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A B S T R A C T

Perfluoroalkyl substances (PFASs) have become a recognized concern due to their mobility, persistence, ubiquity
and health hazards in the environment. In this study, ten types of vegetables and three types of grain crops were
collected in two open-air fields with different distances (0.3 km, 10 km) from a mega fluorochemical industrial
park (FIP), China. Bioaccumulation characteristics of PFASs in light of crop types and organs were explored,
followed by analyzing human exposure and risks to local residents with different age groups and dietary habits.
Elevated levels of ∑PFASs were found nearby the FIP ranging from 79.9 ng/g to 200 ng/g in soils and from
58.8 ng/g to 8085 ng/g in crops. Perfluorooctanoic acid (PFOA) was the predominant PFAS component in soil;
while shorter-chain perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), were the
major PFAS contaminants in multiple crops, resulting from their bioaccumulation preference. Depending on the
crop types, the bioaccumulation factors (BAFs) of ∑PFASs for edible parts varied from 0.36 to 48.0, and the
highest values were found in shoot vegetables compared with those in fruit vegetables, flower vegetables, root
vegetables and grain crops. For typical grains, the BAFs of ∑PFASs decreased in the order of soybean (Glycine
max (Linn.) Merr.), wheat (Triticum aestivum L.) and corn (Zea mays L.), possibly related to their protein and lipid
content. Among specific organs in the whole plants, leaves exhibited the highest BAFs of ∑PFASs compared with
corresponding roots, stems, husks or grains. With increasing carbon chain lengths of individual PFCAs (C4-C8),
the logarithm of their BAFs for edible parts of various crops showed a linear decrease (0.1–1.16 log decrease per
CF2 unit), and the largest decrease was observed in grains. Human exposure to PFOA via the consumption of
contaminated crops represents a health risk for local residents, especially for low-age consumers or urban
consumers with higher vegetable diet. Implications for planting optimization and food safety were provided
aiming to reduce health hazards of PFASs.

1. Introduction

Perfluoroalkyl substances (PFASs) have been widely used in a
variety of consumer products and industrial processes (e.g. nonstick
food packaging, pesticides, stain repellents, surfactants and surface
protectors), thanks to their excellent chemical stability, water and oil

repellence, and high surface activity (Giesy and Kannan, 2002; Post
et al., 2012). However, recent studies on animal toxicology and disease
investigation have suggested that PFASs exposure could lead to adverse
health effects such as infertility, endocrine disorder, abnormal ma-
turation and even cancers (Hardell et al., 2014; Harris et al., 2018;
Salihovic et al., 2018; Seo et al., 2018). With their potential toxicity,
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bioaccumulation, persistence and long-range transport, these sub-
stances have become priority contaminants of great concern (Lescord
et al., 2015; Wang et al., 2015b; Li et al., 2016). Their widespread use
and the resulting emissions have led to PFAS being detected in various
environmental media including water (Wang et al., 2015a), sediment
(Yeung et al., 2013), soil (Meng et al., 2018), air (Taniyasu et al.,
2013a), plant (Vestergren et al., 2012), wildlife (Persson et al., 2013)
and even human issues (Tian et al., 2018b).

Crops may be contaminated by PFASs from local soil and air, which
may lead to human exposure and health risk to PFASs via crop con-
sumption (Liu et al., 2015; Chen et al., 2018; Tian et al., 2018a). In-
dustrial emissions were identified as major contributors to hot spots of
PFASs contamination in soil and air, particularly perfluorooctanoic acid
(PFOA) and perfluorooctane sulfonate (PFOS) (Xie et al., 2013; Liu
et al., 2017b). Affected by two fluorochemical manufacturing parks in
Fuxin, China, the mean concentrations of total ionizable PFASs and
total neutral PFASs in the surrounding air were found to be as high as
4900 pg/m3 and 1400 pg/m3, respectively (Chen et al., 2018). Even if a
former manufacturing facility in Minneapolis-St. Paul of the USA had
been in discontinuation for ten years, the soil concentrations of PFASs
were still up to 28.2 ng/g for PFOS and 126 ng/g for PFOA (Xiao et al.,
2015).

Crop uptake of PFASs from polluted soil has been identified as a key
pathway for PFAS entry into the terrestrial food webs (Lechner and
Knapp, 2011; Blaine et al., 2013; Wen et al., 2014; Krippner et al.,
2015). Moreover, plant uptake potential for airborne PFASs has been
revealed (Chen et al., 2018; Tian et al., 2018a). Contaminated crops
contributed significantly to human exposure to PFASs, through either
direct ingestion or indirect consumption of animals fed with these
crops, which might cause human health risks (Domingo, 2012;
Kowalczyk et al., 2013; Blaine et al., 2014b). The uptake capacities of
PFASs by wheat (Triticum aestivum L.), corn (Zea mays L.), soybean
(Glycine max (Linn.) Merr.) and some vegetables have been demon-
strated in PFAS-spiked soil plots or nutrient solutions (Felizeter et al.,
2012; Zhao et al., 2013; Wen et al., 2016; Lan et al., 2018; Zhang et al.,
2019), but those artificial control experiments cannot accurately reflect
fully open-air field conditions. Considering most crops grown in the
open-air fields, it is critical and valuable to explore the PFASs bioac-
cumulation characteristics of multiple field crops for risk control
(Domingo, 2012).

Limited by agreements on restrictive production and emission of
PFASs in Europe and America, large amounts of PFAS manufacturing
and application industries were transferred to developing countries
including China to meet the expanding huge market demands (UNEP,
2009; USEPA, 2013). The mega-fluorochemical industrial park (FIP)
studied here is of such a case, with massive production and use of PFASs
during fluoropolymers manufacturing. Available official information
showed that (i) the FIP started production in 1987; (ii) after years of
growth, the annual production capacities of fluoropolymers were up to
60,000 tons for tetrafluoroethylene (TFE) and 49,000 tons for poly-
tetrafluoroethylene (PTFE) in 2013, and 10,000 tons for hexa-
fluoropropylene (HFP) and>200,000 tons for different types of
fluorinated refrigerants in 2012; (iii) the production capacities of the
FIP has been further expanding in recent years (Dongyue Group
Limited, 2012, 2014, 2017). As critical processing aids during fluor-
opolymer manufacturing, PFASs, especially PFOA, were also produced
in large quantities (Wang et al., 2016).

In our previous studies, the occurrence and multiple media trans-
port of PFASs around the FIP have been systematically studied with the
highest reported PFASs concentrations of 1,860,000 ng/L in surface
water, 273,000 ng/L in groundwater, 641 ng/g in soil, 4862 ng/L in
precipitation, 480 ng/g in wheat grain and 58.8 ng/g in corn grain (Liu
et al., 2016; Liu et al., 2017a). The study on PFASs contamination for
the grains of wheat and corn preliminarily revealed the effects of PFASs
industrial sources on local agricultural product safety. However, except
for these two grains, the occurrence and bioaccumulation

characteristics of PFASs for multiple vegetables, which were extremely
important parts of local plant food, were still unknown. This study
would be indispensable for a more comprehensive assessment of crop
contamination and health risk of PFASs caused by the FIP.

In this paper, the edible parts of ten species of local representative
vegetables (including root vegetable, shoot vegetable, fruit vegetable
and flower vegetable), as well as three local dominant grains (wheat,
corn and soybean) were integrated to conduct a comprehensive study
on the PFASs bioaccumulation patterns for multiple crops and sub-
sequent human exposure for different consumers. Furthermore, PFASs
bioaccumulation characteristics of the specific organs of some whole
plants including vegetables and grain crops were systematically ex-
plored, which was intended to reveal the intercompartmental translo-
cation and distribution of PFASs in the plants. Based on contamination
levels of PFASs in agricultural soils as well as bioaccumulation char-
acteristics of PFASs in various types and organs of crops, some valuable
measures for planting optimization and food safety were suggested to
reduce human exposure and health risk of PFASs from the FIP.

The objectives of this study were, therefore, to examine the crop
bioaccumulation and human exposure from PFASs around the FIP with
emphasis on (i) the concentrations and profiles of PFASs in soils and
multiple crops, (ii) the bioaccumulation and translocation of PFASs in
crops associated with soil concentrations and chemical structures of
PFASs and physiological characteristics of crops, (iii) human exposure
and risk assessment of PFASs based on their crop concentrations, and
dietary habits as well as the age groups of consumers, (iv) implications
for planting optimization and food safety around a manufacturing fa-
cility for risk control.

2. Materials and methods

2.1. Sampling design and collection

The study area around the FIP is a major crop-producing region with
large tracts of agricultural land and scattered villages, where staple
grains and various vegetables are important local food. Two fields
planted with vegetables and grains were chosen for the study: one is
named as “FIP-0.3 km field” only 0.3 km away from the FIP; while the
other one is called as “FIP-10 km field” about 10 km away from the FIP
(Fig. 1). In these two fields, crops were planted under open-air field
conditions and irrigated with local groundwater, and the irrigation
frequencies were based on normal agricultural practices during growth
periods of different crops. The edible parts of representative ten vege-
tables and three grain crops in the two fields were collected at maturity
in June (wheat) and October (corn, soybean and various vegetables),
2014. Root vegetables (vegetables with edible roots) included radish
(Raphanus sativus L.) root and carrot (Daucus carota L.) root, and shoot
vegetables (vegetables with edible shoots) included radish shoot, carrot
shoot, Chinese cabbage (Brassica campestris L. ssp. Pekinensis), Chinese
chives (Allium tuberosum Rottler ex Sprengel), lettuce (Lactuca sativa L.)
and Welsh onion (Allium fistulosum L.). Pepper (Capsicum annuum L.)
represented a fruit vegetable (the vegetable with edible fruits) while
cauliflower (Brassica oleracea L. var. botrytis) was collected as the re-
presentation of a flower vegetable (the vegetable with edible flowers).
Wheat (Triticum aestivum L.) and corn (Zea mays L.) were sampled as
grain crops (crops with edible grains). All the crops listed above were
collected in each of the two fields. Pumpkin (Cucurbita moschata (Duch.
ex Lam.) Duch. ex Poiret) (fruit vegetable), celery (Apium graveolens L.)
(shoot vegetable) and soybean (Glycine max (Linn.) Merr.) (grain crop)
were only found in the FIP-0.3 km field. To further explore the bioac-
cumulation and translocation of PFASs in different organs of the whole
plant, some vegetables (including Welsh onion, celery and carrot) and
grain crops (including wheat, corn and soybean) were divided into
detailed parts.

For each species of crop, five replicates were sampled from the
center and four corners of an area of 5m×5m, and then mixed into
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one composite sample. The collected crop samples were wrapped in
aluminum foil and stored in clean paper bags. The corresponding soils
(top 0–20 cm) around each plant of the five replicates for the same crop
species were collected with a stainless steel trowel that had been rinsed
with ultra-pure water and methanol successively, and then mixed into
one composite sample. Before soil samples were sealed in poly-
propylene (PP) bags, large stones and roots were removed with me-
thanol rinsed tweezers. All collected samples were stored in an icebox
during transport to the laboratory. Site information and ambient de-
scription are shown in Table S1. Once returned to the laboratory, the
crop samples were washed carefully with distilled water followed by
Milli-Q water before freeze-drying at a temperature of −50 °C for 72 h
in a lyophilizer. A 100 g subsample was then ground and homogenized
in a knife mill (Grindomix GM 200) and then stored separately at
−20 °C before analysis. To avoid cross-contamination during grinding,
after each use, we cleared out the plant residue carefully, and then
rinsed the mill with 5mL Milli-Q water four times followed by 5mL
methanol four times. Some previously detected crop samples with ex-
tremely low concentrations of PFASs were used as procedure blanks to
examine if cross-contamination occurred during grinding. The soil
samples were transferred to polypropylene (PP) boxes, dried in air,
homogenized with a porcelain mortar and pestle, sieved with a 2mm
mesh, before storage in 250mL PP bottles at room temperature until
extraction. An elemental analyzer was used to determine the total
carbon (TC) and total nitrogen (TN) contents of the soil samples. The
pH was determined at a soil to 0.01M CaCl2 solution ratio of 1:5 (w/v)
(Table S2) while the soil organic matter (SOM) was measured using the
Walkley–Black procedure (Nelson and Sommers, 1982).

2.2. Standards and reagents

A total of 12 linear PFASs including 9 perfluoroalkyl carboxylic
acids (PFCAs) with carbon lengths from C4 to C12, and 3 per-
fluoroalkane sulfonic acids (PFSAs) were identified and quantified in all
samples. These substances were perfluorobutanoic acid (PFBA), per-
fluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA),

perfluorobutane sulfonate (PFBS), perfluoroheptanoic acid (PFHpA),
perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS),
perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), per-
fluorooctane sulfonate (PFOS), perfluoroundecanoate acid (PFUdA),
and perfluorododecanoic acid (PFDoA). Together with 12 above PFAS
native standards, 9 mass-labeled PFASs, containing 13C4PFBA,
13C4PFHxA, 13C4PFOA, 13C4PFNA, 13C4PFDA, 13C4PFUdA, 13C2PFDoA,
18O2PFHxS and 13C4PFOS were purchased from Wellington
Laboratories with purities of> 98% (Guelph, Ontario, Canada) for
precise quantification. More detailed descriptions on standards and
reagents can be found in the Supporting information.

2.3. Extraction and cleanup

The soil and plant samples were extracted mainly by solid phase
extraction (SPE) using methods with minor modifications described
previously by Loi et al. (2011) and Felizeter et al. (2012) (Supporting
information). Quantitative analysis of PFASs was achieved by high
performance liquid chromatography (Agilent 1290 Infinity HPLC
System, Agilent Technologies, USA) coupled with electrospray ioniza-
tion tandem mass spectrometry (Agilent 6460 Triple Quadrupole MS/
MS System, Agilent Technologies, USA) in the negative electrospray
ionization (ESI) mode. An Acclaim 120 C18 column (5 μm,
4.6 mm×150mm, Thermo Fisher Scientific Co.) was used to separate
the target PFASs. The detailed descriptions of extraction and instru-
mental analysis are available in the Supporting information and Table
S3.

2.4. Quality assurance and quality control (QA/QC)

In order to avoid cross contamination during field sampling, the soil
samples were kept in three layers of sealed polyethylene bags while
crop samples were kept in three-layers of sealed paper bags. For the
purpose of examining if any external contamination occurred during
the sampling, extraction and instrumental analysis, field blanks,
transport blanks, procedure blanks and solvent blanks were conducted

Fig. 1. The two selected fields for crop sampling around the FIP in Huantai County, Shandong Province, China.
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Fig. 2. Concentrations and compositions of PFASs in soil and edible parts of multiple crops.
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for every sample batch. PFAS-related materials, such as polytetra-
fluoroethylene (PTFE) containers or coverings, were avoided to be used
as much as possible throughout the study. Quantification of the 12
PFASs were carried out using a 10-point solvent based internal standard
calibration curve with concentrations of native standards ranging from
0.01 to 100 ng/mL, spiked with a 5 ng internal standard. Regression
coefficients (R2) for calibration curves for all target analytes were>
0.99. The limit of quantification (LOQ) and limit of detection (LOD)
were defined as the peak of the analyte that needed to yield a signal-to-
noise (S/N) ratio of 10:1 and 3:1, respectively. If the concentrations of

PFASs in any extract were>100 ng/mL, then the samples would be
reduced in volume or amount, and then extracted and quantified again
to fit the range of the calibration series. The different matrices were
spiked with a standard solution and then analyzed to determine the
recovery of each target PFAS. The matrix spike recoveries (MSRs)
ranged from 72% to 93% for soil and 66% to 102% for plant. Replicate
experiments were also conducted to ensure the precision of extraction
and analysis. Detailed QA/QC information were given in Supporting
information and Table S4.

Fig. 3. The profiles of individual PFAS components in agricultural soils and corresponding crops.
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2.5. Statistical analyses and graphic plotting

In this study, the concentration units of PFASs in both soil samples
and crop samples were based on dry weight (dw). Statistical analysis
and graphical representation were performed using SPSS Statistics
V22.0 (SPSS Inc. Quarry Bay, HK), OriginPro 9.0 (OriginLab
Corporation, USA) and Excel 2016 (Microsoft Corporation, USA).
During the analysis, concentrations less than the LOQ were set to one-
half of the LOQ, and those less than the LOD were assigned to values of
LOD/ √ 2 (Hornung and Reed, 1990; Bao et al., 2011). Mapping of
sampling sites and land use type were analyzed using ArcGIS V10.2
software (ESRI, Redland, CA, USA).

2.6. Bioaccumulation metrics and daily intake estimation

Bioaccumulation factors (BAFs), expressed as ratios between che-
mical concentration determined on a dry weight basis in the respective
crop organs and corresponding soils, were calculated by Eq. (1)
(Schwarzenbach et al., 2005). Transfer factors from root to shoot (TF)
were calculated by Eq. (2), through dividing the chemical concentration
in shoot by the chemical concentration in root on a dry weight basis
(Lan et al., 2018).

=BAF
PFAS concentration in crop (ng/g dw)
PFAS concentration in soil (ng/g dw) (1)

=TF
PFAS concentration in shoot (ng/g dw)
PFAS concentration in root (ng/g dw) (2)

=
×

EDI
Daily consumption (g/d dw) PFAS concentration in crop (ng/g dw)

Body weigh (kg)
(3)

Based on averaging the intake dose by body weight, the estimated
daily intake (EDI, ng/kg·bw/day) of PFASs through the consumption of
crop food can be calculated using Eq. (3). Parameters used for calcu-
lation were based on survey data from the Chinese Center for Disease
Control and Bureau of Statistics of Shandong Province, China, illu-
strated in Table S5. Since body weights and consumption rates vary by
age, the EDIs were estimated for three age groups: toddlers (2–5 years),
children & teenagers (6–17 years), and adults (≥18 years) (Zhai, 2008;
Zhang et al., 2010). Considering that the study area was located in the
rural-urban fringe, the crops contaminated by PFASs may be consumed
by both urban and rural residents. Based on statistical data concerning
diet and body weight as well as crop concentrations, the EDIs of PFASs
via consumption of grains and vegetables were estimated to assess
health risk according to four possible scenarios: urban residents con-
suming crops with high concentrations grown in FIP-0.3 km field
(Urban-high-exposure scenario) or low concentrations grown in FIP-
10 km field (Urban-low-exposure scenario), and rural residents con-
suming crops with high concentrations grown in FIP-0.3 km field
(Rural-high-exposure scenario) or low concentrations grown in FIP-
10 km field (Rural-low-exposure scenario). For every scenario, the EDIs
of PFASs for adults, teenagers & children, toddlers were further calcu-
lated to explore the relationship of age groups and health risks caused
by PFASs exposure.

3. Results and discussion

3.1. Occurrence and source identification of PFASs in agricultural soil and
crops

3.1.1. Concentrations and profiles of PFASs in agricultural soils
The presence of 12 PFASs were examined in this study. The soil

concentrations of sum PFASs (∑PFASs) ranged from 79.9 ng/g to
200 ng/g in FIP-0.3 km field and from 2.09 ng/g to 3.75 ng/g in FIP-

10 km field (Fig. 2; Tables S6, S7). The profiles of PFASs in the soil
samples for different crops were similar, and PFOA (C8) was the pre-
dominant component with an average contribution of 83.4% of the
ΣPFASs, followed by shorter-chain PFCAs including PFBA (C4) (6.54%),
PFPeA (C5) (2.96%), PFHxA (C6) (2.96%) and PFHpA (C7) (1.78%)
(Fig. 3). Longer-chain PFCAs (C9–C12) and PFSAs including PFBS,
PFHxS and PFOS were only observed in low concentrations or below
the limit of detection (LOD), perhaps due to the limited production and
application of these chemicals in this region (Wang et al., 2014a; Wang
et al., 2016). The maximum PFOA concentration (181 ng/g) in agri-
cultural soil of this study far exceeded most of PFOA concentrations
(nd-47.5 ng/g) in soils reported in China (reviewed in Table S8), in-
cluding soils collected in most developed industrial areas.

3.1.2. Concentrations and profiles of PFASs in crops
The crop concentrations of ∑PFASs ranged from 58.8 ng/g to

8085 ng/g in the FIP-0.3 km field and from 1.36 ng/g to 63.4 ng/g in
the FIP-10 km field (Fig. 2; Table S9, S10, S11, S12). Unlike similar
concentrations in the soil samples, the ∑PFASs concentrations varied
largely in different types of crops. In the FIP-0.3 km field, edible parts
showed significant higher concentrations of ∑PFASs in shoot vegetables
(2355 ng/g, averagely), compared with those in fruit vegetables
(1115 ng/g, averagely), flower vegetables (cauliflower, 410 ng/g), root
vegetables (333 ng/g, averagely), and grain crops (580 ng/g, averagely)
(Fig. 2). Similar tendency also occurred in FIP-10 km field (Fig. 2). It is
noteworthy that the highest concentration of PFOA, the widely health-
concerned component, in vegetables of this study reached up to the
shocking level of 1880 ng/g, which was about 2–5 orders of magnitude
higher than those collected in markets reviewed in previous studies
(Jian et al., 2017; Sungur, 2018). The high concentrations of PFOA in
crops indicated possible health risks for potential consumers.

Even for the same crop, the ∑PFASs concentrations in different or-
gans also showed some discrepancies. The shoots of celery, radish and
carrot showed much higher concentrations of ∑PFASs compared to their
roots (Fig. 2). Furthermore, for specific parts of shoots, the ∑PFASs
concentrations in leaf blades were higher than those in their long leaf
petioles or pseudostems, which could be found in the FIP-0.3 km field
with ∑PFASs concentrations of carrot leaf blade (5303 ng/g), carrot leaf
petiole (1189 ng/g), celery leaf blade (2678 ng/g), celery leaf petiole
(617 ng/g), Welsh onion leaf blade (825 ng/g), Welsh onion pseu-
dostem (64.8 ng/g), and in FIP-10 km field with ∑PFASs concentrations
of carrot leaf blade (63.4 ng/g), carrot leaf petiole (11.1 ng/g), Welsh
onion leaf blade (12.7 ng/g), and Welsh onion pseudostem (2.90 ng/g)
(Fig. 2). These findings can explain the relatively low ∑PFASs con-
centrations for whole shoots of Welsh onion, carrot and celery, which
are with large weight proportion of the long leaf petiole or pseudostem.

As important sources of livestock feed, straws/stovers and grains of
wheat, corn and soybean were also contaminated by PFASs. For wheat
and soybean in FIP-0.3 km field, the highest ∑PFASs concentrations
were found in leaves (wheat, 2597 ng/g; soybean, 8085 ng/g), followed
by wheat husk (2452 ng/g) or soybean pod (2861 ng/g), grains (wheat,
407 ng/g; soybean, 1274 ng/g), roots (wheat, 371 ng/g; soybean,
532 ng/g) and stem (wheat, 319 ng/g; soybean, 312 ng/g) (Fig. 2). The
corn plants in the same field also showed the highest ∑PFASs con-
centration of 4683 ng/g in the leaves. For corn, lower concentrations
were found in the root (474 ng/g), followed by stem (223 ng/g), husk
(187 ng/g), cob (63.8 ng/g) and grain (58.8 ng/g) (Fig. 2). PFASs levels
in various types and organs of crops may be associated with their
growth periods and physiological characteristics such as biological
barriers (e.g., Casparian strip, cambium), root surface area, contents of
protein and lipid, and transpiration capacity (Wen et al., 2016; Blaine
et al., 2014a).

Unlike in soils, shorter-chain PFCAs (C4-C7) in crops accounted for
a greater proportion of the total PFASs, indicating that there was a
bioaccumulation preference for these homologues (Krippner et al.,
2014; Wen et al., 2014). For edible parts in FIP-0.3 km field, PFBA (C4),
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instead of PFOA (C8), became the dominant form, representing, on
average, 56.5% of the total PFASs, followed by PFOA (C8) (21.6%),
PFPeA (C5) (13.1%), PFHxA (C6) (4.84%) and PFHpA (C7) (3.93%).
The longer-chain PFCAs (C9-C12) and PFSAs only contributed<0.2%
of ∑PFASs (Fig. 3). Compared to soil, the proportions of shorter-chain
PFCAs (C4-C7) in multiple crops of the FIP-10 km field also exhibited
the similar increase tendency.

The profiles of PFAS molecules varied across crops types. For edible
parts of multiple crops in the FIP-0.3 km field, the average percentage
of total shorter-chain PFCAs (C4-C7) was found to be the highest in
grain crops (98.7%), followed by fruit vegetable (97.6%), flower ve-
getable (78.9%), root vegetables (76.2%), and shoot vegetables (64.6%)
(Fig. 3). Compared to shorter-chain PFCAs (C4-C7), PFOA (C8) with
larger molecular and greater log10KOW values may be more likely re-
tained by biological barriers and plant issues during acropetal move-
ment of PFASs in the crops (Blaine et al., 2014a; Lan et al., 2018).
However, the proportions of PFOA in shoots of radish (49.1%), carrot
(23.5%) and celery (32.3%) were higher than their roots (radish,
33.6%; carrot, 13.5%; celery, 25.3%) in the FIP-0.3 km field; while
significant higher proportions of PFOA were also found in shoots of
radish (57.7%) and carrot (52.5%) compared with their roots (radish,
21.5%; carrot, 21.1%) in the FIP-10 km field. Furthermore, for specific
parts of the edible shoots, the leaf blades of carrot, celery and Welsh
onion showed higher proportions of PFOA than their long leaf petioles
or pseudostems (Fig. 2). Moreover, relatively high proportions of PFOA
were also found in the leaves of wheat, corn and soybean compared to
their other organs. This phenomenon implied that the composition of
PFASs in leaves may be affected by other translocation or uptake
pathways besides root uptake. For example, recent studies have gra-
dually confirmed that plant leaves may absorb neutral PFASs in gas
phase and ionizable PFASs occurred in fine particulate matters of the
atmosphere (Zhu et al., 2016; Chen et al., 2018; Tian et al., 2018a).
Except leaves, the proportions of sum shorter-chain PFASs compared to
PFOA in specific organs of crops showed increase tendencies with the
translocation distance through the plant.

3.1.3. Source identification of PFASs in agricultural soils and crops
Principal component analysis (PCA) and Spearman's correlation

analysis on the 12 PFASs in the soils and crops showed that the con-
centrations of PFCAs, including PFBA, PFPeA, PFHxA, PFHpA, PFOA,
PFNA and PFDA, were strongly associated, indicating that these com-
pounds may be derived from a similar parent source (Fig. 4; Table S13,
S14, S15). Previous studies have confirmed the FIP as the predominant
point source in the area (Liu et al., 2016; Liu et al., 2017a). The en-
vironmental PFASs may be derived from direct emissions during PFASs
production and fluoropolymer manufacturing, as well as degradations
of PFAS precursors and fluoropolymers (Dinglasan et al., 2004;
Taniyasu et al., 2013b; Wang et al., 2014b; Rebecca, 2009). In addition,
the PCA results showed that some PFAS components were discrete and

not gathered together intensively with most PFCAs mentioned above
(Fig. 4), which indicated other possible sources of PFASs, such as do-
mestic emission or other industrial emissions, may exist in the area (Li
et al., 2015).

PFASs in agricultural soils were inferred to come from irrigation
water and atmospheric deposition contaminated by the FIP emissions
(Liu et al., 2017a). In our previous studies, the concentrations of
∑PFASs in irrigation water were detected to be 147,165 ng/L in FIP-
0.3 km field and 3.14 ng/L in FIP-10 km field, respectively (Liu et al.,
2016). Although the occurrence of PFASs in the atmosphere has not
been directly studied in this area, extremely high concentrations of
∑PFASs (4862 ng/L) reported in local precipitation may indirectly
confirm the existence of substantial PFASs in the air (Liu et al., 2017a).
Like composition profiles of PFASs in soil samples, the dominant
component of the ∑PFASs in samples of irrigation water and pre-
cipitation was also PFOA, followed by shorter-chain PFCAs including
PFBA, PFPeA, PFHxA and PFHpA. Root uptake from soil has been
identified as a major source of PFASs in crops (Stahl et al., 2009;
Lechner and Knapp, 2011). Based on recent studies, the significant re-
levance of PFAS concentrations between air/aerosol and plant leaves
gradually revealed the potential of leaf uptake from airborne PFASs
(Zhu et al., 2016; Chen et al., 2018; Tian et al., 2018a), which may be
another possible source of PFASs in crops.

3.2. Crop bioaccumulation of PFASs in contaminated farmland

3.2.1. Bioaccumulation factors of ∑PFASs for multiple crops
The bioaccumulation factors (BAFs) provide an insight into the

processes governing PFAS accumulation in crops. Soil properties such
as SOM (17.9 ± 2.47 g/kg), pH (7.40 ± 0.24), TC (1.48 ± 0.28%)
and TN (0.11 ± 0.01%) in both FIP-0.3 km field and FIP-10 km field
were relatively similar (Table S2). In general, the edible parts and other
organs of multiple crops in the FIP-0.3 km field showed higher BAFs of
∑PFASs compared to those in FIP-10 km field (Fig. 5). Similar phe-
nomenon that higher BAFs of ∑PFASs in crops occurred in more ser-
iously polluted soils was found in control experiments for vegetables
previously reported (Blaine et al., 2014a; Krippner et al., 2015).

Depending on the crop types, the bioaccumulation factors (BAFs) of
∑PFASs for edible parts showed different values. The highest average
BAF values of ∑PFASs were found in shoot vegetables (FIP-0.3 km field,
24.3; FIP-10 km field, 6.64), followed by fruit vegetables (FIP-0.3 km
field, 6.63; FIP-10 km field, 2.98), flower vegetable (FIP-0.3 km field,
4.23; FIP-10 km field, 1.96), grain crops (FIP-0.3 km field, 4.05; FIP-
10 km field, 0.50), and root vegetables (FIP-0.3 km field, 3.58; FIP-
10 km field, 1.77) (Fig. 5). Previous studies have confirmed transpira-
tion as the main driver for PFASs uptake by plants, and PFASs may
transport from the root to shoot along with the transpiration stream
(Blaine et al., 2013; Trapp and Eggen, 2013). However, it is noteworthy
that longer-chain PFASs, with more hydrophobic perfluoroalkyl tails

Fig. 4. PCA results using concentrations of 12 PFASs in agricultural soils (a) and crops (b).
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and larger molecular volume, tend to be retained by biological mac-
romolecules (such as protein and lipid) and barriers (e.g., Casparian
strip) in roots, and less portions could be transferred to shoots (Taiz and
Zeiger, 2010; Lan et al., 2018; Zhang et al., 2019). The transfer factors
(TFs) of PFCAs (C4-C8) from roots to stems in grain crops exhibited a
downward trend with the increasing carbon chain lengths, which also
confirmed the existence of PFASs retention in roots. Besides root up-
take, large amounts of airborne PFASs from the FIP might also have
some contributions to the high concentrations of PFASs in shoots via
leaf uptake (Zhu et al., 2016; Chen et al., 2018; Tian et al., 2018a).
These facts may explain the higher BAFs of ∑PFASs for shoot vegetables.
For other edible parts such as fruit, flower, grain, bulb root, PFASs
would encounter additional membrane barriers (e.g., the cambium) in
order to be loaded into the phloem and transported to these organs
(Mench et al., 2009; Trapp and Eggen, 2013; Trapp, 2015).

The BAFs of ∑PFASs also varied in the specific organs of the whole
plant. The pseudostems of the Welsh onion showed much lower BAFs of
∑PFASs (FIP-0.3 km field, 0.47; FIP-10 km field, 1.39) than the leaf
blades (FIP-0.3 km field, 6.00; FIP-10 km field, 6.08); the BAFs of
∑PFASs for long leaf petioles of carrot (FIP-0.3 km field, 11.2; FIP-10 km
field, 3.24) and celery (FIP-0.3 km field, 6.87) were far below those for
leaf blades of carrot (FIP-0.3 km field, 50.1; FIP-10 km field, 18.6) and
celery (FIP-0.3 km field, 29.8) (Fig. 5). Similar to the above vegetables,
the leaves of wheat, corn and soybean also exhibited quite high BAFs of
∑PFASs compared with other organs. Considering the retention of

PFASs by biological macromolecules and barriers from root to shoot,
direct leaf uptake from the air was inferred as a potential contributor to
the higher BAFs of ∑PFASs in crop leaves (Blaine et al., 2013; Chen
et al., 2018). The shoot morphologies of carrot, radish and celery have
similar characteristics with leaf blades grown on the long leaf petioles.
However, the TFs of ∑PFASs from root to shoot in the carrot (FIP-0.3 km
field, 7.26) and radish (FIP-0.3 km field, 13.5) showed much higher
values compared with the celery (FIP-0.3 km field, 1.50). The phe-
nomenon was attributed to the lack of Casparian strip between the
edible root and the above ground shoot in radish and carrot, which
would permit the unrestricted upward flow of PFASs (Suga et al., 2003).
Previous studies have found that lipids and proteins in plants have a
high affinity to PFASs, which may affect the plant bioaccumulation of
PFASs (Bischel et al., 2011; Xia et al., 2013; Wen et al., 2016). In the
FIP-0.3 km field, the BAF of ∑PFASs in the corn root (4.59) was higher
than that in the soybean root (3.01), which may be related to the higher
lipid content in the corn root (4.35%) compared with the soybean root
(2.45%) (Wen et al., 2016). For three types of grains, the BAFs of
∑PFASs for the soybean (FIP-0.3 km field, 7.22) were highest, followed
by the wheat (FIP-0.3 km field, 4.35; FIP-10 km field, 0.63) and the corn
(FIP-0.3 km field, 0.57; FIP-10 km field, 0.36) (Fig. 5). These dis-
crepancies may be inferred to associate with lipid and protein contents
of these crops, which are the higher for soybean grain (lipid, 15.9%;
protein, 33.1%), than wheat grain (lipid, 2.5%; protein, 15.7%) or corn
grain (lipid, 0.8%; protein, 8%) (Yang, 2008).

Fig. 5. Bioaccumulation factors (BAFs) of ∑PFASs for the edible parts of multiple crops (a) and for specific organs of vegetables (b) and grain crops (c).
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3.2.2. Bioaccumulation equations of individual PFAS components for
multiple crops

The crops showed different bioaccumulation capacities for various
PFAS components. For crops in FIP-0.3 km field, the total concentra-
tions of shorter-chain PFCAs (C4-C7) were about 14-fold larger than
those of PFOA (C8), despite the soil concentrations of PFOA (C8) being
an average of 9.41 times higher than the sum of shorter-chain PFCA
(C4-C7) concentrations. Similar concentration trends were also found
for crops in the FIP-10 km field. These findings indicated a preferential
uptake of shorter-chain PFCAs for crops, as observed previously in
controlled experiments (Krippner et al., 2015). Longer-chain PFASs,
with higher log10KOW values, were more easily combined with organic
matters in soils, and may exhibit lower rhizospheric mobility and
bioavailability. To further explore effects of crop physiological char-
acteristics on bioaccumulation of individual PFAS, same crop types in
the two fields were selected and then classified as different categories,
and subsequently carbon chain lengths of main PFCAs (C4-C8) versus
the logarithm of corresponding BAFs (log10BAFs) were plotted with
trend line, equations and correlation coefficients (Fig. 6).

In general, the log10BAFs for multiple crops presented a linear de-
crease trend with increasing carbon chain lengths of PFCAs (C4-C8).
However, the decrease rate of log10BAFs per CF2 unit, reflecting

bioaccumulation discrepancies of individual PFCA components, varied
depending on crop types. For edible parts of multiple crops, the largest
decrease rates of log10BAFs per CF2 unit were observed in grain crops
with the average value of 0.79 in FIP-0.3 km field and 0.36 in FIP-10 km
field, followed by those in fruit vegetables (pepper) (FIP-0.3 km field,
0.60; FIP-10 km field, 0.31), flower vegetables (cauliflower) (FIP-
0.3 km field, 0.37; FIP-10 km field, 0.25), root vegetables (FIP-0.3 km
field, 0.28; FIP-10 km field, 0.25) and shoot vegetables (FIP-0.3 km
field, 0.23; FIP-10 km field, 0.10) (Fig. 6). When large amounts of
PFASs stored in leaves through transpiration, shorter-chain homologues
were easier to cross additional membrane barriers (e.g., the cambium)
in order to be loaded into the phloem and transported to storage organs
(e.g., fruit, flower, bulb root, grain) together with nutrients from pho-
tosynthesis (Trapp, 2004; Wen et al., 2013). Therefore, more shorter-
chain PFCAs compared to PFOA would flow out from leaves to storage
organs. The uptake potential of airborne PFASs by leaves was found to
be positively associated with their log10KOA values (Chen et al., 2018).
Considering that PFOA may be the primary component of local airborne
PFASs (Liu et al., 2017a) and the log10KOA of PFOA is higher than those
of shorter-chain PFCAs (Table S16), more PFOA is inferred to be ab-
sorbed by crop leaves from the air. Loss of shorter-chain PFCAs as well
as potential uptake of PFOA reduced the gap of main PFCAs

Fig. 6. The relationship between bioaccumulation factors of individual PFASs and their carbon chain lengths for edible parts of multiple crops.
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concentrations in leaves, and further led to relatively small decrease of
log10BAFs per CF2 unit. Due to the lack of the typical barrier (Casparian
strip) in roots of carrot and radish, not only short-chained PFASs but
also long-chained ones were transported to shoot unrestrictedly.
Therefore, with the increase of PFCAs carbon chain length, these edible
roots showed similar decline trend of log10BAF compared to edible
shoots. For storage organs, considerable PFASs bioaccumulation was by
means of nutrient delivery from the leaf photosynthesis and water
transport from the root. PFASs retention, especially for longer-chain
ones, by gradually increasing biological barriers raised with the trans-
port distance, which exhibited larger decrease rate of log10BAFs per CF2
unit for cauliflower, pepper and grain. Moreover, similar tendencies
were also found in additional vegetables in FIP-0.3 km field with
smallest decrease of log10BAF per CF2 unit for celery shoot (0.34),
followed by pumpkin fruit (0.71) and soybean grain (1.16) (Fig. 6). It
was worth emphasizing that with the increase of carbon chain length,
the BAFs of individual PFASs for crops in FIP-0.3 km field with high soil
concentrations were found to decrease faster than those in FIP-10 km
field with low soil concentrations (Fig. 6).

For specific organs of the whole plants, the decrease in log10BAFs
per CF2 unit was the smallest in leaves compared to other organs (Table
S17), which may also be due to loss of shorter-chain PFCAs through
outflow from the leaves as well as potential leaf uptake of PFOA from
air or aerosol. Except for leaves, the decrease rate of Log10BAF per CF2
unit in stems were larger than those in roots, mainly due to the reten-
tion of longer-chain components by biological macromolecules and
barriers during upward transport. Moreover, the log10BAFs decrease
rates with the carbon chain lengths of PFCAs for wheat husk, corn cob
and soybean pod all showed smaller values than their grains, the organs
with the longest distance from root and leaf. As mentioned above, the
bioaccumulation discrepancies of individual PFCAs became gradually
larger with the increase of transport distance and biological barriers in
crops.

3.3. Human exposure estimation and health risks of PFASs for local urban
and rural residents

3.3.1. Human exposure estimation of PFASs via crop consumption for local
residents

Some high soil concentrations of PFOA in FIP-0.3 km field were si-
milar to or even exceeded the predicted non-effect concentration
(PNEC) of 160 ng/g (Amundsen et al., 2008), implying a potential
ecological risk to local soil organisms. But such soil contamination le-
vels were still far below the residential soil screening level (16,000 ng/g
for PFOA) recommended by the USEPA, indicating that health risk
caused by ingestion, inhalation and dermal exposure of contaminated
soils would be very low (USEPA, 2016). However, consuming con-
taminated crops has been identified as an indispensable exposure
pathway of concern for PFASs for human health (Vestergren et al.,
2012; Jian et al., 2017). According to official statistics, vegetables and
grains account for more than half of the total food for local residents
(Bureau of Statistics of Shandong Province, 2015). Due to richness of
nutrients, dietary fiber and phytochemicals, more vegetables were
consumed as a healthy diet by urban residents in China, whose living
conditions are better than rural residents (National Bureau of Statistics,
2014). When estimating human exposure of PFASs for local residents,
the average PFASs concentrations of eight identical vegetables, re-
presenting dominant types of local vegetables, were used to estimate
PFASs exposure via vegetable consumption. In addition, wheat and
corn, accounting for 80% of local grain food (Bureau of Statistics of
Shandong Province, 2015), were selected for exposure estimation of
PFASs through grain consumption. Distinct PFASs exposure patterns
may be caused by contamination levels of edible crops and dietary
habits of local residents.

The estimated daily intake (EDIs) of major PFAS components via
crop consumption varied depending on crop concentrations of PFASs,

dietary habits and age groups of consumers. In general, the EDIs of
∑PFASs (1986–3544 ng/kg·bw/day) via consumption of crops from the
FIP-0.3 km field were about 2 orders of magnitude higher than those
(11.5–19.5 ng/kg·bw/day) from FIP-10 km field (Fig. 7; Table S18).
Similarly, the average EDI of ∑PFASs via diet exposure were also up to
998 ng/kg·bw/day for adults near a PFASs manufacturing facility in
Hubei Province, China (Zhang et al., 2017), which further confirmed
that PFAS-related industries were important sources of local con-
taminated foods and high human exposure of PFASs for nearby re-
sidents. In terms of the consumption of crops from FIP-0.3 km field, the
EDIs of ∑PFASs were highest for toddlers (urban: 3019 ng/kg·bw/day,
rural: 3544 ng/kg·bw/day), followed by children & teenagers (urban:
2498 ng/kg·bw/day, rural: 2994 ng/kg·bw/day) and adults (urban:
1986 ng/kg·bw/day, rural: 2395 ng/kg·bw/day) (Fig. 7; Table S18).
Toddlers and children & teenagers are exposed to higher amounts of
PFASs than adults, which is a consequence of higher consumption per
body weight (Klenow et al., 2013). Similar trends were also found in
China via dietary intake with average PFOA EDIs of 1.99 ng/kg·bw/day
for children and 0.96 ng/kg·bw/day for adults (Zhang et al., 2017), via
consumption of meat and eggs with PFOA EDIs of 15.9 to 19.7 ng/
kg·bw/day for toddlers and 7.75 to 10.5 ng/kg·bw/day for adults
(Zhang et al., 2010), and in Belgium through multiple foodstuffs PFOA
EDIs ranged from 0.28 to 0.39 ng/kg·bw/day for children and from 0.19
to 0.23 ng/kg·bw/day for adults (Klenow et al., 2013). These findings
indicated that low-age groups of residents were particularly susceptible
to long-term dietary exposure to PFASs. Additionally, the EDIs of
∑PFASs in two scenarios for rural residents showed higher values
compared to those for urban residents, due to lower total consumption
of wheat, corn and vegetables for urban residents. However, the EDIs of
PFOA showed higher values for urban residents than those for rural
residents (Fig. 7; Table S19). This may be explained by larger propor-
tion of vegetables in urban diet as well as stronger bioaccumulation
capacities of PFOA in vegetables compared with grains of wheat and
corn. Previous study also reported higher EDI of PFOA for urban re-
sidents (6.8 ng/kg·bw/day) than those for rural residents (5.1 ng/
kg·bw/day) (Zhang et al., 2016). Furthermore, larger proportions of
animal-derived food with strong bioaccumulation potential of PFASs,
may contribute to higher human exposure of PFASs, especially longer-
chain PFASs, for urban residents.

3.3.2. Health risk assessment of PFASs exposure for local residents
The high EDIs of PFASs demonstrated the necessity of human health

risk assessment associated with these exposures. Although there is no
guideline for dietary intake of PFASs in China, the tolerable daily intake
(TDI) values for PFOA have been established in other parts of the world.
Compared to current recommended TDI values of 100 to 1500 ng/
kg·bw/day for PFOA proposed by several countries (Fig. 7), the EDIs of
PFOA in high-exposure scenarios for both urban or rural residents with
different age groups were more than twice of the TDI value of 100 ng/
kg·bw/day recommended by the Federal Environment Agency, Ger-
many (BfR, 2006; TWK, 2006) (Fig. 7). While the EDIs of PFOA for
toddlers were even approximately to the TDI value of 333 ng/kg·bw/
day recommended by the USEPA (Thayer and Houlihan, 2008).
Therefore, it can be concluded that the EDIs for PFOA are associated
with risks for adverse human health effects, especially for local tod-
dlers. Even if in low-exposure scenarios, cumulative body burdens of
PFOA may increase the risk of health effects.

In addition, other exposure pathways of PFOA may exist for local
residents. Local groundwater was once used as a source of drinking
water, in that case the EDIs of PFOA for adults were estimated to be
3755 ng/kg·bw/day in FIP-0.3 km field and 0.07 ng/kg·bw/day in FIP-
10 km field (Liu et al., 2016). Fortunately, local government has built
improved tap water systems for rural and urban residents, aiming to
reduce health hazards and risks from contaminated water. However,
effective measures for reducing the human exposure to PFASs from crop
consumption have not been taken, which is essential and urgent to
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safeguard the health of local residents. Besides consumption of grains
and vegetables, local animal-derived foods, mostly not yet studied here,
may also contribute to the dietary load of PFOA. Moreover, human
exposures of PFOA for adults via dust ingestion and dermal absorption
have been found to be 8.34 ng/kg·bw/day near the FIP-0.3 km field and
0.25 ng/kg·bw/day near the FIP-10 km fields (Su et al., 2016). Con-
sidering these potential intake pathways, the EDIs and health risks of
PFOA in high-exposure scenarios would become more serious while
those in low-exposure scenarios would be elevated to be a level of
concern.

Based on dietary intake, the EDIs of PFOA for adults have been
reported in China (0.59–10.5 ng/kg·bw/day) (Zhang et al., 2010; Zhang
et al., 2017), Japan (0.72–1.3 ng/kg·bw/day) (Kärrman et al., 2009),

Norway (0.086 ng/kg·bw/day, averagely) (Papadopoulou et al., 2017),
Italy (0.39 ng kg·bw/day, averagely), Czech Republic (0.23 ng/kg·bw/
day, averagely), Belgium (0.65 ng/kg·bw/day, averagely) (Klenow
et al., 2013), Germany (2.9 ng/kg·bw/day, averagely) (Fromme et al.,
2007), Sweden (0.35–0.69 ng/kg·bw/day) (Vestergren et al., 2012), and
the US (0.82 ng/kg·bw/day, averagely) (Schecter et al., 2010). Ob-
viously, the elevated EDIs of PFOA (adults: 216 ng/kg·bw/day) reported
in urban-high-exposure scenario far exceeded those values previously
reported. Even in low-exposure scenarios with consuming crop pro-
duced from the FIP-10 km field, the EDIs of PFOA (urban adults:
3.54 ng/kg·bw/day, rural adults: 3.39 ng/kg·bw/day) were still com-
parable or higher than the upper limits of most reported EDI values,
implying that the contamination distance of the FIP for crops can be

Fig. 7. Estimated daily intakes (EDI) of PFASs via consumption of contaminated crops (ng/kg·bw/day) for local urban and rural residents.
Note: The detailed explanations about the calculation methods of above TDI values of PFOA are shown in the Supporting information.
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farther than 10 km.
Those risk assessments were mostly conducted for PFOA, just one

component of the PFAS family. Crop bioaccumulation preference led to
the EDIs of shorter-chain PFCAs for local residents being much higher
than those of PFOA (Jian et al., 2017). However, accurate risk assess-
ment of short-chain PFASs cannot be conducted due to a paucity of their
TDI values, as a result of shortage of human and eco-toxicological data
for these chemicals (USEPA, 2018). Therefore, health risks from mul-
tiple PFASs via crop consumption for local residents may be more ser-
ious than just PFOA. In addition, it is worth emphasizing that the FIP
has been expanding their fluoropolymers production (Wang et al.,
2016). If without suitable substitutes for PFASs used in fluoropolymer
productions or safety improvement for local food, continuous or even
higher exposure of these substances would pose a risk to the local re-
sidents.

4. Conclusions and perspectives

Overall, it can be concluded in this study that:

• The highest concentrations of ΣPFASs were up to 200 ng/g in agri-
cultural soils and 8085 ng/g in crops nearby the FIP. The profiles of
PFASs in soils were dominated by PFOA (C8) with an average
contribution of 83.4%, while in their crops shorter-chain PFASs (C4-
C7), especially PFBA (C4), became major components, indicating
crop bioaccumulation preference for these homologues.

• For edible parts of multiple crops, the highest BAFs of ∑PFASs were
found in shoot vegetables compared with those in fruit vegetables,
flower vegetable, root vegetables and grain crops. For specific or-
gans of some crops, significantly higher BAFs of ∑PFASs were also
found in leaves. Root uptake from the soil and leaf uptake from the
air may be two potential sources of crop bioaccumulation of PFASs.
Some PFASs, especially longer-chain homologues, may be retained
by biological macromolecules and barriers during acropetal move-
ment. For three grains, the BAFs of ∑PFASs for the soybean were
highest, followed by wheat and corn, which may be related to de-
creasing content of lipid and protein.

• Shorter-chain PFASs showed higher bioaccumulation capacities,
probably related to their greater mobility and less retention than
longer-chain homologues during translocation in the plant. With
increasing carbon chain lengths of PFCAs (C4-C8), their log10BAF
values for edible parts of various crops showed a linear decrease,
and the steepest decrease slopes were observed in grain crops, fol-
lowed by fruit vegetables, flower vegetables, root vegetables and
shoot vegetables. For specific organs of the whole crops, PFCAs (C4-
C8) in leaves also showed relatively flat decrease slopes of log10BAF
per CF2 unit compared to other organs. Longer-chain PFCAs with
higher log10KOA values in the air are inferred to be more easily
absorbed by leaves, which may reduce bioaccumulation dis-
crepancies of individual PFCAs.

• The EDIs of PFASs via crop consumption varied by crop con-
centrations, and age groups and dietary habits of consumers.
Compared to those from FIP-10 km field, the predicted EDIs of
∑PFASs via consumption of crops from the FIP-0.3 km field showed
about 2 orders of magnitude higher values. This could lead to po-
tential human health risks for all age groups based on TDIs of PFOA.
Toddlers and children & teenagers are exposed to more PFASs as
well as higher health risk than adults, as a result of their higher
consumption per body weight. The larger proportion of vegetables
in plant origin foods for urban diet contributed higher human ex-
posure of PFOA, mainly due to stronger PFOA bioaccumulation
capacities for vegetables compared with grains. Furthermore, po-
tential soil ecological risks may also be caused by high concentra-
tions of PFOA.

Implications and perspectives

• Land-use and planting optimization: Agricultural soils heavily-
polluted by PFASs should be remediated or changed into other land
uses such as forest or grass land. Planting the inedible economic
crops like cotton in PFAS-contaminated fields is also a good choice,
which will not only reduce human exposure to PFASs but also in-
crease the farmers' income. However, if edible crop planting is in-
evitable, grain crops, especially those with low content of protein
and lipid, are suggested. While vegetables, especially shoot vege-
tables, should be reduced as much as possible due to their high
bioaccumulation capacity of PFASs.

• Food safety implication: High-efficient systems for origin trace-
ability and safety scrutiny of agricultural products are vital to re-
duce human exposure of PFASs as much as possible. When con-
suming suspected PFAS-contaminated shoots of Welsh onion, carrot
and celery, the long pseudostems or leaf petioles are suggested to be
eaten, rather than their leaf blades with higher bioaccumulation of
PFASs. If PFAS-contaminated plants were used as animal fodders, it
would be better not use leaves to reduce the PFASs exposure for
livestock or poultries.

• Limitations and prospects of this study: In this paper, the de-
gradation of PFASs precursors and fluoropolymers in the environ-
ment was not fully discussed, and the occurrence of PFASs in the air
as well as the mechanisms of leaf uptake of airborne PFASs were not
yet systematically studied. The above-mentioned aspects may pro-
vide more valuable information for detailly revealing pollution
sources and crop bioaccumulation mechanisms of environmental
PFASs, and need to be further explored in future studies. In addition,
a more comprehensive risk assessment taking into account of the
hazards of shorter-chain PFASs and other exposure pathways is also
essential to safeguard the health of local residents.
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