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Abstract Coupled Model Intercomparison Project phase 5 (CMIP5) climate models simulate a wide
range of historical sea ice areas. Even models with areas close to observed values may contain
compensating errors, affecting reliability of their projections. This study focuses on the seasonal cycle of sea
ice, including analysis of model concentration budgets. Many models have insufficient autumn ice growth,
leading to large winter biases. A subset of models accurately represent sea ice evolution year‐round.
However, comparing their winter ice concentration budget to observations reveals a range of behaviors. At
least one model has an accurate ice budget, which is only possible due to realistic ice drifts. The CMIP5
generation of model physics and resolution is therefore structurally capable of accurately representing
processes in Antarctic sea ice. This implies that substantially improved projections of Antarctic dense ocean
water formation and ice sheet melting are possible with appropriate subsetting of existing climate models.

Plain Language Summary Antarctic sea ice simulated by numerical climate models generally
exhibits large differences compared to satellite‐based estimates. Therefore, attempts to use these models
to understand how Antarctic sea ice—and as a result Antarctic climate, sea level rise, and ocean circulation
—will change in the future are severely compromised. This study looks beyond standard measures of sea
ice such as the area of ocean covered by ice. Instead, we calculate howmuch of the change in sea ice over the
course of a year is caused by local melting and freezing on the one hand and ice transport (for example by
winds and ocean currents) on the other. Of an already small number of models which do show a realistic
amount of sea ice, we identify that some do so for the wrong reasons. However, there is one model using
established model components which shows realistic behavior. This model is able to match observations of
sea ice drift. This demonstrates that the existing climate models are capable of representing Antarctic sea
ice without further increases in sophistication. Focusing on such models for climate projections may
improve the reliability of projections of the future.

1. Introduction

Antarctic sea ice constitutes a critical part of the global climate system. Over the seasonal cycle, it changes in
area by a factor of 6 through highly coupled ice, atmosphere, and ocean processes. Variability and trends in
ice extent are of major importance to regional climate (e.g., Turner, Bracegirdle, et al., 2013), ecosystems
(e.g., Cavanagh et al., 2017; Jenouvrier et al., 2014), and near‐surface atmospheric conditions across the
continent (e.g., Krinner et al., 2014) which have implications for the mass balance of the ice sheet. Sea ice
formation, transport, and melt play an important role in setting the salinity structure of the Southern
Ocean, affecting global ocean circulation (e.g., Abernathey et al., 2016; Haumann et al., 2016).

Projecting future changes in Antarctic sea ice is therefore of paramount importance. However, the models of
the Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012) vary widely in their simu-
lation of Antarctic sea ice (e.g., Turner, Maksym, et al., 2013; Zunz et al., 2013). Known discrepancies from
satellite observations also include recent trends (although this may be a result of internal variability; Swart &
Fyfe, 2013; Zunz et al., 2013) and the frequency distribution of ice concentration (Roach et al., 2018).

It has long been established (Bracegirdle et al., 2015; Raäisaänen, 2007) that there is a relationship between a
model's historical sea ice area and howmuch the Antarctic region warms under greenhouse gas forcing. This
implies that large sea ice biases are prohibitive in making reliable projections of future change. Indeed, the
Intergovernmental Panel on Climate Change Fifth Assessment Report states that confidence is low in pro-
jections of Antarctic sea ice due to biases in representation of historical climate (Collins et al., 2013).
However, a key question is whether models with small sea ice area biases provide more trustworthy
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projections? To address this, one should establish whether the few models that simulate realistic sea ice area
do so for the right reasons. Assessing processes in models with realistic ice cover is therefore necessary.

Holland and Kwok (2012) introduced a methodology to decompose the daily evolution of sea ice concentra-
tion (SIC) into contributions from thermodynamic and dynamic processes, using satellite‐derived measure-
ments of ice drift and concentration. They used this to quantify large‐scale processes in autumn and winter
sea ice, such as divergence and freezing in the pack, advection to the ice edge, and melting at the boundary.
Uotila et al. (2014) applied this technique to assess the CMIP5 models ACCESS1‐0 and ACCESS1‐3
(supporting information Table S1) and the ACCESS‐OM ocean‐sea ice model forced with prescribed
atmospheric conditions. They found that the models had too strong ice edge advection as a result of ice drift
biases, but this was balanced by excessive melting to produce realistic ice evolution. They noted that
observational uncertainties are large near the ice edge. Lecomte et al. (2016) examined the ice concentration
budget in IPSL‐CM5A‐MR and CCSM4, highlighting advective biases at the sea ice edge and underestima-
tions of ice velocity divergence in the pack. Schroeter et al. (2018) analyzed the ice volume budget of the
CMIP5 models, which provides a more comprehensive picture of sea ice processes, but model evaluation
was not possible in this case due to the lack of ice volume observations.

Holland and Kimura (2016) used new satellite data to produce new observed SIC budgets, providing an
opportunity to extend the analyses of Uotila et al. (2014) and Lecomte et al. (2016) to the full seasonal cycle
and to higher spatial resolution. Here, we address how representative the biases found in these earlier papers
are of the full CMIP5 multimodel ensemble of coupled climate models, both in terms of seasonal cycles and
in the underlying budget terms. Our key questions are (1) Do models with a realistic annual cycle of ice area
have compensating biases in ice processes, and are any models sufficiently realistic to suggest reliability in
projections? (2) Where process errors exist, can they be tied to dynamic or thermodynamic processes, and
is there a clear link to the sea ice model used, to model resolution, or to forcing from coupled components?

2. Data and Methods
2.1. Model and Observational Data

For observed budgets, we use daily data from satellite observations as in Holland and Kimura (2016, hence-
forth HK16). Drift fields were derived from Advanced Microwave Scanning Radiometer for the Earth
Observing System (AMSR‐E) brightness temperatures on a 60‐km polar stereographic grid. SIC were derived
from AMSR‐E brightness temperatures on a 12.5‐km grid using the Enhanced NASA Team algorithm
(Cavalieri et al., 2014) and binned onto the same 60‐km grid. Analysis is conducted during the period
2003–2010, for which AMSR‐E data are available. HK16 assess the sensitivity of the derived observational
budgets to this choice of input data sets, arguing that their chosen data are the best available.

For model budgets, we use CMIP5 data from the simulations with historical forcing prior to 2005 and
RCP4.5 (Meinshausen et al., 2011) forcing from 2006 onward. Models are analyzed if they have daily data
for both simulations for SIC and ice drift (CMIP5 variables “sic,” “usi,” and “vsi”), with the exception of
CanESM and MIROC‐ESM, due to their low resolution. This leaves 23 models from 13 modeling centers
(full information, including the ensemble members used and a summary of the model grids, are in
supporting information Text S1 and Table S1). Budgets are calculated on the polar stereographic grid of
the observations, so linear interpolation is first performed using the scipy griddata routine. Velocities
are rotated into the polar stereographic coordinate directions before regridding.

To aid in interpretation of the budgets, we compare European Centre for Medium‐Range Weather Forecasts
Re‐Analysis‐Interim reanalysis (Dee et al., 2011) monthly mean sea level pressures and 10‐m wind compo-
nents with equivalent CMIP5 diagnostics.

2.2. Budget Calculations

HK16 note that the tracking procedure for ice drifts yields fewer data at the ice edge. To give the fairest
comparison between observations and models, our analysis masks all data where SIC < 15%, in both
models and observations. Fifteen percent is a standard threshold in sea ice analyses, and its use here is
further supported by the limited number of drift observations at these low concentrations (supporting
information Figure S1).
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We calculate the terms in the SIC budget equation:

∂C
∂t

¼ −u:∇C−C∇:uþ residual;

where C is SIC and u is the vector drift field. The budget expresses the
change in concentration (left‐hand side) as a sum of components from
advection u. ∇ C, divergence C ∇ . u, both directly calculated, and the
residual. The residual encapsulates both thermodynamics (melting and
freezing) and redistribution processes, such as ridging, whereby ice thick-
ness is gained at the expense of concentration. HK16 demonstrated that,
as also argued by Uotila et al. (2014), the residual is overwhelmingly ther-
modynamic; exceptions are convergent regions of high concentration
near the coast.

To calculate budgets, we first apply a 7 × 7 cell square‐window filter to
both drift and SIC in both themodels and observations, in order to smooth
grid‐scale noise in the ice drift observations, and in both SIC and drift in
the models. The land mask and low SIC mask are re‐applied to the
smoothed fields. The budget terms are then calculated daily as in HK16,
applying a 3‐day time mean to advection and divergence terms. Finally,
monthly averages are calculated. The output fields are masked using the
divergence field both before and after the time average. Divergence has
the smallest coverage because it uses spatial derivatives of velocity which,
in observations, are not available everywhere there is SIC data.

3. Results
3.1. Ice Area

Figure 1 shows modeled and satellite‐derived ice areas for the budget
period 2003–2010; there are negative sea ice area biases in most models
analyzed here, which are large in many cases. Previous studies (e.g.,
Turner, Bracegirdle, et al., 2013; Zunz et al., 2013) suggested that the mul-
timodel mean ice extent is only slightly lower than observations. The set of
models assessed here (supporting information Table S1) differs from these
earlier studies, due to incomplete model availability in the earlier studies

and the restriction to models with daily data in the present study. In addition, earlier studies used the period
1979–2005; differing trends in models and observations (Zunz et al., 2013) mean that the later 2003–2010
period generally results in lower modeled ice coverage (supporting information Figure S2) and higher
observed ice coverage.

Absolute biases are largest in winter and spring (June to November, Figure 1b). The biases in summer are
also large, and greatest in relative terms, with some models having virtually no summer sea ice
(Figure 1a). Since the ice concentration budget examines the rate of change of SIC, dC/dt (HK16), it is
helpful to frame biases in terms of the seasonal evolution of ice area. Negative biases increase in
magnitude between March and July in several models, implying insufficient ice expansion, and the conse-
quent low bias in winter maximum ice area subsequently implies insufficient melt between December
and February (Figure 1b).

As a starting point in our analysis of whether models get the right ice area for the right reasons, we identify a
subset of models with close‐to‐observed ice area. These models are then examined in more detail using bud-
gets and other diagnostics to determine whether they also represent key processes correctly. Monthly
anomalies from observations (Figure 1b) highlight two possible classes of models. One group, encompassing
ACCESS and CMCC models, MRI‐CGCM3, and NorESM1‐M, simulates ice area reasonably well year‐
round. The other group includes a number of models which have sizeable biases in all months, negative
in all models except FGOALS‐g2 and CCSM4. Only small differences were found between the members of
single‐model ensembles (Figures S2 and S3), which implies that the differing biases are the result of

Figure 1. Seasonal evolution of ice area in CMIP5models. (a) Seasonal cycle
of ice area in the 22 CMIP5models with data available for budget evaluation.
(b) Monthly difference from observations for each model; models are
ranked by September sea ice area. Black horizontal lines demark the subset
of six models which are considered in subsequent analysis. For both plots,
areas are calculated on the polar stereographic grid using a common land
mask. CMIP5 = Coupled Model Intercomparison Project phase 5.
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model structural differences, rather than internal variability. The class separation is supported by a quanti-
tative analysis; a model is defined as “good” if the 95% uncertainty estimate of the observed ice area (calcu-
lated from the mean and standard deviation of the eight years of data) encompasses the model mean for any
month. This is also the subset with lowest root‐mean‐square error as calculated from the 12
monthly climatologies.

We next seek to understand whether total ice area is a useful indicator of whether a model is correctly simu-
lating ice processes, by examining budget processes in the good models. We use the HK16 data to perform
the first comparison of the full seasonal cycle, but we also focus particularly on September since (i) the
amplitude of the annual cycle is dominated by the September maximum, (ii) the winter budget is a test of
both dynamics and thermodynamics, unlike the thermodynamics‐dominated budgets in other months,
and (iii) most data are available for winter months.

3.2. Ice Concentration and Drift

Figure 2 showsmaps of September SIC, ice drift, and budget terms, for observations and the goodmodel sub-
set. For ACCESS and CMCC we only show the model configuration which performs best year‐round,
namely, ACCESS1‐3 and CMCC‐CM, as the pairs are similar in winter for both ice area and budget terms
(supporting information Figures S4–S7). As expected from the ice areas (Figure 1), all models have ice cover
which is broadly consistent with the satellite observations (Figure 2a1–2a5).

Ice drifts are largest near the ice edge in both satellite observations and models (Figure 2b1–2b5), with three
of the models displaying generally faster drifts than observed. The observed and modeled drifts show
known features such as coastal easterlies, export in the western Ross andWeddell seas, generally northward
drift, and links to the atmospheric circulation (sea level pressure contours in Figures 2d–2f). However,
MRI‐CGCM3 simulates near‐zero drift (Figure 2b4) and lacks these features; as pointed out by Marzocchi
and Jansen (2017), this is due to the erroneous zero wind drag over ice in this model, such that the ice drift
is largely decoupled from the wind field.

3.3. Ice Concentration Budgets

Focusing initially on observations (first column of Figure 2; see also HK16), net September dC/dt is generally
small (Figure 2c1). There are largely compensating regions of positive dC/dt (blue) and negative dC/dt (red),
consistent with small total area changes in September, the month of maximum area. Advection contributes
positively to the budget at the ice edge (a SIC source; Figure 2d1, blue). Sea level pressure contours, and
vector ice drifts, demonstrate that this arises from wind‐driven advection of ice down the concentration
gradient. In the pack, divergent motion acts as a local sink of ice concentration (Figure 2e1, red), but with
a compensating positive residual (thermodynamic) term (Figure 2f1, blue) that implies an ice concentration
source through freezing. A negative residual at the ice edge in the Ross and Weddell seas, where the advec-
tion term is positive, implies that a sink of ice due to melting balances the source due to advection and thus
constrains the ice edge. Echoing HK16, these results demonstrate that dynamics and thermodynamics are
tightly coupled in the Antarctic in winter.

Most of the models show compensating regions of ice gain and loss (Figures 2c2–2c5), although
MRI‐CGCM3 has very small values everywhere, consistent with the lack of ice drift. Similarly, all models
broadly capture a positive advection term at the ice edge, which is linked to northeastward advection (drift
vectors). The CMCC models display a weak localized advective ice sink (red) in the western Ross and
Weddell seas, which the sea level pressure links to winds advecting ice up‐gradient. In general, there is diver-
gent ice loss in the pack (red, Figures 2e2–2e5). This varies greatly between models in both magnitude and
smoothness. Convergent features near the Antarctic Peninsula relate to ice drift toward the coast (HK16).
Again, the divergence in MRI‐CGCM3 is clearly deficient.

To elucidate the contribution of dynamics (divergence and advection) and thermodynamics (the residual) to
the total ice budget, we convert the grid point terms to units of square kilometers per month and spatially
integrate the time average of each term. A common land mask is applied before integrating terms, so that
identified discrepancies are not directly a result of differences in ocean area due to model resolution.

Figure 3 shows these results. Again, we focus first on observations (left column). The black cross shows that
ice expansion (integrated dC/dt) is weakly positive in September, with ice area slightly increasing during the
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month. There are large positive contributions (an ice source) from advective transports (blue triangles)
consistent with the region of positive advection at the ice edge (Figure 2d1) and negligible negative
contributions (red triangle). In contrast, there are large negative contributions (an ice sink) from
divergent transports (red star) consistent with the divergent interior ice pack (Figure 2e1) and smaller
positive contributions from local convergence (blue star). The magnitude of the negative residual (red

Figure 2. State variables and concentration budget terms for September in “good”model subset. For sea ice concentration
(SIC) budget terms, blue indicates a SIC source and red indicates a sink. (a1–a5) SIC (shading). (b1–b5) Drift speed
(shading) and drift vectors. (c1–c5) dC/dt (shading) and SIC 15% contour (magenta). (d1–d5) Tendency due to advection
(shading), sea level pressure (black contours, interval 10 hPa), ice drift vectors, and SIC 15% contour. (e1–e5) Same as d1–
d5, but divergence. (f1–f5) Same as d1–d5, but residual term, without ice drift vectors.
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hexagon) is consistent with the dominant balance being that of melting
balancing the advection (blue triangle). The magnitude of the positive
residual (blue hexagon) is consistent with freezing balancing the diver-
gence (red star).

In the models, the advective ice expansion (Figure 3, blue triangles),
which is largely at the ice edge, is stronger than observed by up to a factor
of 2. The negative residual (red hexagons) has a variety of biases between
the models. In ACCESS1‐3, ACCESS1‐0, MRI‐CGCM3, and NorESM1‐M,
the integrated ice sink due to divergence (red stars) is too strong andmuch
larger than the residual ice source (blue hexagons). This is consistent with
refreezing being insufficient to balance the divergent ice sink in the
models, in contrast to observations, and so with near‐zero or negative
expansion (black crosses) in the models and thus a slightly early start to
the melt season. In contrast, in CMCC‐CM and CMCC‐CMS the divergent
ice sink and residual ice source are bothmuch smaller than observed. This
is consistent with a partially compensating bias, whereby too weak
dynamics are accompanied by too weak thermodynamics.

The divergence and residual terms differ most between the models
(Figures 2 and 3): What, then, sets these differences? Intermodel differ-

ences in divergence are not just a result of different drift speeds (Lecomte et al., 2016) since CMCC‐CM
and ACCESS1‐3 have similar speed (Figure 2b) but different divergence (Figure 2e). We focus therefore
on the spatial patterns of ice drift for these two models (Figure 2e and supporting information Figure S4).
In the regions of ice export in the western Ross and Weddell seas, CMCC models display northward drifts
which are constrained to very southerly latitudes, while further north the drift is too sharply westerly. In
contrast, the ACCESS models capture the ice drift well. In turn, this is linked to the simulation of sea level
pressure; both ACCESS models clearly better represent the location and longitudinal extent of the climato-
logical low‐pressure areas in this month.

In conclusion, we can discriminate between the models with most realistic sea ice cover on the basis of the
model budgets. While spatial integrals provide a helpful synthesis, they hide information; MRI‐CGCM3 has
realistic integrated values (Figure 3), but the budget terms distribution is erroneous. NorESM1‐M has exces-
sive divergence and advection, linked to too‐strong drifts. CMCC‐CM has insufficient divergence and resi-
dual and spatial deficiencies in both terms. While ACCESS1‐3 divergence is a little stronger and smoother
than the observations, it is possible the observations are artificially noisy due to uncertainty in the observed
ice drift (HK16). Furthermore, our results point to appropriate representation of both the atmosphere‐ice
coupling and the zonally asymmetric atmospheric circulation as being important to this accurate represen-
tation of sea ice processes. As for sea ice area (section 3.1), we find that internal variability is too small to
affect these conclusions, implying that our budget analysis reveals model structural differences (supporting
information Text S3 and Figures S8 and S9).

We find that ACCESS1‐3 provides a realistic representation of the processes acting in Antarctic sea ice. This
assessment is based on three factors: (i) It successfully reproduces the seasonal cycle of ice area (Figure 1); (ii)
it successfully reproduces the spatial patterns of the winter maximum ice concentration budget (Figure 2),
for the right reasons; and (iii) it successfully reproduces the seasonal cycle of the ice concentration budget
(Figures S7 and S8). Argument (i) can only be made of the six good models. Of those models, argument
(ii) can only be made for the ACCESS models. MRI‐CGCM3 and NorESM1‐Mhave no ice drift and too rapid
ice drift, respectively, while the CMCCmodels contain too little divergence and freezing in the inner pack, as
their climatological wind patterns are wrong. This strengthens the conclusions of Agosta et al. (2015), who
concluded that the ACCESS models have most faithful representation of near‐surface Antarctic and
Southern Ocean climate of all CMIP5 models.

3.4. Role of Sampling Errors in Observations

Uotila et al. (2014) found a greater discrepancy in advection between observations and the ACCESS models
than the present study. We found that changing the threshold for calculation of the budgets from SIC > 15%

Figure 3. Spatial integrals of September budget components for observa-
tions and the “good” model subset. Total expansion (the integral of dC/dt)
is marked with a black cross. Other terms are split into a sum over only
regions where their time mean is positive (sources, blue) or negative (sinks,
red, negated). These terms are denoted by symbols: advection (triangle),
divergence (star), and residual (hexagon).
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to SIC > 0% brought our results more in line with theirs (supporting information Text S2 and Table S2). We
propose that the removal of low SIC data masks the models in the regions where the observations are often
missing data and therefore provides a fairer comparison between observations and models. This therefore
supports the hypothesis of Uotila et al. (2014) that observational uncertainty in part explained the large
discrepancies found by their analysis.

3.5. Budgets in Other CMIP5 Models and Other Months

Supporting information Figures S5 and S6 show the September dynamics and residual budget terms in all
models, ranked by September area (the good model subset analyzed above are panels o to u). For models
with strong negative biases in ice area (panels a–i), it is not particularly meaningful to compare budget
terms, since ice processes cannot occur where there is no ice. However, most have a clear residual (thermo-
dynamic) ice source in the interior as expected (Figure S6).

Of more interest are the year‐round budget terms (Figure S7), because by definition biases in winter area
result from biases in evolution in earlier months. In the ice growth season, many models have too weak
(March–May) or too late (June onward) ice expansion (Figure S7b). In March–May, this can be linked to
ice dynamics and the residual source term both being too weak (Figure S7c–S7e and Table S5). These inte-
grals are affected by the ice area, which varies strongly between the models, but the results clearly indicate a
role of deficient ice dynamics in the autumn in the failure of the models to simulate sufficient winter sea ice
(Table S5). Many models also have too rapid or early winter retreat (Figure S7b), although all terms vary
greatly between models in this season. Based on the autumn results, improving the simulation of sea ice
dynamics during the season of freeze‐up is crucial to improving simulations of winter maximum ice area.

Finally, the simulations within the goodmodel subset vary in their simulation of summer ice area (Figure 1).
We focus on the pairs [ACCESS1‐0, ACCESS1‐3] and [CMCC‐CM, CMCC‐CMS] (Figure S4). There is too
little summer ice in ACCESS1‐0, while ACCESS1‐3 is closer to observations, as previously documented in
Uotila et al. (2014). Second, CMCC‐CMS has a greater ice retreat in summer and expansion in winter
(Figure 1) than CMCC‐CM. The underlying reasons for these differences are briefly discussed in supporting
information Text S4.

4. Conclusions

It is generally viewed that CMIP5 representation of Antarctic sea ice is poor; the Intergovernmental Panel on
Climate Change Fifth Assessment Report states low confidence in projected changes due to the “inability of
almost all models” to accurately simulate mean and variability in historical sea ice (Collins et al., 2013). In
contrast, the present analysis suggests that a subset of good models are able to reproduce the observed sea-
sonal sea ice cycle. However, ice concentration budget terms vary greatly within the goodmodels, suggesting
a range of skill in simulating ice processes. In winter, when clear interactions between dynamic and
thermodynamic processes are evident in observed budgets, the models vary in their fidelity of simulating
these different contributions. ACCESS climate models appear to have excellent representation of the
budget terms, with this model's previously documented overcompensation between dynamics and thermo-
dynamics (Schroeter et al., 2018; Uotila et al., 2014) found here to be largely an artifact of incomplete
observational sampling.

Our evidence therefore suggests that ACCESS1‐3 (and ACCESS1‐0) has a realistic winter ice cover for the
right reasons. Individually, none of the model components in these twomodels is structurally unique among
the CMIP5 models, and the model resolution is not exceptional either (supporting information Table S1).
Therefore, the inability of other models to match observations of ice concentration and its governing budget
is not, in general, fundamentally caused by inadequacy in model structure. While CMIP6 will bring
increased spatial resolution in many ocean models, and updated sea ice code, these results suggest that this
is unlikely to produce a step change in Antarctic sea ice representation. Although the main focus of our
paper is to analyze sea ice budgets, we show evidence that points to accurate representation of the
circumpolar pressure trough and its climatological lows as key to a faithful representation of Antarctic sea
ice, particularly during the winter maximum. This motivates more detailed future research, building upon
the zonally averaged evidence for this linkage presented in Bracegirdle et al. (2018), and strengthens the
evidence that modeling groups should focus on these atmospheric processes.
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There is a strong relationship between the sea ice area in a coupled model's “present” and the projected
changes in sea ice area, temperature, and precipitation in that model (Bracegirdle et al., 2015). However, this
study shows cases where a climate model's apparently realistic representation of current sea ice area results
from incorrect coupled ocean‐ice‐atmosphere processes. These dynamic and thermodynamic processes, as
represented here by the concentration budget, must be correct in order to correctly force the ocean, due to
the role of sea ice in ocean water mass modification (Abernathey et al., 2016; Haumann et al., 2016).
Therefore, sea ice that is “right for the wrong reasons” could lead to misplaced confidence in projections
of change in all aspects of Antarctic climate. For example, MRI‐CGCM3 has a realistic sea ice extent both
in present‐day and paleoclimate simulations, but the ocean state in paleoclimate simulations is a clear
outlier compared to other models (Marzocchi & Jansen, 2017). Therefore, the lack of wind stress over ice
in this model, and its consequent dynamic biases (Figure 2), may have significant implications for
21st‐century projections of oceanic variables. Appropriate choice of existing models, as well as work to
improve the atmosphere‐sea ice dynamic coupling in future models, would therefore be expected to provide
more reliable projections of future change in Antarctic sea ice. Future work will investigate the relationship
between sea ice budget accuracy and projected changes in Antarctic climate.
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