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Abstract. The amount of lying snow calculated by a land
surface model depends in part on the amount of snowfall in
the meteorological data that are used to drive the model. We
show that commonly used data sets differ in the amount of
snowfall, and more generally precipitation, over four large
Arctic basins. An independent estimate of the cold-season
precipitation is obtained by combining water balance infor-
mation from the Gravity Recovery and Climate Experiment
(GRACE) with estimates of evaporation and river discharge
and is generally higher than that estimated by four com-
monly used meteorological data sets. We use the Joint UK
Land Environment Simulator (JULES) land surface model
to calculate the snow water equivalent (SWE) over the four
basins. The modelled seasonal maximum SWE is 38 % less
than observation-based estimates on average, and the mod-
elled basin discharge is significantly underestimated, consis-
tent with the lack of snowfall. We use the GRACE-derived
estimate of precipitation to define per-basin scale factors
that are applied to the driving data and increase the amount
of cold-season precipitation by 28 % on average. In turn
this increases the modelled seasonal maximum SWE by
30 %, although this is still underestimated compared to ob-
servations by 19 % on average. A correction for the under-
catch of precipitation by gauges is compared with the the
GRACE-derived correction. Undercatch correction increases
the amount of cold-season precipitation by 23 % on average,
which indicates that some, but not all, of the underestimation
can be removed by implementing existing undercatch cor-
rection algorithms. However, even undercatch-corrected data
sets contain less precipitation than the GRACE-derived es-
timate in some regions, and it is likely that there are other
biases that are not currently accounted for in gridded meteo-

rological data sets. This study shows that revised estimates
of precipitation can lead to improved modelling of SWE,
but much more modest improvements are found in modelled
river discharge. By providing methods to better define the
precipitation inputs to the system, the current study paves
the way for subsequent work on key hydrological processes
in high-latitude basins.

1 Introduction

Seasonal snow cover is an important part of the hydrologi-
cal cycle over a large part of the Northern Hemisphere, with
approximately 45 million km2 of the land (excluding Green-
land) covered by snow at the seasonal maximum (Mudryk
et al., 2014). Snow plays an important role in the energy, wa-
ter and biogeochemical cycles of these areas. The accumu-
lation of water in the snow pack until the spring thaw dom-
inates the seasonal cycle of runoff and river flow in many
northern river basins (Grabs et al., 2000), and the physical
properties of the snow pack, such as its high albedo, can lead
to strong links between the snow pack and the overlying at-
mosphere (Cohen and Rind, 1991; Mote, 2008).

Many studies have documented changes in seasonal snow
cover in recent decades. The extent of Northern Hemisphere
snow cover decreased through most of the last century, with
a larger rate of decrease since 1970 (Brown and Robin-
son, 2011). Correlation between changes in spring snow ex-
tent and air temperature (Brown and Robinson, 2011) reveal
the effects of the snow–albedo feedback (Fernandes et al.,
2009). Observed changes in snow water equivalent (SWE)
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show more variation between regions. The seasonal maxi-
mum SWE has increased over northern Eurasia over 1966–
2010 (Bulygina et al., 2011), but springtime SWE over the
mountains of western North America has decreased over
1960–2002 (Mote, 2006).

Overall the picture is one of considerable variation de-
pending on the years and season of analysis, locations and
snow measure (Brown and Mote, 2009). However, declines
in snow cover over recent decades are more common than
increases, particularly at warmer or lower locations (see
Fig. 4.21 in Vaughan et al., 2013).

These analyses of historical snow cover have used a vari-
ety of data sources, principally ground-based point observa-
tions of precipitation and snow cover and products derived
from satellite data, each of which has strengths and weak-
nesses. Direct measurements of snowfall using gauges and
of characteristics of the snow pack (e.g. SWE) are difficult to
scale up to large areas for reasons including the high spatial
variability in these quantities and the sparse network of ob-
serving stations (e.g. Liston and Hiemstra, 2011). Inconsis-
tent trends in precipitation and runoff in large northern catch-
ments confirm that these data are of uncertain quality (Bere-
zovskaya et al., 2004; Pavelsky and Smith, 2006). Satellite
data can be used for recent decades, particularly to determine
the presence or absence of snow cover. Passive microwave
data from satellites can be used to assess SWE (e.g. Global
Snow Monitoring for Climate Research – GlobSnow; Takala
et al., 2011), but the need for an algorithm to convert the mea-
sured radiance to SWE coupled with the requirements for
supporting data such as ground-based observations of mete-
orology introduces uncertainty into the final estimates.

An alternative to these observation-based methods is to
use a land surface model (LSM) to describe and understand
the evolution of the snow pack (e.g. Liston and Hiemstra,
2011). There are uncertainties associated with LSMs, and
they require large amounts of input data, but they have the
advantage of also being able to estimate future changes in
snow cover as they are also used as the land surface compo-
nents of the climate models that are used to study future cli-
mates. Simulations using climate models indicate that North-
ern Hemisphere snow cover extent will decrease in the future
(Brutel-Vuilmet et al., 2013). Although warming will reduce
the length of the snow cover season, precipitation is predicted
to increase over many mid- to high-latitude areas, meaning
the impact of climate change on the amount and distribu-
tion of SWE may differ between regions (Räisänen, 2008).
Any such changes in snowfall and snow cover will impact
the wider hydrological cycle in these areas.

If we are to have confidence in these analyses of historical
and possible future conditions from LSMs, we must first es-
tablish that they can accurately represent the snow pack and
related processes. To this end community intercomparison
experiments have quantified the performance of land surface
and other models in a variety of settings, some with a focus
on snow processes and others looking at the wider hydrolog-

ical cycle (e.g. Bowling et al., 2003; Essery et al., 2009; Had-
deland et al., 2011). A recurring theme across many of these
has been the uncertainty that stems from the input precipita-
tion data, particularly in regions with seasonal snow cover.

This theme is also evident in snow simulations that use the
Joint UK Land Environment Simulator (JULES) land surface
model (Best et al., 2011; Clark et al., 2011). Burke et al.
(2013) noted that seasonal maximum SWE in pan-Arctic
simulations of JULES was often underestimated in compar-
ison to GlobSnow. This is consistent with the fact that the
snowfall specified in the meteorological data that are used to
drive JULES and other LSMs is often considerably less than
SWE estimated by GlobSnow (Hancock et al., 2014). Mé-
nard et al. (2015) suggest that the largest uncertainty in es-
timates of SWE from JULES arises from uncertainty in the
input precipitation data.

A larger body of research concerns the ability of mod-
els to represent other aspects of land hydrology, particu-
larly runoff and river flow, because measurements of river
flow are generally considered more accurate than those of
catchment-average precipitation and snow pack (Troy et al.,
2011). Again a recurring finding of this work is the need to
supply the models with high-quality precipitation data and
the uncertainty in these data (Decharme and Douville, 2006;
Fiedler and Döll, 2007; Tian et al., 2007; Biemans et al.,
2009; Wisser et al., 2010; Weiland et al., 2015; Islam and
Déry, 2017; Casson et al., 2018).

Furthermore, precipitation data are not only uncertain but
possibly systematically biased low with studies suggesting
that insufficient modelled river flow in high-latitude catch-
ments is a result of insufficient precipitation in the driving
meteorology (Tian et al., 2007; Biemans et al., 2009; Alkama
et al., 2010). It should be noted that these model biases are
not only limited to land surface models (those that can be
coupled to atmospheric models) but are also shown by global
hydrology models, which typically focus on water resources
and lateral fluxes (Haddeland et al., 2011).

Estimates of precipitation in areas with significant
amounts of snow are made particularly difficult by the spar-
sity of the gauge network in many locations, the difficulty
of obtaining an areal average in mountainous terrain, and
the need to correct gauge measurements for undercatch and
losses (Serreze et al., 2003; Adam and Lettenmaier, 2003;
Adam et al., 2006). Correcting for undercatch requires in-
formation on (at least) the equipment used, wind speed and
the phase of precipitation and is itself a difficult and uncer-
tain task (Serreze et al., 2003). Adam and Lettenmaier (2003)
derived monthly correction factors for wind-induced under-
catch and wetting loss that resulted in a 16 % increase in
December, January and February (DJF) precipitation at the
global scale, with much higher values in some regions. Wind-
induced undercatch of solid precipitation was the largest
source of bias. For stations north of 45◦ N, Yang et al.
(2005) calculated monthly correction factors of 80 %–120 %
of winter precipitation winter due to snowfall and higher
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wind speeds. Correcting for orographic effects resulted in
6 % higher global precipitation, 20 % in orographically in-
fluenced areas, using a water balance approach (Adam et al.,
2006). Although these correction factors are substantial, they
are themselves uncertain and often only apply to a particular
time period and data set, so they cannot necessarily be used
generally. Undercatch correction is not routine to all driving
data sets, and some of these which do not include any correc-
tion factors are widely used (e.g. CRUNCEP – Climatic Re-
search Unit Time Series 3.21 correction to National Centers
for Atmospheric Prediction/National Center for Atmospheric
Research Reanalysis 1; Viovy, 2014).

Given the difficulties associated with gauge-based data,
other products use information from satellite-based Earth ob-
servation or from atmospheric reanalyses, either alone or in
combination with gauge data. However these approaches in-
volve their own uncertainties, such as how to relate the mea-
sured radiance to a precipitation rate, and the data sets are
also subject to considerable uncertainty (Stephens and Kum-
merow, 2007; Beck et al., 2017).

Given that areal precipitation is difficult to estimate di-
rectly using the aforementioned methods, an alternative ap-
proach instead seeks to infer precipitation from analysis of
the total water storage (TWS) of the land surface as estimated
by the Gravity Recovery and Climate Experiment (GRACE)
mission (Swenson, 2012). GRACE uses gravimetry to as-
sess the changing mass of the surface of Earth, which can
be interpreted as changes in water storage, revealing the dy-
namics of TWS at the surface on a monthly timescale. While
the monthly changes in TWS can be observed, GRACE does
not indicate what fluxes or components are the cause of the
changes. However, by using the GRACE TWS anomalies,
combined with observed or modelled estimates of river flow
and gridded evaporation fluxes, it is possible to estimate the
areal precipitation (Swenson, 2010).

Previous studies have used GRACE TWS to estimate pre-
cipitation inputs in boreal regions (Swenson, 2010; Seo et al.,
2010; Behrangi et al., 2016) and cold mountainous basins
(Behrangi et al., 2017). These have identified deficiencies
or uncertainties in traditional estimates of precipitation but
with a magnitude that varies between products, locations and
times. Swenson (2010) compared GRACE-derived precipi-
tation with two existing precipitation data sets and found
a varied picture, with more variability in North America,
while many precipitation products are significantly lower
than the GRACE-derived estimate in cold mountainous en-
dorheic basins. Behrangi et al. (2016) compared several raw
reanalysis outputs, as well as some satellite- and gauge-based
products, and only found deficiencies in gauge-based data
sets in some regions. These studies have all used LSM or re-
analysis output to provide at least some of the ancillary data
required to calculate precipitation from GRACE TWS. Since,
in this study, the intention is to investigate how changes to
input precipitation can result in changes to the LSM output,

independent estimates of evapotranspiration and river flow
have been used in preference to LSM output.

The remainder of this study investigates the hypothesis
that many precipitation data sets that are used to drive land
surface models contain insufficient cold-season precipitation
in mid- to high-latitude land areas, leading to an underes-
timation of SWE and river flow. Cold-season precipitation
data are assessed against an estimate based on GRACE TWS
data combined with independent estimates of evaporation
and basin discharge. The GRACE-derived precipitation es-
timates are used to rescale the cold-season precipitation in
the data sets used to drive the JULES model, and the im-
pacts on SWE and river discharge are investigated. This is
also compared to the effects of undercatch correction.

In Sect. 2 the data sets used to carry out this study are de-
scribed, and in Sect. 3 the setup of the JULES model and the
experiments carried out are defined. The method by which
precipitation is calculated from GRACE TWS is described
in Sect. 4. The JULES model runs are described and evalu-
ated in Sect. 5, and the implications are discussed in Sect. 6.

2 Data sets

All analyses in this paper are carried out using data on a reg-
ular latitude–longitude grid at 1◦ resolution. Data with other
resolutions are first regridded to this common grid with a
modified version of SCRIP (Spherical Coordinate Remap-
ping and Interpolation; Jones, 1998), using the conservative
remapping method normalised by destination area fraction
(Jones, 1999). This study focuses on the four major Arctic
basins – the Ob, Yenisei, Lena and Mackenzie – which to-
gether account for approximately 68 % of the total discharge
into the Arctic Ocean (Grabs et al., 2000) and are marked
by O, Y, L and M respectively in Fig. 1. The basins are de-
fined using the 1◦ TRIP (Total Runoff Integrating Pathway)
river network data of Oki and Sud (1998). For consistency
with the observations of river flow (see Sect. 2.3), only the
part of each basin that drains to the flow gauging station was
considered when calculating spatial averages of observed or
modelled grids. The data sets used all vary in their temporal
coverage; for consistency in analysis a “common overlap pe-
riod” from 2002 up to and including 2010 was used, during
which time all of the driving data sets and the data sets used
for the water balance precipitation estimates were available.
In order to capture full annual cycles of snow accumulation
and melt, annual averages were calculated from 1 September
to 31 August of the next year, so the common overlap pe-
riod contains 8 full years for analysis. All comparisons were
carried out using data from this common overlap period and
averaged over the defined basins, unless explicitly noted oth-
erwise.
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Figure 1. Seasonal maximum SWE (mm) for (a) GlobSnow and (b) CMC for the common overlap period, 2002–2010. The basins used in
this study are labelled with their initial letters (Yenisei, Ob, Lena and Mackenzie). Grey shows regions that are masked. In both data sets
Greenland is masked. In addition, GlobSnow pixels are masked where they are more than 50 % “mountain”. (c) Mean monthly climatology
is averaged over the basins (masked using the GlobSnow mountain mask) for the common overlap period, 2002–2010. Error bars show the
inter-annual variability, defined as the standard deviation between years.

2.1 Meteorological data

A key requirement of land surface models is a time series of
meteorological data. To this end, several “driving” data sets
have been created that represent realistic global climate for
the recent past. These are generally based on global meteo-
rological reanalyses which have been bias-corrected to ob-
servational data sets. They provide a full set of the meteoro-
logical variables required to run an LSM, including air tem-
perature, pressure and humidity, wind speed, incoming long-
and short-wave radiation and the precipitation with which
this study is concerned.

Four meteorological data sets were used to drive the
JULES model in this study. These are summarised in Table 1
and described below, with a focus on the precipitation data.
The data were available at 0.5◦ resolution unless stated other-
wise. Basin mean monthly climatologies of all of the driving
variables can be seen in Figs. S1 and S2 in the Supplement.

The CRUNCEP v4 data set (Viovy, 2014) uses the CRU
TS3.21 (Climatic Research Unit Time Series) monthly data
(Harris et al., 2013), including gauge-based precipitation,
to bias-correct the NCEP/NCAR (National Centers for At-
mospheric Prediction/National Center for Atmospheric Re-
search) Reanalysis 1 (Kalnay et al., 1996). The reanalysis is
spatially interpolated from its original 2.5◦ resolution to the
required 0.5◦ resolution with no adjustment for grid box ele-
vation. No undercatch correction is applied to the gauge data,
and the total precipitation is provided (rather than separate
estimates of rainfall and snowfall).

The Princeton Global Forcing data set v2 (PGF; Sheffield
et al., 2006) is based on the NCEP/NCAR Reanalysis 1 with
precipitation totals scaled to CRU TS monthly values and
further statistical corrections applied to correct the number
of rain days and to scale to the final 1◦ and 3-hourly resolu-
tions. Again total precipitation is provided. The reanalysis is
spatially interpolated, including a correction for differences
in grid box elevation. The version used in this study (v2) was

not corrected for undercatch (Justin Sheffield, personal com-
munication, 2018) contrary to the description of the original
data set in Sheffield et al. (2006).

Two variants of the WATCH (WATer and global
CHange) Forcing Data methodology applied to ERA-Interim
(ECMWF reanalysis) Data (WFDEI; Weedon et al., 2014)
were used, differing only in the precipitation data used for
bias correction: WFDEI-CRU uses CRU TS 3.1.01 until
2009 and CRU TS 3.21 from 2010 onwards (Harris et al.,
2013; Trenberth et al., 2013), while WFDEI-GPCC (Global
Precipitation Climatology Centre) uses GPCC v5 until 2009
and v6 from 2010 onwards (Schneider et al., 2014) and in-
cludes many more stations than CRU. Both variants apply
undercatch corrections (Adam and Lettenmaier, 2003) and
use the ERA-Interim reanalyses (Dee et al., 2011). Variables
other than precipitation are bias-corrected to CRU TS 3.1 un-
til 2009 and CRU TS 3.21 from 2010 onwards in both ver-
sions of WFDEI. The reanalysis was spatially interpolated
from its native resolution (a reduced N128 Gaussian grid,
with a resolution of approximately 0.7◦ at the Equator; Hortal
and Simmons, 1991) to 0.5◦ resolution, including adjustment
for differences in grid box elevation. Rainfall and snowfall
were diagnosed separately in the reanalysis, with the fraction
adjusted appropriately where differences in grid box eleva-
tion resulted in inappropriate precipitation phase.

All of these data sets have been widely used to drive land
surface models in previous studies. All of them scale precipi-
tation using data from CRU or GPCC, while an important dif-
ference is that only two (WFDEI-CRU and WFDEI-GPCC)
include an undercatch correction. The undercatch correction
implemented in Adam and Lettenmaier (2003) resulted in an
increase in global precipitation of 12 %, with an increase of
95 % in some boreal regions. Thus this can be an important
source of the underestimation of precipitation. Although the
driving data sets are primarily used by land surface mod-
ellers, they include information from more widely used pre-
cipitation data sets, and their basin-averaged annual precipi-
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Table 1. Summary of meteorological driving data.

Driving data Years available Temporal Spatial Reanalysis Source of Precipitation Undercatch
(used) resolution resolution precipitation variables correction

CRUNCEP v4 1901–2010 6 h 0.5◦ NCEP/NCAR CRU TS 3.21 Total No
(Viovy, 2014) (1970–2010) Reanalysis 1

PGF v2 1948–2012 3 h 1◦ NCEP/NCAR CRU TS Total No
(Sheffield et al., 2006) (1970–2012) Reanalysis 1

WFDEI-CRU 1979–2016 3 h 0.5◦ ERA-Interim CRU TS 3.101 Rain and snow Yes
(Weedon et al., 2014) and 3.21

WFDEI-GPCC 1979–2013 3 h 0.5◦ ERA-Interim GPCC v5 and 6 Rain and snow Yes
(Weedon et al., 2014)

tation values are similar to those from a range of other data
sets (Fig. S3).

2.2 GRACE

The twin GRACE satellites made detailed measurements of
changes in Earth’s gravity field from April 2002 to January
2017. GRACE Tellus used these to provide estimates of the
TWS anomaly relative to the baseline mean over the years
2004–2009 (Swenson and Wahr, 2006; Swenson, 2012; Lan-
derer and Swenson, 2012). GRACE may be used to study
the dynamics of the water cycle on a monthly time step. Al-
though it may not be used to estimate absolute stores, it gives
an estimate of the integrated water fluxes into and out of a
region.

Three methods have been developed to solve the gravity
fields using spherical harmonics (Center for Space Research
at University of Texas, Austin – CSR, GeoforschungsZen-
trum Potsdam – GFZ and Jet Propulsion Laboratory – JPL).
These are then used to calculate the gridded TWS, so that
three products are available. As is recommended by Saku-
mura et al. (2014), this study uses the ensemble average of
the three solutions, which effectively reduces the uncertainty
in the GRACE product.

The gravimetry measured by the GRACE satellites is con-
verted to a TWS anomaly, making use of model output. Cor-
rections for changes in atmospheric pressure are based on
ECMWF analysis data, and corrections for post-glacial re-
bound are also modelled (Wahr et al., 1998). Destriping,
Gaussian and degree-60 filters are applied to the gridded
data. In order to correct for signal attenuation introduced by
the filters applied when calculating the grids from the spher-
ical harmonics, the three TWS land grids must be multiplied
by a gridded gain factor, which is derived by applying the
same filters to the output from the Community Land Model 4
(CLM4; Landerer and Swenson, 2012).

Although the filters remove a significant component of
spatially correlated and random errors, the gridded GRACE
data are not independent of their neighbours. Uncertainties in
the GRACE TWS data are generally highest at low latitudes

and lower towards the poles. In the boreal regions in this
study, estimated measurement error is around 15 mm (Lan-
derer and Swenson, 2012). The application of the gridded
gain factor means that the gridded GRACE land data cannot
be used to study long-term trends (Landerer and Swenson,
2012).

The data used in this study were the GRACE RL05 (Re-
lease 05) gridded land TWS spherical harmonic solutions
(Swenson, 2012; NASA, 2017). The data are available for
the period April 2002 to January 2017. This study uses the
14 years from September 2002 to August 2016 so that anal-
yses are carried out over entire cold seasons.

2.3 GRDC river discharge

Monthly river discharge data were taken from the Global
Runoff Data Centre (GRDC) Reference Dataset (GRDC,
2014). For each basin in the current study, the station clos-
est to the river mouth (as defined in the routing grid; see
Sect. 3) is used to define basin discharge. In this study, basin
discharge is quoted in millimetres, for consistency with the
other variables. This is calculated by dividing the total ob-
served discharge by the area of the 1◦ TRIP river network that
drains to the relevant gauging station (Oki and Sud, 1998).
There are missing observations at each station, and some sta-
tions ceased contributing data before the end of the study
period. Months with missing data were filled using a mean
monthly climatology, calculated using all available data at
the station. Data availability varies between basins, with ob-
servations ending between 2003 and 2012. A summary of the
available and filled data is shown in Table S1 in the Supple-
ment.

2.4 GLEAM v3.1a evapotranspiration

The Global Land Evaporation Amsterdam Model v3.1a
(GLEAM) provides estimates of evapotranspiration on a
0.25◦ resolution global grid, for the years 1980–2016. This
is a modelled product based on reanalysis and observational
data (Miralles et al., 2011; Martens et al., 2017). The al-
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gorithm uses the Priestley–Taylor equation to calculate ac-
tual evapotranspiration using net surface radiation and near-
surface air temperature. It calculates interception using the
Gash model and uses an adaptation of the Priestley–Taylor
equation to calculate evaporation from open water and subli-
mation from ice and snow. Inputs include air temperature and
surface radiation from the reanalysis and a gauge-based grid-
ded precipitation product, along with satellite products for
SWE, vegetation properties, and lightning and soil moisture.
There is a version, v3.1b, which uses satellite products for air
temperature and surface radiation, but this is only available
for latitudes between 50◦ S and 50◦ N and was not suitable
for this study.

Although it is not a direct observation, GLEAM is a well-
established estimate of evapotranspiration, derived from ob-
servations as well as reanalysis products. It has been vali-
dated against soil moisture and flux measurements globally,
with GLEAM v3.1a having an unbiased root mean square
difference of 0.7 mm d−1 compared with in situ observations
(Martens et al., 2017). While evapotranspiration is low dur-
ing the cold season, it is still important to use a robust esti-
mate in order to understand the water balance. Evapotranspi-
ration is difficult to observe, and any gridded product is by
necessity derived from other observed (or modelled) quanti-
ties (Mu et al., 2007; Mueller et al., 2013).

2.5 Snow water equivalent

2.5.1 GlobSnow

The GlobSnow project (Luojus et al., 2013; Takala et al.,
2011), funded by the European Space Agency (ESA) Data
User Element (DUE), provides SWE data for the years 1979–
2016. This study uses GlobSnow v2.0. It is derived from
a combination of satellite microwave radiometer data (sen-
sors of the Scanning Multi-channel Microwave Radiome-
ter – SMMR, Special Sensor Microwave Imager – SSM/I
and Special Sensor Microwave Imager/Sounder – SSMIS)
and ECMWF weather station observations. A semi-empirical
snow emission model is used to convert passive microwave
emissions to SWE. A data assimilation scheme is then ap-
plied to the weather-station- and radiometer-derived SWE
observations to produce a map of the Northern Hemisphere
in the Equal-Area Scalable Earth Grid (EASE-Grid) format,
at a nominal 25 km resolution. Pixels are masked in areas of
open water and in areas where there are mountains.

For this study, the Northern Hemisphere data were regrid-
ded onto the analysis grid. Since the original data are masked
where mountains are present, the regridded data pixels were
masked where at least 50 % of the contributing pixels were
mountains. This mostly affects western North America and
some regions in central Asia, masking 16 % of the area of
the Yenisei, 13 % of the Ob, 9 % of the Lena and 14 % of
the Mackenzie. In the Eurasian basins the masked regions
are generally in the south where SWE is low; although in the

Mackenzie, the mountains extend to the north of the basin.
The GlobSnow mountain mask is used for all basin averages
of SWE in this study, both modelled and observed so that
comparisons are made over consistent regions.

2.5.2 CMC Daily Snow Depth Analysis

The Canadian Meteorological Centre (CMC) Daily Snow
Depth Analysis Data (Brown and Brasnett, 2010) are an as-
similation of a simple snow accumulation and melt model,
using temperatures and precipitation from the CMC Global
Environmental Multiscale (GEM) forecast model and daily
snow depth data from the World Meteorological Organiza-
tion (WMO) information system. From snow depth, SWE is
estimated using snow density which is dependent on month
and climate class. The data are provided as a Northern Hemi-
sphere polar stereographic grid, with a nominal resolution of
24 km, and are available for the years 1998–2012.

2.5.3 Comparison of SWE products

Figure 1a and b show the mean seasonal maximum SWE
for GlobSnow and CMC over the common overlap period
(2002–2010), with the season defined to be 1 September–31
August. Seasonal maximum SWE is important for the hy-
drology of Arctic river basins, as it is closely related to the
amount of water that is released by the spring melt, which
dominates the annual cycle of basin discharge in these re-
gions. Many aspects of the large-scale distribution are simi-
lar in both products, and the main maxima are found in sim-
ilar locations (when not covered by the GlobSnow mountain
mask).

The basin-averaged SWE was calculated by averaging
over each basin, after having applied the GlobSnow moun-
tain mask. The seasonality of basin-averaged monthly max-
imum SWE, seen in Fig. 1c, is slightly different between
GlobSnow and CMC, with GlobSnow tending to have a
faster accumulation of snow in the earlier part of the win-
ter, while CMC has a more constant accumulation through-
out the winter. However, the seasonal maxima are consistent
between the two data sets, although the GlobSnow maximum
is slightly earlier in the Lena.

This comparison suggests that the GlobSnow and CMC
basin-averaged estimates are remarkably similar for the ar-
eas and time periods considered, particularly for estimates
of seasonal maxima. A more comprehensive comparison of
hemisphere-wide estimates by Mudryk et al. (2015) showed
that GlobSnow tended to give larger and earlier seasonal
maxima than CMC over the whole Northern Hemisphere, but
this does include regions that are not being considered in the
current study.
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3 The JULES land surface model

This study uses the Joint UK Land Environment Simulator
vn4.9 (JULES; Best et al., 2011; Clark et al., 2011), which
is the land surface component of the Hadley Centre climate
model but is here used in offline mode driven by near-surface
meteorology. We provide brief details here and refer the
reader to the above references for a fuller description.

JULES calculates the exchanges of radiation, heat, water
and carbon between the land surface and the atmosphere. As
employed here each grid box contains a mixture of nine sur-
face types (five vegetation types and four non-vegetated sur-
faces), for each of which the surface fluxes are calculated in-
dependently. Subsurface fluxes of moisture and heat are cal-
culated using a layered soil model, with a single soil column
in each grid box. Supersaturation of soil moisture is avoided
by moving the extra water to lower soil layers. The snow
pack is modelled using a multi-layer snow scheme that em-
ploys a variable number of layers depending on the depth of
snow. Each snow layer has a prognostic temperature, den-
sity, grain size, and solid and liquid water content. Snowfall
in vegetated areas with needle-leaf tree cover can be par-
titioned between the vegetation canopy and the underlying
ground (Essery et al., 2003; Essery and Clark, 2003). The in-
tercepted snow leaves the canopy though sublimation and the
wind-speed-dependent unloading of melting snow. The sur-
face albedo is affected by the evolving grain size of the snow
surface and the extent to which the vegetation is buried by
snow. In this study we employ a TOPMODEL-based (TOPo-
logical MODel) parameterisation of surface runoff (Beven
and Kirkby, 1979). River routing is carried out as a post-
processing step, using Total Runoff Integrating Pathway data
on a 1◦ river routing grid (TRIP; Oki and Sud, 1998).

The ability of JULES to represent snow and other high-
latitude phenomena has been evaluated in several studies in-
cluding those of Burke et al. (2013), Hancock et al. (2014),
Chadburn et al. (2015), Ekici et al. (2015), and Ménard et al.
(2015). In particular in SnowMIP2 (Snow Model Intercom-
parison Project for forest snow processes), JULES was found
to be one of the best models for simulations of open sites, al-
though it was thus not as skilful at forest sites (Rutter et al.,
2009).

For this study, JULES is run at the native resolution of
each driving data set (0.5◦, except when using the PGF data
which is 1.0◦ resolution). Meteorological data are provided
every 6 h (CRUNCEP) or 3 h (all other data), and JULES in-
terpolates these onto a 30 min time step. The precipitation
rate is kept constant over the data time step (3 or 6 h). The
model output is regridded to 1.0◦ resolution for analysis.

The WFDEI-CRU and WFDEI-GPCC data sets contain
separate rainfall and snowfall fields that can be used directly
by JULES, but the CRUNCEP and PGF data sets only pro-
vide total precipitation. For these, JULES assumes that the
precipitation is snowfall when the near-surface air tempera-
ture is less than or equal to 274 K, while at higher tempera-

Table 2. Precipitation scale factors, calculated as the ratio of
GRACE-derived to data set precipitation, using all years of over-
lap between each driving data set and GRACE.

Driving data Yenisei Ob Lena Mackenzie Mean

CRUNCEP 1.55 1.35 1.47 1.53 1.47
PGF 1.55 1.37 1.55 1.54 1.49
WFDEI-CRU 1.24 1.06 1.11 1.16 1.14
WFDEI-GPCC 1.27 0.98 1.04 1.05 1.08

tures the precipitation is assumed to be entirely rainfall. Han-
cock et al. (2014) suggest that, as long as the start and end
dates of accumulation are correct, the modelled SWE is rel-
atively insensitive to the choice of threshold.

The distribution of soil properties and land types was
based on data from the International Geosphere–Biosphere
Programme (IGBP) Global Soil Task Force (Global Soil Data
Task, 2000), gridded to the resolution of each driving data
set. Vertical fluxes of soil water follow Darcy’s law, using
hydraulic characteristics calculated after Brooks and Corey
(1964). Runoff was generated using the TOPMODEL formu-
lation, with the topographic index regridded from the high-
resolution HydroSHEDS (Hydrological data and maps based
on SHuttle Elevation Derivatives at multiple Scales) data
(Marthews et al., 2015). The model was spun up using the
first 5 years of each data set four times, for a total of 20
years, and it was then run for several decades starting in 1970
(CRUNCEP and PGF) or 1979 (both WFDEI variants) until
the end of the available data.

3.1 Experiments

Three experiments using JULES were performed:

CTL This signifies control runs, which are driven with the
original meteorological data sets.

GRC This signifies runs in which the total cold-season pre-
cipitation is scaled to match that derived from GRACE,
as described in Sect. 4.1 below. The scale factors, which
vary by basin and by run, can be seen in Table 2. These
factors are applied constantly to both rain and snow for
the months October up to and including February. In the
rest of the year the precipitation is unchanged.

UCC This signifies runs for which wind-based undercatch
correction (Adam and Lettenmaier, 2003) is applied to
the precipitation (CRUNCEP and PGF only). This uses
the same catch ratios as were used in the creation of
WFDEI (Weedon et al., 2011), one for each month for
rainfall and snowfall separately. The correction is ap-
plied throughout the whole year. The ratios are available
at 0.5◦ resolution and so were regridded to 1◦ resolution
for PGF.
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The full setup for each run is available as a version-
controlled Rose suite, through the Met Office repository:
https://code.metoffice.gov.uk/trac/roses-u (last access: April
2020). Full details of the suite number and revision for each
run is given in Table S2.

3.2 Mean bias error

To evaluate the runs, we calculate the mean bias error (MBE)
of the annual maximum SWE in each basin (Mb) to be

Mb =
1
ny

ny∑
i=1

Si,b− si,b, (1)

where Si,b is the modelled SWE in basin b at time step i, si,b
is the corresponding observed SWE, and ny is the number
of years of overlap between the model and observations. To
obtain the average over basins MS , the area-weighted mean
of the basins is calculated as

MS =

∑nb
b=1AbMb∑nb
b=1Ab

, (2)

where Ab is the total area of basin b.
The variance of the bias error in each basin is

σ 2
b =

1
ny − 1

ny∑
i=1

(
Si,b− si,b

)2
, (3)

and the combined variance is

σ 2
S =

(n− 1)
∑nb
b=1Abσ

2
b(∑nb

b=1Ab
)
− 1

. (4)

4 Precipitation corrections

4.1 GRACE-derived precipitation estimates

A water balance approach (Swenson, 2010) was used to esti-
mate the monthly precipitation (P ; mm month−1) at a basin
scale:

P =
dStot

dt
+E+Qnet, (5)

where dStot/dt (mm month−1) is the change in TWS (Stot;
mm), E (mm month−1) is the total evaporation flux, includ-
ing sublimation, andQnet (mm month−1) is net runoff. At the
annual or monthly scale, this can be calculated to be

t2∫
t1

P(t)dt = Stot(t2)− Stot(t1)+

t2∫
t1

(E(t)+Qnet)dt, (6)

where t1 and t2 are the start and end of each accumulation
period respectively. TWS encompasses all water storage, in-
cluding soil moisture; groundwater; water in wetlands, lakes

and rivers; and water stored as snow in the snow pack. Evapo-
ration includes transpiration, evaporation from soil surfaces,
evaporation from intercepted water and other open water
(rivers and lakes) and sublimation from frozen surfaces. As
the water balance is calculated over whole basins there is no
incoming runoff, and the net runoff is equal to the basin dis-
charge.

The change in TWS is calculated by differencing the
GRACE anomalies between months and averaging over the
basin. Monthly evaporation is provided by GLEAM and av-
eraged over the basin, while the basin discharge is obtained
from the GRDC measurement station closest to the basin out-
flow.

The water balance is calculated for each month in the cold
season (October up to and including February). This is de-
fined based on two metrics: (a) the change in GRACE TWS
must be positive and (b) the evaporation must be small. There
is inter-annual variability in the length of this season, so the
period October to February was chosen as a conservative ac-
cumulation period that would apply over all years and basins.
During this season snowfall is the dominant precipitation
type; the accumulating snow pack is the dominant change
to TWS; and the runoff and evaporation fluxes are relatively
small (Fig. S4). This minimises the effect of uncertainty in
evaporation and basin discharge products, which could be
more significant outside of the cold season (Swenson, 2010;
Seo et al., 2010).

4.2 Comparison of precipitation estimates

Figure 2 shows the long-term mean monthly accumulated to-
tal precipitation during the cold season (October–February)
for each of the four driving data sets and for the GRACE-
derived precipitation estimates (all averaged over the com-
mon overlap period). The differences between data sets vary
between the catchments, but in general the driving data sets
accumulate less precipitation than the GRACE estimate. The
CRUNCEP and PGF data sets have lower precipitation than
the WFDEI data through the whole cold season in all basins
but are very similar to each other, as they were both bias-
corrected to CRU data without undercatch correction. The
WFDEI data sets generally have higher precipitation and are
much closer to the GRACE-derived estimate, even indicat-
ing a larger accumulation by December in the Lena and the
Ob. The final accumulation is similar to the GRACE-derived
estimate in three basins for WFDEI-GPCC and two basins
for WFDEI-CRU . Overall the implication is that the driving
data sets often do not contain enough precipitation to close
the water budget in these basins in the cold season, particu-
larly for the CRUNCEP and PGF data.

4.3 Calculation of precipitation scale factors

In order to appropriately increase the amount of precipita-
tion in the driving data sets, a scale factor was calculated for
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Figure 2. Mean monthly accumulated cold-season precipitation
from October up to and including February, averaged over the com-
mon overlap period, 2002–2010, as derived from GRACE TWS
(Sect. 4) and from the driving data sets (Sect. 2.1).

each data set in each study basin. The scale factor between
GRACE and each driving data set was found by calculating
the ratio of cold-season accumulated precipitation derived
from GRACE to that in the driving data. As the driving data
cover a longer time period than GRACE, to ensure that the
difference is not due to inter-annual variability or long-term
climate trends, each ratio was calculated using only data from
the overlapping period of the relevant data set with GRACE.
This period starts in 2002 for all of the data sets and runs to
the end of each data set. The scale factors for each basin can
be seen in Table 2.

The relative scaling between basins is consistent for each
data set, with the Yenisei requiring the largest correction (be-
tween a 24 % and 55 % increase) and the Ob requiring the
least (between a 2 % decrease and 37 % increase). There is
a striking difference between the WFDEI data sets, which
require increases up to 27 % (and one decrease), and the
PGF and CRUNCEP data sets, which require much larger
increases of between 35 % and 55 %.

The GRC runs of JULES were carried out by scaling both
snowfall and rainfall by these factors during the cold sea-
son only for all years of the run (not just the GRACE pe-
riod). Snow and rain that falls outside of this season were un-
changed. This design ensured that each run received the same
amount of cold-season precipitation as indicated by GRACE,
when averaged over the basin and over the period of overlap
between the driving data set and GRACE; the temporal and
spatial variability of precipitation still varied between runs.

Figure 3. Climatology of monthly maximum SWE (mm) from ob-
servations and from the CTL model runs averaged over the common
overlap period, 2002–2010.

5 JULES model runs

5.1 Control runs (CTL)

The simulated monthly maximum SWE for each basin can
be seen in Fig. 3. In many cases JULES accumulates snow
more slowly than the observational estimates, particularly
later in the accumulation season, and the SWE is less sharply
peaked than the observations. This is possibly due to particu-
lar biases in the driving data (perhaps missing smaller events
towards the end of the accumulation season) or in how the
model responds (perhaps starting to melt too early).

Figure 4 shows the MBE for seasonal maximum SWE av-
eraged over all four basins with respect to both GlobSnow
and CMC. In general the magnitude of the MBE is largest
for PGF and smallest for WFDEI-GPCC (Fig. S5 shows the
MBE for each basin). The largest SWE deficit is found when
using the PGF data in the Lena basin, for which the bias
is −57 % compared to GlobSnow and −56 % compared to
CMC. The smallest deficit is found in the Mackenzie us-
ing the WFDEI-GPCC driving data, which have an MBE
of −17 % compared with both GlobSnow and CMC. Maps
of the modelled SWE show broadly similar distributions of
snow to the observations (Fig. S6). The difference between
the modelled and observed SWE (e.g. GlobSnow in Fig. S7)
show that, although there are a few regions of higher SWE
in JULES outside of the studied basins, there is a deficit
of modelled lying snow across most of the Northern Hemi-
sphere. The general tendency for JULES to underestimate
SWE is consistent with the indication of insufficient cold-
season precipitation (Fig. 2), and both analyses also agree
that the WFDEI runs are generally closer to the observations.
However it is clear that, even in the cases where the precipi-
tation is close to the GRACE-derived estimate, the modelled
maximum SWE is still lower than the observed SWE.

The annual discharge in JULES is also severely under-
estimated compared with GRDC observations, as seen in
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Figure 4. Mean bias error (MBE) of seasonal maximum SWE
(mm), averaged over all basins (Eq. 2) and calculated over the com-
mon overlap period, 2002–2010. The error bars show the basin-
averaged standard deviation, σS (Eq. 4).

Figure 5. Mean annual observed and modelled basin discharge
(mm yr−1) for the common overlap period, 2002–2010.

Fig. 5, which shows the basin discharge averaged over all
four basins. All of the runs demonstrate a substantial dry bias
in comparison with GRDC values. CRUNCEP is particularly
poor, with an 80 %–90 % deficit in annual mean basin dis-
charge, while the other runs underestimate basin discharge
by between 52 % and 57 % on average. This difference be-
tween CRUNCEP and the other data sets is consistent across
all the basins. The deficit is particularly pronounced during
the spring peak (Fig. S9), which in nature is strongly driven
by snowmelt. In JULES, the peak in the modelled river flow
is broader and occurs later than the observations, which may
indicate deficiencies in the modelled hydrology as well as a
lack of melting snow. However, at the annual scale the bias
may also be affected by warm-season rainfall.

5.2 Runs with scaled precipitation (GRC)

Using the GRACE-scaled precipitation to drive JULES gives
an improved SWE representation overall, with significant in-
creases in monthly and seasonal maximum SWE (Fig. 6).
The modelled seasonal cycle is much more similar to obser-
vations, particularly in the Yenisei and Mackenzie and early
in the season for the Lena and Ob. In the Ob, the CRUN-
CEP GRC run is much more similar to the observations than
any of the other models, while in the Mackenzie it now over-
estimates SWE. In the Lena, the seasonal peak is still not
attained with any data set. Overall the largest increases in
SWE are found for the CRUNCEP and PGF runs, consistent
with the larger scale factors used (Table 2). The annual max-

Figure 6. Climatology of monthly maximum SWE (mm) from ob-
servations and from the GRC model runs for the common overlap
period, 2002–2010.

imum SWE is increased by 30 % averaged across all basins
and runs, with the CRUNCEP and PGF runs having an aver-
age increase of 48 % and the WFDEI runs having a smaller
average increase of 12 %. Overall, the magnitude of the MBE
is decreased for all driving data sets (Fig. 4). Although there
is an increase in SWE over the extent of each basin (Fig. S8),
the effect on the MBE varies between driving data sets and
basins: the widespread underestimation of the CTL runs is re-
placed by a more nuanced picture, including some cases with
a modest overestimation of SWE (Fig. S5). The modelled
estimates of maximum SWE in the Yenisei and Mackenzie
are now clustered around the observational estimates, while
a low bias is still found in most runs for the Lena and Ob.
The biggest improvement is seen in CRUNCEP runs, which
now only has an MBE of −5 % overall.

Basin discharge is higher in the scaled runs than the con-
trol runs, although the increase is relatively small (27 % over-
all) compared to the general dry bias (Fig. 5). The improve-
ment in representation of basin discharge varies significantly
between data sets, from 8 % in WFDEI-GPCC to 57 % in
CRUNCEP, which still has the lowest basin discharge (the
highest absolute increase is 27 mm yr−1 in PGF, while the
lowest is 7 mm yr−1 in WFDEI-GPCC). Although the basin
discharge increases overall, the increase in SWE and the re-
sultant increase in spring snowmelt do not change the timing
of the peak basin discharge in the models. The modelled esti-
mates of basin discharge are still considerably lower than the
GRDC estimates, with CRUNCEP underestimating by 74 %
and the others between 39 % and 52 %. This implies that fac-
tors other than cold-season precipitation and snow accumu-
lation are contributing to the lack of river flow. In particular
the low bias and late peak in discharge for the Yenisei and
Mackenzie persists (Fig. S9) despite the peak SWE now be-
ing close to the observational estimates.

Hydrol. Earth Syst. Sci., 24, 1763–1779, 2020 www.hydrol-earth-syst-sci.net/24/1763/2020/



E. L. Robinson and D. B. Clark: Using GRACE to correct precipitation and improve modelled snow 1773

5.3 Runs with undercatch correction (UCC)

As discussed above, a possible explanation for underestima-
tion of cold-season precipitation in observation-based data
sets is undercatch. In an attempt to account for this effect
two of the data sets – WFDEI-CRU and WFDEI-GPCC –
already implement undercatch correction. The two data sets
that do not apply a correction required the largest scaling fac-
tors to match the GRACE-derived estimates. To investigate
the importance of the undercatch correction in comparison to
the GRACE corrections, the catch ratios calculated by Adam
and Lettenmaier (2003) were used to correct the CRUNCEP
and PGF data on a monthly basis. Both rainfall and snowfall
were adjusted, using separate catch ratios for all months of
the year, and used to force JULES in the UCC runs.

The undercatch correction increases the precipitation
across the whole year, but here we focus on the cold-season
precipitation increase. The increase is large but less than in-
dicated by the GRACE precipitation scale factors. In the Ob,
undercatch correction increases the amount of cold-season
precipitation by 26 % over the whole basin, compared to an
overall increase of 35 % in the GRC runs for CRUNCEP and
PGF. However, in the other basins the increase in precipita-
tion due to undercatch correction is between 20 % and 25 %,
and the increase based on GRACE precipitation is between
45 % and 55 %. Thus, the undercatch correction accounts for
between 30 % and 75 % of the cold-season deficit that is in-
dicated by the comparison with the GRACE-derived precipi-
tation estimates.

The improvement to the estimate of SWE is clear, although
it is not as large as in the GRC runs (Figs. 4 and 7). On aver-
age the two undercatch-corrected driving data sets used for
the UCC runs have a maximum SWE increased by 34 %,
compared to an increase of 48 % when the same two data
sets were scaled by the GRACE scale factors. In contrast, the
increases in annual basin discharge were much more simi-
lar between the GRC and UCC runs. In the Ob, the under-
catch correction even resulted in higher basin discharge than
the GRACE scaling, despite the GRACE scaling resulting in
higher total annual precipitation; this is because in the UCC
runs the precipitation is increased across the whole year, con-
tributing to increased river flow in warm months as well as
the spring snowmelt, whereas the GRC runs only have in-
creased precipitation in the cold season.

Along with the fact that GRACE indicates that the WFDEI
runs also underrepresent precipitation in at least some of
these basins, this suggests that although undercatch correc-
tion can account for some of the deficit in precipitation, it
cannot account for all of it.

6 Discussion

This study has shown that gauge- or reanalysis-based esti-
mates of cold-season precipitation in boreal basins can be

significantly lower than is suggested by a water balance ap-
proach using GRACE TWS data. By scaling the driving
meteorological data sets, we can significantly improve the
representation of lying snow in a land surface model. The
deficits seen in precipitation are large but similar in magni-
tude to those calculated by Finney et al. (2012), who cal-
culated precipitation corrections of between 36 % and 70 %,
based on a comparison of modelled and observed SWE, and
by Behrangi et al. (2017), who used GRACE to evaluate pre-
cipitation data sets in endorheic cold mountainous basins,
and found that some precipitation data sets only captured be-
tween 10 % and 60 % of the GRACE-based precipitation es-
timates. In this study we used time-invariant corrections, but
this could be extended to allow time-varying corrections, say
on an annual basis.

The GRACE-based estimates provide a means to account
for measurement errors in the gauge data that are used to
bias-correct reanalyses. This study suggests that undercatch
is an important source of error, but in many cases the ap-
plication of an undercatch correction does not remove the
bias entirely. Further sources of error in the gauge-based es-
timates include spatial variability that is missed by the gauge
network. While the GRACE TWS method used here circum-
vents many of the limitations of the gauge-based correction,
it introduces uncertainties from other terms in the water bud-
get (e.g. evaporation). It is also inherently large scale and so
improves the basin-averaged SWE, but it may not result in
improved SWE when looking at the local scale.

Undercatch correction, on the other hand, can be calcu-
lated at a local or grid box scale and can, in theory at least,
more easily take account of changing meteorological con-
ditions down to the timescale of individual storms. Further-
more it is easy to implement and is attractive, as it addresses
known deficiencies in the observations. It can also be used
to correct historical data sets that predate GRACE. However
the correction is uncertain, including dependency on the type
of gauge used in each area, and again it requires further in-
puts, each with uncertainties. A further approach, not studied
here, is to use estimates of SWE, either from ground mea-
surements or remote sensing, to estimate snowfall.

This study of cold-season processes shows that the under-
catch correction is equivalent to a substantial fraction of the
GRACE-derived correction, suggesting that for gauge-based
data sets the undercatch correction can be considered a min-
imum requirement that should be applied whenever possi-
ble. However, this varies by region, implying that there are
different reasons for the deficit in precipitation in different
regions. The CRUNCEP and PGF data sets do not include
an undercatch correction but have been widely used with
land surface models; our results suggest that any aspects of
those studies that are potentially sensitive to snowfall, such
as high-latitude hydrological analyses, should be regarded
as particularly uncertain. Undercatch is a known issue for
rainfall as well as snowfall and is considered in undercatch
correction algorithms from Adam and Lettenmaier (2003)
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Figure 7. Climatology of monthly maximum SWE (mm) from ob-
servations and from the UCC model runs for the common overlap
period, 2002–2010.

Figure 8. Increase in annual maximum SWE (mm) from CTL to
GRC and UCC runs compared to an increase in annual snowfall
(mm yr−1), averaged over all basins (using the GlobSnow mountain
mask for snowfall as well as SWE) for each driving data set. This is
averaged over the whole of each JULES run (see Table 1).

and Adam et al. (2006). The annual water balance calculated
from GRDC, GLEAM and GRACE suggests that there is in-
sufficient precipitation input in each of these basins to sup-
port the observed river flow (Fig. S10). Therefore undercatch
errors potentially also affect summertime precipitation.

Figure 8 shows that the increase in seasonal maximum
SWE is proportional to the increase in seasonal snowfall
between experiments, with a very strong correlation (r2

=

0.98) between the two. The gradient of 0.76 implies that not
all of the increase in snowfall manifests as an increase in
SWE, which is mainly due to increased sublimation and a
small increase in snowmelt, but it does confirm that correct-
ing snowfall is a direct and reliable approach with which to
target errors in simulated SWE. This correlation also implies
that the approach of Finney et al. (2012) to increase driving
snowfall based on the required increase in SWE is reason-
able.

The use of corrected precipitation improved results in most
catchments and with most driving data sets, often substan-
tially. In contrast, the larger dry bias in modelled basin dis-

charge was found in all simulations, with only modest im-
provements from corrected precipitation. This difference is
a result of the much closer links between point snowfall
and SWE, whereas modelled discharge can be viewed as the
net effect of many hydrological processes acting across the
catchment. A striking illustration of this is the large differ-
ence between the CRUNCEP and PGF river discharge, de-
spite very similar precipitation inputs (both having been bias-
corrected to CRU precipitation). The larger river flow in PGF
is balanced by a smaller evapotranspiration flux (Fig. S11),
while evapotranspiration in CRUNCEP tends to be closer
to the WFDEI-based estimates. In turn this can be related
to differences in other aspects of the meteorological forc-
ing (Figs. S1 and S2); in particular, PGF has much higher
specific humidity, particularly in the summer, than the other
data sets. In spring and summer PGF humidity is 18 %–87 %
higher than in CRUNCEP, which suppresses evapotranspira-
tion, which is 10 %–17 % lower in PGF for the CTL runs.
(This can be contrasted with the air temperature, which is
nearly identical in PGF and CRUNCEP, implying that the
data sets employed different methods to reconstruct humid-
ity.) This is consistent with the fact that evapotranspiration
in the PGF runs is generally less than estimated by GLEAM,
while the other runs tend to be closer to GLEAM, although
there is considerable uncertainty in the GLEAM product. Al-
though the focus of this study is on the correction of precip-
itation products, which is shown to improve modelled SWE,
it is clear that other meteorological variables are also impor-
tant, particularly for other aspects of modelled hydrology.

The modelled runoff ratio (Qnet/P ) is much lower on av-
erage for CRUNCEP than for runs with the other data sets.
When combined with the already relatively low precipitation
in the CTL run, this means the CRUNCEP data set gener-
ates particularly small values of discharge in all basins; over-
all the CRUNCEP basin discharge is 16 % of observed dis-
charge in the CTL run and 25 % of observed discharge in
the GRC and UCC runs. This is related to the longer time
step of the data set (6 h rather than 3 h), within which the
precipitation rate is constant in the JULES runs; the lower
intensity of precipitation tends to result in larger interception
loss, and higher interception loss reduces water available for
runoff. For CRUNCEP, the interception is the largest com-
ponent of evapotranspiration (interception is 35 % of total
evapotranspiration in the CTL run, whereas transpiration is
28 %), while the other driving data sets have lower intercep-
tion losses (22 %–24 % for CTL), with transpiration as the
largest component instead (35 %–38 % of total evapotranspi-
ration for CTL).

The extra precipitation input in the GRC runs largely ap-
pears as increased evaporation in CRUNCEP runs, whereas
it is largely converted to runoff for the other data sets
(Fig. S11). This means that, even with a significant increase
in precipitation in the CRUNCEP runs, the basin discharge is
still extremely underestimated.
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The seasonal maximum SWE tends to be biased low even
when precipitation inputs are corrected. Assuming that both
the precipitation and SWE observations are now correct, this
points to structural uncertainties of the model as a possible
remaining source of bias. One possibility is that the mod-
elled sublimation rate is too high. Sublimation in the CTL
runs, averaged over all basins, ranged from 37 % of snowfall
(PGF) to 44 % (CRUNCEP). It is very difficult to measure
sublimation, particularly over large areas, and most estimates
tend to be based on water balance methods or models (Liston
and Sturm, 2004). Estimates at a range of scales indicate that
10 %–50 % of snowfall can be lost through sublimation, with
substantial variation depending on land cover and meteoro-
logical conditions (e.g. Liston and Sturm, 2004; Brun et al.,
2013; Casson et al., 2018). For the Mackenzie basin subli-
mation was estimated as 29 mm (7 % of annual precipitation;
Déry and Yau, 2002), while numerical modelling by Yang
et al. (2010) suggested that approximately 24 % of annual
snowfall in the area 50–70◦ N was lost as sublimation. Thus
the evidence suggests that sublimation might be rather high
in JULES, although the evidence base is itself rather uncer-
tain. Further investigation, including ensembles of LSMs and
global hydrological models (GHMs), and point-scale runs in
data-rich environments to examine the simulated water bud-
get across a range of land covers such as in SnowMIP2 (Rut-
ter et al., 2009) will allow us to identify the role of model un-
certainty and increase our confidence in the ability of JULES
and other models to correctly simulate sublimation and other
key processes.

However, errors in modelled sublimation and indeed all
cold-season processes are insufficient to fully account for the
dry bias in annual discharge. It is also possible that rainfall
outside of the cold season is underestimated in the driving
data. In all of these basins there is more precipitation in sum-
mer (when it is more likely to be rain) than in winter, sug-
gesting that correction of warm-season rainfall could poten-
tially have a larger impact on the annual water balance. A
sensitivity test, applying the cold-season scaling factors to
the whole year, suggests that this can double the modelled
basin discharge, significantly decreasing the underestimation
(Fig. S12). However, there are clear signs that meteorological
inputs are not the only source of error and that there are fun-
damental deficiencies in the model’s representation of runoff
generation processes: even a good estimate of peak SWE
does not result in a good representation of the spring dis-
charge peak (Fig. S9). It is likely that the parameterisation of
infiltration into partly frozen ground and related runoff gen-
eration processes are not well represented in JULES. Previ-
ous work has shown that alternative descriptions of frozen
soil can improve the modelled runoff peak (Finney et al.,
2012).

7 Conclusions

There is a substantial body of literature on the intercompari-
son of global precipitation data sets, with a lesser focus on the
particular issues found at high latitudes where much of the
precipitation falls as snow. There is an ongoing need to com-
pare these precipitation products and to ensure that the best
meteorological data are made available as inputs to land sur-
face modelling. This study has focussed on precipitation, but
the model results clearly indicate that other variables, such
as humidity, are also important.

Land surface modellers should continue to critically eval-
uate the meteorological data they use and ideally run a model
using a variety of data sets. The extent to which results are
sensitive to the choice of meteorological data will vary; for
some analyses there might be relatively little sensitivity, but
by and large this can only be determined through the use of
an ensemble of runs forced by alternative data. Meteorolog-
ical data should also be evaluated in combination with prod-
ucts that describe related parts of the hydrological system,
such as GRACE TWS; estimates of SWE based on remote
sensing; and river discharge as used in this study. Although
each product comes with its own uncertainty and a range of
alternative and potentially conflicting data sets is often avail-
able, the combination of estimates across different parts of
the hydrological system can provide extra insights, particu-
larly if a model shows consistent biases across several com-
ponents.

Even with the scaled precipitation data sets, there are still
remaining biases in the model output, which vary across
basin and data set. Using scaled precipitation data sets would
allow for the further identification of biases due to model un-
certainty.

This study shows that at a basin scale, the cold-season pre-
cipitation in four data sets that are commonly used to drive
land surface models is low compared with estimates derived
from GRACE TWS. This leads to consistent and large errors
in SWE and basin discharge calculated by JULES, which
are also low compared to observations. By increasing the
precipitation in JULES to match the GRACE estimates, the
modelled SWE is substantially improved, although river dis-
charge is still low – likely because of a combination of poor
modelling of runoff processes during the spring melt and pos-
sible underestimation of summertime precipitation. By pro-
viding methods to better define the precipitation inputs to the
system, the current study paves the way for subsequent work
on key hydrological processes.

Code availability. The model runs in this paper were carried out
using JULES vn4.9, with modifications to allow scaling of the pre-
cipitation input. This is available through the JULES repository and
is located at https://code.metoffice.gov.uk/trac/jules/browser/main/
branches/test/emmarobinson/vn4.9_arctic_scaling?rev=9936 (last
access: April 2020) (registration required). The runs were car-
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ried out using Rose (http://metomi.github.io/rose, last access: April
2020); the control files are available through the Met Office Rose
repository (https://code.metoffice.gov.uk/trac/roses-u, last access:
April 2020); and details are in Table S2. All other analysis code,
including river routing and post-processing, is available on request.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-24-1763-2020-supplement.
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