we split the SO into three sections: Atlantic, Pacific, and
Indian. The regional boundaries (Figure 2) were Pacific 152◦E to 67◦W; Atlantic 67◦W to 33◦E; and Indian
33◦E to 152◦E. All regions had latitudes between 77◦S and 30◦S. The subdivision of SO into the three main
oceanic basins corresponds to important zonal differences in the ACC flow and SO physics (e.g., Tamsitt
et al., 2016).

2.2. The Model Data
This paper uses the NEMO global model, run for 2010 with three near-consistent forced, ocean-only
simulations at different resolutions, using a tripolar ORCA grid (ORCA12, ORCA025, and ORCA1; see
Figure 3).

The 1/12◦ resolution configuration is described by Marzocchi et al. (2015) with the 1/4◦ and 1◦ resolution
configurations made as consistent as possible with the 1/12◦ reference. The three forced ocean-only simu-
lations were undertaken for the 1978–2010 period using the NEMO ocean model and LIM sea ice models
(as described by Marzocchi et al., 2015). The three simulations used the same ocean forcing: DRAKKAR
Forcing Set 4.1 (DFS4.1, Brodeau et al., 2010). These model configurations are reasonably similar to ocean
components of the HadGEM3 coupled model described in Hewitt et al. (2016), the main difference being
that they employ the LIM2 (Bouillon et al., 2009; Fichefet & Maqueda, 1997) rather than CICE (Hunke
et al., 2010) sea ice model. The initial value conditions were taken from the World Ocean Atlas climatologi-
cal fields (Antonov et al., 2006; Locarnini et al., 2005). All the ORCA configurations used 75 vertical layers.
The thickness of the top layer is 1 m, with 22 layers in the first 100 m and a total maximum layer thickness
of 250 m (Marzocchi et al., 2015). The high-resolution 1/12◦ configuration employs a nonlinear free surface;
free slip condition at topographic and coastal boundaries; mixed bi-Laplacian and Laplacian viscosity; and
Laplacian diffusion, rotated along isopycnals (Marzocchi et al. (2015)). Nearly consistent simulations were
subsequently undertaken at 1/4◦ and 1◦ ocean resolution, with only essential resolution-related changes
summarized in Table 1.
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Figure 3. The satellite EO and different model resolutions for the southwest Pacific (sea surface temperature, 5-day mean between 20 and 24 January 2010).
The upper two images (a and b) resolve eddies, whereas the lower images (c and d) show the two coarser NEMO resolutions. EO = Earth Observation;
NEMO = Nucleus for European Modelling of the Ocean.

It is noteworthy that the tracer diffusion coefficients in Table 1 are typically poorly constrained
(Gnanadesikan et al., 2013) but play an important role in shaping the spatial SST patterns. The vertical mix-
ing of tracers and momentum is parameterized by a modified version of the Gaspar et al. (1990) turbulent
kinetic energy (TKE) scheme (described in Madec & The NEMO team, 2015; Megann et al., 2014, with some
further details in Marzocchi et al., 2015). Full description of the TKE and Gent-McWilliams (GM) eddy
parameterization used in the 1◦ configuration of this study can be found in Appendix A.18 of Danabasoglu
et al. (2014). The 1/4◦ and 1/12◦ configurations used the same TKE scheme but did not employ a mesoscale
parameterization. (Mesoscale is here understood as in quasi-geostrophic framework: it is a scale similar to,
or larger than, the first Rossby deformation radius, where Rossby number is usually much smaller than 1;
e.g., Su et al., 2014; Su & Ingersoll, 2016.) Although the runs starting in 1978 did not reach full equilibrium,
the simulations were long enough for the upper ocean and mixed layer to be equilibrated (Gregory et al.,
2015; Held et al., 2010). The differences in the model configuration beyond the model resolution are not
expected to have a major impact on the SST field. The 1/12◦ model resolves mesoscale eddies (e.g., Hallberg,
2013), 1/4◦ resolution permits mesoscale eddies, and 1◦ model has impact of mesoscale eddies parameter-
ized. The higher-resolution model has better resolved frontal and boundary currents, for example the ACC
(Hewitt et al., 2017). Higher-resolution also better resolves topography thereby improving model dynamics.

Table 1
The Different Values of Parameters for the Three (1/12◦, 1/4◦, and 1◦) ORCA Resolutions

Variable 1/12◦ 1/4◦ 1◦

Time step (s) 200 1,440 2,700
Laplacian viscosity coefficient (m2/s) 500 500 10,000
Bi-Laplacian viscosity coefficient (m2/s) −1.25 ×1010 −2.2 ×1011 −2.2 ×1011

Tracer diffusion coefficient (m2/s2) 125 300 1,000
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The model runs were performed by the National Oceanography Centre, Southampton, UK, with successive
5-day average SST outputs stored at the UK Centre for Environmental Data Analysis JASMIN servers. We
extracted the SST model outputs from the upper model layer (0.5-m depth).

2.3. The EO Data
We compared the model outputs with the National Aeronautics and Space Administration (NASA) Group
High Resolution Sea Surface Temperature (GHRSST) Remote Sensing Systems (REMSS) global Level 4 (L4)
SST analysis (www.remss.com). For a comparable model skill analysis the EO data need to have the same
resolution as the highest model resolution. The standard available satellite data are either based on (i)
microwave spectra measurements, which gives good coverage, but coarser resolution (∼25 km) or (ii) IR
spectra measurements, which have better resolution (∼1 km), but a large amount of missing data mostly
due to the presence of clouds.

To consistently compare the model 5-day averages with the EO data, we averaged the daily EO products over
a 5-day time period. Satellite products with a large number of missing data pose a nontrivial problem for
5-day averaging as the highly variable presence of clouds can generate spatially skewed 5-day distributions.
The most optimal solution is to use L4 merged IR—microwave data sets, such as the GHRSST REMSS prod-
uct, which have the desirable resolution and almost full coverage. The penalty for this is that those satellite
products are based on statistical techniques, such as Optimal Interpolation (OI; Reynolds & Smith, 1994;
Reynolds et al., 2007), which can create artificially smooth distributions at the scale of data resolution (Dong
et al., 2006). The product used here is based on an OI between the NASA Advanced Microwave Scanning
Radiometer-Earth Observing System, the Tropical Rainfall Measuring Mission Microwave Imager, and IR
sensors such as the MODerate Resolution Imaging Spectroradiometer. It is produced daily on a 1/11.5◦ grid,
and we averaged it over a 5-day time scale precisely matching the model outputs. The length-correlation
radius used for the OI is roughly 100 km (http://www.remss.com/measurements/sea-surface-temperature/
-oisst-description/). The effective resolution of GHRSST REMSS is limited by the resolving capability of IR
and microwave SST, with the latter becoming more important during periods of persistent and spatially
extensive cloud cover. The minimal spatial scale resolved by microwave SST is on the order of 40–50 km
independent of latitude (Chelton & Wentz, 2005), while the minimal spatial scale resolved by IR SST is an
order of magnitude smaller—on the order of 3 km for images from the Advanced Very High Resolution
Radiometer, MODerate-resolution Imaging Spectroradiometer, and Visible Infrared Imaging Radiometer
Suite. (The resolving capability of IR SST is currently a subject of study [Wu et al., 2017], with uncertainty
being dominated by the correction for atmospheric water vapor. Such corrections can be improved upon and,
in some cases, have resulted in images with unprecedented resolution. Despite these advances, identifying
the resolving capability of IR SST is nontrivial.)

Since time averaging removes small scale noise, the 5-day-averaged GHRSST REMSS data are expected to
have increased signal-to-noise ratio when compared to the original 1-day data set. Based on spectral methods
(not shown here) we estimated the effective resolution of the 5-day GHRSST REMSS to be around 15–20
km. The quality of the EO data is lowest in winter, as increased cloud cover skews satellite data (at least
south of 50◦S) toward using microwave sources with coarser spatial resolution increasing the EO SST errors.
Furthermore, in winter the satellite data south of 55–60◦S are likely to be significantly contaminated by
floating icebergs (the ice cover in SO is largest around August; see Holland, 2014).

The smoothing originating from OI could reduce small scale variability in the EO data. The magnitude of
this effect is difficult to estimate, but as discussed later, the results seem to indicate that there is only a
minor impact of this on the SST scaling analysis. Furthermore, we assume that the smoothing effect of OI
is partially absorbed by the 5-day time averaging, which also smooths fields at smaller scales. Because the
smoothed EO data will have less small scale dynamics, we assume that the 5-day time averaging has larger
impact on the NEMO 1/12◦ outputs partly leveling out the artificial differences between EO and NEMO
1/12◦ SST originating from the processing of the EO data.

The 5-day averaging also removes the potentially large diurnal cycle present in the satellite data, since the
satellite measures the ocean skin (<1 mm) temperature. With the diurnal cycle removed, the 5-day EO data
averages can be thought as representative of the model SST 5-day averages (for some discussion on the
relationship between ocean skin and ocean bulk temperature see e.g., Minnett, 2003).

SKAKALA ET AL. 6

www.remss.com
http://www.remss.com/measurements/sea-surface-temperature/-oisst-description/
http://www.remss.com/measurements/sea-surface-temperature/-oisst-description/


Journal of Geophysical Research: Oceans 10.1029/2018JC014791

2.4. Methods
The methodology used to answer questions 1–3 is fully explained in supporting information S1. Here we
briefly summarize the most important concepts used throughout the paper:

The magnitude of spatial variability (mosv) is for (arbitrary) field f defined as

Δ𝓁𝑓 = ⟨|𝑓 (x⃗ + 𝓁 ) − 𝑓 (x⃗)|⟩. (1)

The averaging (“⟨⟩”) in equation (1) runs through all 2010 outputs and includes the absolute differences in
f (|𝑓 (x⃗+𝓁 ) −𝑓 (x⃗)|) between all pairs of points separated by horizontal scale 𝓁 within the spatial horizontal
2-D domain labeled by coordinates x⃗. Following the multifractal literature (e.g., Lovejoy & Schertzer, 2013;
Schertzer & Lovejoy, 1987, 1988, 2011), we call the f absolute differences “f increments.”

We also focus on the magnitude of time variability (motv) 𝛥𝛿f defined as

Δ𝛿𝑓 = ⟨|𝑓 (x⃗, t) − 𝑓 (x⃗, t + 𝛿)|⟩. (2)

The averaging in equation (2) takes into account all the spatial points x⃗ and all the 2010 5-day outputs
separated by the time scale 𝛿 (time has a 5-day resolution).

We will show that the mosv scales (i.e., depends on spatial scale) as a piecewise power law:

Δ𝓁𝑓 = Δ𝓁s
𝑓 ·

(
𝓁
𝓁s

)H1

𝓁 ≤ 𝓁s

Δ𝓁𝑓 = Δ𝓁s
𝑓 ·

(
𝓁
𝓁s

)H2

𝓁 ≥ 𝓁s,

(3)

which means that f scales with two distinct power law regimes separated by the scaling break at the scale
𝓁s. The two power laws are characterized by two distinct scaling exponents H1 and H2 (for the details, see
supporting information S1, section S1).

We suggest to place the optimal resolution of an SST model input driver on the scale 𝓁N , where we resolved
N% from the SST driver L scale subgrid variability (for details, see supporting information S1, section S1).
For piecewise power laws (equation (3)), one can derive a simple analytical expression for the SST model
input driver d field optimal resolution scale 𝓁N (question 2) as a function of resolved variability threshold N:(

Δ𝓁N
d

ΔLd

)
· 100 = (100 − N) (%) → 𝓁N = (1 − N∕100)1∕H1 · 𝓁s ·

(
𝓁s

L

)−H2∕H1

. (4)

2.5. Model Input Drivers for SST Dynamics
In this section we give a more detailed derivation of the SST input drivers and the processes controlling the
SST distribution above the submesoscale. We also discuss the data used for the model input SST drivers, as
well as the associated uncertainties of the analysis.

The variability of SST is controlled by the mixed layer heat budget equation that can be written following
Frankignoul (1985) and Dong et al. (2007):

𝜕T
𝜕t

= −v⃗ · 𝛥T + 𝜅 · 𝛥2T −
(T − T+)we

h
−

Q − Q+

𝜌Cph
(K∕s) (5)

where T is temperature in the mixed layer, t is time, h is the mixed layer depth, v⃗ is the horizontal velocity
vector and we the entrainment velocity, Q is the total net heat flux through the ocean surface, and Q+ is the
heat flux through the bottom of the mixed layer. Furthermore, 𝜌 is water density, Cp its specific heat capac-
ity, and 𝜅 its horizontal diffusion coefficient. Dynamical equations such as equation (5) provide a natural
connection between the SST and the SST driver mosv. For detailed arguments about how this connection
relates to the SST field dynamics, see section S3 in supporting information S1.

While equation (5) represents the heat budget for the mixed layer, we are making the assumption here that
SST is representative of the mixed layer temperature given the sustained upper water mixing experienced in
the SO as a result of the sustained winds and energetic waves and surface currents (Gille, 2005). This assump-
tion has been verified by the model data (see supporting information S1: Figure S5). Starting from the left,
equation (5), shows that the evolution of SST is influenced by horizontal advection, diffusion, entrainment
processes at the base of the mixed layer, and surface-air sea heat fluxes.
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1. The advection term (equation (5): first term on the right side) includes both a geostrophic component
and the Ekman velocity, the latter being related to the wind surface stress as

u⃗e = 𝜏 × ẑ
𝜌𝑓h

(m∕s) (6)

where ẑ here is the unit vertical vector and 𝜏 is the wind stress vector. The Ekman meridional transport
was shown by Dong et al. (2007) to play a dominant role over geostrophic advection in their SST budget
analysis (see also Rintoul & England, 2002; Sallée et al., 2008); however, in the Pacific (i.e., near the west-
ern boundary) the heat transport through the geostrophic flow becomes important (Tamsitt et al., 2016).
The large-scale circulation in the SO has been the topic of intense research over the last two decades (e.g.,
Peña-Molino et al., 2014; Tansley & Marshall, 2001; Vivier et al., 2005). A significant percentage of the
circulation can be considered barotropic (Peña-Molino et al., 2014; Vivier et al., 2005), and bathymetry
plays an important role in shaping the patterns of circulation as well as the transport associated with the
largest SO current, the ACC (Tamsitt et al., 2016), and hence, it has been included in our analyses. Simi-
larly, the ACC transport has been shown to be sensitive to the zonally integrated wind stress (e.g., Tansley
& Marshall, 2001). Our study therefore includes the following input SST variability drivers associated
with horizontal advection: ZWS, MWS and bathymetry.

2. The diffusive coefficient (𝜅, equation (5): second term on the right side) homogenizes SST distribu-
tions via horizontal mixing, and conceptually, it can be considered proportional to the length scale 𝓁E
associated with turbulent eddies (e.g., Visbeck et al., 1997). The eddy driven mixing is extremely impor-
tant in the SO (e.g., Frenger et al., 2015; Foppert et al., 2017; Mazloff et al., 2010; Olbers et al., 2004;
Rintoul & Sokolov, 2001). Although mesoscale turbulent eddies are not a model input SST driver, one can
use universal multifractal theory (see supporting information S1: section S2) and determine the scaling
profile of SST magnitude of variability for a hypothetical situation in which the SST was driven purely
by mesoscale turbulent eddies (as a passive tracer). This scaling profile can be used to determine turbu-
lence induced scales of SST variability. We used the universal multifractal theory and included the SST
variability associated with turbulent eddies in our study.

3. The entrainment velocity we (equation (5): third term on the right side) is largely driven by Ekman
pumping (Dong & Kelly, 2004; Dong et al., 2007) such that

we = ẑ · 𝛥 ×
(

𝜏

𝜌𝑓

)
(m∕s) (7)

The Ekman pumping is of special relevance to high latitudes where the wind is strong (Frankignoul,
1985). This suggests that the WSC (which would otherwise also impact the circulation in the ACC Vivier
et al., 2005) should be considered as one of the input SST drivers. WSC is therefore included in this study
to represent SST variability associated with entrainment processes.

4. The net surface heat flux Q (equation (5): fourth term on the right side) is composed of the SWR,
long-wave outgoing thermal radiation, latent and sensible heat flux terms. In the SO the SWR is the
largest component (Dong et al., 2007; Hausmann & Czaja, 2012; Hausmann, Czaja, et al., 2016) and we
have therefore included it separately as an SST input driver. The other components have been consid-
ered together (only the sum of these components was available in the data) as AHF. Q+ represents the
total heat flux below the mixed layer, which according to Dong et al. (2007) is small compared to the
uncertainty associated with Q and therefore has been ignored in our analyses.

The impact of heat fluxes and entrainment on SST depends on the mixed layer depth h (equation (5)). The
mixed layer depth in turn depends on entrainment processes, heat fluxes (thermal expansion of the water
column), but especially it depends on wind mixing (third power of wind speed, or |𝜏|3/2; Frankignoul, 1985).
We therefore included the scaling of cubic wind speed as an SST input driver. We are not attempting to close
the surface mixed layer budget such as the work done by Chi et al. (2014), Dong et al. (2007), and Moisan
and Niiler (1998) but rather evaluate which of the variables that have a leading control on the budget have a
measurable impact on the scale dependent resolution of SST variability. While some of our selected drivers
(SWR, WSC) have a direct representation in the mixed layer heat budget and SST, others, such as bathymetry,
have a wider relevance in the full model solution and their impact in SST variability is highly nonlinear and
important even if it cannot be isolated within the heat budget equation.
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We obtained the bathymetry data from the British Oceanographic Data Centre General Bathymetric Charts
of the Oceans (GEBCO; Weatherall et al., 2015) 1/12◦ 2014 data set. The 1/12◦ NEMO model outputs provide
data for all the selected atmospheric drivers. They originate from 1◦ DFS4.1 ocean forcing set (Brodeau et al.,
2010). In the simulations, the DFS data were kept on its original 1◦ grid but with values over land removed
(using the DFS land mask) and flood filled with oceanic values (Kara et al., 2007). These data (e.g., 6-hourly
10-m winds, daily SWR) were read in by the model and interpolated during the model run to the NEMO
grid. Wind speed components were interpolated using bicubic interpolation weights and rotated where nec-
essary to fit the local grid orientation; all other components used bilinear weights. The interpolated values
provided atmospheric field values to the CORE bulk formula which, taking into account the current oceanic
and sea ice state, provided surface fluxes into the ocean at each grid cell. This means the AHF obtained from
model outputs depends on 1/12◦ model skill to represent SST. The model outputs are fairly unique in that
they provide data for all of the selected SST atmospheric drivers. Furthermore, the data are internally con-
sistent (e.g., the long-wave radiation, latent and sensible heat fluxes were calculated from the SST forced by
the winds and the short-wave radiation). However, the coarse (5-day) time resolution of the model outputs
smooths lower scale variability. This is not necessarily a problem, so long as the smoothing has a similar
effect on all of the SST input drivers. For example, this is not going to be the case for bathymetry, since
bathymetry does not depend on time. This means the bathymetry optimal resolution scale 𝓁N (equation (4))
might be larger than implied by our analysis. Even with this uncertainty, using the model outputs is still
the optimal choice. Otherwise we would have to limit the number of model input SST drivers (the analysis
would lose much of its relevance) or compare SST atmospheric drivers with different time resolutions. Yet
doing so would only increase the uncertainty in our analysis.

The model outputs for the SST drivers have high spatial resolution (1/12◦); however, the interpolation used
by the model might have importantly influenced how the SST driver variability is represented below the 1◦

scale. Interpolation does not add any new variability below the 1◦ scale, and the missing variability might
lead to artificially steep scaling profiles (artificially large scaling exponents H at scales below 1◦). Some dis-
cussions on this can be found in the caption to Figure S6 in supporting information S1, where we validated
wind data from model outputs by comparing wind speed to an observational 1/4◦ resolution NASA/Goddard
Space Flight Center (GSFC)/National Oceanic and Atmospheric Administration (NOAA) Cross-Calibrated
Multi-Platform Ocean Surface Wind Vector Dataset (https://doi.org/10.5067/CCF30-01XXX, see Atlas
et al., 2011). This has relevance for ZWS and MWS as all ZWS, MWS, wind speed, and third power of wind
speed (collectively called wind fields) have very similar scaling (see supporting information S1: Figure S7).
As a consequence, only results for ZWS are presented in this paper.

The WSC was not a specific model output, we instead calculated it from the model outputs for wind stress
components at the 1/12◦ scale. To remove the potentially significant impact of noise on the wind stress
gradients, we smoothed the wind stress components at the 1/12◦ scale using a 40-km radius moving average
prior to calculating the wind stress derivatives. We calculated that the smoothing removed about 20–30% of
8-km scale magnitude of variability from the wind stress vector components.

It is instructive to compare the optimal resolution scale 𝓁N of the model forcing with the 𝓁N for the
eddy-induced SST variability. The effect of isotropic, but inhomogeneous turbulence (in the inertial range),
on the SST mosv can be estimated from universal multifractal theory (e.g., Gagnon et al., 2006; Lovejoy &
Schertzer, 2013; Schertzer & Lovejoy, 1987, 1988, 2011) applied to passive scalars. Ocean is a highly strat-
ified fluid with horizontal dimensions much larger than the vertical dimension, so it is highly desirable
to use universal multifractal model for anisotropic (i.e., different scaling in the vertical than in the hori-
zontal direction) inhomogeneous turbulence (e.g., Lovejoy & Schertzer, 2010; Schertzer & Lovejoy, 2011).
The anisotropic universal multifractal approach typically predicts the passive scalar turbulent H in hori-
zontal to have values between 0.3 and 0.45 (De Montera et al., 2011; Lovejoy & Schertzer, 2010), consistent
with SST universal multifractal spectra from Schmitt et al. (1996), Seuront, Schmitt, Lagadeuc, et al. (1996),
Seuront, Schmitt, Schertzer, et al. (1996), Lovejoy et al. (2001), and De Montera et al. (2010). This scaling is
expected to be valid up to the scale of the largest eddies (∼150 km, Frenger et al., 2015). This range of H is
not very far from the prediction of isotropic 3-D turbulence (H = 0.33) and is consistent with the predic-
tion of surface quasi-geostrophic turbulence (Blumen, 1978). This means that the SST scaling profile with
H in the 0.3–0.45 range is quite robust within multiple different models of turbulence, which makes it also
harder to distinguish which of the models better represents reality. Above the largest eddy scale, there is no
eddy-induced variability, so the scaling slope flattens (H = 0). We confirmed that the 0.3–0.45 turbulent pas-
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Figure 4. Comparison between satellite Earth Observation and NEMO model (1/12◦, 1/4◦, and 1◦) across the 8- to
750-km range of scales, quantified in terms of RMSE (◦C) shown on the y axis. The x axis shows log10(𝓁). The RMSE
scalings are for the (a) Pacific, (b) Indian, and (c) Atlantic regions of the Southern Ocean. Vertical dashed lines are the
different model resolution scales. NEMO = Nucleus for European Modelling of the Ocean; RMSE = root-mean-square
error.

sive scalar range of H values is relevant for this study by calculating universal multifractal SST parameters
for the EO data (see supporting information S1: Table S1) and using the approach of Schmitt et al. (1996) and
De Montera et al. (2010, 2011). Using the EO SST data and the universal multifractal theory has advantage
over analyzing model outputs, as we avoid some of the limitation imposed on eddies by the NEMO model res-
olution. A detailed handling of the universal multifractal methodology, together with the theoretical origin
of power law scaling, can be found in section S2 of supporting information S1.
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Figure 5. The scaling of mean annual (2010) magnitude of EO SST spatial variability compared with NEMO 1/12◦,
1/4◦, and 1◦ in the (a) Pacific, (b) Indian, and (c) Atlantic regions. The dashed lines forming an envelope around the
data are the ±10% and ±30% deviations from the EO SST. Vertical dashed lines are the different model resolution
scales. The plots show log10(𝓁) (x axis) versus log10(Δ𝓁T) (y axis). EO = Earth Observation; SST = sea surface
temperature; NEMO = Nucleus for European Modelling of the Ocean.
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Table 2
The Piecewise Power Law Parameters for SST and SST Model Input Driver
Magnitude of Spatial Variability (mosv) Calculated by Minimizing RMSE Between
Piecewise Power Law and mosv (Optimal Fit; See Also Supporting Information S1)

Variable Region H1 𝓁s (km) H2

SST Pacific 0.8 180 1.06
SST Indian 0.83 220 1.08
SST Atlantic 0.83 250 1.08
SWR Pacific 1.28 75 0.71
SWR Indian 1.29 80 0.71
SWR Atlantic 1.27 65 0.75
ZWS Pacific 0.94 630–640 0.54
ZWS Indian 0.93 720–740 0.42
ZWS Atlantic 0.89 680–690 0.48
AHF Pacific 1.15 30 0.5
AHF Indian 1.17 45 0.41
AHF Atlantic 1.17 40 0.44
Bath Pacific 0.75 390–400 0.32
Bath Indian 0.82 200–240 0.3
Bath Atlantic 0.7 450 0.19
WSC Pacific 1.04 85 0.33
WSC Indian 1.11 75 0.36
WSC Atlantic 1 80 0.28

Note. As in equation (3), H1 and H2 are the two scaling exponents below (H1) and
above (H2) the scale of the scaling break (𝓁s). The abbreviations for SST drivers
are introduced in the section 1, and the reader is reminded of them in Figure 7
(explained in the caption). The table also indicates the scales of the scaling break
(transition from H1 scaling exponent to H2). The scaling exponents H1 and H2
are rounded to two decimal places and 𝓁s>100 km are rounded to multiples of 10
and 𝓁s<100 km to multiples of 5. In some cases the parameters (i.e., 𝓁s for ZWS
and bathymetry) could not be on the 95% confidence level rounded to a unique
value. In those cases we show the approximate 95% confidence interval. SST =
sea surface temperature.

3. Results
We explored how accurately the different model resolutions reproduce the satellite EO spatial patterns
of variability using bias-corrected root-mean-square error (RMSE; see supporting information S1, or, e.g.,
Taylor, 2001) as the skill metric (Figure 4). First, Figure 4 shows that the finer-resolution models, at each
scale, outperform the coarser resolutions (with the exception of the 1/4◦ model in the Pacific). Second, and
perhaps surprisingly, Figure 4 shows that the difference in how the finer- and the coarser-resolution models
perform becomes more pronounced with increasing scale. This is because the finer-resolution model skill in
representing EO SST spatial variability patterns improves more rapidly with scale (steeper slope in Figure 4)
than the coarser resolution model skill. For example, Figure 4 shows that at the 75- to 750-km range of scales
the 1/12◦ resolution model improves in RMSE by 30–50%; the 1/4◦ model by 20–30% and; and the 1◦ model
by <5%.

The numerical comparison between the model and the EO SST mosv has shown that each model resolution
is at 4–5 times the model resolution scale in agreement with the observations within 10%. These results are
shown in Figure 5, where the dashed lines represent 10% and 30% deviation from the EO SST mosv. Figure 5
shows that the model SST mosv always appears to be within the ±10% (dashed line) envelope around the
EO SST mosv from a scale that is less or equal to the 4–5 times model resolution scale. At sufficiently large
scales (O∼500 km) the different resolution models match the EO to within 3%.

EO SST mosv scaling can be described by two power law regimes (straight lines in log-log space) with a
scaling break between 180 and 250 km (depending on the region, see Table 2 and Figures 6a, 6c, and 6e).
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Figure 6. Left side panels show the 2010 annual mean scaling for the magnitude of Earth Observation SST spatial variability on a log-log scale (x axis is
log10(𝓁), and y axis is log10(Δ𝓁T)). The scaling is shown in (a) Pacific, (c) Indian, and (e) Atlantic regions; a regionally dependent scaling break between 180
and 250 km is shown as vertically dashed line. Right-side panels show log10(𝓁) versus SST variability ratio 𝛥𝓁T∕𝛥LT (in percent; supporting information S1:
equation (S3)) in (b) Pacific, (d) Indian, and (f) Atlantic regions. L is chosen to be the largest scale of the analysis L = 1,500 km. SST = sea surface temperature.

Below 180–250 km the SST scaling slope is flatter, which means that variability reduces more slowly with
the reduction in scale. The SST scaling slope becomes steeper above the 180- to 250-km scale, with H (corre-
sponding to the scaling slope) close to 1 (see Table 2). H ≈ 1 means the SST variability scales above 180–250
km linearly with scale, i.e., that N% reduction in scale leads to N% reduction in SST variability (see equation
(3), or equation (S4) in supporting information S1).

The scaling of SST drivers can also be split into two power law regimes separated by a scaling break 𝓁s,
with different 𝓁s values for different SST drivers (Figures 7a, 7c, and 7e). For all the fields (SST and SST
drivers) the piecewise power law fits the scaling of the mosv with an error <4% (in most cases it is <2%).
Unlike SST, the SST drivers scale below 𝓁s with steeper slopes than above 𝓁s. Table 2 summarizes, for both
SST and SST drivers, the scaling exponents and the scales for the scaling breaks. Table 2 demonstrates that
(1) there is relatively little regional (Pacific, Indian, and Atlantic) difference in SST and SST drivers scaling.
(2) The scaling break occurs at a range of scales which can differ by an order of magnitude (30–800 km).
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Figure 7. As in Figure 6 but for the SST drivers of short-wave (incoming) radiation (SWR); zonal wind stress (ZWS); bathymetry (Bath); atmospheric heat flux
(AHF = long-wave radiation + latent + sensible heat fluxes); and wind stress curl (WSC). (a, c, and e) SST drivers have been normalized to enable them to be
plotted side by side. The left panels therefore show only scaling slopes, not the log-values of SST drivers magnitude of spatial variability (mosv). (b, d, and f)
Compare SST drivers mosv ratio 𝛥𝓁di∕𝛥Ldi (in %) versus log scale. The bathymetry in the Atlantic (panel f) above ∼1,000 km shows a rare case where mosv
(slightly) decreases with scale. SST = sea surface temperature.

We estimated the uncertainty of the parameter values presented in Table 2 from a suitably chosen random
sample (of 1,000 members) generated by adding white random Gaussian noise to the mosv, with the mosv
uncertainty used as standard deviation. Due to large number of used data (>106), the mosv uncertainty is at
each scale only 0.1% of the mosv value (with 95% confidence). The uncertainty in the scaling exponents H1
and H2 was found to be very small (for each scaling exponent within the order of 10−3). The uncertainty in
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Figure 8. (a, c, and e) The scaling of SST zonal, meridional, and total magnitude of spatial variability over 8- to 1,500-km range of scales. As in Figures 5–7
both axes are on a log scale. Y axis of the right-side panels (b, d, and f) shows the logarithm of meridional-to-zonal mean increment ratio for SST and SST
drivers on the 8- to 1,500-km interval (log10(𝓁) shown in the x axis). The abbreviations for the SST drivers used in the right-side panels (plot legends) are
explained in the caption to Figure 7. The horizontal lines in the right panels show the interval where the distributions have zonal increments within ±50% of
the meridional increments, or equivalently the meridional-to-zonal increment ratio in the 0.67–1.5 range. SST = sea surface temperature.

SKAKALA ET AL. 15



Journal of Geophysical Research: Oceans 10.1029/2018JC014791

𝓁s is in some specific cases nonnegligible (∼10 km), and in those cases Table 2 shows the approximate 95%
confidence interval.

We analyzed the relative distribution of SST drivers mosv across the 8- to 1,500-km scales (Figures 7b, 7d,
and 7f). Based on Figure 7 one sees that resolving N = 85% of largest (1,500 km) scale SST driver subgrid
variability will put the SST drivers resolution 𝓁N at similar scales to the model resolution. We are therefore
looking for the scale where the driver is left with 15% of its 1,500-km mosv. SST drivers can be split into
three groups (Figures 7b, 7d, and 7f): (1) dominant large-scale variability drivers (SWR, ZWS), with N =
85% of variability resolved (𝓁N ) at the 80- to 100-km scale; (2) medium-scale variability drivers (bathymetry
and the AHF), with 85% variability resolved at the 20- to 40-km scales; and (3) small-scale variability drivers
(WSC), with 85% of variability resolved between the 10- to 20-km scales. To resolve 85% of turbulent eddy
induced 1,500-km SST subgrid variability, one needs an even smaller scale than 10 km. The SST turbulent
eddy scaling exponents H were estimated from the universal multifractal exponents (see supporting infor-
mation S1: Table S1) and the theory of Schmitt et al. (1996) and De Montera et al. (2010, 2011). They were
found to be within the 0.33–0.4 interval, and this places the passive tracer turbulent SST 𝓁N around the
1-km scale.

There are a few points that merit a mention: (1) In the Indian region there is little difference between drivers
from the second and third groups as both have resolutions 𝓁N (N = 85%) near the boundary of the two
intervals at the 20-km scale. (2) Using equation (S8) from supporting information S1, one can evaluate the
sensitivity of 𝓁N to the choice of regional scale L = 1, 500 km. From equation (S8), the larger the absolute
value of exponent 𝛽 the more sensitive𝓁N is to the uncertainty in L. Let us select AHF as reference driver (see
section S1 of supporting information S1), the 𝛽 exponents can be calculated using the scaling exponents from
Table 2 to be (on average for the three regions): 0.04 for ZWS (MWS), 0.16 for SWR, −0.29 for bathymetry,
and−0.16 for WSC. A negative 𝛽 exponent means that𝓁N decreases if L increases and vice versa. Bathymetry
has the largest absolute value of 𝛽, which is approximately equal to the third root (≈0.33). This implies that
decreasing the value of L by 30% would increase 𝓁N for bathymetry by 12%. By comparison, the change to
the 𝓁N value corresponding to the 30% decrease of L is for the other SST drivers less than 6% (only 1.5% for
zonal wind stress). Therefore, the classification of SST drivers resolution scales 𝓁N is relatively unaffected
by ambiguity in L. (3) The scale of 𝓁N ≈ 1 km is clearly indicative of the fact that turbulent eddies drive the
small-scale SST variability. The exact value of 𝓁N is however subject to some relatively large uncertainties:
First, the model of Schmitt et al. (1996) and De Montera et al. (2010, 2011) is based on several assumptions,
such as the closeness between the energy and tracer concentration variance flux multifractal parameters
(De Montera et al., 2010). Second, in the SO eddies move with a velocity of roughly 22 km per week (Frenger
et al., 2015); in a 5-day model output, they will as a consequence be smeared through a larger volume. To
what extent this smearing affects the multifractal exponents (supporting information S1: section S2) is not
known. Third, the∼1-km variability scale is lower than the scale of EO SST data resolution, so the𝓁N value is
based on extrapolating the EO SST power law scaling from the observed range to the scales of the order of ∼
1 km. The turbulent 𝓁N is also more sensitive to the ambiguity in L = 1, 500 km (turbulent 𝛽 exponent from
supporting information S1, equation (S8), is 𝛽 = −1.1). However, none of these uncertainties is expected
to change the order of magnitude difference in 𝓁N between the turbulent passive tracer SST and the small
scale resolution drivers (WSC).

SST spatial scaling is approximately isotropic (zonal-to-meridional increment ratio not far from 1) below the
50-km scale (Figure 8). At larger scales the zonal increments scaling flattens, while the meridional incre-
ment scaling becomes steeper. As shown in Figures 8b, 8d, and 8f the meridional increments eventually
become 7–10 times larger than the zonal increments on the 1,500-km scale. Meridional increments also
dominate over zonal increments for the (incoming) SWR and ZWS (Figures 8b, 8d, and 8f). For ZWS the
meridional-to-zonal increment ratio changes only slightly with scale. However, for SWR the ratio doubles
between the 8- and 1,500-km scale. For AHF the meridional increments are slightly larger (ratio 1–1.5) than
the zonal increments, whereas bathymetry increments are (slightly) more zonal (ratio 0.67–1). The uncer-
tainty for the meridional-to-zonal ratio was estimated using the method applied to the piecewise power law
parameters and it was found to be very small (in all cases < 0.3% from the ratio).
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Figure 9. (a, c, and d) The EO SST logarithm of magnitude of time variability (motv, y axis; see equation (2)) versus logarithm of time for Pacific (a), Indian (c),
and Atlantic (d). The different lines are the spatially low-pass-filtered EO SST data at a range of scales varying between 20 and 1,600 km. The 8-km data are the
unfiltered EO SST data set (8 km is the EO SST spatial resolution scale). The dashed curves mark 98% and 95% of the unfiltered data motv and the vertical
dashed lines the time scales where the motv of the filtered data matches the motv of the unfiltered data within 2% (the colors of the vertical lines match with
the color of the spatial low-pass filtering). (b) Pacific log-time (log(𝛿)) versus log scale (log(𝓁)) relationship between the spatial scale of low-pass filtering (𝓁) and
the time scale (𝛿) when the processes filtered from the data account for less than 2%, 3%, and 5% of motv. The purpose of panel (b) is to show the connection
between the process spatial and temporal scales found in the SST data. The vertical dashed line shows the scale of the spatial scaling break (180 km) found in
the EO SST magnitude of spatial variability scaling in the Pacific. Similar 𝛿(𝓁) curves can be reproduced for the other two regions (Indian and Atlantic). To
avoid the figure becoming crowded, only the most interesting, Pacific, case is shown. SST = sea surface temperature; EO = Earth Observation.

Finally, we analyzed the EO SST motv (see equation (2)) for different spatially low-pass-filtered data (filtered
on the 20- to 1,600-km range of scales; Figure 9). The spatial low-pass filter at the scale 𝓁 removes all the pro-
cesses that have impact on SST below 𝓁. At the time scale 𝛿(𝓁) where these removed processes are no longer
important, the SST motv (equation (2)) of the spatially low-pass-filtered data becomes roughly equal to the
motv of the unfiltered (original) data with the ∼8-km resolution. By defining a threshold for when the time
variability of the filtered data is sufficiently close to the time variability of the unfiltered data, we can calcu-
late for each length scale 𝓁 its associated time scale 𝛿. The spatial (𝓁) and temporal (𝛿) process scales have
been matched (Figure 9b) using thresholds equal to 2%, 3%, and 5% of the unfiltered data motv. Although the
spatio-temporal relationship 𝛿(𝓁) has a certain ambiguity (due to the ambiguity in the value of the thresh-
old), Figure 9b shows that the scale of the SST spatial scaling break ∼ 200 km (see Figure 6) corresponds to
a scale where the 𝛿(𝓁) curves flatten. The implications of this will be discussed later. Figures 9a, 9c, and 9d
also show that at the 1,600-km spatial filter scale (Pacific) and at ≥800-km scale (Indian and Atlantic) motv
fails to converge (within the half-year time period) to the unfiltered data (with a gap of at least 5% between
the two curves). This is because the low-pass filtering removed at ∼1,000 km also supraseasonal processes,
including the long-term SST SO geography (e.g., 105-year-averaged spatial distribution).
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4. Summary and Discussion
Each of the questions raised in section 1 will now be taken in turn for summary and discussion:

Question 1: How does model resolution impact on model skill in representing SO SST above the submesoscale?

In summary,

1. increasing model resolution has a substantially positive impact on how the model represents EO spatial
variability patterns, and this impact increases with scale (Figure 4).

2. At the model resolution scale the model magnitude of SST spatial variability is around 15–30% lower than
the same scale EO mosv (the difference is typically close to 30%; see Figure 5).

3. From 4–5 times the resolution scale all three model configurations represent the magnitude of EO spatial
variability within ±10% (Figure 5).

4. The accuracy of how the model represents the EO mosv improves with scale, and above 500 km each of
the models matches the EO to within ±3% (Figure 5).

The model has limited capability to correctly represent advection of tracers (SST) near its grid scale, since it
has to parametrize subgrid eddy flux by the grid-scale viscosity/diffusion coefficient. At scales sufficiently
larger than the model resolution the model will represent SST better, as at those scales the grid-scale viscos-
ity/diffusion no longer impact on the advection of tracers (e.g., Su et al., 2016a, 2016b, 2018). Figure 4 indeed
shows that the RMSE skill improves between the model resolution scale and the 750-km scale by 5–55%,
depending on the model resolution. As expected, the finer-resolution model RMSE skill is always better
than the coarser resolution model (Figure 4, with the exception of 1/4◦ model at its resolution scale in the
Indian region). However, we also expected that the difference in skill between different model resolutions
should become smaller with scale, since the impact of model resolution will gradually diminish with scale.
Counterintuitively, Figure 4 shows the opposite: the difference in skill (RMSE) between the finer-resolution
model and the coarser-resolution model grows with scale. While at the 1◦ model resolution scale (≈70 km)
the 1/12◦ model outperforms (reduces RMSE) the 1/4◦ model by ≈12% and the 1◦ model by ≈30%, at the
750-km scale (∼12◦) the 1/12◦ model outperforms the 1/4◦ model by ≈30% and the 1◦ model by ≈60%.

Using magnitude of SST spatial variability as skill, it can be concluded (Figure 5) that all three model res-
olutions represent the EO SST with sufficient accuracy (within 10%) from 4–5 model resolution scale. This
is consistent with the recent observation from Soufflet et al. (2016). While the magnitude of EO SST vari-
ability has very similar scaling in all three regions (Table 2), the model SST scaling (especially the 1/12◦

model) has important differences between regions (Figure 5). In the Pacific the 1/12◦ model scales between
50 and 200 km similarly to the EO, whereas for both the Atlantic and Indian regions, the model has on the
50- to 200-km scales flatter scaling than the EO data. In these same two regions the model overestimates on
the 50- to 200-km scales the magnitude of SST variability (although still within ±10%). In the Atlantic and
Indian regions, the 1/12◦ model matches EO within ±3% from approximately 200-km scale (30 times model
resolution), whereas in the Pacific it matches EO with the same accuracy at a 50-km scale (Figure 5).

It is difficult to explain the regional differences in the 1/12◦ model SST mosv scaling below the 180-km scale.
The larger (than EO) 1/12◦ model 30- to 80-km scale mosv in the Atlantic and Indian regions could indicate
that OI has reduced the EO mosv below ≈100-km scale (the OI smoothing radius). However, the relative
effect of OI smoothing on the scaling of EO mosv is expected to gradually increase with the decreasing
scale. This would appear as a sudden reduction in SST mosv close to the EO SST resolution scale, in a
similar fashion to what happens to the 1/4◦ and 1◦ models at their resolution scales (Figure 5). Contrary
to this expectation the magnitude of EO mosv is scale invariant below the 100-km scale. Moreover, the
scale invariance of EO SST mosv on ∼8–100 km is consistent with other scaling analyses of IR EO SST
products from the North-West European Shelf, which included higher spatial and time resolutions (Skákala
et al., 2016). Even the SST scaling exponents (H1) found here on the 8- to 100-km interval are similar to
the values from Skákala et al., 2016 (2016; H1 around 0.6–0.8). These are strong arguments to suggest that
spatial smoothing introduced by time averaging, or OI had a relatively small effect on small scale SST mosv.

Figure 5 shows that the 1/4◦ and 1◦ models have, at their resolution scale, about 30% lower magnitude of
SST variability than the EO (with the exception of 1/4◦ model in the Atlantic). There are two reasons for this.
First, the mosv of the finer-resolution EO data set at the 1/4◦ (or 1◦ scale) also includes intrapixel variability.
This is because among two arbitrary 1/4◦ (1◦) model pixels separated by scale 𝓁 the 1/12◦ model connects
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multiple 1/12◦ pixels (separated by the same scale 𝓁). Second, models effectively average out the dynamics
close to their resolution scale and this also reduces the SST mosv. We determined the magnitude of miss-
ing intrapixel variability by averaging out all the intrapixel variability of the finer-resolution model on the
coarser-resolution model scale. The SST mosv (equation (1)) was then compared on the coarser resolution
scale with the finer-resolution model. Using this procedure, we calculated that the missing intrapixel vari-
ability lowers the coarser resolution model grid-scale variability by ∼10% and therefore contributes slightly
less than half to the missing SST mosv near the model grid scale.

Question 2: Which model input drivers need to be well resolved in order to reproduce the SO SST variability at
a given scale?

In summary,

1. the optimal resolution 𝓁N is defined as the scale resolving N=85% of the SST driver 1,500-km subgrid
variability.

2. Based on the optimal resolution scale 𝓁N , we classified the SST drivers (see Figure 7, also supporting
information S1: Figure S7) as follows:

2.1. dominant large-scale variability drivers (short-wave radiation (SWR), wind stress vector components,
and cubic wind speed), with a resolution scale (𝓁N ) between 80- and 100-km scales;

2.2. dominant medium-scale variability drivers (bathymetry and atmospheric heat fluxes (AHFs)) with 𝓁N
on the 20- to 40-km scales;

2.3. dominant small-scale variability drivers (wind stress curl (WSC)), with 𝓁N between 10 and 20 km; and
2.4. in order to capture 85% of eddy-induced (1,500 km) SST variability a model resolution below 10-km

scale is required (≈1 km).

A great deal of this is not surprising. SWR and ZWS (MWS) are responsible for the seasonal forcing and
the SST geography. This implies SWR and wind stress drive variability on the regional (∼1,000 km) spa-
tial scales and are therefore expected to have a dominant large-scale variability. The AHFs and bathymetry
(medium-scale SST input drivers) affect all the analyzed scales, with the smaller-scale AHF variability
mostly due to the fast atmospheric response to SST perturbations and the fast atmospheric dynamics
(Hausmann, Czaja, et al., 2016). The small variability scales for turbulent passive scalars are linked to the
limited SO eddy size (≲150 km; Frenger et al., 2015). Similarly, it is well known (e.g., Frankignoul, 1985;
Haney et al., 1978; Tamsitt et al., 2016) that WSC has almost no impact on SST on synoptic scales, but poten-
tially large impact on the small-scale SST variability. For example, to represent adequately the Benguela
upwelling system, one needs high-resolution atmospheric model and eddy resolving ocean model (Small
et al., 2015). Although the classification of the SST input driver-dominant variability scales can be antic-
ipated from Figure 1, the scaling analysis enables us to precisely quantify the relationship between the
different model SST input driver optimal resolutions.

Question 3: What does the scaling of SO SST variability tell us about SST dynamics above the submesoscale?

In summary,

1. the SST scales with two power law regimes (equation (3)) separated by a scaling break𝓁s at 180- to 250-km
scale (depending on the region; see Figure 6 and Table 2).

2. The SST scaling break (∼200 km) is a scale of separation between two SST characteristic dynamical
regimes captured by the two distinct power laws: (1) the subseasonal processes (mesoscale eddies and
fronts, Ekman pumping, latent, and sensible heat fluxes) and (2) the seasonal and supraseasonal modes
that depend mainly on the short-wave radiation and (zonal) wind stress. (This is supported by the analysis
presented in Figures 1, 8, and 9.)

It has been shown in Figure 6 that SST scales as a piecewise power law with a scaling break (𝓁s) at ∼200-km
scale. This result can be interpreted using the diagram in Figure 1, which suggests that 𝓁s is a separation
between two characteristic dynamical regimes: the subseasonal SST dynamics associated with eddies, fronts,
air-sea heat flux, and Ekman pumping, and the seasonal and supraseasonal dynamics associated with plan-
etary scale forcing. This interpretation of the SST scaling law is further supported by Figure 9, showing the
connection between spatial and temporal scales of the observed SST processes. Although the precise con-
nection between the spatial (𝓁) and temporal (𝛿) scales is to some extent ambiguous, as it depends on the
threshold below which a process is neglected, the shape of the 𝛿(𝓁) curve is independent of the threshold
value (Figure 9). The SST scaling break 𝓁s corresponds to the spatial scale when the 𝛿(𝓁) curves flatten. A
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steep 𝛿(𝓁) curve means that spatial filtering has a large impact on the SST time variability curve, because
it removed substantial number of processes associated with the SST dynamics. A flat 𝛿(𝓁) curve implies
that no additional processes have been removed by the spatial filter. 𝓁s then corresponds to the spatial scale
where the numerous subseasonal SST processes vanish and for the next range of spatial scales the SST is uni-
formly governed by the seasonal forcing. However, Figures 9a, 9c, and 9d also show that at sufficiently large
spatial scales (∼1,500 km in Pacific and ∼800 km in Indian and Atlantic) the SST variability is dominated
by supraseasonal modes. The supraseasonal modes can be anything from interannual climate modes (see
Figure 1) to the SST geography (e.g., 105-year time average for each spatial location). Analysis presented in
supporting information S1: Figure S8 indicates that from the supraseasonal modes the interannual climate
modes such as El Niño–Southern Oscillation (ENSO) or Southern Annular Mode (Kostov et al., 2017; Verdy
et al., 2006; Yang et al., 2007) have a relatively secondary effect on the scaling of SST mosv. Comparison of the
2010 and 2012 EO SST data (see supporting information S1: Figure S8) shows the maximum difference in the
SST mosv on the level of 1%, which is barely statistically significant. This is negligible compared to the large
reduction of SST variability (on the level of tens of percent; see Figure 9) when the spatial filter was applied
to ∼1,000-km scales. It is very likely that the supraseasonal modes observed in Figure 9 at ∼1,000 km scales
can be primarily attributed to SST geography. The major contributors to SST geography are air-sea fluxes
(both SWR and AHFs), Ekman transport, and the heat advection by geostrophic currents (see the 5-year
analysis of SO heat budget in (Tamsitt et al., 2016), 2016). Interestingly, the supraseasonal modes influence
SST spatial variability on smaller scales in the Indian and Atlantic regions than in the Pacific (Figure 9).
This is consistent with the analysis of Tamsitt et al. (2016), suggesting that this smaller-scale SST variabil-
ity is due to heat transport by geostrophic eddies and vertical transport. Curiously, part of this small-scale
SST variability could be also attributed to the observed larger climate variability in the Indian and Atlantic
regions than in the Pacific (see Deser et al., 2010).

We can analyze the two SST scaling regimes also from a slightly different perspective. Let us start with a
simplifying assumption that the impact of SST drivers on SST variability depends mainly on the magnitude
of SST driver variability. We then ask which SST drivers have (among all the SST drivers considered) the
largest percent of 1,500-km scale variability at the scales above 300 km (range of scales above the scale of
the scaling break and well separated from it). Figure 7 shows that these are wind fields (ZWS and MWS)
and SWR with ≈60% of variability above the 300-km scale. These are the SST drivers largely responsible
for seasonal and supraseasonal dynamics (including SST geography). For comparison the turbulent passive
tracer SST has no additional variability above 300 km, WSC and bathymetry have around 30%, and AHF has
around 40%. Conversely below the 100-km scale (below the scales of scaling break and well separated from
it), passive tracer (turbulent) SST has 86% from its 1,500-km scale variability, WSC around 45%, bathymetry
and AHF around 25–30%, while SWR and ZWS only 15% (Figure 7). This suggests that wind fields and SWR
are the most dominant drivers for SST variability at the scales above 300 km, whereas turbulent eddies are
the most dominant SST driver below 100-km scale. The large impact of SO turbulent eddies on SST signature
on scales up to 150 km is well known in the literature (Chelton, 2013; Foppert et al., 2017; Frenger et al.,
2015, 2013; Mazloff et al., 2010; Olbers et al., 2004; Rintoul & Sokolov, 2001). Even in the southern parts
(south of 50◦S) of the Indian and Pacific SO regions the eddies reach scales of several tens of kilometers
(Chelton et al., 2007; Frenger et al., 2015; Hausmann, McGillicuddy, et al., 2016 , 2016), which is captured
by the EO ≈1/12◦ resolution. The difference in the anticyclonic and cyclonic SST anomaly in the SO can
be >1 ◦C (Frenger et al., 2015). It is therefore a plausible assumption that the relatively flat scaling slope
of the turbulent SST (0.33–0.41) is responsible for the flatter SST scaling slope at scales below 𝓁s (the scale
of the SST scaling break), when compared to the SST scaling slope above 𝓁s. Above the scaling break, the
SST scaling steepens, consistently with SWR and ZWS scaling; however, curiously, when it comes to the SST
scaling close to the maximum L = 1, 500-km scale, SST has a steeper scaling slope than SWR and the wind
fields. It would be interesting to further explore whether this results from the nonlinearity of the SST driver
impact on the SST variability as suggested by the analysis in supporting information S1 (see the equations
(S18–S21) and therein).

The observed scales of model input driver impact on SST are also seen in the analysis of SST and SST drivers
meridional-to-zonal increment ratio (Figure 8). Figure 8 indicates that there are two SST drivers with a large
degree of horizontal anisotropy: ZWS (over the whole 8- to 1,500-km range of scales) and SWR (mostly above
the≈200-km scale), both of those SST drivers having meridional increments much larger (by more than 50%)
than the zonal increments. The SST meridional-to-zonal increment ratio from Figure 8 suggests that while
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SST distribution is isotropic on ∼10-km scales, it becomes quickly anisotropic on ∼100-km scales (Figure 8)
and the meridional SST increments at the 1,500-km scale become a factor of 7–10 times larger than the
zonal increments. Wherever SST distributions are horizontally isotropic (∼10-km scales), we assume that
the distribution is shaped by horizontally isotropic SST drivers (turbulence, to some degree also bathymetry,
WSC, AHF, but at ∼10-km scales it can be also SWR). Wherever SST distributions are strongly anisotropic
(≿100 km), it will become dominated by strongly anisotropic SST drivers (ZWS, SWR). The SST transition
from isotropy to anisotropy does not seem to be driven by a specific SST driver increase in anisotropy (see
Figure 8, SWR has a substantial increase in anisotropy from larger, 200-km scales). The SST transition from
isotropy to anisotropy is more likely to be a consequence of strongly anisotropic SST drivers (ZWS and SWR),
responsible for the seasonal and supraseasonal SST dynamics, becoming at the ∼100-km scales dominant
over SST isotropic drivers in their impact on SST distribution.

Although this paper has studied how SST drivers influence SST scaling, within the marine boundary layer
there is substantial feedback of SST on atmospheric SST drivers (Chelton, 2013; Chelton & Wentz, 2005;
Chelton & Xie, 2010; Chelton et al., 2004; Frenger et al., 2013; Xie, 2004). For example, Frenger et al. (2013)
have found evidence that there is a significant link between eddy induced SST variability and surface winds
at the mesoscale: colder SST associated with cyclonic mesoscale eddies weakens surface winds, while the
winds are strengthened by warm SST associated with anticyclonic eddies (see also discussion in Chelton,
2013). SST also has significant impact on low-level clouds (influencing incoming short-wave radiation) and
precipitation (Chelton, 2013; Frenger et al., 2013). It is then possible that in reverse one can associate some
SST driver scaling break (see Table 2) with a maximum scale of SST impact on atmospheric fields in the
marine boundary layer (Chelton, 2013; Frenger et al., 2013).

5. Conclusions
In this paper we have introduced a methodology based on scaling analysis techniques to (1) evaluate model
resolution skill in representing SO SST, (2) evaluate the resolution needed to capture the variability of model
input SST drivers, and (3) learn about dominant processes responsible for SST dynamics across a wide range
of spatial scales (above the submesoscale).

We have found that the scale 𝓁s ∼200 km provides important separation between two distinct dynamical
regimes: below 𝓁s SST is governed by the subseasonal dynamics (eddies, fronts, air-sea heat flux, and Ekman
pumping), while above 𝓁s the SST is driven by seasonal forcing and longer modes. The connection between
temporal and spatial scales is particularly important: it could help inform, for example, filtering steps when
wanting to separate eddy and mean (i.e., seasonal and supraseasonal) signals for cases when only time or
spatial content is available. Here we have in mind a separation time scale useful for Reynolds decomposition.
Quantifying the spatial separation between the subseasonal and longer-term processes is also important
from the modeling perspective, as it informs what processes need to be well represented by the model across
a wide range of spatial resolutions.

This paper necessarily concentrated on multiple analyses of a single year (2010) due to data volume and
availability issues. The scaling analysis applied to 2012 data showed little impact of intra-annual modes
(ENSO and Southern Annular Mode) on the conclusions presented in this study. However, better explo-
ration of what happens on the climatic time scales will be desirable. For example, it would be interesting to
determine whether the scaling of SST spatial variability is influenced by the climate change and its impact
on the SO eddy kinetic energy (Hogg et al., 2015; Meredith, 2016; Meredith & Hogg, 2006).
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